

Importance of considering riparian vegetation requirements for the long-term efficiency of environmental flows

Rui Rivaes¹, Isabel Boavida², José M. Santos¹, António N. Pinheiro², Teresa Ferreira¹

5 ¹Forest Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal

²CERIS, Civil Engineering Research Innovation and Sustainability Centre, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Correspondence: Rui Rivaes (ruirivaes@isa.ulisboa.pt)

10 **Abstract.** Environmental flows remain biased toward the traditional biological group of fish species. Accordingly, these flows ignore the inter-annual flow variability that rules species with longer life cycles, thereby disregarding the long-term perspective of the riverine ecosystem. We analyzed the influence of considering riparian requirements for the long-term efficiency of environmental flows. For that analysis, we modeled the riparian vegetation development for a decade facing different environmental flows in two 15 case studies. Next, we assessed the corresponding fish habitat availability of three common fish species in each of the resulting riparian habitat scenarios. Modeling results demonstrated that the environmental flows disregarding riparian vegetation requirements promoted riparian degradation, particularly vegetation encroachment. Such circumstance altered the hydraulic characteristics of the river channel where flow depths and velocities underwent changes up to 10 cm and 40 cm s⁻¹, respectively. Accordingly, after a 20 decade of this flow regime, the available habitat area for the considered fish species experienced modifications in absolute from 18.16% to 109.75% compared to the natural habitat. In turn, environmental flows regarding riparian vegetation requirements were able to maintain riparian vegetation near natural standards, thereby preserving the hydraulic characteristics of the river channel and sustaining the fish habitat close to the natural condition. As a result, fish habitat availability never changed more than 16.17% 25 from the natural habitat.

1 Introduction

30 Freshwater ecosystems provide vital services for human existence but are on top of the world's most threatened ecosystems (Dudgeon et al., 2006; Revenga et al., 2000), primarily due to river damming (Allan and Castillo, 2007). The ability to provide sufficient water to ensure the functioning of freshwater ecosystems is an important concern as its capacity to provide goods and services is sustained by water-dependent ecological processes (Acreman, 2001). The relevance of this subject compelled the scientific 35 community to appeal to all governments and water-related institutions across the globe to engage in environmental flow restoration and maintenance in every river (Brisbane Declaration, 2007). Truly, this issue is a global reach topic, as all dams, weirs and levees change the magnitude of peak flood flows of rivers to a certain extent (e.g., Nilsson and Berggren, 2000; FitzHugh and Vogel, 2010; Maheshwari et al., 1995; Miller et al., 2013; Uddin et al., 2014a, b). Therefore, there are still opportunities for the

implementation of environmental flow restoration at hundreds of thousands of these structures worldwide (Richter and Thomas, 2007).

Environmental flows can be defined as “the quantity, timing and quality of water flows required to sustain freshwater and estuarine ecosystems, and the human livelihoods and wellbeing that depend upon these 5 ecosystems” (Brisbane Declaration, 2007), and they also play an essential role in the conservation of freshwater ecosystems (Arthington et al., 2006; Hughes and Rood, 2003). It is now in agreement that environmental flows must ideally be based on the ecological requirements of different biological communities (Acreman et al., 2009) and should present a dynamic and variable hydrological regime to maintain the native biodiversity and the ecological processes that portray every river (Bunn and Arthington, 10 2002; Lytle and Poff, 2004; Postel and Richter, 2003). In this sense, holistic methodologies are clearly being increasingly applied out of Australia and South Africa (Hirji and Davis, 2009), but the most commonly applied methods throughout the world are still hydrologically based methods (Dyson et al., 2003; Tharme, 2003; Linnansaari et al., 2012). Conversely, environmental flows ascertained through habitat simulation methods still persist generally based on the requirements of a single biological group, 15 mostly fish (Acreman et al., 2009; Tharme, 2003; Arthington, 2012), and clearly require an input from less typically monitored taxa (Gillespie et al., 2014). Accordingly, these biased approaches still disregard the inter-annual flow variability that rules species with longer lifecycles, therefore lacking the long-term perspective of the riverine ecosystem (Stromberg et al., 2010). The feedbacks of these shortcomings on the riparian and aquatic communities were seldom estimated before and so, the efficiency of such approaches 20 along with its long-term after-effects remains practically unknown.

Riparian restoration is an indispensable implementation measure to recover the natural river processes and is the most promising restoration action in many degraded rivers (Palmer et al., 2014). Moreover, riparian vegetation is a suitable environmental change indicator (Benjankar et al., 2012; Nilsson and Berggren, 2000) that responds directly to flow regime in an inter-annual timeframe (Capon and Dowe, 2007; Naiman 25 et al., 2005; Poff et al., 1997) and has a clear significance in the habitat improvement of aquatic systems (e.g., Broadmeadow and Nisbet, 2004; Pusey and Arthington, 2003; Van Looy et al., 2013). Hence, incorporating riparian vegetation requirements (the need for specific flows to preserve the naturalness of recruitment and meta-stability facing fluvial processes) into environmental flows could be an important contribution to fill in these gaps.

30 The purpose of this study is to evaluate the effect of disregarding riparian vegetation requirements in the efficiency of environmental flow regimes regarding fish habitat availability in the long-term perspective of the fluvial ecosystem. We used an approach from an ecohydraulic point of view to evaluate the effects of riparian degradation on fish species. We were particularly interested in answering the following questions: are environmental flows exclusively addressing fish requirements capable of preserving the habitat 35 availability of these aquatic species in the long-term? In what extent could this overlook derail the goals of environmental flows addressing only aquatic species as a result of the riparian habitat degradation? Are environmental flows regarding riparian requirements able to maintain the habitat availability of fish species?

To approach these questions, we first modeled the structural response of riparian vegetation facing a decade 40 of different environmental flows in two different case studies. Next, we performed an assessment of habitat

availability for fish species in each of the resulting riparian habitat scenarios. We are not aware of such a modeling approach ever being used in the appraisal of the long-term efficiency of environmental flow regimes, which can provide an extremely valuable insight of the expected long-term effects of environmental flows in river ecosystems in advance.

5 2 Methods

2.1 Study sites

The two study sites were selected in the Ocreza River, East Portugal (Figure 1). This is a medium-sized stream that runs on schistose rocks for 94 km and drains a 1429 km² watershed with a mean annual flow of 16.5 m³ s⁻¹. The flow regime is typically Mediterranean, with a low flow period interrupted by flash floods 10 in winter and a very low flow, even null at times, during summer (Gasith and Resh, 1999). Two study sites were considered (OCBA and OCPR) to provide a broader analysis of the aquatic habitat modifications in different hydrogeomorphological contexts. The OCBA study site (39° 44' 07.05" N, 7° 44' 16.51" W) is located 30 km upstream from the river mouth and OCPR (39° 43' 16.88" N, 7° 46' 01.05" W) is approximately 5 km downstream of OCBA. Despite the relatively small distance between them, several 15 characteristics differentiate the two study sites. While in OCBA, the river flows freely on a boulder substrate and is confined to steep valley hillsides, in OCPR, the river flows on a coarser boulder substrate with sparse bedrock presence and is in a relatively wider valley section. OCBA and OCPR also contrast in watershed areas, representing 54 and 72% of the entire river basin, respectively. This feature further differentiates the two case studies, as the intermediate watershed of OCPR collects water from a much rainier zone, therefore 20 conferring an increased flow regime in this study site. The surveyed areas in the OCBA and OCPR study sites encompass a river length of approximately 500 and 300 m, respectively, laterally limited by the 100-year flooded zone, thus totaling approximately 4 and 3 ha for OCBA and OCPR study sites, respectively. In both cases, the fish community is characterized by native cyprinid species, mainly *Luciobarbus bocagei* 25 (Iberian barbel, hereafter barbel), *Pseudochondrostoma polylepis* (Iberian straight-mouth nase, hereafter nase) and *Squalius alburnoides* (calandino), whereas the local riparian vegetation is composed mostly of willows (*Salix salviifolia* Brot. and *Salix atrocinerea* Brot.) and ashes (*Fraxinus angustifolia* Vahl).

2.2 Data collection

2.2.1 Hydraulic data

The riverbed topography was surveyed in 2013 using a combination of a Nikon DTM330 total station and 30 a Global Positioning System (GPS) (Ashtech, model Pro Mark2). Altogether, 7707 points were surveyed at OCBA and 25132 at OCPR. Trees, boulders and large objects emerging from the water were defined by marking the object intersection with the riverbed and by surveying the points necessary to approximately define its shape.

Hydraulic data –, i.e., water velocities and depths – were measured as a series of points along several cross- 35 sections in the study sites. Depths were measured with a ruler and water velocities with a flow probe (model 002, Valeport) positioned at 60% of the local depth below the surface (Bovee and Milhous, 1978). Additionally, the substrate composition was visually assessed and mapped to determine posteriorly the

effective roughness heights of the riverbed. These data were used to calculate river discharge in each study site and to calibrate the model. Additional information about hydraulic data and channel bed characteristics is provided as supplementary material.

2.2.2 Riparian vegetation data

5 The riparian vegetation was assessed in 2013 to support the calibration and validation of the riparian vegetation model. This task consisted in recording the location and shape of all homogeneous vegetation patches with a sub-meter precision handheld GPS (Ashtech, Mobile Mapper 10), while dendrochronological methods were used to determine the approximate age of the patches. The patches were later classified by succession phase according to its corresponding development stage. Patch
10 georeferencing, patch aging and succession phase classification followed the methodology used by Rivaes et al. (2013).

Five succession phases were identified in the study sites: Initial phase (IP), Pioneer phase (PP), Early Successional Woodland phase (ES), Established Forest phase (EF), and Mature Forest phase (MF). Initial phase was attributed to all patches dominated by gravel bars, sometimes covered by herbaceous vegetation
15 but without woody arboreal species. The patches dominated by the recruitment of woody arboreal species were considered as Pioneer phase. The Early Successional Woodland phase classification was attributed to all patches with a high standing biomass and well-established individuals, dominated by pioneer watertable-dependent species, such as willows and alders (*Alnus glutinosa*). Older patches dominated by macrophanerophytes, such as ash-trees, were considered to be Established Forest phase. The Mature Forest
20 phase was considered at patches where terrestrial vegetation was also present, determining the transition phase to the upland vegetation communities. Further information on the characterization of succession phases is provided as supplementary material.

2.2.3 Fish data

25 Fish populations were sampled during 2012 and 2013 at undisturbed or minimally disturbed sites in the Ocreza basin, an essential requisite when studying habitat preferences of stream fishes in order to reflect their optimal habitat (Gorman and Karr, 1978). Sampling occurred in autumn (November, 2012), spring (May, 2013) and early summer (June, 2013) when there is full connectivity among instream habitats. Overall, four native species (cyprinids) were found – barbel, nase, calandino and the Southern Iberian chub
30 (*Squalius pyrenaicus*). The latter was however excluded from the present study, as an insufficient number of individuals were collected to draw unbiased conclusions. Non-native fish (the gudgeon *Gobio lozanoi*) occurred in the study area, but in very low density. Field procedures followed those by Boavida et al. (2011, 2013a). Ensuing fish sampling, microhabitat measurements of flow depth (cm), mean water velocity (cm s⁻¹) and dominant substrate composition were taken in 0.8 x 0.8 m quadrats at the location where each fish
35 was captured. Microhabitat availability measurements were made using the same variables by quantifying randomly selected points along 15–25 m equidistant transects perpendicular to the flow at each sampling site. To develop Habitat Suitability Curves (HSC) for target fish size classes, microhabitat variables (flow depth, water velocity, dominant substrate and cover) were divided into classes, and histograms of frequencies of use and availability were constructed (Boavida et al., 2011). A summary on collected fish

data, as well as data analysis to determine habitat use, availability and preference of fish species regarding the analyzed variables, is provided as supplementary material.

2.3 Flow regime definition

Three flow regimes were considered for the modeling of riparian vegetation: i) the natural flow regime
5 (hereafter named natural flow regime), ii) an environmental flow regime considering only fish requirements (hereafter named Eflow regime) and iii) an environmental flow regime considering both fish and riparian requirements (hereafter named Eflow&Flush regime). The considered environmental flow regimes were adapted from the environmental flow regime proposal for the future Alvito dam (Ferreira et al., 2014), with a projected location immediately upstream of OCBA. This environmental flow regime considers both fish
10 and riparian requirements, which are presented in a multiannual fashion for a decadal time frame while incorporating two discharge components: a mean monthly discharge intended to address fish species requirements and a series of flushing flows with different recurrence intervals to fulfill the requirements of riparian vegetation. The flow regime addressing fish requirements is built on a monthly basis to embody the intra-annual variability ruling the main life cycle events of this biological group (Encina et al., 2006;
15 Gasith and Resh, 1999). Likewise, the flushing flows of the riparian flow regime intend to characterize the inter-annual flow variability to which the arrangement of riparian vegetation communities respond (Hughes, 1997).

The Eflow was determined according to the Instream Flow Incremental Methodology (Bovee, 1982) and aimed for the following goals: i) maximize the habitat of the target species while attributing the same weight
20 for each species; ii) privilege the spawning months (spring; Santos et al., 2005) and promote the younger life stages during summer; iii) maintain the characteristic intra-annual variability of the river flow; and iv) preserve the natural regime whenever the environmental flows suggest higher discharges. The riparian requirements were defined based on the need of riparian communities for the minimum necessary flushing flow regime to maintain the viability and sustainability of riparian vegetation, particularly, avoiding
25 vegetation encroachment and conserving the ecological succession equilibrium of the riparian ecosystem (Rivaes et al., 2015). Thus, the Eflow regime only acknowledges the mean monthly discharges, while the Eflow&Flush regime incorporates both mean monthly discharges and flushing flows (Figure 2).

2.4 Riparian vegetation modeling

The riparian vegetation modeling was performed using the *CASiMiR-vegetation* model (Benjankar et al.,
30 2009). This tool simulates the succession dynamics of riparian vegetation, based on the existing relationships of the ecological relevant hydrological elements (Poff et al., 1997) and the vegetation metrics that reflect riparian communities to such hydrological alterations (Merritt et al., 2010). The rational of this model is based on the fact that riparian communities respond to the hydrological and habitat variations on a time scale between the year and the decade (Frissell et al., 1986; Thorp et al., 2008), being that the flood
35 pulse is the predominant factor on these population dynamics (Thoms and Parsons, 2002). For these reasons, the hydrological regime is inputted into the model in terms of maximum annual discharges as these discharges are considered as the annual threshold for riparian morphodynamic disturbance that determine the succession or retrogression of vegetation. Notwithstanding, the model also predicts the annual riparian

adjustments according to its vital rates in relation to groundwater depth, as well as the annual recruitment areas, based on the annual minimum mean daily discharges.

Model calibration was carried out in accordance with the methodology described in previous studies (García-Arias et al., 2013; Rivaes et al., 2013). During calibration, the riparian vegetation model achieved 5 an agreement evaluation of 0.61 by the quadratic weighted kappa (Cohen, 1960), which is considered to be in good agreement with the observed riparian landscape (Altman, 1991; Viera and Garrett, 2005). The riparian vegetation model was further validated in this specific watershed (Ferreira et al., 2014). After calibration (calibrated parameters provided as supplementary material), the riparian vegetation was modeled for periods of ten years according to the corresponding flow regimes (Table 1). Such modeling 10 period was considered to be long enough to avoid the influence of the initial vegetation conditions, while river morphological changes still do not assume importance in vegetation development (Politti et al., 2014). The resulting riparian vegetation maps were then used as the respective riparian habitats (hereafter named natural, Eflow and Eflow&Flush habitats) in the hydrodynamic modeling of fish habitat in each study site.

2.5 Hydrodynamic modeling of fish habitat

15 The hydrodynamic modeling was performed using a calibrated version of the River2D model (Steffler et al., 2002). This is a finite element model widely used in fluvial modeling studies for the assessment of habitat availability (Boavida et al., 2011; Jalón and Gortázar, 2007) that brings together a 2D hydrodynamic model and a habitat model to simulate the flow conditions of the river stretch and estimate its potential habitat value according to the fish habitat preferences. The calibration procedure followed the methodology 20 proposed by Boavida et al. (2013b, 2015) and calibrated parameters are provided in supplementary material. The hydrodynamic modeling comprised the Eflow discharge ranges in the study sites ($0 - 2 \text{ m}^3 \text{ s}^{-1}$ and $0 - 5.5 \text{ m}^3 \text{ s}^{-1}$ for OCBA and OCPR, respectively) and was accomplished for each riparian habitat. The riparian habitats were represented in the hydrodynamic model by changing the channel roughness according to the spatial extent of the riparian succession phases. Roughness is a critical feature influencing the physical 25 variables of flow hydraulics (Curran and Hession, 2013; Chow, 1959), whose distinct combinations typify diverse functional habitats, which are selected by fish according to its preference. The roughness classification of riparian vegetation succession phases was determined based on roughness measurement literature on similar vegetation types (Chow, 1959; Wu and Mao, 2007) and expert judgment during model calibration. The hydraulic characteristics of each habitat (roughness, flow depth and velocity) were 30 compared using a t-test (confidence level of 99%) in R environment (R Development Core Team, 2011) in order to determine the existence of mean significant differences between habitats. Habitat simulation was achieved by the combination of the hydraulic modeling (flow depth and velocity) with preference curves information for the considered target species. The riverbed characteristics of substrate and cover were kept unchanged during the hydrodynamic modeling. Changing the substrate according to the modifications in 35 succession phase disposal seemed to be an incorrect practice in this case because during data treatment, no significant differences were detected in riverbed substrate between succession phases. Cover modification was also disregarded because the CASiMiR-vegetation model only reproduces the riparian area, not the aquatic zone (part of the river channel that is permanently submerged) and therefore, this feature cannot be correctly modeled by the riparian vegetation model. Notwithstanding, the most important variables

determining fish habitat availability influenced by riparian vegetation degradation were considered, namely, depth, velocity and substrate (Parasiewicz, 2007).

The Habitat Suitability Index (HSI) was determined for each species and life stage regarding the product of the velocity (Velocity Suitability Index – VSI), depth (Depth Suitability Index – DSI) and substrate (Substrate Suitability Index – SSI) variables, according with Eq. (1):

$$HSI = VSI \times DSI \times SSI \quad (1)$$

The product of the HSI by the influencing area (A) of the corresponding model i^{th} node defines the Weighted Usable Area (WUA) of that node. The sum of the WUA's result in the total amount of habitat suitability for the study site, as described by Eq. (2):

$$WUA = \sum_{n=1}^i A_i \times HSI_i = f(Q) \quad (2)$$

Considering that the BACI approach (Before-After Control-Impact) is generally the best way of detecting impacts or beneficial outcomes in river systems (Downes et al., 2002) the resulting WUA's were then compared to the natural habitat in a census-based benchmark. The equality of proportions between habitat availabilities was tested using the χ^2 test for proportions in R environment, while deviations were measured using the most commonly used measures of forecast accuracy, namely, Root Mean Square Deviation (RMSD), Mean Absolute Deviation (MAD) and Mean Absolute Percentage Deviation (MAPD). In all cases, smaller values of these measures indicate better performance in parameter estimation.

3 Results

Different configurations of riparian habitat resulted from the riparian vegetation modeling according to the considered flow regimes in both case studies (Figure 3). Nonetheless, the modeled response of riparian vegetation to each flow regime is similar in the two study sites. The riparian habitat, driven by the natural flow regime, presents a river channel that is largely devegetated, where Initial (IP) and Pioneer (PP) phases together represent approximately 43% and 35% of the study site areas in OCBA and OCPR, respectively. In this habitat, Early Succession Woodland phase (ES) can only settle in approximately 8% of OCBA and 1% of OCPR areas. The floodplain succession phases, namely, Established Forest phase (EF) and Mature Forest phase (MF), represent nearly 40 and 10% of the study area for OCBA and, close to 42% and 23% for OCPR, respectively. In contrast, the riparian habitat created by the Eflow regime is where the riparian vegetation encroachment is more prominent. Herein, riparian vegetation settles in the channel and evolves toward mature phases due to the lack of the river flood disturbance. IP is now reduced to approximately 3% in OCBA and 6% in OCPR, while PP is nonexistent in both cases. ES covers up to approximately 48% and 26% of the corresponding study areas, whereas EF and MF maintain about the same area in both case studies. The riparian habitat driven by the Eflow&Flush regime shows the capacity of this flow regime in hold back vegetation encroachment in both cases. In this habitat, IP and PP are maintained at approximately 30% of the study site area in both case studies, whereas ES is kept under 21% in OCBA and only 2% in OCPR. Once again, EF and MF preserve their areas in both case studies.

The changes undertaken by the riparian vegetation facing different flow regimes are able to modify the hydraulic characteristics of the river stretches (Figure 4). Channel effective roughness heights (k_s) change dramatically according to the considered riparian habitats, increasing proportionally to the encroachment level of vegetation in the study sites. In both case studies, the k_s values of the Eflow habitats are clearly

distinct and higher compared to the other two habitats. The k_s in the Eflow&Flush habitats were found to be between the values of Eflow and natural habitats, and were very similar with the natural habitat in the case of OCPR. Notwithstanding, in both case studies, the k_s mean values are significantly different between all three habitats (test results in supplementary material). The mean k_s of the Eflow, Eflow&Flush and natural habitats are 0.999, 0.709 and 0.462 m, respectively, in OCBA, and 1.034, 0.742 and 0.7178 m, respectively, in OCPR.

Changes also occur in flow depth and flow velocity for the considered discharge range of the proposed environmental flows. In OCBA, the Eflow habitat creates a circumstance with significantly higher depths (mean depth is 0.402 m) and lower flow velocities (mean flow velocity is 0.128 m s^{-1}) than the natural and Eflow&Flush habitats (test results in supplementary material). In contrast, depth and flow velocity are not significantly distinguishable between the natural and Eflow&Flush habitats, where mean depth and flow velocity are 0.397 m and 0.136 m s^{-1} , respectively, in the former, and 0.399 m and 0.135 m s^{-1} , respectively, in the latter. For the OCPR study site, flow depths are not significantly different (mean values of flow depth for Eflow, Eflow&Flush and natural habitats are 0.420, 0.417, 0.418, respectively) but flow velocities are; with the Eflow habitat creating significantly lower flow velocities (0.271 m s^{-1}) compared to the significantly indistinct Eflow&Flush (0.277 m s^{-1}) and natural (0.278 m s^{-1}) habitats (test results in supplementary material).

During a hydrological year, each riparian habitat provides different WUAs for the target fish species, with the same environmental flow regime addressing fish species (Figure 5). Differences from the natural habitat suitability are greater in the Eflow habitat for both case studies. In OCBA, major differences in the WUA can be found almost all year round for the barbel juveniles, throughout autumn and winter months for the nase juveniles and during spring months for the calandino. Compared to the natural habitat, the WUA modifications instilled by the Eflow habitat are on average approximately 12%, and are higher than 17% in a quarter of the cases and can reach 80% in an extreme situation. Particularly, the Eflow habitat provides less habitat suitability during autumn and winter months for the barbel and nase juveniles, c. 17% and 14%, respectively. Likewise, in this habitat, the habitat suitability during spring months increases approximately 23% for the barbel juveniles and approximately 20 and 27% for the calandino juveniles and adults, respectively. On the other hand, throughout the year, the Eflow&Flush habitat provides a WUA very similar to the natural habitat. The habitat changes created by the Eflow&Flush habitat are on average approximately 2% and never reach 8% for all species and life stages.

As for OCPR, major differences in WUA are seen almost all year round for calandino and nase, and exist particularly in spring months for barbel. WUA modifications due to the Eflow habitat are on average near 29%, being a quarter more than 50% and reaching up to more than 100% different in the most extreme case. The Eflow habitat consistently provides less habitat suitability during autumn and winter months for the barbel and nase, c. 50% and 38%, respectively, while the habitat suitability increases in approximately 46% of calandino. Moreover, the Eflow habitat provides an increased WUA during spring months in approximately 18% of the barbel adults and 71% of the calandino adults, while it decreases the habitat on average for approximately 7% of the remaining species and life stages. Also in this case study, the Eflow&Flush habitat provides a WUA very similar to the natural habitat throughout the year. The habitat changes created by the Eflow&Flush habitat are on average near 3% and always less than 17% for all

species and life stages. Accordingly, in both case studies, the WUA differences evidenced in the Eflow habitat revealed to be significant in several months by the χ^2 test whereas this were never the case for the Eflow&Flush habitats (test results provided in supplementary material).

The riparian-induced modifications on the WUAs are also confirmed by all the employed deviation measures (Table 2). According to RMSD, MAD and MAPD, the Eflow habitat is always farther apart from the natural habitat for all species and life stages. In OCBA, the larger deviations occur for the barbel juveniles and nase adults, whereas in OCPR, the calandino adults and the barbel juveniles are the ones enduring greater habitat deviations from the natural circumstance.

4 Discussion

10 This study evaluated the benefits of incorporating riparian requirements into environmental flows by estimating the expected repercussions of riparian long-term changes driven by regulated flow regimes on the fish habitat suitability. To this end, the riparian vegetation was modeled for 10-year periods according to three different simulated flow regimes and results were inputted as the habitat basis for the hydrodynamic modeling and subsequent assessment of the fish habitat suitability in those riparian habitats. Such ecological modeling approach, where a joint analysis is performed while embracing a suitable time response for the ecosystems involved, pushes through realistic biological-response modeling and substantiates the long-term research that is required in environmental flow science (Arthington, 2015; Petts, 2009). Furthermore, this approach allows one to foresee and assess the outcome of recommended flow regimes, which is an essential topic but has been poorly considered in environmental flow science (Davies et al., 2013; Gippel, 2001).

15 This research provides an insight of the expected long-term effects of environmental flows in river ecosystems, therefore unveiling the potential remarkable role of riparian vegetation on the support of environmental flows efficiency, which can transform the actual paradigm in environmental flow science. The results of the vegetation modeling illustrate how the natural flow regime generates morphodynamic disturbances, without which the riparian vegetation is able to settle and age in the river channel.

20 Consequently, of the latter, the microhabitat analysis demonstrated that changes in the riparian habitat induce modifications in the hydraulic characteristics of the river stretches. The differences in mean values of these parameters are subtle between habitats but are statistically significant. A detailed analysis using a pairwise comparison of flow depths and velocities between scenarios show that modifications can reach 10 cm in water depth and more than 40 cm s^{-1} in flow velocity. Such change can shift the habitat preference of fishes in one or two classes of the corresponding habitat preference curves. These changes are particularly important considering that an alteration of one class regarding these parameters is sufficient to change fish preferences from near null to maximum and vice-versa in many cases, as it can be seen in the preference curves provided in the supplementary material.

25 The hydrodynamic modeling also indicated changes directly affecting the habitat suitability of the existing fish species according to the riparian habitat. Through time, the habitat shaped by the Eflow regime diverged substantially in habitat suitability from the natural and Eflow&Flush habitats, and there were cases where the habitat suitability was modified by more than double.

30 The relationship between fish assemblages and habitat has long been acknowledged (e.g., Matthews, 1998; Clark et al., 2008; Pusey et al., 1993) and can have a significant impact on the ecological status and function

of the existing fish communities (Freeman et al., 2001; Jones et al., 1996; Randall and Minns, 2000). Effectively, habitat loss is the major threat concerning fish population dynamics and biodiversity (Bunn and Arthington, 2002), thereby promoting population changes with a proportional response to the enforced habitat change (Cowley, 2008). This is particularly true for the fish species considered in this study (Cabral et al., 2006). The habitat decrease for barbel and nase during autumn and winter months jeopardizes those species survival by refuge loss, which is particularly important in flashy rivers (Hershkovitz and Gasith, 2013), such as the Ocreza river and Mediterranean rivers in general. On the other hand, the habitat change during spring months undermines the spawning activity and consequently the sustainability of future population stocks (Lobón-Cerviá and Fernandez-Delgado, 1984). The habitat increase of calandino during 10 this period can be ecologically tricky due to the habitat plasticity of this species (Doadrio, 2011; Gomes-Ferreira et al., 2005), as well as its characteristic adoption for an r-selection strategy as an evolutionary response to frequently disturbed environments (Bernardo et al., 2003). Above all, one should not ignore that the relationship between fish assemblages and habitat are extremely complex (e.g., Diana et al., 2006; Hubert and Rahel, 1989; Santos et al., 2011), being a consequence of the actual natural conditions (Poff et al., 15 1997; Poff and Allan, 1995) that when disrupted, may allow the expansion of more generalist and opportunistic fauna (Poff and Ward, 1989).

Our results indicate that environmental flows taking into account riparian vegetation requirements are able to preserve the naturalness of the riparian habitat and consequently, the maintenance of the fish habitat suitability. Accordingly, the implementation of such measure can provide significant positive ecological 20 effects in downstream reaches (Lorenz et al., 2013; Pusey and Arthington, 2003) and results in additional ecosystem services (Berges, 2009; Blackwell and Maltby, 2006) while imposing minor revenue losses to dam managers (Rivaes et al., 2015). The implementation of such environmental flows could provide an additional way to attain the “good ecological status” required by the Water Framework Directive (WFD). In addition, taking up a procedure such as this one can act both as ‘win-win’ and ‘no-regret’ adaptation 25 measures during the second phase of the WFD, because it potentiates the improvement of other ecological indicators and mitigates the impacts of flow regulation, while being robust enough to account for different scenarios of climate change (EEA, 2005).

Water science still lacks strong links between flow restoration and its ecological benefits (Miller et al., 2012), particularly regarding long-term monitoring of environmental flow performance (King et al., 2015 30 and citations herein). Nevertheless, the outcomes of this study are a product of long-term simulations by models that were calibrated and validated for the corresponding watershed with local data in natural river flow conditions. This standard procedure in modeling strengthens confidence in our predictions as the models proved to correctly replicate the response of the riparian and fish communities when paralleled with simultaneous observational data.

35 In conclusion, we predict a change in fish habitat suitability according to the long-term structural adjustments that riparian habitats endure following river regulation. These changes can be attributed to the effects that altered riparian habitats have on the hydraulic characteristics of the river stretches. In our view, environmental flow regimes considering only the aquatic biota are expected to become obsolete in few years due to the alteration of the habitat premises in which they were based. This situation points to the 40 unsustainability of these environmental flows in the long-term perspective of the fluvial ecosystem, failing

to achieve the desired effects on aquatic communities to which those were proposed in the first place. An environmental flow regime that simultaneously considers riparian vegetation requirements contributes to the preservation of the hydraulic characteristics of the river channel at the natural riverine habitat standards, therefore maintaining the habitat assumptions that support the environmental flow regimes regarding 5 aquatic communities. Consequently, accounting for riparian vegetation requirements poses as an essential measure to assure the effectiveness of environmental flow regimes in the long-term perspective of the fluvial ecosystem.

Data availability

Riverbed topography, hydraulic measurements, riparian vegetation and fish sampling were collected by the 10 authors and are available at http://home.isa.utl.pt/~ruirivaes/Data_availability/HESSD/. Both River2D and CASiMiR-vegetation models are freeware available at <http://www.river2d.ualberta.ca/download.htm> and http://www.casimir-software.de/ENG/download_eng.html, respectively.

Acknowledgments

This research was financially supported by Fundação para a Ciência e a Tecnologia (FCT) under the project 15 UID/AGR/00239/2013. Rui Rivaes benefited from a PhD grant sponsored by FCT (SFRH/BD/52515/2014). Isabel Boavida was supported by a post-doctoral grant (SFRH/BPD/90832/2012) also sponsored by FCT. The Portuguese Institute for Nature Conservation and Forests (ICNF) provided the necessary fishing and handling permits.

References

20 Acreman, M.: Ethical aspects of water and ecosystems, *Water Policy*, 3, 257-265, [http://dx.doi.org/10.1016/S1366-7017\(01\)00009-5](http://dx.doi.org/10.1016/S1366-7017(01)00009-5), 2001.

Acreman, M. C., Aldrick, J., Binnie, C., Black, A., Cowx, I., Dawson, H., Dunbar, M., Extence, C., Hannaford, J., Harby, A., Holmes, N., Jarritt, N., Old, G., Peirson, G., Webb, J., and Wood, P.: Environmental flows from dams: the water framework directive, *Proceedings of the Institution of Civil Engineers - Engineering Sustainability*, 162, 13-22, 10.1680/ensu.2009.162.1.13, 2009.

25 Allan, J. D., and Castillo, M. M.: *Stream Ecology: Structure and function of running waters*, Second edition ed., Springer, Dordrecht, NL, 436 pp., 2007.

Altman, D. G.: *Practical Statistics for Medical Research*, Chapman & Hall, London, UK, 613 pp., 1991.

Arthington, A. H., Bunn, S. E., Poff, L. N., and Naiman, R. J.: The challenge of providing environmental 30 flow rules to sustain river ecosystems, *Ecological Applications*, 16, 1311-1318, 2006.

Arthington, A. H.: Environmental flows: saving rivers in the third millennium, *Freshwater Ecology Series*, 4, Univ of California Press, 406 pp., 2012.

Arthington, A. H.: Environmental flows: a scientific resource and policy framework for river conservation and restoration, *Aquatic Conservation: Marine and Freshwater Ecosystems*, 25, 155-161, 35 10.1002/aqc.2560, 2015.

Benjankar, R., Egger, G., and Jorde, K.: Development of a dynamic floodplain vegetation model for the Kootenai river, USA: concept and methodology, 7th ISE and 8th HIC, 2009.

Benjankar, R., Jorde, K., Yager, E. M., Egger, G., Goodwin, P., and Glenn, N. F.: The impact of river modification and dam operation on floodplain vegetation succession trends in the Kootenai River, USA, 5 Ecological Engineering, 46, 88-97, <http://dx.doi.org/10.1016/j.ecoleng.2012.05.002>, 2012.

Berges, S. A.: Ecosystem services of riparian areas: stream bank stability and avian habitat, Master of Science, Iowa State University, Ames, Iowa, USA, 106 pp., 2009.

Bernardo, J. M., Ilhéu, M., Matono, P., and Costa, A. M.: Interannual variation of fish assemblage structure in a Mediterranean river: implications of streamflow on the dominance of native or exotic species, River 10 Research and Applications, 19, 521-532, 10.1002/rra.726, 2003.

Blackwell, M. S. A., and Maltby, E.: How to use floodplains for flood risk reduction, in, European Communities, Luxembourg, Belgium, 144, 2006.

Boavida, I., Santos, J., Cortes, R., Pinheiro, A., and Ferreira, M.: Assessment of instream structures for 15 habitat improvement for two critically endangered fish species, Aquatic Ecology, 45, 113-124, 10.1007/s10452-010-9340-x, 2011.

Boavida, I., Santos, J. M., Ferreira, M. T., and Pinheiro, A. N.: Fish habitat-response to hydropeaking, 35th IAHR World Congress, Beijing, 2013a,

Boavida, I., Santos, J. M., Katopodis, C., Ferreira, M. T., and Pinheiro, A.: Uncertainty in predicting the 20 fish-response to two-dimensional habitat modeling using field data, River Research and Applications, 29, 1164-1174, 10.1002/rra.2603, 2013b.

Boavida, I., Santos, J. M., Ferreira, M. T., and Pinheiro, A. N.: Barbel habitat alterations due to hydropeaking, Journal of Hydro-environment Research, <http://dx.doi.org/10.1016/j.jher.2014.07.009>, 2015.

Bovee, K. D., and Milhous, R. T.: Hydraulic simulation in instream flow studies: Theory and techniques. 25 Instream Flow Information Paper: No. 5. FWS/OBS-78/33., Fish and Wildlife Service, Fort Collins, Colorado, USA, 1978.

Bovee, K. D.: A guide to stream habitat analysis using the Instream Flow Incremental Methodology, in, U.S.D.I. Fish and Wildlife Service, Office of Biological Services, Washington, 248, 1982.

Brisbane Declaration: The Brisbane Declaration. Environmental flows are essential for freshwater 30 ecosystem health and human well-being, Declaration of the 10th International Riversymposium and International Environmental Flows Conference, Brisbane, AUS, 2007, 1-7, 2007.

Broadmeadow, S., and Nisbet, T. R.: The effects of riparian forest management on the freshwater environment: a literature review of best management practice, Hydrology & Earth System Sciences, 8, 286-305, 10.5194/hess-8-286-2004, 2004.

35 Bunn, S. E., and Arthington, A. H.: Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity, Environmental Management, 30, 492-507, 10.1007/s00267-002-2737-0, 2002.

Cabral, M. J., Almeida, J., Almeida, P. R., Dellinger, T., Ferrand de Almeida, N., Oliveira, M. E., Palmeirim, J. M., Queiroz, A. I., Rogado, L., and Santos-Reis, M.: Livro vermelho dos vertebrados de Portugal, in, Instituto da Conservação da Natureza/Assírio & Alvim, Lisboa, 660, 2006.

Capon, S. J., and Dowe, J. L.: Diversity and dynamics of riparian vegetation, in: Principles for riparian lands management, edited by: Lovett, S., and Price, P., Land & Water Australia, Canberra, AUS, 3-33, 2007.

Chow, V. T.: Open channel hydraulics, McGraw-Hill, New York, USA, 680 pp., 1959.

5 Clark, J. S., Rizzo, D. M., Watzin, M. C., and Hession, W. C.: Spatial distribution and geomorphic condition of fish habitat in streams: an analysis using hydraulic modelling and geostatistics, *River Research and Applications*, 24, 885-899, 10.1002/rra.1085, 2008.

Cohen, J.: A coefficient of agreement for nominal scales, *Educational and Psychological Measurement*, XX, 37-46, 10.1177/001316446002000104, 1960.

10 Curran, J. C., and Hession, W. C.: Vegetative impacts on hydraulics and sediment processes across the fluvial system, *Journal of Hydrology*, 505, 364-376, <http://dx.doi.org/10.1016/j.jhydrol.2013.10.013>, 2013.

Davies, P. M., Naiman, R. J., Warfe, D. M., Pettit, N. E., Arthington, A. H., and Bunn, S. E.: Flow-ecology relationships: closing the loop on effective environmental flows, *Marine and Freshwater Research*, 65, 133-141, <http://dx.doi.org/10.1071/MF13110>, 2013.

15 Diana, M., Allan, J. D., and Infante, D.: The influence of physical habitat and land use on stream fish assemblages in southeastern Michigan, *American Fisheries Society Symposium*, 48, 359-374, 2006.

Doadrio, I.: Ictiofauna continental española: bases para su seguimiento, Ministerio de Medio Ambiente y Medio Rural y Marino, Centro de Publicaciones, Madrid, Spain, 2011.

Downes, B. J., Barmuta, L. A., Fairweather, P. G., Faith, D. P., Keough, M. J., Lake, P., Mapstone, B. D., 20 and Quinn, G. P.: Monitoring ecological impacts: concepts and practice in flowing waters, Cambridge University Press, 434 pp., 2002.

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévéque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., and Sullivan, C. A.: Freshwater biodiversity: importance, threats, status and conservation challenges, *Biological Reviews*, 81, 163-182, 25 10.1017/S1464793105006950, 2006.

Dyson, M., Bergkamp, G., and Scanion, J.: Flow. The Essentials of Environmental Flows, in, IUCN, Gland, Switzerland and Cambridge, UK, 118, 2003.

EEA: Vulnerability and adaptation to climate change in Europe. Technical report No 7/2005, European Environment Agency, Copenhagen, DNK, 79, 2005.

30 Encina, L., Granado-Lorencio, C. A., and Rodríguez Ruiz, A.: The Iberian ichthyofauna: ecological contributions, *Limnetica*, 25, 349-368, 2006.

Ferreira, M. T., Pinheiro, A. N., Santos, J. M., Boavida, I., Rivaes, R., and Branco, P.: Determinação de um regime de caudais ecológicos a jusante do empreendimento de Alvito, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, 136, 2014.

35 FitzHugh, T. W., and Vogel, R. M.: The impact of dams on flood flows in the United States, *River Research and Applications*, 27, 1192-1215, 10.1002/rra.1417, 2010.

Freeman, M. C., Bowen, Z. H., Bovee, K. D., and Irwin, E. R.: Flow and Habitat Effects on Juvenile Fish Abundance in Natural and Altered Flow Regimes, *Ecological Applications*, 11, 179-190, 10.2307/3061065, 2001.

Frissell, C., Liss, W., Warren, C., and Hurley, M.: A hierarchical framework for stream habitat classification: Viewing streams in a watershed context, *Environmental Management*, 10, 199-214, 1986.

García-Arias, A., Francés, F., Ferreira, T., Egger, G., Martínez-Capel, F., Garofano-Gómez, V., Andrés-Doménech, I., Politti, E., Rivaes, R., and Rodríguez-González, P. M.: Implementing a dynamic riparian vegetation model in three European river systems, *Ecohydrology*, 6, 635-651, 10.1002/eco.1331, 2013.

Gasith, A., and Resh, V. H.: Streams in Mediterranean Climate Regions: abiotic influences and biotic responses to predictable seasonal events, *Annu. Rev. Ecol. Syst.*, 30, 51-81, 0066-4162/99/1120-0051\$08.00, 1999.

Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R., and Brown, L. E.: A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs, *Freshwater Biology*, 60, 410-425, 10.1111/fwb.12506, 2014.

Gippel, C.: Australia's environmental flow initiative: Filling some knowledge gaps and exposing others, *Water Science & Technology*, 43, 73-88, 2001.

Gomes-Ferreira, A., Ribeiro, F., Moreira da Costa, L., Cowx, I. G., and Collares-Pereira, M. J.: Variability in diet and foraging behaviour between sexes and ploidy forms of the hybridogenetic *Squalius alburnoides* complex (Cyprinidae) in the Guadiana River basin, Portugal, *Journal of Fish Biology*, 66, 454-467, 10.1111/j.0022-1112.2005.00611.x, 2005.

Gorman, O. T., and Karr, J. R.: Habitat Structure and Stream Fish Communities, *Ecology*, 59, 507-515, 10.2307/1936581, 1978.

Hershkovitz, Y., and Gasith, A.: Resistance, resilience, and community dynamics in mediterranean-climate streams, *Hydrobiologia*, 719, 59-75, 10.1007/s10750-012-1387-3, 2013.

Hirji, R., and Davis, R.: Environmental Flows in Water Resources Policies, Plans, and Projects, *Environment and Development, The World Bank C1 - Findings and Recommendations*, 189 pp., 2009.

Hubert, W. A., and Rahel, F. J.: Relations of Physical Habitat to Abundance of Four Nongame Fishes in High-Plains Streams: A Test of Habitat Suitability Index Models, *North American Journal of Fisheries Management*, 9, 332-340, 10.1577/1548-8675(1989)009<0332:rophta>2.3.co;2, 1989.

Hughes, F. M. R.: Floodplain biogeomorphology, *Progress in physical geography*, 21, 501-529, 1997.

Hughes, F. M. R., and Rood, S. B.: Allocation of River Flows for Restoration of Floodplain Forest Ecosystems: A Review of Approaches and Their Applicability in Europe, *Environmental Management*, 32, 12-33, 10.1007/s00267-003-2834-8, 2003.

Jalón, D. G. d., and Gortázar, J.: Evaluation of instream habitat enhancement options using fish habitat simulations: case-studies in the river Pas (Spain), *Aquatic Ecology*, 41, 461-474, 10.1007/s10452-006-9030-x, 2007.

Jones, M. L., Randall, R. G., Hayes, D., Dunlop, W., Imhof, J., Lacroix, G., and Ward, N. J. R.: Assessing the ecological effects of habitat change: moving beyond productive capacity, *Canadian Journal of Fisheries and Aquatic Sciences*, 53, 446-457, 1996.

King, A., Gawne, B., Beesley, L., Koehn, J., Nielsen, D., and Price, A.: Improving Ecological Response Monitoring of Environmental Flows, *Environmental Management*, 55, 991-1005, 10.1007/s00267-015-0456-6, 2015.

Linnansaari, T., Monk, W. A., Baird, D. J., and Curry, R. A.: Review of approaches and methods to assess Environmental Flows across Canada and internationally. Research Document 2012/039, Canadian Science Advirosy Secretariat (CSAS), 75, 2012.

Lobón-Cerviá, J., and Fernandez-Delgado, C.: On the biology of the barbel (*Barbus barbus bocagei*) in the Jarama River, *Folia zoologica*, 33, 371-384, 1984.

Lorenz, A. W., Stoll, S., Sundermann, A., and Haase, P.: Do adult and YOY fish benefit from river restoration measures?, *Ecological Engineering*, 61, 174-181, <http://dx.doi.org/10.1016/j.ecoleng.2013.09.027>, 2013.

Lytle, D. A., and Poff, N. L.: Adaptation to natural flow regimes, *Trends in Ecology & Evolution*, 19, 94-100, <http://dx.doi.org/10.1016/j.tree.2003.10.002>, 2004.

Maheshwari, B. L., Walker, K. F., and McMahon, T. A.: Effects of regulation on the flow regime of the river Murray, Australia, *Regulated Rivers: Research & Management*, 10, 15-38, 10.1002/rrr.3450100103, 1995.

Matthews, W. J.: Patterns in freshwater fish ecology, Springer Science & Business Media, Norman, Oklahoma, USA, 756 pp., 1998.

Merritt, D. M., Scott, M. L., Poff, L. N., Auble, G. T., and Lytle, D. A.: Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds., *Freshwater Biology*, 55, 206-225, 10.1111/j.1365-2427.2009.02206.x, 2010.

Miller, K. A., Webb, J. A., de Little, S. C., and Stewardson, M.: Will environmental flows increase the abundance of native riparian vegetation on lowland rivers? A systematic review protocol, *Environmental Evidence*, 1, 1-9, 10.1186/2047-2382-1-14, 2012.

Miller, K. A., Webb, J. A., de Little, S. C., and Stewardson, M. J.: Environmental Flows Can Reduce the Encroachment of Terrestrial Vegetation into River Channels: A Systematic Literature Review, *Environmental Management*, 1-11, 10.1007/s00267-013-0147-0, 2013.

Naiman, R. J., Décamps, H., and McClain, M. E.: Riparia - Ecology, conservation and management of streamside communities, in, Elsevier academic press, London, UK, 430, 2005.

Nilsson, C., and Berggren, K.: Alterations of Riparian Ecosystems Caused by River Regulation, *Bioscience*, 50, 783-792, 10.1641/0006-3568(2000)050[0783:aorecb]2.0.co;2, 2000.

Palmer, M. A., Hondula, K. L., and Koch, B. J.: Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals, *Annual Review of Ecology, Evolution, and Systematics*, 45, 247-269, doi:10.1146/annurev-ecolsys-120213-091935, 2014.

Parasiewicz, P.: Using MesoHABSIM to develop reference habitat template and ecological management scenarios, *River Research and Applications*, 23, 924-932, 10.1002/rra.1044, 2007.

Petts, G.: Instream flow science for sustainable river management, *Journal of the American Water Resources Association*, 45, 1071-1086, 10.1111/j.1752-1688.2009.00360.x, 2009.

Poff, L. N., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., and Stromberg, J. C.: The natural flow regime, *Bioscience*, 47, 769-784, 1997.

Poff, N. L., and Ward, J. V.: Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns, *Canadian Journal of Fisheries and Aquatic Sciences*, 46, 1805-1818, 1989.

Poff, N. L., and Allan, J. D.: Functional Organization of Stream Fish Assemblages in Relation to Hydrological Variability, *Ecology*, 76, 606-627, 10.2307/1941217, 1995.

Politti, E., Egger, G., Angermann, K., Rivaes, R., Blamauer, B., Klösch, M., Tritthart, M., and Habersack, H.: Evaluating climate change impacts on Alpine floodplain vegetation, *Hydrobiologia*, 737, 225-243, 10.1007/s10750-013-1801-5, 2014.

Postel, S., and Richter, B.: Rivers for life: managing water for people and nature, Island Press, Washington DC, USA, 243 pp., 2003.

Pusey, B. J., Arthington, A. H., and Read, M. G.: Spatial and temporal variation in fish assemblage structure in the Mary River, south-eastern Queensland: the influence of habitat structure, *Environmental Biology of Fishes*, 37, 355-380, 10.1007/bf00005204, 1993.

Pusey, B. J., and Arthington, A. H.: Importance of the riparian zone to the conservation and management of freshwater fish: a review, *Marine and Freshwater Research*, 54, 1-16, 10.1071/MF02041, 2003.

R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, AT, 2011.

Randall, R. G., and Minns, C. K.: Use of fish production per unit biomass ratios for measuring the productive capacity of fish habitats, *Canadian Journal of Fisheries and Aquatic Sciences*, 57, 1657-1667, 10.1139/cjfas-57-8-1657, 2000.

Revenga, C., Brunner, J., Henninger, N., Kassem, K., and Payne, R.: Pilot Analysis of Global Ecosystems: Freshwater Systems, in, World Resources Institute, Washington, DC, 65, 2000.

Richter, B. D., and Thomas, G. A.: Restoring environmental flows by modifying dam operations, *Ecology and Society*, 12, 12, 2007.

Rivaes, R., Rodríguez-González, P. M., Albuquerque, A., Pinheiro, A. N., Egger, G., and Ferreira, M. T.: Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers, *Ecohydrology*, 6, 413-424, 10.1002/eco.1287, 2013.

Rivaes, R., Rodríguez-González, P. M., Albuquerque, A., Pinheiro, A. N., Egger, G., and Ferreira, M. T.: Reducing river regulation effects on riparian vegetation using flushing flow regimes, *Ecological Engineering*, 81, 428-438, 10.1016/j.ecoleng.2015.04.059, 2015.

Santos, J. M., Ferreira, M. T., Godinho, F. N., and Bochechas, J.: Efficacy of a nature-like bypass channel in a Portuguese lowland river, *Journal of Applied Ichthyology*, 21, 381-388, 10.1111/j.1439-0426.2005.00616.x, 2005.

Santos, J. M., Reino, L., Porto, M., Oliveira, J. o., Pinheiro, P., Almeida, P., Cortes, R., and Ferreira, M.: Complex size-dependent habitat associations in potamodromous fish species, *Aquatic Sciences*, 73, 233-245, 10.1007/s00027-010-0172-5, 2011.

Steffler, P., Ghanem, A., Blackburn, J., and Yang, Z.: River2D, in, University of Alberta, Alberta, CANADA, 2002.

Stromberg, J. C., Tluczek, M. G. F., Hazelton, A. F., and Ajami, H.: A century of riparian forest expansion following extreme disturbance: Spatio-temporal change in *Populus/Salix/Tamarix* forests along the Upper San Pedro River, Arizona, USA, *Forest Ecology and Management*, 259, 1181-1198, 10.1016/j.foreco.2010.01.005, 2010.

Tharme, R. E.: A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers, *River Research and Applications*, 19, 397-441, 10.1002/rra.736, 2003.

Thoms, M. C., and Parsons, M.: Eco-geomorphology: an interdisciplinary approach to river science, *The Structure and Management Implications of Fluvial Sedimentary Systems*, Alice Springs, Australia, 2002, IAHS Publ. no. 276, 113-119, 2002.

Thorp, J. H., Thoms, M. C., and Delong, M. D.: *The Riverine Ecosystem Synthesis. Toward Conceptual Cohesiveness in River Science*, Elsevier, London, UK, 208 pp., 2008.

Uddin, F. M. J., Asaeda, T., and Rashid, M. H.: Factors affecting the changes of downstream forestation in the South American river channels, *Environment and Pollution*, 3, 24 - 40, 10.5539/ep.v3n4p24, 2014a.

Uddin, F. M. J., Asaeda, T., and Rashid, M. H.: Large-Scale Changes of the Forestation in River Channel Below the Dams in Southern African Rivers: Assessment Using the Google Earth Images, *Polish Journal of Ecology*, 62, 607-624, 10.3161/104.062.0407, 2014b.

Van Looy, K., Tormos, T., Ferréol, M., Villeneuve, B., Valette, L., Chandesris, A., Bougon, N., Oraison, F., and Souchon, Y.: Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale, *Knowl. Managt. Aquatic Ecosyst.*, 06, 10.1051/kmae/2013041, 2013.

Viera, A. J., and Garrett, J. M.: Understanding interobserver agreement: the Kappa statistic, *Family Medicine*, 37, 360-363, 2005.

Wu, R., and Mao, C.: The assessment of river ecology and habitat using a two-dimensional hydrodynamic and habitat model, *Journal of Marine Science and Technology*, 15, 322-330, 2007.

Table 1. Maximum annual discharges (m³ s⁻¹) considered in the CASiMiR-vegetation model for each study site.

Year	OCBA			OCPR		
	natural	Eflow	Eflow&Flush	natural	Eflow	Eflow&Flush
1	671	0.99	0.99	951	5.51	5.51
2	203	0.99	167	287	5.51	237
3	327	0.99	0.99	464	5.51	5.51
4	217	0.99	167	308	5.51	237
5	316	0.99	0.99	449	5.51	5.51
6	371	0.99	167	526	5.51	237
7	702	0.99	0.99	995	5.51	5.51
8	202	0.99	167	286	5.51	237
9	195	0.99	0.99	276	5.51	5.51
10	440	0.99	371	624	5.51	527

Table 2. Deviation analysis of the weighted usable areas for the considered regulated flow regimes benchmarked by the natural flow regime (RMSD – Root Mean Square Deviation, MAD – Mean Absolute Deviation, MAPD – Mean Absolute Percentage Deviation). Values stand for the habitat availability deviation, in area and percentage, of the environmental flow regimes compared to the natural habitat availability of each species and life stage.

	OCBA study site						OCPR study site					
	Eflow			Eflow&Flush			Eflow			Eflow&Flush		
	RMSD (m ²)	MAD (m ²)	MAPD (%)	RMSD (m ²)	MAD (m ²)	MAPD (%)	RMSD (m ²)	MAD (m ²)	MAPD (%)	RMSD (m ²)	MAD (m ²)	MAPD (%)
<i>Luciobarbus bocagei</i> (juv.)	86.00	72.10	15.40	12.17	7.24	2.52	26.23	17.37	35.55	2.51	1.50	0.63
<i>Luciobarbus bocagei</i> (adult)	29.46	20.55	5.83	2.87	2.12	1.55	12.94	7.73	23.15	3.44	1.79	3.01
<i>Pseudochondrostoma polylepis</i> (juv.)	128.21	86.14	11.58	9.42	5.72	2.26	45.42	32.71	34.43	1.55	0.92	2.51
<i>Pseudochondrostoma polypepis</i> (adult)	7.32	5.85	18.70	2.17	1.37	2.10	9.00	7.00	10.34	0.51	0.35	2.42
<i>Squalius alburnoides</i> (juv.)	44.05	28.16	8.46	6.20	4.06	2.10	33.10	27.78	28.37	2.44	1.35	2.18
<i>Squalius alburnoides</i> (adult)	92.41	52.47	10.23	7.49	5.31	2.37	61.76	47.83	40.54	0.96	0.63	2.90

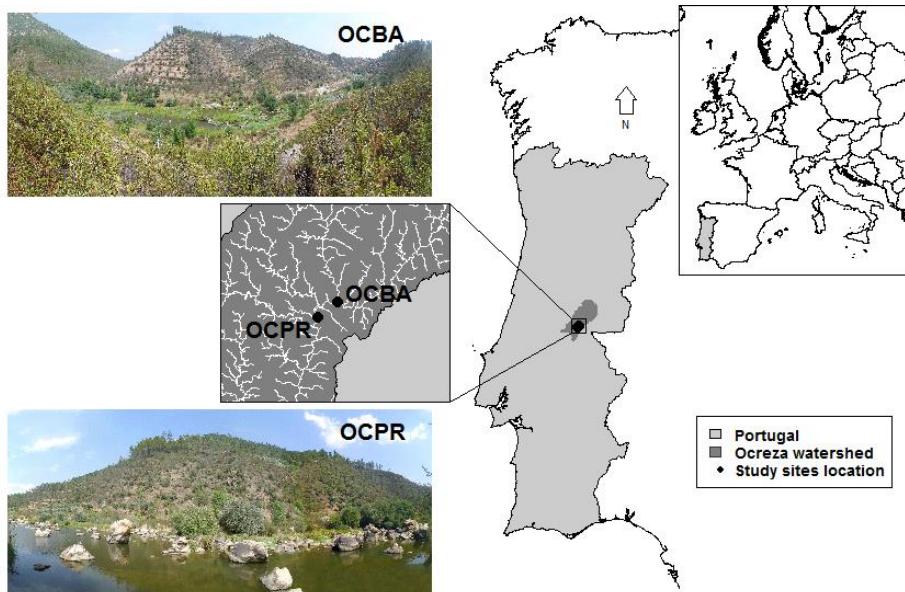


Figure 1. Location and characterization of the study sites OCBA and OCPR.

5 **Figure 2.** Environmental flow regime addressing fish (black line, left axis) and riparian (grey bars, right axis) requirements considered for the habitat modeling in OCBA study site. Fish requirements are addressed by a constant monthly discharge and riparian requirements by a flushing flow in the years in which are planned (duration of the flushing flow is similar to a natural flood with equal recurrence interval). The hydrograph for the Eflow&Flush flow regime is similar in the OCPR study site.

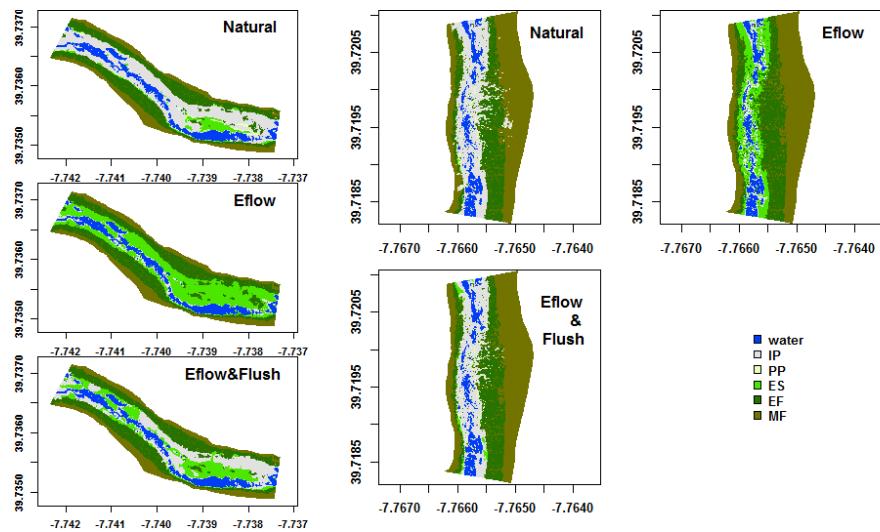


Figure 3. Expected patch mosaic of the riparian vegetation habitats shaped by the natural, Eflow and Eflow&Flush flow regimes (detailed by succession phase, namely, initial phase – IP, pioneer phase – PP, early succession woodland phase – ES, established forest phase – EF and mature forest phase – MF) in the OCBA study site (on the left) and in the OCPR study site (on the right).

5

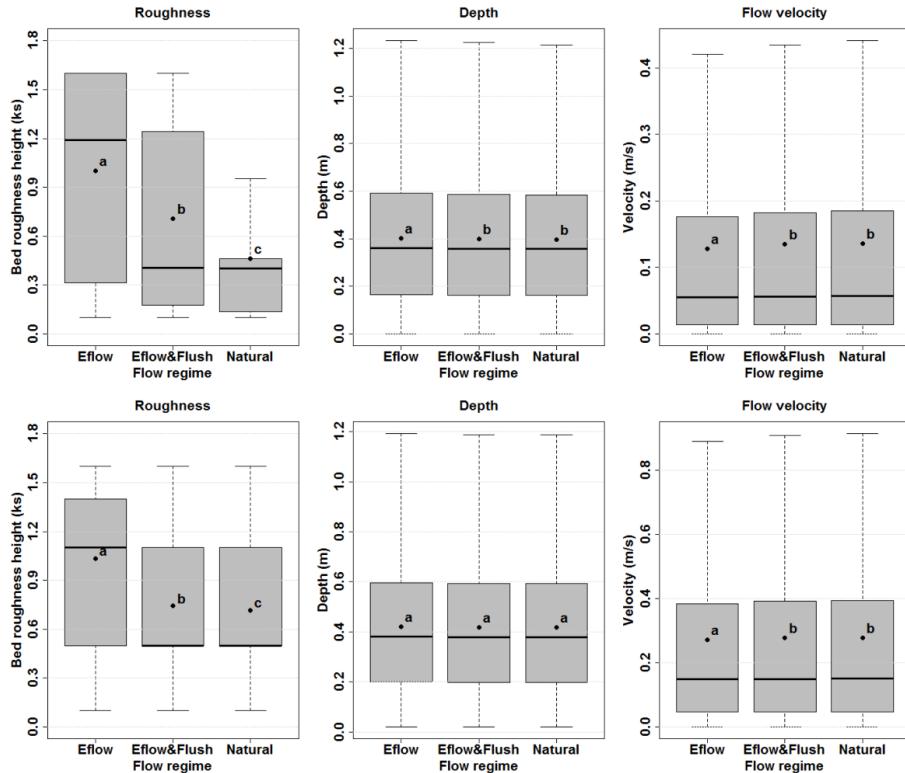
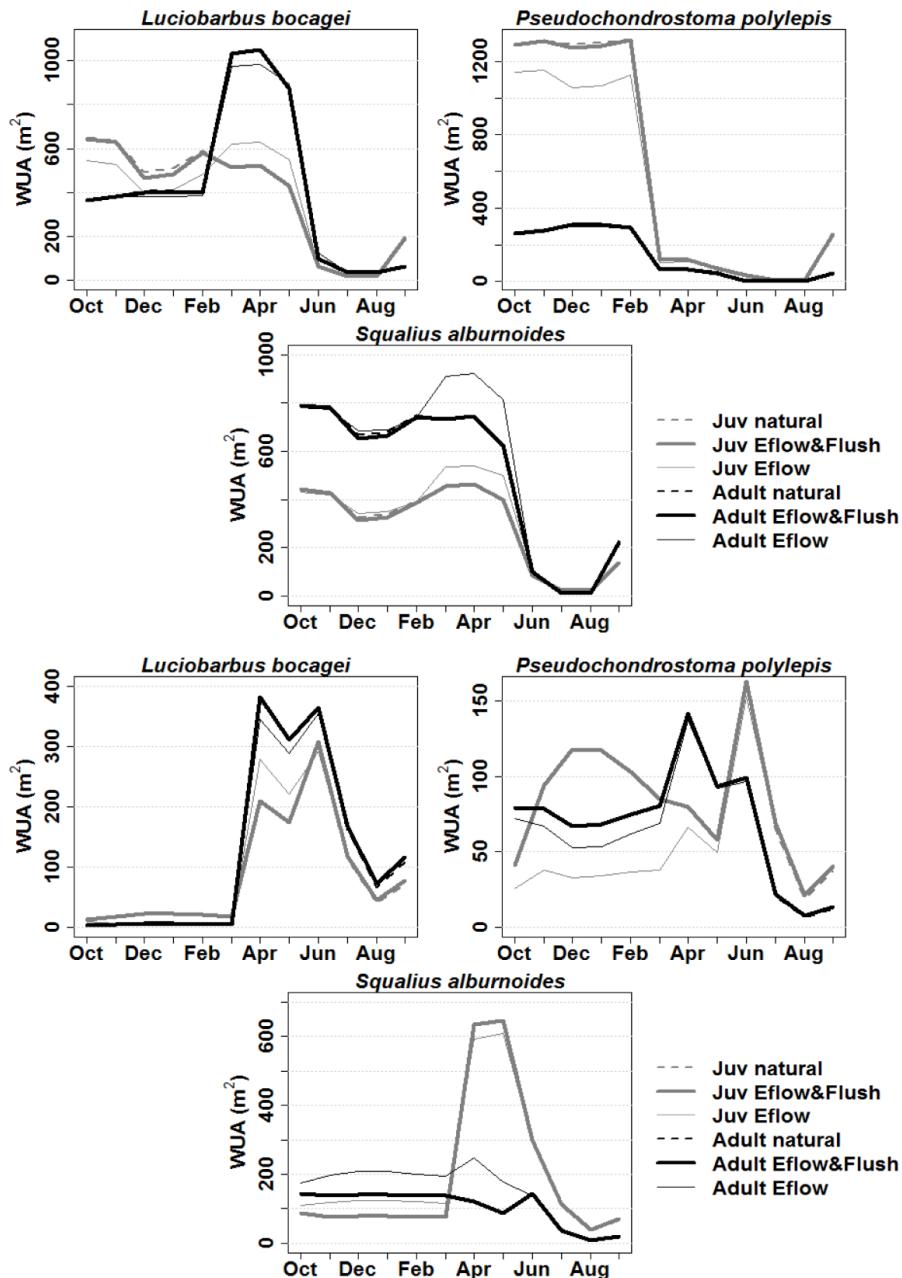



Figure 4. Hydraulic characterization of OCBA (top) and OCPR (bottom) according to the different expected riparian vegetation habitats driven by the Eflow, Eflow&Flush and natural flow regimes (data obtained from 2D hydrodynamic modeling). Different letters stand for significant differences between groups (t-test). Boxplots portray non-outlier value range, thick black lines the median value and black dots the mean values.

5 **Figure 5.** Fish weighted usable areas provided by the fish-addressed environmental flow regime (Eflow) flowing through the different riparian habitat scenarios originated by a decade of three different flow regimes (natural, Eflow&Flush and Eflow).