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Abstract. Socio-economic costs of drought are progressively increasing worldwide due to under-

going alterations of hydro-meteorological regimes induced by climate change. Although drought

management is largely studied in the literature, traditional drought indexes often fail in detecting

critical events in highly regulated systems, where natural water availability is conditioned by the

operation of water infrastructures such as dams, diversions, and pumping wells. Here, ad-hoc index5

formulations are usually adopted based on empirical combinations of several, supposed-to-be sig-

nificant, hydro-meteorological variables. These customized formulations, however, while effective

in the design basin, can hardly be generalized and transferred to different contexts. In this study,

we contribute FRIDA (FRamework for Index-based Drought Analysis), a novel framework for the

automatic design of basin-customized drought indexes. In contrast to ad-hoc, empirical approaches,10

FRIDA is fully-automated, generalizable, and portable across different basins. FRIDA builds an in-

dex representing a surrogate of the drought conditions of the basin, computed by combining all the

relevant available information about the water circulating in the system identified by means of a

feature extraction algorithm. We used the Wrapper for Quasi Equally Informative Subset Selection

(W-QEISS), which features a multi-objective evolutionary algorithm to find Pareto-efficient subsets15

of variables by maximizing the wrapper accuracy, minimizing the number of selected variables, and

optimizing relevance and redundancy of the subset. The preferred variable subset is selected among

the efficient solutions and used to formulate the final index according to alternative model structures.

We apply FRIDA to the case study of the Jucar river basin (Spain), a drought-prone, highly regulated

Mediterranean water resource system, where an advanced drought management plan relying on the20

formulation of an ad-hoc State Index is used for triggering drought management measures. The State

Index was constructed empirically with a trial-and-error process begun in the ’80s and finalized in
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2007, guided by the experts from the Confederación Hidrográfica del Júcar (CHJ). Our results show

that the automated variable selection outcomes align with CHJ’s 25 years-long empirical refinement.

In addition, the resultant FRIDA index outperforms the official State Index in terms of accuracy in25

reproducing the target variable and cardinality of the selected inputs’ set.

1 Introduction

A drought is a slowly-developing natural phenomenon that occurs in all climatic zones and can be

defined as a temporary significant decrease of water availability (Tallaksen and Van Lanen, 2004;

Van Loon and Van Lanen, 2012). Drought impacts can propagate to virtually every water-related30

sector, such as farming and livestock production, industry, power generation, and public water sup-

ply (Spinoni et al., 2016). During the period 1976-2006, droughts in Europe affected more than 11%

of the population, and their economic cost was estimated to exceed C100 billion, considering dam-

ages endured by consumers, tourism, industry, energy, and agricultural sectors. Moreover, climate

change is expected to produce longer, more frequent and severe drought events, especially in south-35

ern Europe (Giorgi and Lionello, 2008; Spinoni et al., 2016; Marcos-Garcia et al., 2017). Recent

drought cost trends show a significant increasing tendency, reaching an average of C6.2 billion/year

in the years 1991-2006 (EU, 2007). These estimates, however, only account for the economic dam-

ages, (i.e., situations in which a water deficit induced by droughts affects production, sales and

business in a variety of sectors), neglecting environmental and social costs (Spinoni et al., 2016).40

A comprehensive quantification of drought impacts is, in fact, complicated by the considerable lag

occurring between the realization of dry climatic conditions and the impacts on economy and society

(Changnon, 1987; Stahl et al., 2016).

We can distinguish four types of droughts: meteorological, agricultural, hydrological, and op-

erational (or anthropogenic) drought, depending on the time horizon and the variable of interest.45

(Heim Jr, 2002; Mishra and Singh, 2010; Pedro-Monzonìs et al., 2015; Spinoni et al., 2016). The

development chain of droughts through time is exemplified in Figure 1.

A meteorological drought is defined as a lack of precipitation over a region for a certain period

of time (Mishra and Singh, 2010). It develops over the short term (1-3 months) and can extend on

longer periods, and is usually associated with the global behavior of the atmospheric circulation50

(Pedro-Monzonìs et al., 2015). Precipitation is always the core variable to characterize this drought

type, with most meteorological drought indexes based on precipitation only (Byun and Wilhite,

1999; McKee et al., 1993). In some cases, especially in regions where droughts can be strongly

influenced by evapotranspiration, additional variables such as temperature trends are also considered

(Vicente-Serrano et al., 2010; Lorenzo-Lacruz et al., 2010).55

Agricultural drought affects, and is defined through, the state of soils and crops in the medium

term (3-6 months) (Pedro-Monzonìs et al., 2015). This drought type manifests itself with dryness
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Figure 1. Development chain of droughts through time. Meteorological drought, defined as a lack of precipita-

tion over a region for a certain period of time, develops in the short term. Agricultural drought accounts for the

plants and crops water stress; develops in the medium term. Hydrological drought, defined as a period of low

streamflow in watercourses, lakes and groundwater level below normal, develops in the long term. Operational

drought, defined as a period with anomalous supply failures in a developed water exploitation system, develops

in the long term. Figure adapted from Spinoni et al. (2016) to include Operational drought.
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in the root zone and, although rainfall deficiency is a primary cause, precipitation alone is often

not enough to describe it. Approaches to characterize agricultural droughts focus on monitoring soil

water balance and the subsequent deficit (Palmer, 1965; Narasimhan and Srinivasan, 2005; Hao and60

AghaKouchak, 2013). The factors involved in this case include vegetation type, soil water holding

capacity, wind intensity, evapotranspiration rate, and air humidity (Heim Jr, 2002). In regulated sys-

tems, agricultural droughts can be usually restrained with irrigation (Keyantash and Dracup, 2002).

Hydrological drought is defined as a period of exceptionally low flows in watercourses, and lakes

and groundwater levels below normal (Dracup et al., 1980; Van Loon and Van Lanen, 2012). Related65

indicators mainly focus on streamflow, as the by-product of every hydro-meteorological process

taking place in water catchments (Heim Jr, 2002; Vicente-Serrano and López-Moreno, 2005). More

comprehensive indexes can also include snowpack extent, reservoir storage, and groundwater level

(Shafer and Dezman, 1982; Keyantash and Dracup, 2004; Staudinger et al., 2014). This drought

takes place after a prolonged time of low precipitation and deficient soil moisture and its effects are70

witnessed in the long-term (6-12 months) (Zargar et al., 2011).

These three categories refer to droughts as a natural hazard, i.e., a threat of a naturally occurring

event that negatively effects people or the environment (Gustard et al., 2009; Van Loon and Van

Lanen, 2013; Laaha et al., 2016). On the other hand, particularly in highly regulated contexts, a dry

spell may be caused by natural scarcity of precipitation as well as inconsiderate overuse and/or mis-75

management of water resources. Another interesting way to approach drought analysis is, therefore,

through the concept of operational (or anthropogenic) drought. Operational drought is defined as a

period with anomalous supply failures in a developed water system (Pedro-Monzonìs et al., 2015).

It is caused by a combination of two factors: lack of water resources and excess of demand (AghaK-

ouchak, 2015a). Moreover, it can be further worsened by an inadequate design and management of80

the water exploitation system and its operating rules (Mishra and Singh, 2010). Operational droughts

indicators aim at comparing water availability to human water needs and serve as a measure of water

well-being, rather than a measure of natural fluctuation as in the case of meteorological, agricul-

tural, and hydrological indicators (Sullivan et al., 2003; Rijsberman, 2006). In the computation of

operational drought indicators, the available water is often represented by the streamflow, or a frac-85

tion of it, and the water need is usually quantified by a standard per capita or by a fixed nominal

demand (Falkenmark et al., 1989; Raskin et al., 1997). Depending on the application scope, opera-

tional drought indicators are either river basin specific (Garrote et al., 2007; Haro-Monteagudo et al.,

2017) or used in studies covering continental or global areas with an annual time resolution (Yang

et al., 2003; Oki and Kanae, 2006; Alcamo et al., 2007; Kummu et al., 2010).90

When considering a highly regulated water system, i.e., a system where natural water availability

is altered by the presence and operation of water infrastructures, traditional drought indicators (e.g.,

SPI, Standardized Precipitation Index; SPEI, Standardized Precipitation and Evapotranspiration In-

dex; SRI, Standardized Runoff Index) present different shortcomings. On the one hand, meteoro-
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logical, agricultural, and hydrological indexes often fail in representing drought conditions when95

regulated lake releases and/or groundwater pumping filter water availability and play a role in mag-

nifying or smoothing drought impacts. Anthropized systems have, in fact, a demonstrated ability

to endure meteorological droughts for months, or even years, without suffering consequences, i.e.,

without incurring in a situation of water shortage perceived by the users. An effective planning and

management of water resources enables such systems to wisely exploit the combined storage capaci-100

ties of surface and groundwater reserves and restrain drought (Rijsberman, 2006; Haro et al., 2014a).

On the other hand, operational drought indexes are often designed to operate analysis over coarse

spatiotemporal resolutions, thus resulting unsuitable for a real time basin level drought detection,

characterization, and management. Highly regulated systems need ad hoc index formulations tailored

on basin characteristics (Wanders et al., 2010; AghaKouchak, 2015b), combining human-controlled105

variables (e.g., reservoirs and groundwater levels) with uncontrolled hydro-meteorological variables

(e.g., precipitation, temperature, natural inflows) to reflect both regulation effects and natural fluctu-

ations in the basin.

A paradigmatic example of a practical and systematic policy for the identification and mitigation

of operational droughts is provided by Spain, where public River Basin Management authorities110

(Confederaciones Hidrográficas) are bind by Law (Ministerio del Medio Ambiente, 2000) to design

basin-specific State Indexes associated with each main river basin (Ie, Índice de Estado). Most of the

basins in Spain are highly regulated and these State Indexes are computed as a weighted average of

relevant observed variables at selected control points, e.g., precipitation, streamflow, reservoir level,

and groundwater level. Each river basin authority has designed its customized formulation for the115

State Index which reflects the hydroclimatic conditions and the water uses of the region (Estrela and

Vargas, 2012). The value of the State Indexes is monitored monthly and used to trigger water demand

and supply measures when entering a drought period, according to the district Drought Management

Plan (DMP) (Garrote et al., 2007; Gómez and Blanco, 2012; Haro et al., 2014a).

Each DMP and the relative State Index formulation is the result of a long collaborative process120

including public participation, basin experts, and stakeholders, and providing an effective multi-

sector partnership approach for managing drought risk (Carmona et al., 2017). State Indexes are

the result of a long trial-and-error process mostly begun in the eighties, through which the variable

choice and combination have been progressively adjusted to best suit the basin drought management

requirements. In the case of the Jucar basin, for instance, the final form of the associated index was125

established in 2007 with a report by the Confederación Hidrográfica del Júcar (CHJ, 2007a), after

25 years of refinements. This long empirical process produced an index formulation tailored for

the Jucar system, which cannot be generalized to different contexts. Similarly, other main Spanish

river basins (e.g., Duero, Ebro, and Guadalquivir river basins) underwent an analogous process and

formulated their own State Indexes (CHD, 2007; CHE, 2007; CHG, 2007).130
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Since their establishment in 2007, State Indexes have represented the most consistent and exten-

sively applied paradigm of index-based drought management. Thus, Ies constitute the state of the

art for basin-customized operational drought indexes. A reasonable research question is whether

the empirical process leading to their design can be formalized, automated, and easily exported to

different water systems.135

In this study, we contribute the FRamework for Index-based Drought Analysis (FRIDA), which

allows the automatic construction of basin-customized drought indexes for highly regulated water

systems. In contrast to traditional empirical approaches, FRIDA uses an advanced feature extraction

method that completely automatizes and generalizes the variable selection process for the construc-

tion of the index. The selected variables are then combined into a new index that can effectively140

represent the state of water resources in the basin as well as support the characterization of drought

conditions. The feature extraction step is key in FRIDA as it guides the construction of a skillful

(highly accurate) and parsimonious (with low input dimensionality) drought index by performing

the selection of the best input subset to build a model of a predefined target output representing the

drought conditions in the basin.145

Specifically, FRIDA is structured in three steps. First, we define a target variable, an appropriately

chosen water deficit acting as a proxy for the drought conditions of the considered basin (e.g., water

supply deficit, soil moisture deficit), and a dataset of hydro-meteorological variables and traditional

drought indicators. Second, we identify Pareto optimal subsets of variables balancing predictive ac-

curacy and parsimony. In this study, we employed the Wrapper for Quasi-Equally Informative Sub-150

set Selection (W-QEISS) to perform this operation (Karakaya et al., 2015; Taormina et al., 2016).

Traditional variable selection algorithms are conceived to select only one optimal subset of predic-

tors, while W-QEISS identifies one subset with the highest predictive accuracy, and multiple subsets

with similar information content, thus providing more informative results. Moreover, W-QEISS in-

cludes two metrics of relevance and redundancy in the search process in addition to the commonly155

used objectives of accuracy and cardinality, fostering the diversification among the provided so-

lutions (Sharma and Mehrotra, 2014). Third, we choose the preferred predictor subset among the

non-dominated solutions based on accuracy, cardinality (i.e., dimensionality), and, possibly, addi-

tional factors, including cost and availability of the variable observations. The subset is finally used

to calibrate a chosen model class with respect to the target variable, and the drought index is thus160

completed.

The potential of the proposed framework is demonstrated on the highly regulated Mediterranean

basin of the Jucar river, in eastern Spain, where the State Index-based drought management system

provides an ideal benchmark for testing FRIDA index (Andreu et al., 2009; Haro et al., 2014b;

Pedro-Monzonís et al., 2014; Macian-Sorribes and Pulido-Velazquez, 2017; Haro-Monteagudo et al.,165

2017; Carmona et al., 2017). The Jucar State Index provides guidelines for FRIDA application.

First, it facilitates the target variable choice and candidate variable retrieval, and, second, it allows
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the validation of FRIDA predictors selection, and index design steps. FRIDA and State indexes

are compared in terms of accuracy in reproducing the drought conditions of the basin, number of

variables required for their computation, and general reliability and portability of the methods. The170

outcome of this analysis consists in demonstrating the validity of a completely automated procedure

(i.e., no information on system topology or basin characteristics is required) in recognizing the main

drought drivers, and predicting a deficit with accuracy and limited computational effort.

2 Methods and tools

2.1 Framework for Index-based Drought Analysis175

Definition	of	target	variable
Collection	of	hydro-meteorological	
variables	and	drought	indicators	at	
multiple	temporal	aggregation

1)	Identification	
of	basin	
characteristics

2)	Feature	
extraction

Input	Variable	Selection	

Definition	of	several	Pareto	
efficient	predictors’	subset

3)	Drought	Index	
modeling

Choice	of	the	preferred	
subset

Calibration	of	the	selected	
model	class	

Drought	Index

Highly	regulated	basin	

Figure 2. FRamework for Index-based Drought Analysis (FRIDA): 1. Identification of basin characteristics, 2.

Feature Extraction, 3. Drought Index modeling.

The FRamework for Index-based Drought Analysis (FRIDA) designs drought indexes in three

steps as reported in Figure 2.

The Identification of basin characteristic is a preliminary empirical process, which consists in

the selection of a target variable and the collection of candidate predictors. The target variable is

an appropriately chosen water deficit, representative of the actual drought conditions in the basin180

(e.g., water supply deficit, soil moisture deficit). The dataset of predictors contains the candidate
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features to reproduce the target variable and consists of observed hydro-meteorological variables

and composite drought indicators over different spatio-temporal scales.

Target variable and candidate predictors constitute the input to the Feature Extraction step, the

second building block of the framework. This block employs an Input Variable Selection (IVS) al-185

gorithm that explores the space of candidate predictors to select Pareto efficient subsets of predictors

with respect to multiple assessment metrics. Most commonly, these metrics quantify the subset ac-

curacy in reproducing the target and the parsimony (i.e. the cardinality of the subset), crucial charac-

teristics for an operational index expected to balance precision and ease-of-use. In some cases, also

relevance and redundancy can be considered in order to explore the input space more effectively.190

In particular, the metric of relevance favors highly informative subsets (i.e., constituted by predic-

tors that are highly correlated with the target), while the redundancy metric ensures low intra-subset

similarity. The objectives of relevance and redundancy are essential to stimulate the search process

towards the identification of a diversified and comprehensive set of solutions, which would not be

achieved optimizing cardinality and accuracy only.195

In this work, we use an advanced IVS algorithm called Wrapper for Quasi-Equally Informative

Subset Selection (W-QEISS). W-QEISS provides as output a number of efficient subsets that are

collected in a Selection Matrix.

In the Drought Index modeling block, the preferred efficient solution is selected by the user, bal-

ancing the trade-off between competing objectives, and, possibly, considering additional operative200

needs neglected in the IVS search (e.g., cost and reliability of the variable monitoring). Lastly, an

appropriate regressor is fit to the sample data set of Pareto efficient inputs and the target variable.

The choice of model class is determined by the application of interest. In general, highly non-linear

learning machines like Artificial Neural Networks (ANNs) provide a good balance between accuracy

and flexibility. On the other hand, such black-box models lack of intuitive interpretability and might205

result unsuitable for applications that affect several stakeholders and require a wide acceptance of

the tool to be employed (Estrela and Vargas, 2012). In these cases, a simpler model (e.g., a linear

model) might be preferred, as it grants an immediate understanding of the physical meaning, though

at the price of poorer approximation skills.

2.2 Feature Extraction via Wrapper for Quasi-Equally Informative Subset Selection210

Feature extraction techniques, employed in the second block of FRIDA, are an ensemble of data

pre-processing algorithms that transform the original input data set into a more compact, while still

highly informative, subset (Cunningham, 2008). Among the feature extraction algorithms, Input

Variable Selection (IVS) techniques specifically address the problem of the reduction of the input

space by identifying the relevant predictors to be used to calibrate a model of the target variable215

(Bowden et al., 2005). There are two main classes of IVS techniques: Filters and Wrappers. Filters

evaluate the relevance of each variable separately, computing an error metric on the features (Yang
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and Pedersen, 1997; Sharma, 2000; Galelli and Castelletti, 2013). Wrappers, on the other hand, as-

sess the relevance of a variables ensemble, evaluating the prediction performance of a given learning

machine calibrated on the input set, and thus considering the interactions and dependencies between220

variables (Guyon, 2003). In terms of performance, Wrappers are often more accurate than Filters,

although computationally more intensive (Galelli et al., 2014).

In this study, we used the Wrapper for Quasi-Equally Informative Subset Selection (Karakaya

et al., 2015; Taormina et al., 2016). The W-QEISS algorithm receives as input the set X of candi-

date predictors, i.e., X= {xi, . . . ,xnX
} and the trajectory y of the target variable. The algorithm is225

composed of three main steps (Karakaya et al., 2015), as synthesized in Figure 3:

Generate	population	of	input	
subset

For	each	subset,	run	a	non-linear	
regression	using	ELM

1)	Generate	Pareto	
efficient	solutions

2)	Select	high	
accuracy	subsets

Discard	solutions	whose	accuracy	
is	lower	than	a	predefined	

percentage	with	respect	to	the	
highest	accuracy	solution

3)	Eliminate	
inferior	subsets

Eliminate	𝑆" if	it	is	a	superset	of	𝑆#
and	does	not	score	higher	

accuracy

Quasi-equally	
accurate	subsets

Evaluate	accuracy,	cardinality,	
relevance,	redundancy

Max	iteration	
reached?

no

Target	variable	 Candidate	predictors

yes

Figure 3. W-QEISS flowchart. Step 1: generate Pareto efficient solutions with respect to the four objectives of

relevance, redundancy, cardinality, and accuracy; Step 2: select high accuracy subsets; Step 3: eliminate inferior

subsets.
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– Step 1: a set A⊆X of Pareto-efficient solutions is built according to the four-objective func-

tions of relevance f1(·), redundancy f2(·), cardinality f3(·), and accuracy f4(·). A global

multi-objective optimization algorithm is employed to explore the space of the possible sub-

sets. In this study, we use the self-adaptive Borg MOEA (Hadka and Reed, 2013), which has230

shown to outperform other benchmark evolutionary algorithms in terms of number of solu-

tions returned, ability to handle many-objective problems, ease-of-use, and overall consistency

across a suite of challenging multi-objective problems (Reed et al., 2013). A learning machine

is used to compute the predictive accuracy f4 of each set. In this study, we employ the Ex-

treme Learning Machines (ELMs) (Huang et al., 2006), belonging to the family of Artificial235

Neural Networks, which were shown to provide a good performance in terms of accuracy and

flexibility in a variety of problems while resulting up to thousand times faster than bench-

mark feedforward ANNs (Huang et al., 2012). ELMs, in fact, bypass the time consuming

gradient-based search of optimal neurons parameters required by traditional ANN techniques,

by defining randomly parameterized hidden nodes, and subsequently optimizing their out-240

put weights. Such optimization is solved through a one-step matrix product and essentially

amounts to learning a linear model.

However, we do not expect the choice of the learning machine or MOEA to be crucial for the

attainment of the result. A different benchmark MOEA (e.g., NGSAII, MOEAD, eps-MOEA)

is likely to achieve a comparable result, although requiring a possibly significant effort in the245

manual calibration of the evolution parameters, which is automated in Borg MOEA. Similarly,

other ANN techniques could in principle be substituted to ELM, although incrementing the

computational time to possibly unbearable levels, given the multiple calibration and validation

processes reiterated in WQEISS.

– Step 2: Among the Pareto-efficient subsets, the maximum value of accuracy f∗4 is identi-250

fied, associated with subset Sf∗
4
⊆A. Then, solutions with significantly lower accuracy are

discarded and from ensemble A, obtaining Aδ . The ensemble Aδ contains quasi-equally in-

formative subsets with respect to Sf∗
4
⊆Aδ ⊆A, i.e., subsets that have (almost) the same

predictive accuracy with respect to a given model class. When the dataset of candidate vari-

ables presents significant correlation among features, numerous subsets characterized by a255

wide range of cardinalities are generally available to achieve a relative small range of accura-

cies. This is often the case in environmental problems, where spatial and temporal correlation

of hydro-meteorological variables and associated indicators is significant. Therefore, at this

stage, the accuracy metric is used to retain accurate solutions only, provided that they feature

different cardinalities and predictors combinations.260

Formally, on the basis of an predefined small value of δ, Si is δ-quasi equally informative to
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subset Sf∗
4

if

f4(Si)≥ (1− δ)f∗4 for 0≤ δ ≤ 1 (1)

– Step 3: The final ensemble A∗δ is computed after the elimination of the inferior subsets. The

subset Sj is considered inferior to Si, if it is a superset of Si, and does not score higher265

accuracy. Formally

Si ⊂ Sj and f4(Si)≥ f4(Sj).
In this step, all subsets contained in Aδ are compared in order to find possible inferior subsets

and eliminate them. By doing this, the final ensemble of δ-quasi equally informative subsets

A∗δ is provided as output of the procedure and reported in a Selection Matrix.270

The W-QEISS algorithm differs from a traditional IVS approach as it introduces the consideration

that, for a given cardinality, multiple subsets of variables can have almost indistinguishable accuracy

performance. The outcome of W-QEISS variable selection is thus not a single most accurate subset

for each cardinality, but a pool of δ-quasi equally accurate solutions among which the preference can

be determined by other metrics not directly considered in the optimization (e.g., cost and reliability275

of the variable observation).

Another innovative feature of the W-QEISS approach relies on the formulation of a four objective

optimization problem. Beside the two traditional objectives of accuracy ad complexity commonly

employed in Wrappers, W-QEISS includes other two metrics of relevance and redundancy (Sharma

and Mehrotra, 2014). The maximization of accuracy ensures a precise reproduction of the data, while280

the minimization of cardinality aims at simplifying the final models. These characteristics are key

for an operational index, expected to balance precision and ease-of-use. Relevance and redundancy

optimization is instead an asset for an effective subset search process, as it fosters the diversification

of the solutions explored within the MOEA algorithm, guaranteeing low intra-subset similarity, and

high information content of the solutions. A two-objective search based on cardinality and accuracy285

only would, in fact, identify optimal solutions, but at the same time disregard a number of quasi-

equally informative subsets with an almost identical operational behavior. The identification of such

alternative solutions, nevertheless, grants flexibility and a multiplicity of options for the expert-based

choice of the preferred subset, where certain combinations of predictors can be favored according

to case-specific operative purposes, e.g., more robust or less costly data gathering process, enhanced290

acceptability or immediacy of the index.

Three of the four objectives formulations make use of the Symmetric Uncertainty (SU), a measure

of the dependence and similarity between two variables (Witten and Frank, 2005). SU assumes

values between 0 (independent variables) and 1 (complete dependence) and is computed for two

features A and B as:295

SU(A,B) =

[
2 · (H(A)+H(B)−H(A,B))

H(A)+H(B)

]
(2)

11



where H(·) is the entropy of variable (·) (see for instance Scott (2012) for the definition).

WQEISS bases its objectives formulation on information theory, as discussed in Karakaya et al.

(2015). Information theoretic criteria (e.g., SU, Mutual information, and Partial Mutual Informa-

tion) do not assume any functional relationship between the variables and thus result well suited to300

quantify the dependence between two variables in any modeling context (MacKay, 2003). Other ob-

jectives formulations could in principle be explored, for instance substituting the use of Symmetric

Uncertainty with more traditional correlation coefficients, although with the risk of losing generality

by assuming linear dependence between variables.

The four assessment metrics are formulated as follows:305

1. Relevance f1(S): to be maximized, is formulated as:

f1(S) =
∑

xi∈S⊆X

SU(xi,y) (3)

where the term SU(xi,y) represents the symmetric uncertainty between the feature xi and the

output y. The relevance is therefore a measure of the explanatory power of the features with

respect to the output.310

2. Redundancy f2(S): to be minimized, is formulated as:

f2(S) =
∑

xi∈S⊆X

SU(xi,xj) (4)

where SU(xi,xj) represents the SU between two features xi and xj . High redundancy thus

means high similarity between the features. By minimizing the redundancy the algorithm en-

sures that the search will be oriented towards the selection of subsets with mutually dissimilar315

features.

3. Cardinality f3(S): to be minimized, is formulated as:

f3(S) = |S| (5)

where |S| is the number of predictors within the subset. Its minimization guarantees that the

resulting model will not be unnecessarily complex.320

4. Accuracy f4(S): to be maximized, is formulated as:

f4(S) = SU(y, ŷ(S)) (6)

where SU(y, ŷ(S)) is the correlation, measured in SU, between the observed output y and the

prediction ŷ(S) obtained from the model.
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3 Case Study: the Jucar river basin325

The Jucar river basin occupies an area of 42,989 km2 located in the eastern part of Spain (see Figure

4). The territory is mainly mountainous in the interior part, while the center-eastern section shows

a vast plain system ending into the Mediterranean sea. The territory is characterized by various

climatic conditions of which sub-humid and semi-arid are largely dominating. The main rivers of

the area are Jucar, Mijares, and Turia, covering all together more than 80% of the total mean areal330

flow. The subterranean runoff is very relevant, providing 74% of the contribution to the river network

(CHJ, 2007a).

Since the mean value of the total annual runoff (1,747 Mm3 from 1940 to 2009) almost equals

the annual water demand (1,640 Mm3), water scarcity and droughts have long been perceived as

primary issues for agricultural, social, economic, and environmental reasons. On the other hand,335

meteorological droughts in the Jucar basin can be endured for several years without suffering any

consequences, due to the highly regulated water system set in the area. There are three main large

surface reservoirs in the region: Alarcón, Contreras, and Tous (maximum capacity: 1,118 Mm3, 444

Mm3, and 378.6 Mm3, respectively). In addition, most aquifers in the basin are intensively exploited

to support agricultural supply and are currently experiencing a significant depletion due to over-340

drafting, which, in turn, affects the rivers flow.

In such a highly regulated basin with long overyear storage, water scarcity is not a necessary con-

dition derived from a meteorological drought (CHJ, 2007a; Carmona et al., 2017). Thus, traditional

drought indexes fail in detecting the timing and severity of the incidence of a drought, and an ad-

hoc monitoring system was conceived to properly capture the hydrological status of the catchment.345

The monitoring system is based on the formulation of a basin specific index, namely the State Index

(Ie, Índice de Estado). The State Index was constructed empirically by the Jucar river basin authority

(CHJ), with the intent of highly correlate to water scarcity conditions in the basin, in order to support

drought management and the implementation of the actions considered in the Drought Management

Plan (CHJ, 2007a). For that purposes, the index is developed after identifying the water sources for350

every main demand in the basin and the selection of representative variables to characterize the status

of those sources.

The total State Index Ie is computed as a weighted mean of 12 partial Ie. Partial Ies are obtained by

normalizing hydro-meteorological indicators (Vi) belonging to the following categories (see Figure

4):355

1. The mean monthly storage of one, or more reservoirs combined [Mm3] (2 storage indicators);

2. The mean streamflow contribution of the last 3 months [Mm3] (4 flow indicators);

3. The mean monthly piezometric level [m] (3 piezometer indicators);
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4. The areal precipitation of the last 12 months [mm], computed averaging the values observed

by multiple pluviometers (3 precipitation indicators).360

Figure 4. Map of the Jucar Basin river network. The colored markers represent the variables considered for

the State Index calculation. S: reservoir storage, F: streamflow, Pz: piezometer, Pl: pluviometer. Streamflow

and piezometers markers are located in correspondence to the relative measurement station, while storage and

pluviometers markers are put in the center of the polygon formed by connecting the multiple measurement

points used for their computation.

Each indicator (Vi) is consequently normalized to obtain 12 partial Ie values:

Ie =


1

2

[
1+

V i−V m
Vmax−V m

]
if V i≥ V m

V i−V min
2(V m−V min)

if V i < Vm

(7a)

(7b)

where Vm, Vmax and Vmin are the mean, maximum, and minimum values of each indicator time

series. The storage and precipitation monthly time series are normalized with respect to maximum

and minimum values of the considered month, while piezometers and river flows are normalized with365

respect to the complete historical time series. The partial Ies result as normalized indexes between

0 and 1, where Ie > 0.5 indicate higher than average value of Vi. Once the partial Ie have been
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computed, they are aggregated as a weighted sum to obtain the total Ie. The weights are established

according to the demand class associated to the indicator, ranging from class A (demand > 100

hm3/year) to D (demand < 10 hm3/year).370

The Jucar river basin represents a Mediterranean drought prone highly regulated basin, featuring

one of the most innovative and effective drought management systems, relying on the formulation

of an empirically constructed basin specific drought index (Andreu et al., 2009; Haro et al., 2014b;

Haro-Monteagudo et al., 2017; Carmona et al., 2017). As a consequence, it represents the state of

the art for basin-customized operational drought indexes employed for drought restraining purposes,375

and a remarkable benchmark to test and validate the proposed FRIDA methodology.

4 Numerical results

For the presentation of the numerical results we follow the workflow proposed in Figure 2 . The

length of the dataset available for the experiments is N = 174 data points, corresponding to monthly

values in the period 1986-2000, and nx = 28 number of candidate predictors were used (Zaniolo380

et al., 2018). The parameterization of W-QEISS was adjusted using available guidelines given by

Huang et al. (2006), Karakaya et al. (2015), and a trial-and-error process. For Borg MOEA, we set

the number of function evaluation (NFE) equal to 2 millions, while the number of hidden neurons in

the ELM, presenting a sigmoidal activation function, was set to 30. A k-fold cross-validation process

(with k = 10) was repeated 5 times and the average resulting value was used to estimate the predictive385

accuracy of each model. The W-QEISS experiment with such setting was run 20 times to filter out

the random component of the process, and the results presented below are obtained by merging the

Pareto fronts obtained by each repetitions into a final Pareto front of non-dominated solutions.

4.1 Identification of basin characteristics

In the first report concerning the Ie development (CHJ, 2007b), the index was validated for the time390

span from January 1986 to June 2000 against the supply deficit recorded in the basin with respect

to agricultural and urban water demand, and the procedure for the State Index computation was

approved. To ensure comparability between the Ie and the FRIDA constructed index, we decided

to employ the same supply deficit as target variable for the application of FRIDA approach to the

Jucar case study. The Jucar supply deficit employed in this work was simulated via AQUATOOL395

model (Andreu et al., 1996). The model can run in simulation mode with a monthly time step, and

it is conceived in the form of a flow network with oriented connections reproducing water losses,

hydraulic relations between nodes, reservoirs and aquifers, and flow limitations based on elevation.

Within AQUATOOL, complex processes such as evaporation and infiltration are effectively repro-

duced. The modeled supply deficit, employed as target variable, represents the monthly nominal400

shortage of water conveyed to the irrigation districts, and is only quantifiable a posteriori, when the
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water shortage has already jeopardized the fields. On the other hand, a drought index can be con-

stantly monitored, and thus represents a valuable management tool for containing drought impacts

and identifying effective drought management strategies.

The database of candidate input variables was assembled retrieving the available observed vari-405

ables in the basin and computing traditional drought indicators at multiple time aggregations. The

resulting candidate predictors, listed in Table 1, are the following:

– 2 temporal features: day and month of the year;

– 12 observed variables, current inputs to the Ie, reported in Figure 4: average monthly storage

and groundwater levels, average three months river runoff, and cumulated areal precipitation410

over 12 months;

– 8 additional observed variables in the basin: outflows from, and inflows to, the main reservoirs,

and mean monthly areal temperatures;

– 6 traditional drought indicators: Standardized Precipitation Index (SPI), and Standardized Pre-

cipitation and Evapotranspiration Index (SPEI). SPI and SPEI indicators are computed on415

mean monthly data over the entire basin for 3, 6, and 12 months time aggregations. SPI re-

quires as input the precipitation, and SPEI requires precipitation and temperature, as it uses

the difference between precipitation and potential ET as reference variable.

Their values express the water availability conditions of a basin in terms of units of standard420

deviation from the mean: negative (positive) values indicate drier (wetter) conditions than

average (see McKee et al. (1993); Vicente-Serrano et al. (2010) for details on definition and

calculation of these indicators).

4.2 Feature extraction via W-QEISS

The result of the W-QEISS algorithm is not a single most-accurate set of variables for a given car-425

dinality, but several quasi-equally informative subsets, whose accuracy is lower than the best one by

a small percentage δ · 100%. Figure 5 represents a Selection Matrix, which reports the composition

of each alternative subset of predictors within 15% of accuracy with respect to the highest one. The

value δ = 0.15 was chosen since it provides a reasonable trade-off between the number of solutions

and their accuracy. The accuracy is measured in symmetric uncertainty between the target variable430

and the ELM calibrated using the reported subset.

The alternative subsets are sorted in ascending order of cardinality (from top to bottom), and

accuracy (within each cardinality level). A rectangular marker is placed at the intersection between

the row identifying a given subset and the columns corresponding to the selected predictors. The

marker color varies with the cardinality of the subset, with lighter shades of gray indicating smaller435
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Table 1. Set of candidate input features for the feature extraction step via W-QEISS.

Feature type Feature code Description

Time information
Date Date of the measurement

Moy Month of the year

State Index Inputs

S1 Cumulated storage of Alarcón, Contreras and Tous

S2 Storage of Forata

F1 Flow of pre-lacual Jucar river

F2 Flow of pre-lacual Cabriel river

F3 Flow of sub-lacual Jucar river

F4 Flow of Jardín

Pl1 Pluviometer measurement in the west

Pl2 Pluviometer measurement in the east

Pl3 Pluviometer measurement in the south-east

Pz1 Piezometric level in the south-east

Pz2 Piezometric level in the center

Pz3 Piezometric level in the west

Observed variables

In A Inflow to Alarcón reservoir

In C Inflow to Contreras reservoir

In T Inflow to Tous reservoir

Out A Outflow from Alarcón reservoir

Out C Outflow from Contreras reservoir

T1 Temperature in the west

T2 Temperature in the center

T3 Temperature in the east

Indicators

SPI3 SPI at 3 months time aggregation

SPEI3 SPEI at 3 months time aggregation

SPI6 SPI at 6 months time aggregation

SPEI6 SPEI at 6 months time aggregation

SPI12 SPI at 12 months time aggregation

SPEI12 SPEI at 12 months time aggregation
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subsets. In this case the cardinality spans from 3 to 9 features. The highest accuracy is reported

in red and recorded for subset number 14. The 5 corresponding selected predictors, marked on the

horizontal axis with a blue background, are the following:

– Moy: month of the year;

– S1: total storage aggregated for the reservoirs Alarcón, Contreras, and Tous;440

– F3: river flow measured on the sublacual Jucar river, emissary of Alarcón reservoir, after the

confluence with smaller rivers Jardín and Lezuza coming from south-west;

– Pz2: groundwater level measured at the Piezometer situated in central area of the basin, in

correspondence of a rainfed agricultural area;

– SPEI6: SPEI at 6 month time aggregation computed with precipitation and temperature data445

averaged for the whole basin.

Figure 5. Selection Matrix: the left vertical axis represents the subset number and the right vertical axis the

corresponding accuracy measured in SU. A colored marker is put in correspondence of the variables, listed on

the horizontal axis, selected by each subset. The shade of gray is an indication of the cardinality of the subset,

lighter shades for lower cardinality. The highest accuracy is reported in red and the corresponding variables,

constituting the most accurate subset, have a blue background.
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From the analysis of the Selection Matrix, several insights can be gained from a modeling and

from a decision-making viewpoints. To begin with, insights on predictors’ relevance can be obtained

from the detection of the vertical bars traced by joining markers across multiple rows. Uninterrupted

bars indicate strongly relevant predictors that cannot be substituted by other input combinations450

without incurring into a substantial drop of predictive accuracy. This is the case of the cumulated

storage of the three main reservoirs Alarcón, Contreras, and Tous (S1). This information is essential

to the final model, as the exclusion of such predictors highly affects the model performance. In-

creasing gaps in the vertical bars are found when considering predictors with progressively weaker

relevance, while irrelevant inputs are recognizable by isolated markers or their total absence. The455

variables Moy, F3, and Pz2 are considered relevant variables, as they are selected quite frequently,

although high accuracy solutions exist that do not make use of all of them. Finally, the variable

SPEI6, while included in the most accurate subset, is overall present in 4 subsets only, whereas in

other solutions with comparable accuracy it is replaced by different predictors, mainly carrying a

similar precipitation-based information, such as pluviometer measures, or SPI, SPEI indicators at460

different time aggregations.

The presence of alternative subsets helps exploring the trade-off between multiple measures of

predictive accuracy with respect to other metrics not directly considered in the optimization routine,

an the choice of the preferred subset is determined by the index application. Given the cardinality,

one can decide to sacrifice a small amount of predictive accuracy for an easier-to-yield (or more465

reliable) combination of predictors. For example, with a loss smaller than 1% in accuracy, subset

13 selects SPI6 instead of SPEI6. This possible replacement is interesting from an operational point

of view as SPI is easier to compute than SPEI. In fact, SPI requires only the precipitation for its

computation with respect to precipitation and temperature or evapotranspiration needed for the com-

putation of SPEI. In addition, even after the preferred subset is chosen and the system is operating,470

knowing that one specific predictor can be replaced by one (or multiple) predictor(s) can aid the

management in case of monitoring networks maintenance or instrument failure. When the main pre-

dictor is not observable, one can temporarily resort to alternative predictors incurring in a minimum

loss of accuracy.

An additional consideration is related to the possibility to effectively address the uncertainty de-475

riving from the choice of model inputs (Taormina et al., 2016). When multiple alternative subsets

are provided, it is possible to explore the uncertainty related to the selection of predictors yield-

ing similar accuracy. For instance, in this case study, we can observe that almost all subsets carry

a groundwater and a rain information, but while the piezometric level is consistently provided by

Pz2, the source of the precipitation information highly varies among the precipitation-based features480

(pluviometers or other SPI, SPEI indicators).

Finally, through the selection matrix analysis we can contrast the features selected by W-QEISS

and the variables that constitute the State Index input set. Apart from sporadic single selections, all
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the observed variables not included in the State Index are consistently discarded by the W-QEISS as

well, suggesting that the algorithm comes to the same conclusion as the Spanish experts considering485

inflows, outflows, and temperatures as non-relevant for the description of the state of water resources

in the Jucar river basin. Note that this result is a consequence of the use of the nominal agricultural

demand to compute the target deficit. A temperature information is likely to become relevant if a real,

weather-influenced, agricultural demand is employed instead. The feature month of the year is not

explicitly an input to the State Index, nevertheless, an analogous information is implicitly included490

in the Ie through the normalization of the indicators described in equation 7. On the other hand,

several features are considered in the Ie, but generally neglected by W-QEISS selection. Among

them, two out of three piezometers, the river flows upstream from the reservoirs, one pluviometer

and the storage of Forata. These inputs probably result redundant due to their spatial correlation.

Spatial variability is considered in the computation of Ie by including several spatially distributed495

observations of the main information categories: 2 measures of reservoir storages, 4 of river flows,

3 groundwater levels, and 3 precipitation measures. Conversely, the selection matrix supports the

gain of a deeper understanding of the spatial interdependence of variables by identifying the best

location for measuring the variables, spearing the need for several distributed measures. The highest

accuracy-subset, in fact, selects only one variable out of each category: 1 storage, 1 river flows mea-500

sure, 1 piezometer, and a spatially distributed precipitation information, i.e., SPEI6 which replaces

three areal pluviometers.

4.3 Drought Index Modeling

Among the pool of solutions, the choice of the preferred subsets is driven by the index application.

For instance, an on-line use of the index that requires its frequent computation may benefit from an505

agile, easy-to-observe subset. With respect to the highest accuracy solution (subset 14), for instance,

subset number 7 neglects predictor F3 thus presenting lower cardinality with an accuracy loss of

only 3%. Similarly, the already mentioned subset 13 contains an easier-to-compute indicator (SPI

instead of SPEI) with a negligible performance degradation. Nevertheless, for our methodological

purpose we will employ the most accurate subset 14, as we are interested in discussing the potential510

of the method.

Concerning the model class choice, a highly flexible non-linear model is likely to yield the highest

accuracy in reproducing the target. However, strong non-linearity and black-box behavior typically

result in poor interpretability, a feature that is detrimental to the use of the index for management

purposes as in the Jucar system, where restrictive measures in water use are activated when certain515

threshold values of the State Index are reached. As a consequence, the index outcome exerts a direct

influence on many water-related activities requiring an easily interpretable and widely acceptable

tool.

20



The calibration of a linear model on the chosen 5 dimensional subset seems to be a good com-

promise between accuracy and transparency. As mentioned above, the feature Moy represents the520

succession of the months in the year, and is an expression of the seasonality of hydro-meteorological

processes. Moy is constructed as the repetition of an array of numbers from 1 to 12 for the length of

the considered time horizon, and thus presents a discontinuous shape: a slow and steady increase fol-

lowed by a steep decrease in correspondence to the onset of a new year. While the non-linear models

employed in the feature selection can effortlessly handle such an intermittent vector, linear models525

struggle with similar shapes. We therefore decided to account for the seasonality in the linear model

indirectly, i.e., excluding Moy from the predictors set, but, consistently, considering seasonality by

depurating the predictors of their annual cyclostationary mean.

The calibrated linear model representing the supply deficit is reported in Figure 6 and provides

a very satisfying result, with an accuracy measured with the coefficient of determination in cross-530

validation of R2
FRIDA−linear = 0.904, significantly higher than the R2

Ie = 0.739 scored by the State

Index, and a set of weights of immediate physical interpretability reported in Table 2. By inspect-

ing the weights, one can notice that those assigned to the predictors Flow and SPEI6 are very low,

although not null, and the index trajectory is mainly determined by Storage and Piezometer values.

S1 and Pz2, in fact, describe the trajectories of the main water reservoirs of the region, lakes and535

groundwater, whose fluctuations are the result of natural variability as well as human regulation,

mainly for irrigation purposes.

Table 2. Weights of the linear model calibrated on the optimal subset of predictors. The predictor Moy (month

of the year), providing a seasonal information, is not directly included in the weights optimization but it is

accounted for by depurating the variables of their annual cyclo-stationary mean.

Predictor Weight

Moy /

Storage (S1) 0.721

Flow (F3) 10−9

Piezometer (P2) 0.278

SPEI6 10−9

As a further analysis, we reiterated the model calibration and crossvalidation steps with a more

complex, highly flexible model class, the ELM architecture, which scored an accuracy of R2
FRIDA−ELM

= 0.907. On the one hand, the arguably insignificant 0.005% improvement in accuracy of ELM with540

respect to the linear class, probably does not justify the loss of immediacy and transparency induced

by the transition to a black-box model. On the other hand, this experiment proves the robustness of

the linear model in constituting the model class of choice for this drought index. In table 3 we re-

port a more detailed comparison between State index, FRIDA-linear and FRIDA-ELM indexes with
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several accuracy metrics. The analysis of other metrics seem to reinforce the conclusions drawn by545

considering R2 only: both FRIDA indexes (linear and ELM) outperform the State Index quite signif-

icantly, while the difference among them is negligible, although the non-linear index is always the

top performing.

Table 3. Accuracy of the State Index, FRIDA linear, and FRIDA ELM in reproducing the supply deficit,

quantified in terms of coefficient of determination R2, the Pearson correlation coefficient, the Root Mean Square

Error (RMSE), and the fourth grade Root Mean Square Error (R4MS4E).

Metric State Index Frida Linear Frida ELM

R2 0.7396 0.9036 0.9074

Pearson 0.8601 0.9506 0.9533

RMSE 0.2066 0.1135 0.1014

R4MS4E 0.2549 0.1475 0.1299

The reported metrics do not distinguish between errors above and below the target deficit. Indeed,

we consider these two error types of comparable importance. On the one hand, the underestimation550

of a deficit value may find the water users unprepared to face a serious drought. On the other hand,

the overestimation of drought conditions may ignite repeated false alarms that will compromise the

index trustworthiness and its efficacy in triggering an alert state. Therefore, rather than penalizing

an error above or below the target trajectory, we find more compelling to focus on errors in the most

crucial drought situations i.e., at the maximum level of deficit recorded. One way of doing so is555

considering R4MS4E, as in Table 3, which penalizes errors in the deficit peaks. Another specific

assessment tool for analyzing the indexes performance during critical droughts is the confusion ma-

trix, reporting the classification performance of critical droughts, here arbitrarily defined as months

reporting deficit values above the 85th percentile (Tables 4, 5, 6). The rows of the confusion matrix

represent the instances in a predicted class while the columns represent the instances in an actual560

class. Consequently, the main diagonal reports the number of correctly classified points. Cells out-

side the main diagonal specify the errors: the value in the bottom-left cell (first column, second row)

indicates a situation in which the index does not recognize an ongoing drought, while the value in the

top-right cell (first row and second column) indicates the number of false alarms. FRIDA-ELM con-

fusion matrix seems to significantly exceed the competitors’ performances by erroring only 0,57%565

of the times, as opposed to the 10,91% of Ie, and the 6,3% of FRIDA-linear.

Table 4. State Index confusion matrix.

SI-deficit critical drought normality

critical drought 131 18

normality 1 24
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Table 5. FRIDA-Linear confusion matrix.

Frida Linear-deficit critical drought normality

critical drought 138 11

normality 0 25

Table 6. FRIDA-ELM confusion matrix.

Frida Linear-deficit critical drought normality

critical drought 147 2

normality 1 24

Figure 6. Comparison between the FRIDA linear index (blue) and the state index (green) in reproducing the

monthly aggregated supply deficit (red). FRIDA index presents an higher similarity with the deficit and only

requires 5 inputs instead of the 12 required by the state index.

5 Conclusions

The purpose of this study is to contribute to the identification of drought management strategies able

to improve the efficiency and resilience of drought prone regulated water systems. This problem is

considered urgent as the analysis of climate trends shows that drought frequency and severity are570

intensifying all over in Europe, particularly in the Mediterranean area.

This work explores the potential of drought indexes as a management tool for the purpose of con-

taining drought impacts. Since traditional indicators are often inadequate to characterize water avail-

ability conditions in highly regulated contexts, a novel framework for the construction of customized
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basin-specific drought indexes is proposed. This framework relies on the employment of a feature ex-575

traction technique, the Wrapper for Quasi Equally Informative Subset Selection (W-QEISS). Given

a set of information collected in the basin, W-QEISS features a deep learning machine that auto-

matically selects the most suitable input set for the construction of a model reproducing the target

variable, i.e., a ground truth representative for the state of water resources in the basin. Specifically,

W-QEISS performs the search process in a four-dimensional metric space of predictive accuracy,580

cardinality, relevance, and redundancy. On top of that, W-QEISS algorithm is designed to identify

one subset with the highest predictive accuracy and multiple subsets with similar information con-

tent (i.e., quasi equally informative subsets). This provides insights on the relative relevance of the

variables and a deeper understanding of the underlying physical processes taking place in the basin.

The choice of the preferred input set and model class balance accuracy and practicality of the index.585

The efficacy of FRIDA methodology is strongly dependent on data availability, in terms of predic-

tors diversity and numerosity, and length of the time series. FRIDA is best applicable in contexts

where an extensive monitoring system has been in place for long enough to allow a consistent and

informative dataset for the index calibration. However, while some hydro-meteorological variables

are easy to monitor and most often available (e.g., precipitation, temperature), the accessibility of590

soil moisture, groundwater table level, snowpack extent, air humidity etc., may represent a problem.

When a key drought-driving variable for the context at hand is absent from the input set, the efficacy

of FRIDA is undermined.

The application of the FRIDA in the Jucar river basin case study has successfully demonstrated

the suitability of the framework to design a basin specific drought index. Firstly, the automatic vari-595

able selection yields an immediate and informative result, which presents strong similarities with

the empirical expert-based variable set employed by the CHJ, while involving a significantly lower

number of features (5 variables instead of the 12 required by the State Index). Secondly, the newly

computed FRIDA linear index outperforms the official Spanish State Index in terms of accuracy in

reproducing the target variable, while maintaining immediate interpretability.600

However, one of the reasons why the Ie enjoyed such wide acceptance among the Jucar stakehold-

ers is related to the widely comprehensive approach employed for its construction. All water users,

in fact, feel represented in the index through at least one variable being observed in the proximity

of their water related activity, even if such variable is low-weighted or redundant when computing

the basin-wide aggregated indicator. The FRIDA approach does not ensure such representation of all605

water users, although it appears as a more rigorous and efficient alternative to the inclusive CHJ ap-

proach. Moreover, FRIDA is a portable methodology, suitable for the many drought prone contexts

in need of a drought management plan. In conclusion, the aim of arranging an effective framework

for the construction of basin customized combined drought indexes can be considered achieved. The

indexes constructed with FRIDA have proven to be an asset for (i) representing drought conditions in610

highly regulated basins, where traditional indexes tend to fail; (ii) gaining a deeper understanding of
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the hydro-meteorological processes taking place in the basin; and (iii) constituting a valid alternative

to the Spanish approach for the State Index design, thus supporting appropriate drought management

strategies, such as triggering drought restraining response measures.

The already valid results achieved by this study open new possibilities for the use of basin-specific615

drought indexes. Further research efforts could be addressed to exploring the potential of employing

FRIDA indexes in directly informing water management operations. Additionally, the possibility

of forecasting such indexes can be tested in order to timely prepare for upcoming dry seasons. We

expect that the projection of a drought index fosters the adoption of a proactive (as opposed to the

current reactive) approach in facing a drought. Proactivity promotes a shift from costly and often620

belated mitigation measures, to preventive actions that will grant flexibility to timely prepare to

upcoming droughts, while reducing costs associated to drought impacts and restrictions.

Ultimately, FRIDA can represent an asset for improving the system resilience under a changing

climate. Despite the fact that FRIDA is conditioned upon historical data, one can imagine that in

the short term, drivers’ interactions and relative role in causing a drought hold unchanged. In this625

case, the index formulation remains valid in the context of a changing climate. In the long term,

nevertheless, this hypothesis may cease to hold, we thus suggest a frequent reiteration of FRIDA

procedure to monitor the evolution of drivers and dynamics leading to a drought in the basin. For

example, in a groundwater dominated system as the Jucar basin, the piezometer information is likely

to remain essential in a future climate, but, at the same time, we can expect evapotranspiration630

processes to increase their drought-propelling role, as climate change induces a general increase of

temperatures. In other contexts, e.g., snow dominated catchments, the role of snow may lose priority

due to a diminishing winter snowpack reserve. FRIDA will thus represent a valuable tool to support

the analysis on the dynamic role of drivers in drought evolution under a changing climate.

635

Data availability: The complete dataset employed for the feature selection step can be downloaded

open source from http://doi.org/10.5281/zenodo.1185084 (Zaniolo et al., 2018). A detailed descrip-

tion of FRIDA, including both data and codes, is available at http://www.nrm.deib.polimi.it/?page_

id=2438.
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Abbreviations

CHJ Confederación Hidrográfica del Jucar.

DMP Drought Management Plan.
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ELM Extreme Learning Machines.645

FRIDA FRamework for Index-based Drought Analysis.

Ie Índice de Estado.

IVS Input Variable Selection.

MOEA Multi-Objective Evolutionary Algorithm.

R4MS4E Fourth grade Root Mean Square Error.650

RMSE Root Mean Square Error.

SPEI Standardized Precipitation and Evapotranspiration Index.

SPI Standardized Precipitation Index.

SRI Standardized Runoff Index.

W-QEISS Wrapper for Quasi Equally Informative Subset Selection.655
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