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Referee comment #1 

The study presents a new framework for determining basin drought indicators (target index) by 
coupling numerous models conditioned to select and weight hydro-meteorological variable states 
(predictors) in an automated fashion. The manuscript is topically of interest and relevance to HESS 
readers, generally well written, and logically presented. Most comments and suggestions provided 
request clarification in the manuscript, although some additional (minor) analysis is perhaps 
warranted. Comments below.  
 
1. Introduction: What is the motivation for selecting these 4 objectives, other than ‘common’ or 

‘convenient’? Additional justification or rationale is warranted. 
FRIDA procedure bases its objectives formulation on information theory, as suggested in Taormina 
et al., (2016). We consider the use of such objectives combination the most suitable to design an 
operational index, while providing informative insights about the dynamics driving drought 
evolution in the basin. In particular, the maximization of accuracy ensures a precise reproduction of 
the data, while the minimization of cardinality aims at simplifying the final models. These 
characteristics are key for an operational index, expected to balance precision and ease-of-use.  
 
Relevance and redundancy objectives are instead an asset for an effective subset search process as 
they foster the diversification of the solutions explored within the MOEA algorithm, while 
guaranteeing low intra-subset similarity and high information content of the solutions. 
In particular, a predictor can be strongly relevant, when its removal from the input set causes a 
significant drop in the model accuracy; irrelevant, when its presence or absence from the input set 
does not affect the model accuracy; and weakly relevant, when there exists a combination (namely, 
a Markov blanket) of other predictors carrying analogous information about the target variable (Yu 
and Liu, 2004). 
An optimal subset is thus composed of strongly relevant features, and non-redundant weakly 
relevant features. A weakly relevant predictor is non-redundant when its Markov blanket is not 
included in the input subset. 
Depending on the problem at hand, various combinations of weakly-relevant predictors can exist, 
producing quasi-equally informative models, and requiring the optimization of relevance and 
redundancy objectives to be entirely identified (Liu et al., 2015). 
 
The matter was clarified in the revised manuscript in section 2.2, lines 280 – 291. 
 
	
2. Methods: Why is only f4 (accuracy) selected to discriminate among subsets (Fig 2, step 2)? 

Why this one and perhaps not others as well? Subsequently, all 4 objectives /assessment metrics 
are used for presumably final selection. Does this ultimately indicate that accuracy is the most 
important objective? Or somehow give it more weight?  

The objectives of relevance and redundancy are essential to support the search process towards the 
finding of a diversified and comprehensive set of solutions, which will not be achieved optimizing 
cardinality and accuracy only. A two-objective search based on cardinality and accuracy would, in 
fact, identify optimal solutions, but at the same time disregard a number of quasi-equally 



informative subsets with an almost identical operational behavior. The identification of such 
alternative solutions, nevertheless, grants flexibility and multiple options for the expert-based 
choice of the preferred subset, where certain combinations of predictors can be favored according to 
case-specific operative purposes, such as a more robust or less costly data gathering process, or 
enhanced acceptability and immediacy of the index. 
	
Once the search is completed, although, the specific relevance and redundancy score of each 
variable combination is rarely of interest for the design of an operational index, while its accuracy 
and cardinality are crucial.  
When the dataset of candidate variables presents significant redundancy and correlation among 
features, numerous subsets characterized by a wide range of cardinalities are generally available to 
achieve a relative small range of accuracies. This is often the case in environmental problems, 
where spatial and temporal correlation of hydro-meteorological variables and associated indicators 
is significant.  
For this reason, the accuracy metric is initially used to discriminate among subsets, in order to limit 
the number of solutions that undergoes a deeper examination to the highly accurate solutions, 
provided they feature different cardinalities and predictors combinations. 
 
Following the reviewer suggestion, the above point was clarified in section 2.2, lines 245-260 
 
 
3. Results: The target variable (supply deficit) requires a more clear description earlier in the 

manuscript. A later statement (p17, L421) indicates that agricultural demand is used to 
computer the target deficient, however there could be many definitions (deficit in reservoir 
storage, deficit in long-term groundwater levels, deficit in meeting total demand, etc.) Why is ag 
demand used? 

In a report issued by the Jucar Hydrological Confederation (CHJ, 2007) the Ie is validated against 
the supply deficit with respect to agricultural and urban demand, the validation result is considered 
satisfying, and the index is declared operative. 
The choice of employing the same supply deficit as a target variable for the FRIDA index is thus 
required to ensure comparability between the two indexes.  
As the reviewer suggested, we specified the matter in lines 390-395. 
 
 
4. Results: A linear model is ultimately selected although a non-linear mode is recommended and 

compared. In terms of R2, there is little difference, however it may also be interesting to 
compare the weights given to each input/predictor. If there is a significant difference, this may 
not be intuitive (a statistical modeling artifact?) 

The black-box nature of the non-linear ELM model does not allow an analysis of the weight given 
to each predictor. ELM belongs to a family of models called Artificial Neural Networks (ANN), 
typically employed in regression problems and labeled universal approximators. In ANN models, 
the input features are manipulated through one or more layers of multiple hidden neurons 
performing sigmoidal transformations. The optimal number of layers, and of neurons in each layer, 
is problem dependent and generally needs manual calibration. The neurons' output is then weighted 
and summed to compose the final output. As a result of the non-linear manipulations, it is not 



possible to determine the weights assigned to each predictor in a ANN regression, and a comparison 
with the linear model is not possible in these terms.  
 
5. Results: other comparison metrics (between SI and FRIDA linear model) besides R2 may be 

warranted. How does the RMSE (or other) compare? Is it better to error above or below the 
target deficit? 

We consider the point of the reviewer well taken. In the revised manuscript we reported the 
additional metrics of the Pearson coefficient and the RMSE alongside R2. As it is evident from the 
result reported below, both FRIDA indexes (linear and ELM) outperform the State Index quite 
significantly, while the different among them is negligible, although the non-linear index is always 
the top performing. 
 
We consider erroring above or below the target deficit of comparable importance as, on the one 
hand, the underestimation of a deficit value may find the water users unprepared to face a serious 
drought. On the other hand, the overestimation of drought conditions may ignite repeated false 
alarms that will compromise the index trustworthiness and its efficacy in triggering an alert state. 
Therefore, rather than penalizing an error above or below the target trajectory, we find more 
compelling to focus on errors in the most crucial drought situations i.e., at the maximum level of 
deficit recorded. In order to do so, we included two additional metrics: R4MS4E, penalizing errors 
in the deficit peaks, and a confusion matrix reporting the classification performance of critical 
droughts, arbitrarily defined as months reporting deficit values above the 85th percentile.  
The rows of the confusion matrix represent the instances in a predicted class while the columns 
represent the instances in an actual class. Consequently, the main diagonal reports the number 
correctly classified points. Outside the diagonal the errors are reported: the value in the first column 
and second row indicates a situation in which the index does not recognize an ongoing drought, 
while the value in the first row and second column indicates the number of false alarms. 
These additional metrics substantially confirm the previously obtained results, with the exception of 
the FRIDA_ELM confusion matrix, that seems to significantly exceed the competitors’ 
performances by erroring only 0,57% of the times, as opposed to the 10,91% of Ie, and the 6,3% of 
FRIDA_linear. 
 
 
In the revised version of the paper we reported additional metrics to aid the comparison between 
indexes. The metrics are reported in Table 3, 4, 5 and 6, of the revised manuscript, and are 
discussed in the text in lines 543 - 566. 
 
METRIC SI FRIDA_linear FRIDA_ELM 
Pearson 0,8601 0,9506 0,9533 
R2 0,7396 0,9036 0,9074 
RMSE 0,2066 0,1135 0,1014 
R4MS4E 0,2549 0,1475 0,1299 
 
 
CONFUISON MATRIX 
 



 
 
 
SI\deficit critical drought normality 
critical drought 131 18 
normality 1 24 
 
FRIDA_linear\deficit critical drought normality 
critical drought 138 11 
normality 0 25 
 
FRIDA_ELM\deficit critical drought normality 
critical drought 147 2 
normality 1 24 
 
 
 
 
 
  
6. Results: What are the FRIDA results using the exact set of 12 indicators included in the State 

Index? And associate weights? This may be useful for comparison (and discussion with water 
users.)  

A linear model calibrated with the whole set of State Index inputs produces a very similar result to 
the FRIDA model in terms of accuracy, as it is evident from the metrics reported below. This result 
is not surprising if we analyze the weights assigned by the calibration to each input: all negligible 
except for the storage and piezometer predictors included in the FRIDA selected subset (see table 
below). 
The use of the 12-predictors thus seems to bring no advantage, as on the one hand it complexifies 
the model, the data retrieval process, and the index computation by adding unnecessary predictors; 
and on the other hand it compromises the tool’s acceptability. The official SI, in fact, is the outcome 
of a participatory process where variables and weights were negotiated with stakeholders. In 
particular, the weights carry a specific physical meaning as they are proportional to the demand 
class associated to each partial Ie (as detailed in section 3 of the paper). Thus, redefining the input 
weights will invalidate the outcome of the participatory process, while providing no benefit from an 
operational and modeling viewpoint. 
 
This point is clarified in the edits of the final part of the introduction (see lines 165 -175).  
 
METRIC Caibrated 

linear model 
Pearson 0,9505 
R2 0,9013 
RMSE 0,1188 



R4MS4E 0,1499 
 
 
 
Weights 12 variables optimization 
Predictor Weight 
S1 0,826 
S2 2,04E-10 
F1 2,04E-10 
F2 1,96E-10 
F3 3,55E-10 
F4 2,06E-10 
Pl1 3,17E-10 
Pl2 5,72E-10 
Pl3 2,82E-10 
Pz1 2,66E-10 
Pz2 0,174 
Pz3 2,37E-09 
 
 
 
7. Conclusion: The authors make mention of a changing climate. What does this mean for the 

reliability and accuracy of the framework conditioned on historical (relatively stationary) data? 
Please discuss. 

In the short term, one can imagine that, despite a change in the drivers’ statistics due to climate 
change, their interactions and relative role in causing a drought holds unchanged. In this case, the 
index formulation remains valid in the context a changing climate. In the long term, nevertheless, 
this hypothesis may cease to hold, thus requiring the reiteration of FRIDA procedure to identify 
new drivers and dynamics leading to a drought in the basin.  
 
For example, in a groundwater dominated system as the Jucar basin, the piezometer information is 
likely to remain essential in a future climate, but, at the same time, we can expect 
evapotranspiration processes to increase their drought-propelling role, as climate change induces a 
general increase of temperatures.  
In other contexts, e.g., snow dominated catchments, the role of snow may lose priority due to a 
diminishing winter snowpack reserve.  
 
FRIDA will thus represent a valuable tool to support a thorough analysis on the role of each driver 
in drought evolution under a changing climate. 
 
We consider this a good point and we expanded the paper’s conclusion (see lines 624-634) to 
elaborate on the matter. 
 



8. Discuss: If a subset of the 4 objectives are selected, or different objectives, how might this 
change the outcomes?  

FRIDA procedure bases its objectives formulation on information theory, as suggested in Taormina 
et al., (2016). Information theoretic criteria (e.g., SU, Mutual information, and Partial Mutual 
Information) do not assume any functional relationship between the variables and thus result well 
suited to quantify the dependence between two variables in any modeling context (McKay, 2003). 
Other objectives formulations could be explored, for instance substituting the use of Symmetric 
Uncertainty with more traditional correlation coefficients, although with the risk of losing 
generality by assuming linear dependence between variables.  
The use of a subset of objectives could, in principle, be a viable option in case of a two-objectives 
search using accuracy and cardinality only. Such optimization will require less computational time, 
but on the other hand, will return a poorer set of solutions with respect to the four-objective search 
(see answer at point 3 for more details).  
We included this comment in the Methods and tools section of the revised paper, lines 298-304. 
 
 
9. Discuss: What influence may the selection of the learning machine, MOEA algorithm, etc. have 

on outcomes? Are they sensitive to choices or not?   
The Extreme Learning Machine and Borg MOEA were selected as they were proven to perform 
well under a suite of different problems, ensuring applicability, scalability, accuracy and, in the case 
of ELM, very limited computational burden.  
ELM bypasses the time consuming gradient-based search of optimal neurons parameters required 
by traditional ANN techniques, by performing a random selection of hidden nodes, followed by the 
optimization of their output weights. Such optimization is solved through a one-step matrices 
product and essentially amounts to learning a linear model.  
 
However, we do not expect the choice of the learning machine or MOEA to be crucial for the 
attainment of the result. A different benchmark MOEA (e.g., NGSAII, MOEAD, eps-MOEA) is 
likely to come to a comparable result, although requiring a possibly significant effort in the manual 
calibration of the evolution parameters, which is automated in Borg MOEA. Similarly, other ANN 
techniques could in principle be substituted to ELM, although incrementing the computational time 
to possibly unbearable levels, given the multiple calibration and validation processes reiterated in 
WQEISS. 
 
We included this discussion in the Methods and Tools section of the revised paper, lines 238-249 
 
 
10. Discuss: Would the selected inputs/predictors change substantially is the target deficit were 

defined differently? It may not be overly surprising that reservoir volume and groundwater 
levels are most important for a target deficit focused on agricultural irrigation demand. 

 
The selection of the target variable is indeed a critical step for the FRIDA procedure and requires an 
expert consultation to select the most appropriate target for the basin, and the operational aim of the 
index.  
We agree with the reviewer that the result of the variable selection step is not surprising given the 
basin climate and the physical meaning of the target variable. 



However, the aim of the paper was to demonstrate the validity of a completely automated procedure 
(i.e., that requires no information on system topology or basin characteristics) in recognizing the 
main drought drivers, and predicting a deficit with accuracy and limited computational effort. 
The selection of the case study was tailored to this purpose, as the Jucar basin successfully relies on 
a drought index to activate restraining measures. The analysis of the Jucar State Index provided 
guidelines for our work, firstly in terms of target choice and candidate variable retrieval, and 
secondly for validating FRIDA in both the variable selection step and index design outcome.  
 
We clarified the matter in the Introduction, lines 166 – 173. 
 
 
11. What are the prospects for projecting out the State Index, based on the state of some features 

(e.g. reservoir volume) and predictions of other features (e.g. precipitation or recharge)? This is 
hinted at in the very end of the manuscript, but may warrant more discussion. 

 
Following the reviewer suggestion, we expanded the closing section of the paper (lines 618-622) to 
provide some clarification on the matter.  
We expect that the projection of a drought index fosters the adoption of proactive (as opposed to the 
current reactive) approach in facing a drought. Proactivity translates in a shift from costly and often 
belated mitigation measures, to preventive actions, thus granting flexibility to timely prepare to 
upcoming droughts, while reducing costs associated to drought impacts and restrictions. 
 
 
 
 



Referee comment #2 
The manuscripts provides an excellent contribution to the field for characterizing basin- specific 
drought conditions within a powerful framework that offers automation, replicability and flexibility. 
This is particularly useful in applying the approach in management (and planning) decisions at 
various temporal and spatial scales including reservoir operation, hydropower generation and water 
allocation among various users and the environment. An fine review on drought types, 
commonalities and differences is a good compendium to cite for research and educational purposes. 
The two algorithms presented in the selection of predictors, target variable and index subsets is a 
great contribution to the field which is often dominated by standardized indicators of droughts that 
may lack relevance in a local basin context where other confounding factors including regulations, 
water rights, environmental constraints and long-time operation rules merit representation. That 
said, the manuscript would benefit from a better presentation of results, minor editorial 
improvements and some more detailed explanation of some of the calculations involved in 
estimating the index. In what follows, I provide some recommendations for improvement. 
We thank the referee for the positive comment 
 
Major Issues 

1. One of the major issues in the manuscript is presentation of the final step, the drought index. 
There is a strong disconnect between what is presented in figure 2 and the calculated index? 
It is clear the at the linear model was a a balanced way to obtain the supply deficit and ’the 
index’. Is the automated index the supply deficit? Fitness is really good compared to the 
well-established State Index but how it all fits together considering the different units and 
how are things calculated? This might seem like an unnecessary question but it is important 
to present with clarity the fundamental outcome of the approach. 

 
The supply deficit is identified as target variable to guide the construction of the automated index, 
the index is therefore a proxy of the deficit, not the deficit itself. The supply deficit, in fact, was not 
obtained by linear model, but was simulated with the AQUATOOL model (Andreu et al., 1996), a 
Decision Support System developed at the Universidad Politécnica de Valencia (UPV), Valencia, 
Spain. The model can run in simulation mode with a monthly time step, and it is conceived in the 
form of a flow network with different types of oriented connections that reproduce water losses, 
hydraulic connections between nodes, reservoirs and aquifers, and flow limitations based on 
elevation. Within AQUATOOL, complex processes such as evaporation and infiltration are 
effectively reproduced. 
The modeled supply deficit represents the monthly nominal shortage of water conveyed to the 
irrigation districts, and is only quantifiable a posteriori, when the water shortage has already 
jeopardized the fields. On the other hand, the automated index can be constantly monitored, and 
thus represents a valuable management tool for containing drought impacts and identifying 
effective drought management strategies.  
Numerical results show that FRIDA methodology outperforms the benchmark State Index in the 
representation of the recorded deficit, and, to assess so, we employed the coefficient of 
determination R2. R2 is calculated as the ratio of the explained variance (the proportion to which a 
mathematical model reproduces the dispersion of a given data set) to the total variance, and is a 
common measure of correlation. As a consequence, the unit in which a variable is expressed has no 
impact in the computation of R2 and the values of correlation reported are perfectly comparable. 
 



We remarked the above points in the beginning of section 4.1, lines 395-404. 
 

2. Likewise for Table 2, how are these weights applicated? Elaborate on the exclusion of Moy 
in the weight and how is brought back so is taken into account. IF this is too much detail for 
the main paper consider an appendix for 1 and 2 above. 

In the linear case, the index is calculated as a weighted sum of the form: 
Index=weight1*predictor1 + weight2*predictor2+weight3*predictor3+(…) 
  
The predictor Moy represents the succession of the months in the year, and is an expression of the 
seasonality of hydro-meteorological processes. Not surprisingly, it is selected as a relevant variable 
in the feature selection step. 
Moy is constructed as the repetition of an array of numbers from 1 to 12 for the length of the 
considered time horizon, and thus presents a discontinuous shape: a slow and steady increase 
followed by a steep decrease in correspondence to the onset of a new year.  
While the non-linear models employed in the feature selection can effortlessly handle such an 
intermittent vector, linear models struggle with similar shapes. We therefore decided to account for 
the seasonality in the linear model indirectly, i.e., excluding Moy from the predictors set, but 
consistently considering seasonality by depurating the predictors of their annual cyclostationary 
mean. 
Following the reviewer suggestion, we clarified the matter in lines 520 - 528. 
 
 

3. The set of conclusions are succinct and useful. However, I would highly recommend to 
comment before (or as part of these) the cases in which this approach may not be suitable. 
What are the challenges in obtaining predictors and developing computations, and where the 
approach presented in the paper which is actually promising moving in the field. 
 

We thank the referee for the good point raised. We find this comment in accordance to the 
suggestions of referee #1, and, accordingly, we expanded the conclusion section of the paper to 
substantially improve its clarity, and better elaborate on the mentioned issues, in particular, this 
point was elaborated in lines 586-598. 
 
The efficacy of FRIDA methodology is strongly dependent on the data availability, in terms of 
predictors diversity and numerosity, and length of the time series.  
FRIDA is best applicable in contexts where an extensive monitoring system has been in place for 
long enough to allow a consistent and informative dataset for the index calibration.  
However, while some hydro-meteorological variables are easy to monitor and most often available 
(e.g., precipitation, temperature), the accessibility of other variables such as soil moisture, 
groundwater table level, snowpack extent, air humidity etc., may represent a problem. When a key 
drought-driving variable for the context at hand is absent from the input set, the efficacy of FRIDA 
is undermined. 
Concerning the computation, FRIDA procedure is mostly automatized. The only step that may 
require a small degree of manual calibration is the number of ELM to be employed in the feature 
selection step. An inadequate number of ELM may yield a poor result due to insufficient learning 
potential (too few ELM), or tendency to overfit the data (too many ELM).  
  



 
4. Perhaps offer an online supplementary material section in which users can play with the 

approach. I found it very suitable for an educational setting and in helping basins worldwide 
in organizing information to characterize drought. Even when some of the algorithms 
require a fair amount of training from the users, having a pre-processed repository would be 
of great service to the community. 

Following the referee suggestion, we set up an online page for the FRIDA methodology available 
at http://www.nrm.deib.polimi.it/?page_ id=2438, including detailed description of the 
complete dataset employed for the feature selection step, downloadable open source from 
http://doi.org/10.5281/zenodo.1185084, and the codes, complete with the experimental 
settings employed. We added a data availability section at the end of the manuscript (lines 
635 - 639) to inform the reader. 

 
 

5. From what I understand, supply deficit is the target variable. Description of it and its 
connection with the indicators of the basin is poor. So I encourage the authors to improve it 
in the paper to make it easier to follow how do we go from predictors, Pareto optimal sets, 
to index estimation (see 1 above) and and tests. 

The supply deficit is the monthly shortage of water conveyed to the irrigation districts with respect 
to their nominal water demand. As such, it represents the manifestation of a drought as perceived by 
the water users, i.e., an operational drought. As detailed in the introduction, an operational drought 
is driven by two factors: water availability due to hydro-meteorological fluctuations, and 
management of available water resources. An operational drought index must, on the one hand, 
account for hydro-meteorological predictors, and on the other hand, detect situations of water 
shortage as perceived by users, i.e., supply deficit.  
In step 1 of FRIDA, possibly relevant hydro-meteorological predictors are identified, and in step 2 
those predictors are combined to define Pareto optimal sets. Providing multiple optimal sets we 
allow the customization of the index, foreseeing its employment as a management tool for the 
constant monitoring of water resources. The decision maker can identify the preferred subset in 
accordance to context-dependent needs of accuracy, and agility in the variables monitoring. 
Finally, in step 3 of the Framework, we tested the potential in constructing meaningful operation 
drought indexes. 
To do so, we opted for one of the Pareto optimal sets, we calibrated the relative index on the target 
deficit, and tested its performance in terms of accuracy and cardinality against the benchmark state 
index. We here remark that the state index was validated on the same supply deficit, granting a fair 
comparison between the two indexes. 
Following the reviewer suggestion, we edited the paper Introduction in lines 96-101 to clarify the 
first point as well as lines 390-404 to clarify the second. 
 
 
 
Minor Issues 

1. I through revision of the abbreviations/acronyms in the paper is recommended. Examples: 
MOEA, ELM, CHJ. 

We extended the table of acronyms to include every acronym of the manuscript. 



 
2. Abstract, explain how it that traditional drought indexes fail to detect events. Not in the 

abstract but in the opening of the paper or the contributions section of the paper. 
Meteorological, agricultural, and hydrological indexes fail in representing drought conditions in 
highly regulated basins, where the presence of man-managed water infrastructures (lake dams, 
groundwater pumps) filter water availability and have a role in magnifying or restraining drought 
impacts. On the other hand, traditional operational drought indexes are often designed to operate 
analysis over coarse spatiotemporal resolutions, thus resulting unsuitable for a real time basin level 
drought detection, characterization, and management.  
Highly regulated systems need ad hoc index formulations to account for uncontrolled hydro-
meteorological conditions (precipitation, temperature…) as well as controllable variables (reservoir 
and groundwater levels).  
 
We edited lines 94-101 to clarify this point. 
  

 
3. paragraph line 25, Why is the Jucar index superior to other approaches? What is the basis 

for comparison? 
The State index is a well-established drought monitoring tool currently in use in every Spanish 
hydrographic confederation (Jucar, Duero, Segura, Ebro, Guadalquivir, Tajo…) to monitor the state 
of water resources in the basin and trigger drought restraining measures when certain threshold 
values of the index are reached. 
Each confederation has designed its customized formulation for the state index which reflects the 
hydroclimatic conditions and the water uses of the region, and is the outcome of a long participatory 
process involving basin experts and stakeholders. 
Since their establishment in 2007, the State indexes have represented the most consistent and 
extensively applied example of index used for drought management purposes. Thus, Ie represent the 
state of the art for basin-customized operational drought indexes, and a remarkable benchmark to 
test the proposed FRIDA methodology. 
We extensively elaborated on the choice of the State Index as a benchmark in the paper 
introduction, lines 115-135 and in the Case study section 371-376. 

 
4. Line 33, are the $100 billion for all Europe, over the time period? What does this mean in 

terms of GDP or other indicators? Put some context to it otherwise is useless. What sectors 
are included what type of impacts? 

As stated in the EU "drought and water scarcity second interim report" (European Commission, 
2007), economic impacts of drought amount to $100 billion for the period 1976-2006. This figure 
was estimated by aggregating information provided by EU member states on the economic impacts 
of drought, which, as the report states in page 32, include impacts endured by consumers and 
households, tourism, industry, energy, and agriculture. No information is provided in terms of GDP 
units. 
Lines 32-38 of the introduction were edited to provide a better clarification on the matter. 
 

5. line 37 what is meant by economic damage? 
By economic damage caused by drought we refer to a situation in which a water deficit induced by 
droughts affects production, sales and business in a variety of sectors (Spinoni et al., 2016). The 



main economic impacts divided by sectors are detailed in the same report are: socioeconomic 
impacts; impacts on environmental, forestry, wildfires, and biodiversity; impacts on farming and 
livestock; impacts on public water supply; impacts on surface and groundwater; impacts on 
industry; impacts on power generation: hydropower, thermal, and nuclear; impacts on commercial 
shipping; impacts on tourism and recreation. 
We mention the matter in line 39-40 and refer to Spinoni et al., 2016 for further details. 

  
6. A graphic showing the four types of drought described would be very useful al- though not 

the main objective of the paper. Spatial, temporal, supply and demand, and involved sectors 
in a basin could be outlaid in the infographic. 
 

We included the following infographic in the paper introduction (Fig.1 of the revised manuscript) 

 
Caption: Development chain of droughts through time. Meteorological drought: defined as a lack 
of precipitation over a region for a certain period of time; develops in the short term. Agricultural 
drought: accounts for the plants and crops water stress; develops in the medium term. 
Hydrological drought: defined as a period of low streamflow in watercourses, lakes and 
groundwater level below normal; develops in the long term. Operational drought: defined as a 
period with anomalous supply failures in a developed water exploitation system. Figure adapted 
from Spinoni et al., 2016 to include Operational drought.  



 
7. Sentence starting in line 93 is awkward please break into more sentences. 

We rephrased in lines 97-101 as: 
Anthropized systems have, in fact, a demonstrated ability to endure meteorological droughts 
for months, or even years, without suffering consequences, i.e., without incurring in a 
situation of water shortage perceived by the users. An effective planning and management 
of water resources enables such systems to wisely exploit the combined storage capacities 
of surface and groundwater reserves and restrain drought  

  
 
8. The equation below line 230, should it be f4(Si) >= f(Sj)? 

The error in the formula was corrected,  (see line 267) we thank the reviewer for noticing.  
The correct formula is 𝑆" ⊂ 	 𝑆%				∀		𝑓((𝑆") ≥ 	𝑓((𝑆%).  

 
9. Line 320 as per comment above, elaborate on Ie performance. 

According to the reviewer suggestion we remarked the significance of the Spanish experience with 
State Indexes in lines 115-135 and 371-376. 
 

10. How would a ’traditional index’ e.g. SDI would perform in Figure 5? How are we making 
the case of both Ie and the developed automated index are better? Please elaborate. 

SDI would represent meteorological conditions but won't provide any insight on actual water 
shortage as perceived by the users. Both Ie and Frida index are operational indexes, and take into 
account the filtering effect of water management on meteorological fluctuations, thus correlating 
significantly with the recorded supply deficit.  
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Abstract. Socio-economic costs of drought are progressively increasing worldwide due to under-

going alterations of hydro-meteorological regimes induced by climate change. Although drought

management is largely studied in the literature, traditional drought indexes often fail in detecting

critical events in highly regulated systems, where natural water availability is conditioned by the

operation of water infrastructures such as dams, diversions, and pumping wells. Here, ad-hoc index5

formulations are usually adopted based on empirical combinations of several, supposed-to-be sig-

nificant, hydro-meteorological variables. These customized formulations, however, while effective

in the design basin, can hardly be generalized and transferred to different contexts. In this study,

we contribute FRIDA (FRamework for Index-based Drought Analysis), a novel framework for the

automatic design of basin-customized drought indexes. In contrast to ad-hoc, empirical approaches,10

FRIDA is fully-automated, generalizable, and portable across different basins. FRIDA builds an in-

dex representing a surrogate of the drought conditions of the basin, computed by combining all the

relevant available information about the water circulating in the system identified by means of a

feature extraction algorithm. We used the Wrapper for Quasi Equally Informative Subset Selection

(W-QEISS), which features a multi-objective evolutionary algorithm to find Pareto-efficient subsets15

of variables by maximizing the wrapper accuracy, minimizing the number of selected variables, and

optimizing relevance and redundancy of the subset. The preferred variable subset is selected among

the efficient solutions and used to formulate the final index according to alternative model structures.

We apply FRIDA to the case study of the Jucar river basin (Spain), a drought-prone, highly regulated

Mediterranean water resource system, where an advanced drought management plan relying on the20

formulation of an ad-hoc State Index is used for triggering drought management measures. The State

Index was constructed empirically with a trial-and-error process begun in the ’80s and finalized in
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2007, guided by the experts from the Confederación Hidrográfica del Júcar (CHJ). Our results show

that the automated variable selection outcomes align with CHJ’s 25 years-long empirical refinement.

In addition, the resultant FRIDA index outperforms the official State Index in terms of accuracy in25

reproducing the target variable and cardinality of the selected inputs’ set.

1 Introduction

A drought is a slowly-developing natural phenomenon that occurs in all climatic zones and can be

defined as a temporary significant decrease of water availability (Tallaksen and Van Lanen, 2004;

Van Loon and Van Lanen, 2012). Drought impacts can propagate to virtually every water-related30

sector, such as farming and livestock production, industry, power generation, and public water sup-

ply (Spinoni et al., 2016). During the period 1976-2006, droughts in Europe affected more than 11%

of the population, and their economic cost was estimated to exceed C100 billion, considering dam-

ages endured by consumers, tourism, industry, energy, and agricultural sectors. Moreover, climate

change is expected to produce longer, more frequent and severe drought events, especially in south-35

ern Europe (Giorgi and Lionello, 2008; Spinoni et al., 2016; Marcos-Garcia et al., 2017). Recent

drought cost trends show a significant increasing tendency, reaching an average of C6.2 billion/year

in the years 1991-2006 (EU, 2007). These estimates, however, only account for the economic dam-

ages, (i.e., situations in which a water deficit induced by droughts affects production, sales and

business in a variety of sectors), neglecting environmental and social costs (Spinoni et al., 2016).40

A comprehensive quantification of drought impacts is, in fact, complicated by the considerable lag

occurring between the realization of dry climatic conditions and the impacts on economy and society

(Changnon, 1987; Stahl et al., 2016).

We can distinguish four types of droughts: meteorological, agricultural, hydrological, and op-

erational (or anthropogenic) drought, depending on the time horizon and the variable of interest.45

(Heim Jr, 2002; Mishra and Singh, 2010; Pedro-Monzonìs et al., 2015; Spinoni et al., 2016). The

development chain of droughts through time is exemplified in Figure 1.

A meteorological drought is defined as a lack of precipitation over a region for a certain period

of time (Mishra and Singh, 2010). It develops over the short term (1-3 months) and can extend on

longer periods, and is usually associated with the global behavior of the atmospheric circulation50

(Pedro-Monzonìs et al., 2015). Precipitation is always the core variable to characterize this drought

type, with most meteorological drought indexes based on precipitation only (Byun and Wilhite,

1999; McKee et al., 1993). In some cases, especially in regions where droughts can be strongly

influenced by evapotranspiration, additional variables such as temperature trends are also considered

(Vicente-Serrano et al., 2010; Lorenzo-Lacruz et al., 2010).55

Agricultural drought affects, and is defined through, the state of soils and crops in the medium

term (3-6 months) (Pedro-Monzonìs et al., 2015). This drought type manifests itself with dryness
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Figure 1. Development chain of droughts through time. Meteorological drought, defined as a lack of precipita-

tion over a region for a certain period of time, develops in the short term. Agricultural drought accounts for the

plants and crops water stress; develops in the medium term. Hydrological drought, defined as a period of low

streamflow in watercourses, lakes and groundwater level below normal, develops in the long term. Operational

drought, defined as a period with anomalous supply failures in a developed water exploitation system, develops

in the long term. Figure adapted from Spinoni et al. (2016) to include Operational drought.
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in the root zone and, although rainfall deficiency is a primary cause, precipitation alone is often

not enough to describe it. Approaches to characterize agricultural droughts focus on monitoring soil

water balance and the subsequent deficit (Palmer, 1965; Narasimhan and Srinivasan, 2005; Hao and60

AghaKouchak, 2013). The factors involved in this case include vegetation type, soil water holding

capacity, wind intensity, evapotranspiration rate, and air humidity (Heim Jr, 2002). In regulated sys-

tems, agricultural droughts can be usually restrained with irrigation (Keyantash and Dracup, 2002).

Hydrological drought is defined as a period of exceptionally low flows in watercourses, and lakes

and groundwater levels below normal (Dracup et al., 1980; Van Loon and Van Lanen, 2012). Related65

indicators mainly focus on streamflow, as the by-product of every hydro-meteorological process

taking place in water catchments (Heim Jr, 2002; Vicente-Serrano and López-Moreno, 2005). More

comprehensive indexes can also include snowpack extent, reservoir storage, and groundwater level

(Shafer and Dezman, 1982; Keyantash and Dracup, 2004; Staudinger et al., 2014). This drought

takes place after a prolonged time of low precipitation and deficient soil moisture and its effects are70

witnessed in the long-term (6-12 months) (Zargar et al., 2011).

These three categories refer to droughts as a natural hazard, i.e., a threat of a naturally occurring

event that negatively effects people or the environment (Gustard et al., 2009; Van Loon and Van

Lanen, 2013; Laaha et al., 2016). On the other hand, particularly in highly regulated contexts, a dry

spell may be caused by natural scarcity of precipitation as well as inconsiderate overuse and/or mis-75

management of water resources. Another interesting way to approach drought analysis is, therefore,

through the concept of operational (or anthropogenic) drought. Operational drought is defined as a

period with anomalous supply failures in a developed water system (Pedro-Monzonìs et al., 2015).

It is caused by a combination of two factors: lack of water resources and excess of demand (AghaK-

ouchak, 2015a). Moreover, it can be further worsened by an inadequate design and management of80

the water exploitation system and its operating rules (Mishra and Singh, 2010). Operational droughts

indicators aim at comparing water availability to human water needs and serve as a measure of water

well-being, rather than a measure of natural fluctuation as in the case of meteorological, agricul-

tural, and hydrological indicators (Sullivan et al., 2003; Rijsberman, 2006). In the computation of

operational drought indicators, the available water is often represented by the streamflow, or a frac-85

tion of it, and the water need is usually quantified by a standard per capita or by a fixed nominal

demand (Falkenmark et al., 1989; Raskin et al., 1997). Depending on the application scope, opera-

tional drought indicators are either river basin specific (Garrote et al., 2007; Haro-Monteagudo et al.,

2017) or used in studies covering continental or global areas with an annual time resolution (Yang

et al., 2003; Oki and Kanae, 2006; Alcamo et al., 2007; Kummu et al., 2010).90

When considering a highly regulated water system, i.e., a system where natural water availability

is altered by the presence and operation of water infrastructures, traditional drought indicators (e.g.,

SPI, Standardized Precipitation Index; SPEI, Standardized Precipitation and Evapotranspiration In-

dex; SRI, Standardized Runoff Index) present different shortcomings. On the one hand, meteoro-
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logical, agricultural, and hydrological indexes often fail in representing drought conditions when95

regulated lake releases and/or groundwater pumping filter water availability and play a role in mag-

nifying or smoothing drought impacts. Anthropized systems have, in fact, a demonstrated ability

to endure meteorological droughts for months, or even years, without suffering consequences, i.e.,

without incurring in a situation of water shortage perceived by the users. An effective planning and

management of water resources enables such systems to wisely exploit the combined storage capaci-100

ties of surface and groundwater reserves and restrain drought (Rijsberman, 2006; Haro et al., 2014a).

On the other hand, operational drought indexes are often designed to operate analysis over coarse

spatiotemporal resolutions, thus resulting unsuitable for a real time basin level drought detection,

characterization, and management. Highly regulated systems need ad hoc index formulations tailored

on basin characteristics (Wanders et al., 2010; AghaKouchak, 2015b), combining human-controlled105

variables (e.g., reservoirs and groundwater levels) with uncontrolled hydro-meteorological variables

(e.g., precipitation, temperature, natural inflows) to reflect both regulation effects and natural fluctu-

ations in the basin.

A paradigmatic example of a practical and systematic policy for the identification and mitigation

of operational droughts is provided by Spain, where public River Basin Management authorities110

(Confederaciones Hidrográficas) are bind by Law (Ministerio del Medio Ambiente, 2000) to design

basin-specific State Indexes associated with each main river basin (Ie, Índice de Estado). Most of the

basins in Spain are highly regulated and these State Indexes are computed as a weighted average of

relevant observed variables at selected control points, e.g., precipitation, streamflow, reservoir level,

and groundwater level. Each river basin authority has designed its customized formulation for the115

State Index which reflects the hydroclimatic conditions and the water uses of the region (Estrela and

Vargas, 2012). The value of the State Indexes is monitored monthly and used to trigger water demand

and supply measures when entering a drought period, according to the district Drought Management

Plan (DMP) (Garrote et al., 2007; Gómez and Blanco, 2012; Haro et al., 2014a).

Each DMP and the relative State Index formulation is the result of a long collaborative process120

including public participation, basin experts, and stakeholders, and providing an effective multi-

sector partnership approach for managing drought risk (Carmona et al., 2017). State Indexes are

the result of a long trial-and-error process mostly begun in the eighties, through which the variable

choice and combination have been progressively adjusted to best suit the basin drought management

requirements. In the case of the Jucar basin, for instance, the final form of the associated index was125

established in 2007 with a report by the Confederación Hidrográfica del Júcar (CHJ, 2007a), after

25 years of refinements. This long empirical process produced an index formulation tailored for

the Jucar system, which cannot be generalized to different contexts. Similarly, other main Spanish

river basins (e.g., Duero, Ebro, and Guadalquivir river basins) underwent an analogous process and

formulated their own State Indexes (CHD, 2007; CHE, 2007; CHG, 2007).130
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Since their establishment in 2007, State Indexes have represented the most consistent and exten-

sively applied paradigm of index-based drought management. Thus, Ies constitute the state of the

art for basin-customized operational drought indexes. A reasonable research question is whether

the empirical process leading to their design can be formalized, automated, and easily exported to

different water systems.135

In this study, we contribute the FRamework for Index-based Drought Analysis (FRIDA), which

allows the automatic construction of basin-customized drought indexes for highly regulated water

systems. In contrast to traditional empirical approaches, FRIDA uses an advanced feature extraction

method that completely automatizes and generalizes the variable selection process for the construc-

tion of the index. The selected variables are then combined into a new index that can effectively140

represent the state of water resources in the basin as well as support the characterization of drought

conditions. The feature extraction step is key in FRIDA as it guides the construction of a skillful

(highly accurate) and parsimonious (with low input dimensionality) drought index by performing

the selection of the best input subset to build a model of a predefined target output representing the

drought conditions in the basin.145

Specifically, FRIDA is structured in three steps. First, we define a target variable, an appropriately

chosen water deficit acting as a proxy for the drought conditions of the considered basin (e.g., water

supply deficit, soil moisture deficit), and a dataset of hydro-meteorological variables and traditional

drought indicators. Second, we identify Pareto optimal subsets of variables balancing predictive ac-

curacy and parsimony. In this study, we employed the Wrapper for Quasi-Equally Informative Sub-150

set Selection (W-QEISS) to perform this operation (Karakaya et al., 2015; Taormina et al., 2016).

Traditional variable selection algorithms are conceived to select only one optimal subset of predic-

tors, while W-QEISS identifies one subset with the highest predictive accuracy, and multiple subsets

with similar information content, thus providing more informative results. Moreover, W-QEISS in-

cludes two metrics of relevance and redundancy in the search process in addition to the commonly155

used objectives of accuracy and cardinality, fostering the diversification among the provided so-

lutions (Sharma and Mehrotra, 2014). Third, we choose the preferred predictor subset among the

non-dominated solutions based on accuracy, cardinality (i.e., dimensionality), and, possibly, addi-

tional factors, including cost and availability of the variable observations. The subset is finally used

to calibrate a chosen model class with respect to the target variable, and the drought index is thus160

completed.

The potential of the proposed framework is demonstrated on the highly regulated Mediterranean

basin of the Jucar river, in eastern Spain, where the State Index-based drought management system

provides an ideal benchmark for testing FRIDA index (Andreu et al., 2009; Haro et al., 2014b;

Pedro-Monzonís et al., 2014; Macian-Sorribes and Pulido-Velazquez, 2017; Haro-Monteagudo et al.,165

2017; Carmona et al., 2017). The Jucar State Index provides guidelines for FRIDA application.

First, it facilitates the target variable choice and candidate variable retrieval, and, second, it allows
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the validation of FRIDA predictors selection, and index design steps. FRIDA and State indexes

are compared in terms of accuracy in reproducing the drought conditions of the basin, number of

variables required for their computation, and general reliability and portability of the methods. The170

outcome of this analysis consists in demonstrating the validity of a completely automated procedure

(i.e., no information on system topology or basin characteristics is required) in recognizing the main

drought drivers, and predicting a deficit with accuracy and limited computational effort.

2 Methods and tools

2.1 Framework for Index-based Drought Analysis175

Definition	of	target	variable
Collection	of	hydro-meteorological	
variables	and	drought	indicators	at	
multiple	temporal	aggregation

1)	Identification	
of	basin	
characteristics

2)	Feature	
extraction

Input	Variable	Selection	

Definition	of	several	Pareto	
efficient	predictors’	subset

3)	Drought	Index	
modeling

Choice	of	the	preferred	
subset

Calibration	of	the	selected	
model	class	

Drought	Index

Highly	regulated	basin	

Figure 2. FRamework for Index-based Drought Analysis (FRIDA): 1. Identification of basin characteristics, 2.

Feature Extraction, 3. Drought Index modeling.

The FRamework for Index-based Drought Analysis (FRIDA) designs drought indexes in three

steps as reported in Figure 2.

The Identification of basin characteristic is a preliminary empirical process, which consists in

the selection of a target variable and the collection of candidate predictors. The target variable is

an appropriately chosen water deficit, representative of the actual drought conditions in the basin180

(e.g., water supply deficit, soil moisture deficit). The dataset of predictors contains the candidate
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features to reproduce the target variable and consists of observed hydro-meteorological variables

and composite drought indicators over different spatio-temporal scales.

Target variable and candidate predictors constitute the input to the Feature Extraction step, the

second building block of the framework. This block employs an Input Variable Selection (IVS) al-185

gorithm that explores the space of candidate predictors to select Pareto efficient subsets of predictors

with respect to multiple assessment metrics. Most commonly, these metrics quantify the subset ac-

curacy in reproducing the target and the parsimony (i.e. the cardinality of the subset), crucial charac-

teristics for an operational index expected to balance precision and ease-of-use. In some cases, also

relevance and redundancy can be considered in order to explore the input space more effectively.190

In particular, the metric of relevance favors highly informative subsets (i.e., constituted by predic-

tors that are highly correlated with the target), while the redundancy metric ensures low intra-subset

similarity. The objectives of relevance and redundancy are essential to stimulate the search process

towards the identification of a diversified and comprehensive set of solutions, which would not be

achieved optimizing cardinality and accuracy only.195

In this work, we use an advanced IVS algorithm called Wrapper for Quasi-Equally Informative

Subset Selection (W-QEISS). W-QEISS provides as output a number of efficient subsets that are

collected in a Selection Matrix.

In the Drought Index modeling block, the preferred efficient solution is selected by the user, bal-

ancing the trade-off between competing objectives, and, possibly, considering additional operative200

needs neglected in the IVS search (e.g., cost and reliability of the variable monitoring). Lastly, an

appropriate regressor is fit to the sample data set of Pareto efficient inputs and the target variable.

The choice of model class is determined by the application of interest. In general, highly non-linear

learning machines like Artificial Neural Networks (ANNs) provide a good balance between accuracy

and flexibility. On the other hand, such black-box models lack of intuitive interpretability and might205

result unsuitable for applications that affect several stakeholders and require a wide acceptance of

the tool to be employed (Estrela and Vargas, 2012). In these cases, a simpler model (e.g., a linear

model) might be preferred, as it grants an immediate understanding of the physical meaning, though

at the price of poorer approximation skills.

2.2 Feature Extraction via Wrapper for Quasi-Equally Informative Subset Selection210

Feature extraction techniques, employed in the second block of FRIDA, are an ensemble of data

pre-processing algorithms that transform the original input data set into a more compact, while still

highly informative, subset (Cunningham, 2008). Among the feature extraction algorithms, Input

Variable Selection (IVS) techniques specifically address the problem of the reduction of the input

space by identifying the relevant predictors to be used to calibrate a model of the target variable215

(Bowden et al., 2005). There are two main classes of IVS techniques: Filters and Wrappers. Filters

evaluate the relevance of each variable separately, computing an error metric on the features (Yang
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and Pedersen, 1997; Sharma, 2000; Galelli and Castelletti, 2013). Wrappers, on the other hand, as-

sess the relevance of a variables ensemble, evaluating the prediction performance of a given learning

machine calibrated on the input set, and thus considering the interactions and dependencies between220

variables (Guyon, 2003). In terms of performance, Wrappers are often more accurate than Filters,

although computationally more intensive (Galelli et al., 2014).

In this study, we used the Wrapper for Quasi-Equally Informative Subset Selection (Karakaya

et al., 2015; Taormina et al., 2016). The W-QEISS algorithm receives as input the set X of candi-

date predictors, i.e., X= {xi, . . . ,xnX
} and the trajectory y of the target variable. The algorithm is225

composed of three main steps (Karakaya et al., 2015), as synthesized in Figure 3:

Generate	population	of	input	
subset

For	each	subset,	run	a	non-linear	
regression	using	ELM

1)	Generate	Pareto	
efficient	solutions

2)	Select	high	
accuracy	subsets

Discard	solutions	whose	accuracy	
is	lower	than	a	predefined	

percentage	with	respect	to	the	
highest	accuracy	solution

3)	Eliminate	
inferior	subsets

Eliminate	𝑆" if	it	is	a	superset	of	𝑆#
and	does	not	score	higher	

accuracy

Quasi-equally	
accurate	subsets

Evaluate	accuracy,	cardinality,	
relevance,	redundancy

Max	iteration	
reached?

no

Target	variable	 Candidate	predictors

yes

Figure 3. W-QEISS flowchart. Step 1: generate Pareto efficient solutions with respect to the four objectives of

relevance, redundancy, cardinality, and accuracy; Step 2: select high accuracy subsets; Step 3: eliminate inferior

subsets.
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– Step 1: a set A⊆X of Pareto-efficient solutions is built according to the four-objective func-

tions of relevance f1(·), redundancy f2(·), cardinality f3(·), and accuracy f4(·). A global

multi-objective optimization algorithm is employed to explore the space of the possible sub-

sets. In this study, we use the self-adaptive Borg MOEA (Hadka and Reed, 2013), which has230

shown to outperform other benchmark evolutionary algorithms in terms of number of solu-

tions returned, ability to handle many-objective problems, ease-of-use, and overall consistency

across a suite of challenging multi-objective problems (Reed et al., 2013). A learning machine

is used to compute the predictive accuracy f4 of each set. In this study, we employ the Ex-

treme Learning Machines (ELMs) (Huang et al., 2006), belonging to the family of Artificial235

Neural Networks, which were shown to provide a good performance in terms of accuracy and

flexibility in a variety of problems while resulting up to thousand times faster than bench-

mark feedforward ANNs (Huang et al., 2012). ELMs, in fact, bypass the time consuming

gradient-based search of optimal neurons parameters required by traditional ANN techniques,

by defining randomly parameterized hidden nodes, and subsequently optimizing their out-240

put weights. Such optimization is solved through a one-step matrix product and essentially

amounts to learning a linear model.

However, we do not expect the choice of the learning machine or MOEA to be crucial for the

attainment of the result. A different benchmark MOEA (e.g., NGSAII, MOEAD, eps-MOEA)

is likely to achieve a comparable result, although requiring a possibly significant effort in the245

manual calibration of the evolution parameters, which is automated in Borg MOEA. Similarly,

other ANN techniques could in principle be substituted to ELM, although incrementing the

computational time to possibly unbearable levels, given the multiple calibration and validation

processes reiterated in WQEISS.

– Step 2: Among the Pareto-efficient subsets, the maximum value of accuracy f∗4 is identi-250

fied, associated with subset Sf∗
4
⊆A. Then, solutions with significantly lower accuracy are

discarded and from ensemble A, obtaining Aδ . The ensemble Aδ contains quasi-equally in-

formative subsets with respect to Sf∗
4
⊆Aδ ⊆A, i.e., subsets that have (almost) the same

predictive accuracy with respect to a given model class. When the dataset of candidate vari-

ables presents significant correlation among features, numerous subsets characterized by a255

wide range of cardinalities are generally available to achieve a relative small range of accura-

cies. This is often the case in environmental problems, where spatial and temporal correlation

of hydro-meteorological variables and associated indicators is significant. Therefore, at this

stage, the accuracy metric is used to retain accurate solutions only, provided that they feature

different cardinalities and predictors combinations.260

Formally, on the basis of an predefined small value of δ, Si is δ-quasi equally informative to
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subset Sf∗
4

if

f4(Si)≥ (1− δ)f∗4 for 0≤ δ ≤ 1 (1)

– Step 3: The final ensemble A∗δ is computed after the elimination of the inferior subsets. The

subset Sj is considered inferior to Si, if it is a superset of Si, and does not score higher265

accuracy. Formally

Si ⊂ Sj and f4(Si)≥ f4(Sj).
In this step, all subsets contained in Aδ are compared in order to find possible inferior subsets

and eliminate them. By doing this, the final ensemble of δ-quasi equally informative subsets

A∗δ is provided as output of the procedure and reported in a Selection Matrix.270

The W-QEISS algorithm differs from a traditional IVS approach as it introduces the consideration

that, for a given cardinality, multiple subsets of variables can have almost indistinguishable accuracy

performance. The outcome of W-QEISS variable selection is thus not a single most accurate subset

for each cardinality, but a pool of δ-quasi equally accurate solutions among which the preference can

be determined by other metrics not directly considered in the optimization (e.g., cost and reliability275

of the variable observation).

Another innovative feature of the W-QEISS approach relies on the formulation of a four objective

optimization problem. Beside the two traditional objectives of accuracy ad complexity commonly

employed in Wrappers, W-QEISS includes other two metrics of relevance and redundancy (Sharma

and Mehrotra, 2014). The maximization of accuracy ensures a precise reproduction of the data, while280

the minimization of cardinality aims at simplifying the final models. These characteristics are key

for an operational index, expected to balance precision and ease-of-use. Relevance and redundancy

optimization is instead an asset for an effective subset search process, as it fosters the diversification

of the solutions explored within the MOEA algorithm, guaranteeing low intra-subset similarity, and

high information content of the solutions. A two-objective search based on cardinality and accuracy285

only would, in fact, identify optimal solutions, but at the same time disregard a number of quasi-

equally informative subsets with an almost identical operational behavior. The identification of such

alternative solutions, nevertheless, grants flexibility and a multiplicity of options for the expert-based

choice of the preferred subset, where certain combinations of predictors can be favored according

to case-specific operative purposes, e.g., more robust or less costly data gathering process, enhanced290

acceptability or immediacy of the index.

Three of the four objectives formulations make use of the Symmetric Uncertainty (SU), a measure

of the dependence and similarity between two variables (Witten and Frank, 2005). SU assumes

values between 0 (independent variables) and 1 (complete dependence) and is computed for two

features A and B as:295

SU(A,B) =

[
2 · (H(A)+H(B)−H(A,B))

H(A)+H(B)

]
(2)
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where H(·) is the entropy of variable (·) (see for instance Scott (2012) for the definition).

WQEISS bases its objectives formulation on information theory, as discussed in Karakaya et al.

(2015). Information theoretic criteria (e.g., SU, Mutual information, and Partial Mutual Informa-

tion) do not assume any functional relationship between the variables and thus result well suited to300

quantify the dependence between two variables in any modeling context (MacKay, 2003). Other ob-

jectives formulations could in principle be explored, for instance substituting the use of Symmetric

Uncertainty with more traditional correlation coefficients, although with the risk of losing generality

by assuming linear dependence between variables.

The four assessment metrics are formulated as follows:305

1. Relevance f1(S): to be maximized, is formulated as:

f1(S) =
∑

xi∈S⊆X

SU(xi,y) (3)

where the term SU(xi,y) represents the symmetric uncertainty between the feature xi and the

output y. The relevance is therefore a measure of the explanatory power of the features with

respect to the output.310

2. Redundancy f2(S): to be minimized, is formulated as:

f2(S) =
∑

xi∈S⊆X

SU(xi,xj) (4)

where SU(xi,xj) represents the SU between two features xi and xj . High redundancy thus

means high similarity between the features. By minimizing the redundancy the algorithm en-

sures that the search will be oriented towards the selection of subsets with mutually dissimilar315

features.

3. Cardinality f3(S): to be minimized, is formulated as:

f3(S) = |S| (5)

where |S| is the number of predictors within the subset. Its minimization guarantees that the

resulting model will not be unnecessarily complex.320

4. Accuracy f4(S): to be maximized, is formulated as:

f4(S) = SU(y, ŷ(S)) (6)

where SU(y, ŷ(S)) is the correlation, measured in SU, between the observed output y and the

prediction ŷ(S) obtained from the model.
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3 Case Study: the Jucar river basin325

The Jucar river basin occupies an area of 42,989 km2 located in the eastern part of Spain (see Figure

4). The territory is mainly mountainous in the interior part, while the center-eastern section shows

a vast plain system ending into the Mediterranean sea. The territory is characterized by various

climatic conditions of which sub-humid and semi-arid are largely dominating. The main rivers of

the area are Jucar, Mijares, and Turia, covering all together more than 80% of the total mean areal330

flow. The subterranean runoff is very relevant, providing 74% of the contribution to the river network

(CHJ, 2007a).

Since the mean value of the total annual runoff (1,747 Mm3 from 1940 to 2009) almost equals

the annual water demand (1,640 Mm3), water scarcity and droughts have long been perceived as

primary issues for agricultural, social, economic, and environmental reasons. On the other hand,335

meteorological droughts in the Jucar basin can be endured for several years without suffering any

consequences, due to the highly regulated water system set in the area. There are three main large

surface reservoirs in the region: Alarcón, Contreras, and Tous (maximum capacity: 1,118 Mm3, 444

Mm3, and 378.6 Mm3, respectively). In addition, most aquifers in the basin are intensively exploited

to support agricultural supply and are currently experiencing a significant depletion due to over-340

drafting, which, in turn, affects the rivers flow.

In such a highly regulated basin with long overyear storage, water scarcity is not a necessary con-

dition derived from a meteorological drought (CHJ, 2007a; Carmona et al., 2017). Thus, traditional

drought indexes fail in detecting the timing and severity of the incidence of a drought, and an ad-

hoc monitoring system was conceived to properly capture the hydrological status of the catchment.345

The monitoring system is based on the formulation of a basin specific index, namely the State Index

(Ie, Índice de Estado). The State Index was constructed empirically by the Jucar river basin authority

(CHJ), with the intent of highly correlate to water scarcity conditions in the basin, in order to support

drought management and the implementation of the actions considered in the Drought Management

Plan (CHJ, 2007a). For that purposes, the index is developed after identifying the water sources for350

every main demand in the basin and the selection of representative variables to characterize the status

of those sources.

The total State Index Ie is computed as a weighted mean of 12 partial Ie. Partial Ies are obtained by

normalizing hydro-meteorological indicators (Vi) belonging to the following categories (see Figure

4):355

1. The mean monthly storage of one, or more reservoirs combined [Mm3] (2 storage indicators);

2. The mean streamflow contribution of the last 3 months [Mm3] (4 flow indicators);

3. The mean monthly piezometric level [m] (3 piezometer indicators);
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4. The areal precipitation of the last 12 months [mm], computed averaging the values observed

by multiple pluviometers (3 precipitation indicators).360

Figure 4. Map of the Jucar Basin river network. The colored markers represent the variables considered for

the State Index calculation. S: reservoir storage, F: streamflow, Pz: piezometer, Pl: pluviometer. Streamflow

and piezometers markers are located in correspondence to the relative measurement station, while storage and

pluviometers markers are put in the center of the polygon formed by connecting the multiple measurement

points used for their computation.

Each indicator (Vi) is consequently normalized to obtain 12 partial Ie values:

Ie =


1

2

[
1+

V i−V m
Vmax−V m

]
if V i≥ V m

V i−V min
2(V m−V min)

if V i < Vm

(7a)

(7b)

where Vm, Vmax and Vmin are the mean, maximum, and minimum values of each indicator time

series. The storage and precipitation monthly time series are normalized with respect to maximum

and minimum values of the considered month, while piezometers and river flows are normalized with365

respect to the complete historical time series. The partial Ies result as normalized indexes between

0 and 1, where Ie > 0.5 indicate higher than average value of Vi. Once the partial Ie have been
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computed, they are aggregated as a weighted sum to obtain the total Ie. The weights are established

according to the demand class associated to the indicator, ranging from class A (demand > 100

hm3/year) to D (demand < 10 hm3/year).370

The Jucar river basin represents a Mediterranean drought prone highly regulated basin, featuring

one of the most innovative and effective drought management systems, relying on the formulation

of an empirically constructed basin specific drought index (Andreu et al., 2009; Haro et al., 2014b;

Haro-Monteagudo et al., 2017; Carmona et al., 2017). As a consequence, it represents the state of

the art for basin-customized operational drought indexes employed for drought restraining purposes,375

and a remarkable benchmark to test and validate the proposed FRIDA methodology.

4 Numerical results

For the presentation of the numerical results we follow the workflow proposed in Figure 2 . The

length of the dataset available for the experiments is N = 174 data points, corresponding to monthly

values in the period 1986-2000, and nx = 28 number of candidate predictors were used (Zaniolo380

et al., 2018). The parameterization of W-QEISS was adjusted using available guidelines given by

Huang et al. (2006), Karakaya et al. (2015), and a trial-and-error process. For Borg MOEA, we set

the number of function evaluation (NFE) equal to 2 millions, while the number of hidden neurons in

the ELM, presenting a sigmoidal activation function, was set to 30. A k-fold cross-validation process

(with k = 10) was repeated 5 times and the average resulting value was used to estimate the predictive385

accuracy of each model. The W-QEISS experiment with such setting was run 20 times to filter out

the random component of the process, and the results presented below are obtained by merging the

Pareto fronts obtained by each repetitions into a final Pareto front of non-dominated solutions.

4.1 Identification of basin characteristics

In the first report concerning the Ie development (CHJ, 2007b), the index was validated for the time390

span from January 1986 to June 2000 against the supply deficit recorded in the basin with respect

to agricultural and urban water demand, and the procedure for the State Index computation was

approved. To ensure comparability between the Ie and the FRIDA constructed index, we decided

to employ the same supply deficit as target variable for the application of FRIDA approach to the

Jucar case study. The Jucar supply deficit employed in this work was simulated via AQUATOOL395

model (Andreu et al., 1996). The model can run in simulation mode with a monthly time step, and

it is conceived in the form of a flow network with oriented connections reproducing water losses,

hydraulic relations between nodes, reservoirs and aquifers, and flow limitations based on elevation.

Within AQUATOOL, complex processes such as evaporation and infiltration are effectively repro-

duced. The modeled supply deficit, employed as target variable, represents the monthly nominal400

shortage of water conveyed to the irrigation districts, and is only quantifiable a posteriori, when the
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water shortage has already jeopardized the fields. On the other hand, a drought index can be con-

stantly monitored, and thus represents a valuable management tool for containing drought impacts

and identifying effective drought management strategies.

The database of candidate input variables was assembled retrieving the available observed vari-405

ables in the basin and computing traditional drought indicators at multiple time aggregations. The

resulting candidate predictors, listed in Table 1, are the following:

– 2 temporal features: day and month of the year;

– 12 observed variables, current inputs to the Ie, reported in Figure 4: average monthly storage

and groundwater levels, average three months river runoff, and cumulated areal precipitation410

over 12 months;

– 8 additional observed variables in the basin: outflows from, and inflows to, the main reservoirs,

and mean monthly areal temperatures;

– 6 traditional drought indicators: Standardized Precipitation Index (SPI), and Standardized Pre-

cipitation and Evapotranspiration Index (SPEI). SPI and SPEI indicators are computed on415

mean monthly data over the entire basin for 3, 6, and 12 months time aggregations. SPI re-

quires as input the precipitation, and SPEI requires precipitation and temperature, as it uses

the difference between precipitation and potential ET as reference variable.

Their values express the water availability conditions of a basin in terms of units of standard420

deviation from the mean: negative (positive) values indicate drier (wetter) conditions than

average (see McKee et al. (1993); Vicente-Serrano et al. (2010) for details on definition and

calculation of these indicators).

4.2 Feature extraction via W-QEISS

The result of the W-QEISS algorithm is not a single most-accurate set of variables for a given car-425

dinality, but several quasi-equally informative subsets, whose accuracy is lower than the best one by

a small percentage δ · 100%. Figure 5 represents a Selection Matrix, which reports the composition

of each alternative subset of predictors within 15% of accuracy with respect to the highest one. The

value δ = 0.15 was chosen since it provides a reasonable trade-off between the number of solutions

and their accuracy. The accuracy is measured in symmetric uncertainty between the target variable430

and the ELM calibrated using the reported subset.

The alternative subsets are sorted in ascending order of cardinality (from top to bottom), and

accuracy (within each cardinality level). A rectangular marker is placed at the intersection between

the row identifying a given subset and the columns corresponding to the selected predictors. The

marker color varies with the cardinality of the subset, with lighter shades of gray indicating smaller435
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Table 1. Set of candidate input features for the feature extraction step via W-QEISS.

Feature type Feature code Description

Time information
Date Date of the measurement

Moy Month of the year

State Index Inputs

S1 Cumulated storage of Alarcón, Contreras and Tous

S2 Storage of Forata

F1 Flow of pre-lacual Jucar river

F2 Flow of pre-lacual Cabriel river

F3 Flow of sub-lacual Jucar river

F4 Flow of Jardín

Pl1 Pluviometer measurement in the west

Pl2 Pluviometer measurement in the east

Pl3 Pluviometer measurement in the south-east

Pz1 Piezometric level in the south-east

Pz2 Piezometric level in the center

Pz3 Piezometric level in the west

Observed variables

In A Inflow to Alarcón reservoir

In C Inflow to Contreras reservoir

In T Inflow to Tous reservoir

Out A Outflow from Alarcón reservoir

Out C Outflow from Contreras reservoir

T1 Temperature in the west

T2 Temperature in the center

T3 Temperature in the east

Indicators

SPI3 SPI at 3 months time aggregation

SPEI3 SPEI at 3 months time aggregation

SPI6 SPI at 6 months time aggregation

SPEI6 SPEI at 6 months time aggregation

SPI12 SPI at 12 months time aggregation

SPEI12 SPEI at 12 months time aggregation
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subsets. In this case the cardinality spans from 3 to 9 features. The highest accuracy is reported

in red and recorded for subset number 14. The 5 corresponding selected predictors, marked on the

horizontal axis with a blue background, are the following:

– Moy: month of the year;

– S1: total storage aggregated for the reservoirs Alarcón, Contreras, and Tous;440

– F3: river flow measured on the sublacual Jucar river, emissary of Alarcón reservoir, after the

confluence with smaller rivers Jardín and Lezuza coming from south-west;

– Pz2: groundwater level measured at the Piezometer situated in central area of the basin, in

correspondence of a rainfed agricultural area;

– SPEI6: SPEI at 6 month time aggregation computed with precipitation and temperature data445

averaged for the whole basin.

Figure 5. Selection Matrix: the left vertical axis represents the subset number and the right vertical axis the

corresponding accuracy measured in SU. A colored marker is put in correspondence of the variables, listed on

the horizontal axis, selected by each subset. The shade of gray is an indication of the cardinality of the subset,

lighter shades for lower cardinality. The highest accuracy is reported in red and the corresponding variables,

constituting the most accurate subset, have a blue background.
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From the analysis of the Selection Matrix, several insights can be gained from a modeling and

from a decision-making viewpoints. To begin with, insights on predictors’ relevance can be obtained

from the detection of the vertical bars traced by joining markers across multiple rows. Uninterrupted

bars indicate strongly relevant predictors that cannot be substituted by other input combinations450

without incurring into a substantial drop of predictive accuracy. This is the case of the cumulated

storage of the three main reservoirs Alarcón, Contreras, and Tous (S1). This information is essential

to the final model, as the exclusion of such predictors highly affects the model performance. In-

creasing gaps in the vertical bars are found when considering predictors with progressively weaker

relevance, while irrelevant inputs are recognizable by isolated markers or their total absence. The455

variables Moy, F3, and Pz2 are considered relevant variables, as they are selected quite frequently,

although high accuracy solutions exist that do not make use of all of them. Finally, the variable

SPEI6, while included in the most accurate subset, is overall present in 4 subsets only, whereas in

other solutions with comparable accuracy it is replaced by different predictors, mainly carrying a

similar precipitation-based information, such as pluviometer measures, or SPI, SPEI indicators at460

different time aggregations.

The presence of alternative subsets helps exploring the trade-off between multiple measures of

predictive accuracy with respect to other metrics not directly considered in the optimization routine,

an the choice of the preferred subset is determined by the index application. Given the cardinality,

one can decide to sacrifice a small amount of predictive accuracy for an easier-to-yield (or more465

reliable) combination of predictors. For example, with a loss smaller than 1% in accuracy, subset

13 selects SPI6 instead of SPEI6. This possible replacement is interesting from an operational point

of view as SPI is easier to compute than SPEI. In fact, SPI requires only the precipitation for its

computation with respect to precipitation and temperature or evapotranspiration needed for the com-

putation of SPEI. In addition, even after the preferred subset is chosen and the system is operating,470

knowing that one specific predictor can be replaced by one (or multiple) predictor(s) can aid the

management in case of monitoring networks maintenance or instrument failure. When the main pre-

dictor is not observable, one can temporarily resort to alternative predictors incurring in a minimum

loss of accuracy.

An additional consideration is related to the possibility to effectively address the uncertainty de-475

riving from the choice of model inputs (Taormina et al., 2016). When multiple alternative subsets

are provided, it is possible to explore the uncertainty related to the selection of predictors yield-

ing similar accuracy. For instance, in this case study, we can observe that almost all subsets carry

a groundwater and a rain information, but while the piezometric level is consistently provided by

Pz2, the source of the precipitation information highly varies among the precipitation-based features480

(pluviometers or other SPI, SPEI indicators).

Finally, through the selection matrix analysis we can contrast the features selected by W-QEISS

and the variables that constitute the State Index input set. Apart from sporadic single selections, all
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the observed variables not included in the State Index are consistently discarded by the W-QEISS as

well, suggesting that the algorithm comes to the same conclusion as the Spanish experts considering485

inflows, outflows, and temperatures as non-relevant for the description of the state of water resources

in the Jucar river basin. Note that this result is a consequence of the use of the nominal agricultural

demand to compute the target deficit. A temperature information is likely to become relevant if a real,

weather-influenced, agricultural demand is employed instead. The feature month of the year is not

explicitly an input to the State Index, nevertheless, an analogous information is implicitly included490

in the Ie through the normalization of the indicators described in equation 7. On the other hand,

several features are considered in the Ie, but generally neglected by W-QEISS selection. Among

them, two out of three piezometers, the river flows upstream from the reservoirs, one pluviometer

and the storage of Forata. These inputs probably result redundant due to their spatial correlation.

Spatial variability is considered in the computation of Ie by including several spatially distributed495

observations of the main information categories: 2 measures of reservoir storages, 4 of river flows,

3 groundwater levels, and 3 precipitation measures. Conversely, the selection matrix supports the

gain of a deeper understanding of the spatial interdependence of variables by identifying the best

location for measuring the variables, spearing the need for several distributed measures. The highest

accuracy-subset, in fact, selects only one variable out of each category: 1 storage, 1 river flows mea-500

sure, 1 piezometer, and a spatially distributed precipitation information, i.e., SPEI6 which replaces

three areal pluviometers.

4.3 Drought Index Modeling

Among the pool of solutions, the choice of the preferred subsets is driven by the index application.

For instance, an on-line use of the index that requires its frequent computation may benefit from an505

agile, easy-to-observe subset. With respect to the highest accuracy solution (subset 14), for instance,

subset number 7 neglects predictor F3 thus presenting lower cardinality with an accuracy loss of

only 3%. Similarly, the already mentioned subset 13 contains an easier-to-compute indicator (SPI

instead of SPEI) with a negligible performance degradation. Nevertheless, for our methodological

purpose we will employ the most accurate subset 14, as we are interested in discussing the potential510

of the method.

Concerning the model class choice, a highly flexible non-linear model is likely to yield the highest

accuracy in reproducing the target. However, strong non-linearity and black-box behavior typically

result in poor interpretability, a feature that is detrimental to the use of the index for management

purposes as in the Jucar system, where restrictive measures in water use are activated when certain515

threshold values of the State Index are reached. As a consequence, the index outcome exerts a direct

influence on many water-related activities requiring an easily interpretable and widely acceptable

tool.
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The calibration of a linear model on the chosen 5 dimensional subset seems to be a good com-

promise between accuracy and transparency. As mentioned above, the feature Moy represents the520

succession of the months in the year, and is an expression of the seasonality of hydro-meteorological

processes. Moy is constructed as the repetition of an array of numbers from 1 to 12 for the length of

the considered time horizon, and thus presents a discontinuous shape: a slow and steady increase fol-

lowed by a steep decrease in correspondence to the onset of a new year. While the non-linear models

employed in the feature selection can effortlessly handle such an intermittent vector, linear models525

struggle with similar shapes. We therefore decided to account for the seasonality in the linear model

indirectly, i.e., excluding Moy from the predictors set, but, consistently, considering seasonality by

depurating the predictors of their annual cyclostationary mean.

The calibrated linear model representing the supply deficit is reported in Figure 6 and provides

a very satisfying result, with an accuracy measured with the coefficient of determination in cross-530

validation of R2
FRIDA−linear = 0.904, significantly higher than the R2

Ie = 0.739 scored by the State

Index, and a set of weights of immediate physical interpretability reported in Table 2. By inspect-

ing the weights, one can notice that those assigned to the predictors Flow and SPEI6 are very low,

although not null, and the index trajectory is mainly determined by Storage and Piezometer values.

S1 and Pz2, in fact, describe the trajectories of the main water reservoirs of the region, lakes and535

groundwater, whose fluctuations are the result of natural variability as well as human regulation,

mainly for irrigation purposes.

Table 2. Weights of the linear model calibrated on the optimal subset of predictors. The predictor Moy (month

of the year), providing a seasonal information, is not directly included in the weights optimization but it is

accounted for by depurating the variables of their annual cyclo-stationary mean.

Predictor Weight

Moy /

Storage (S1) 0.721

Flow (F3) 10−9

Piezometer (P2) 0.278

SPEI6 10−9

As a further analysis, we reiterated the model calibration and crossvalidation steps with a more

complex, highly flexible model class, the ELM architecture, which scored an accuracy of R2
FRIDA−ELM

= 0.907. On the one hand, the arguably insignificant 0.005% improvement in accuracy of ELM with540

respect to the linear class, probably does not justify the loss of immediacy and transparency induced

by the transition to a black-box model. On the other hand, this experiment proves the robustness of

the linear model in constituting the model class of choice for this drought index. In table 3 we re-

port a more detailed comparison between State index, FRIDA-linear and FRIDA-ELM indexes with
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several accuracy metrics. The analysis of other metrics seem to reinforce the conclusions drawn by545

considering R2 only: both FRIDA indexes (linear and ELM) outperform the State Index quite signif-

icantly, while the difference among them is negligible, although the non-linear index is always the

top performing.

Table 3. Accuracy of the State Index, FRIDA linear, and FRIDA ELM in reproducing the supply deficit,

quantified in terms of coefficient of determination R2, the Pearson correlation coefficient, the Root Mean Square

Error (RMSE), and the fourth grade Root Mean Square Error (R4MS4E).

Metric State Index Frida Linear Frida ELM

R2 0.7396 0.9036 0.9074

Pearson 0.8601 0.9506 0.9533

RMSE 0.2066 0.1135 0.1014

R4MS4E 0.2549 0.1475 0.1299

The reported metrics do not distinguish between errors above and below the target deficit. Indeed,

we consider these two error types of comparable importance. On the one hand, the underestimation550

of a deficit value may find the water users unprepared to face a serious drought. On the other hand,

the overestimation of drought conditions may ignite repeated false alarms that will compromise the

index trustworthiness and its efficacy in triggering an alert state. Therefore, rather than penalizing

an error above or below the target trajectory, we find more compelling to focus on errors in the most

crucial drought situations i.e., at the maximum level of deficit recorded. One way of doing so is555

considering R4MS4E, as in Table 3, which penalizes errors in the deficit peaks. Another specific

assessment tool for analyzing the indexes performance during critical droughts is the confusion ma-

trix, reporting the classification performance of critical droughts, here arbitrarily defined as months

reporting deficit values above the 85th percentile (Tables 4, 5, 6). The rows of the confusion matrix

represent the instances in a predicted class while the columns represent the instances in an actual560

class. Consequently, the main diagonal reports the number of correctly classified points. Cells out-

side the main diagonal specify the errors: the value in the bottom-left cell (first column, second row)

indicates a situation in which the index does not recognize an ongoing drought, while the value in the

top-right cell (first row and second column) indicates the number of false alarms. FRIDA-ELM con-

fusion matrix seems to significantly exceed the competitors’ performances by erroring only 0,57%565

of the times, as opposed to the 10,91% of Ie, and the 6,3% of FRIDA-linear.

Table 4. State Index confusion matrix.

SI-deficit critical drought normality

critical drought 131 18

normality 1 24
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Table 5. FRIDA-Linear confusion matrix.

Frida Linear-deficit critical drought normality

critical drought 138 11

normality 0 25

Table 6. FRIDA-ELM confusion matrix.

Frida Linear-deficit critical drought normality

critical drought 147 2

normality 1 24

Figure 6. Comparison between the FRIDA linear index (blue) and the state index (green) in reproducing the

monthly aggregated supply deficit (red). FRIDA index presents an higher similarity with the deficit and only

requires 5 inputs instead of the 12 required by the state index.

5 Conclusions

The purpose of this study is to contribute to the identification of drought management strategies able

to improve the efficiency and resilience of drought prone regulated water systems. This problem is

considered urgent as the analysis of climate trends shows that drought frequency and severity are570

intensifying all over in Europe, particularly in the Mediterranean area.

This work explores the potential of drought indexes as a management tool for the purpose of con-

taining drought impacts. Since traditional indicators are often inadequate to characterize water avail-

ability conditions in highly regulated contexts, a novel framework for the construction of customized
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basin-specific drought indexes is proposed. This framework relies on the employment of a feature ex-575

traction technique, the Wrapper for Quasi Equally Informative Subset Selection (W-QEISS). Given

a set of information collected in the basin, W-QEISS features a deep learning machine that auto-

matically selects the most suitable input set for the construction of a model reproducing the target

variable, i.e., a ground truth representative for the state of water resources in the basin. Specifically,

W-QEISS performs the search process in a four-dimensional metric space of predictive accuracy,580

cardinality, relevance, and redundancy. On top of that, W-QEISS algorithm is designed to identify

one subset with the highest predictive accuracy and multiple subsets with similar information con-

tent (i.e., quasi equally informative subsets). This provides insights on the relative relevance of the

variables and a deeper understanding of the underlying physical processes taking place in the basin.

The choice of the preferred input set and model class balance accuracy and practicality of the index.585

The efficacy of FRIDA methodology is strongly dependent on data availability, in terms of predic-

tors diversity and numerosity, and length of the time series. FRIDA is best applicable in contexts

where an extensive monitoring system has been in place for long enough to allow a consistent and

informative dataset for the index calibration. However, while some hydro-meteorological variables

are easy to monitor and most often available (e.g., precipitation, temperature), the accessibility of590

soil moisture, groundwater table level, snowpack extent, air humidity etc., may represent a problem.

When a key drought-driving variable for the context at hand is absent from the input set, the efficacy

of FRIDA is undermined.

The application of the FRIDA in the Jucar river basin case study has successfully demonstrated

the suitability of the framework to design a basin specific drought index. Firstly, the automatic vari-595

able selection yields an immediate and informative result, which presents strong similarities with

the empirical expert-based variable set employed by the CHJ, while involving a significantly lower

number of features (5 variables instead of the 12 required by the State Index). Secondly, the newly

computed FRIDA linear index outperforms the official Spanish State Index in terms of accuracy in

reproducing the target variable, while maintaining immediate interpretability.600

However, one of the reasons why the Ie enjoyed such wide acceptance among the Jucar stakehold-

ers is related to the widely comprehensive approach employed for its construction. All water users,

in fact, feel represented in the index through at least one variable being observed in the proximity

of their water related activity, even if such variable is low-weighted or redundant when computing

the basin-wide aggregated indicator. The FRIDA approach does not ensure such representation of all605

water users, although it appears as a more rigorous and efficient alternative to the inclusive CHJ ap-

proach. Moreover, FRIDA is a portable methodology, suitable for the many drought prone contexts

in need of a drought management plan. In conclusion, the aim of arranging an effective framework

for the construction of basin customized combined drought indexes can be considered achieved. The

indexes constructed with FRIDA have proven to be an asset for (i) representing drought conditions in610

highly regulated basins, where traditional indexes tend to fail; (ii) gaining a deeper understanding of
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the hydro-meteorological processes taking place in the basin; and (iii) constituting a valid alternative

to the Spanish approach for the State Index design, thus supporting appropriate drought management

strategies, such as triggering drought restraining response measures.

The already valid results achieved by this study open new possibilities for the use of basin-specific615

drought indexes. Further research efforts could be addressed to exploring the potential of employing

FRIDA indexes in directly informing water management operations. Additionally, the possibility

of forecasting such indexes can be tested in order to timely prepare for upcoming dry seasons. We

expect that the projection of a drought index fosters the adoption of a proactive (as opposed to the

current reactive) approach in facing a drought. Proactivity promotes a shift from costly and often620

belated mitigation measures, to preventive actions that will grant flexibility to timely prepare to

upcoming droughts, while reducing costs associated to drought impacts and restrictions.

Ultimately, FRIDA can represent an asset for improving the system resilience under a changing

climate. Despite the fact that FRIDA is conditioned upon historical data, one can imagine that in

the short term, drivers’ interactions and relative role in causing a drought hold unchanged. In this625

case, the index formulation remains valid in the context of a changing climate. In the long term,

nevertheless, this hypothesis may cease to hold, we thus suggest a frequent reiteration of FRIDA

procedure to monitor the evolution of drivers and dynamics leading to a drought in the basin. For

example, in a groundwater dominated system as the Jucar basin, the piezometer information is likely

to remain essential in a future climate, but, at the same time, we can expect evapotranspiration630

processes to increase their drought-propelling role, as climate change induces a general increase of

temperatures. In other contexts, e.g., snow dominated catchments, the role of snow may lose priority

due to a diminishing winter snowpack reserve. FRIDA will thus represent a valuable tool to support

the analysis on the dynamic role of drivers in drought evolution under a changing climate.

635

Data availability: The complete dataset employed for the feature selection step can be downloaded

open source from http://doi.org/10.5281/zenodo.1185084 (Zaniolo et al., 2018). A detailed descrip-

tion of FRIDA, including both data and codes, is available at http://www.nrm.deib.polimi.it/?page_

id=2438.
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Abbreviations

CHJ Confederación Hidrográfica del Jucar.

DMP Drought Management Plan.
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ELM Extreme Learning Machines.645

FRIDA FRamework for Index-based Drought Analysis.

Ie Índice de Estado.

IVS Input Variable Selection.

MOEA Multi-Objective Evolutionary Algorithm.

R4MS4E Fourth grade Root Mean Square Error .650

RMSE Root Mean Square Error.

SPEI Standardized Precipitation and Evapotranspiration Index.

SPI Standardized Precipitation Index.

SRI Standardized Runoff Index.

W-QEISS Wrapper for Quasi Equally Informative Subset Selection.655
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