10

15

20

25

Evaluation of Multiple Climate Data Sources for Managing Environmental

Resources in East Africa

Solomon H. Gebrechorkos™?, Stephan Hiilsmann®, Christian Bernhofer?

United Nations University Institute for Integrated Management of Material Fluxes and of Resources
(UNU-FLORES), 01067 Dresden, Germany

“Faculty of Environmental Sciences, Institute of Hydrology and Meteorology, Technische Universitat
Dresden, 01062 Dresden, Germany

Correspondence to: Solomon H. Gebrechorkos (gebrechorkos@unu.edu)

Abstract. Managing environmental resources under conditions of climate change and extreme climate
events remains among the most challenging research tasks in the field of sustainable development. A
particular challenge in many regions such as East Africa is often the lack of sufficiently long-term and
spatially representative observed climate data. To overcome this data challenge we used a combination
of accessible data sources based on station data, earth observation by remote sensing, and regional
climate models. The accuracy of the Africa Rainfall Climatology version 2 (ARC2), Climate Hazards
Group InfraRed Precipitation (CHIRP), CHIRP with Station data (CHIRPS), Observational-Reanalysis
hybrid (ORH), and Regional Climate Models (RCMs) are evaluated against station data obtained from
the respective national weather services and international databases. We did so by relating point to
pixel, point to area grid cell average, and stations average to area grid cell average over 21 regions of
East Africa: 17 in Ethiopia, two in Kenya and two in Tanzania. We found that the latter method
provides better correlation and significantly reduces biases and errors. The correlations were analyzed at
daily, dekadal (10 days), and monthly resolution for rainfall and maximum and minimum temperature
(T-max and T-min) covering the period of 1983-2005. At daily time scale, CHIRPS, followed by ARC2
and CHIRP are the best performing rainfall products compared to ORH, RCM, and RCMS. CHIRPS
captures well the daily rainfall characteristics such as average daily rainfall, amount of wet periods, and
total rainfall. Compared to CHIRPS, ARC2 showed higher underestimation of the total (-30 %) and
daily (-14 %) rainfall. CHIRP on the other hand, showed higher underestimation of the average daily
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rainfall (-53 %) and duration of dry periods (-29 %). Overall, the evaluation revealed that in terms of
multiple statistical measures used on daily, dekadal, and monthly time scale, CHIRPS, CHIRP, and
ARC2 are the best performing rainfall products while ORH, individual RCM, and RCMs are the least

performing products.

For T-max and T-min, ORH was identified as the most suitable product compared to RCM and RCMs.
Our results indicate that CHIRPS (rainfall) and ORH (T-max and T-min), with higher spatial resolution,
should be the preferential data sources to be used for climate change and hydrological studies in areas of

East Africa where station data are not accessible.
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1. Introduction

In Sub Saharan Africa (SSA) about 80 % of people living in poverty will continue to depend on the
agriculture sector as their major income sources under the continuing global change (Dixon et al., 2001,
IFPRI, 2009). Unlike in other regions of the world, agricultural activities in SSA are marked by low
production mainly due to poor natural resource management, rainfall amount and variability, economy,
and technologies. According to IFPRI (2009), reducing poverty in SSA is becoming more challenging
due to rapid population growth and associated decline in the quality and availability of environmental
resources (e.g. water and soil). Additionally, food security and livelihoods of people are threatened by
the direct impacts of change in climate such as increasing frequency of extreme events and weather
variability impacts on the production and productivity of agricultural lands (Malo et al., 2012). In
general, the impact of climate change in Africa ranges from social and economic to health, water, and
food security, which is a threat to the lives of Africans (Urama and Ozor, 2010; Gan et al., 2016).

These outlined challenges hold in particular for the eastern parts of SSA, including Ethiopia, Kenya,
and Tanzania. The population (>80 %) mainly depend on agriculture for their livelihood in this region
and agriculture-based income contributes 40 % to the country’s Gross Domestic Product (GDP) (FAO,
2014). Extreme climate events such as recurring droughts and floods have a tremendous impact on the
socio-economy of the region. Devastating droughts in SSA linked to the high variability (seasonal and
inter-annual) of rainfall (Sheffield et al., 2013) are projected to increase in frequency (IPCC, 2007,
2014; Niang et al., 2014). In addition to the projected impact, the region is already facing significant
food security issues and natural resource-based clashes (UNEP, 2011; World Bank, 2012).

The impacts of future climate change in East Africa vary from region to region. In order to understand
the impacts of future climate at the regional and local scale, ground station data with high spatial and
temporal resolution is crucial. Regions with poor ground observation are highly vulnerable to climate
threats (Wilby and Yu, 2013), which holds particularly for developing countries. In Africa, high quality
climate data from meteorological field stations are scarce (Dinku et al., 2013) and inconsistencies exist

between other data products largely due to a limited number of ground stations, merging and
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interpolation methods (Huffman et al., 2009; Nikulin et al., 2012; Sylla et al., 2013), limited time
resolution, and limited documentation quality. In addition, climate data with high temporal and spatial
resolution, even if collected by the national meteorological agencies, are often not available due to data
sharing policies. With advancements of technologies and research activities, a number of climate data
products from different sources (remote sensing, climate model, and reanalysis) have been produced
over the last decades that can fill the data gap particularly for drought-prone regions (Gan et al., 2016)
and can be used for hydrological and climate change studies.

Several satellite-based rainfall estimates have been developed over the last decades (Sapiano and Arkin,
2009; Zambrano-Bigiarini et al., 2016). In Africa, a list of rainfall and temperature products are
available that can be used for climate change studies such as the African Rainfall Climatology Version
2.0 (ARC2) from the Climate Prediction Center (CPC) of the National Oceanic and Atmospheric
Administration (NOAA) with a spatial resolution of 0.1° (Novella et al., 2013) and Climate Hazards
Group InfraRed Precipitation (CHIRP) and CHIRP with Station data (CHIRPS) from the Climate
Hazard Group (CHG) with a spatial resolution of 0.05° (Funk et al., 2015). In addition, the Multi-Source
Weighted-Ensemble Precipitation (MSWEP) (Beck et al., 2016), Tropical Applications of Meteorology
using Satellite and ground-based observations (TAMSAT) (Tarnavsky et al., 2014), TAMSAT African
Rainfall Climatology And Time series (TARCAT) (Maidment et al., 2014), and data from the
Enhancing National Climate Services (ENACTS) initiative (Dinku et al., 2014) are available at varying

spatial and temporal resolutions and for longer periods.

As another source of climate information, climate model-derived data are suitable tools for assessing
climate variability and change. Globally, reanalysis based climate products such as the Observational
Reanalysis Hybrid (Sheffield et al.,, 2006), Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) (Gelaro et al., 2017), and Climate Forecast System Reanalysis
(CFSR) (Saha et al., 2010) are widely used for climate and hydrological studies. Moreover, dynamically
downscaled data from Global Climate Models (GCMs) is widely used in regional and local scale
climate studies. Regional Climate Models (RCMs) produced from dynamically downscaled GCMs
provide spatial resolutions that suit end-users (Sun et al., 2006). However, downscaling of climate
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information from GCMs to assess the impact of climate change on environmental resources at regional
or smaller scale has only recently been performed, e.g. as dynamical downscaling within the CORDEX
community (CORDEX-Africa, see e.g. Abiodun et al. (2016)). In Africa (CORDEX-Africa domain) the
spatial resolution of RCMs is available at about 0.44° (~50 km) and at varying temporal resolutions. In
East Africa, a number of studies have been done with the applications of RCMs for climate studies
(Anyah and Semazzi, 2006, 2007; Diro et al., 2011; Endris et al., 2013; Segele et al., 2009).

Before being used as input to different climate or hydrological models, climate data products need to be
evaluated against field-based meteorological stations. For studying climate change and climate extremes
data with high accuracy and from long periods (> 30 years) are required. In addition, current
hydrological (e.g. Soil-Water Assessment Tool, SWAT (Neitsch et al., 2002)) and climate models (e.g.
Statistical Downscaling Model (e.g., SDSM, Wilby and Dawson, 2004)) require daily time series of
rainfall and temperature covering long periods. Considering these requirements, concerning lengths of
time series and temporal resolution on the one hand and the limited availability of station data on the
other hand, it is not surprising that comprehensive evaluations of climate data products, particularly on
daily time scale, are not available for East Africa to the best of our knowledge. However, few studies
are available based on monthly gridded data (e.g., Cattani et al., 2016; Kimani et al., 2017), for limited
time periods. Moreover, Kimani et al. (2017) only considered CHIRPS, while a more comprehensive
evaluation and comparison of different data sources would be highly desirable. Based on the data
requirements of impact models, the climate data products to be included in such an evaluation should be
selected/excluded based on high spatial and temporal (e.i., daily) resolution, quality (missing values),
and temporal coverage (length of time series), while also taking the results from previous studies (e.g.,
Cattani et al., 2016; Bayissa et al., 2017; Kimani et al., 2017) in to account.

Therefore, this study aims at comparing and evaluating the available climate data products for Ethiopia,
Kenya, and Tanzania at the highest possible spatial and temporal (i.e., daily, for reasons of
comparability extended also to decadal and monthly) resolution against station data using the most
widely applied and accepted statistical and graphical evaluation methods. Results of our study will help

overcome the data scarcity in the study area, in terms of spatial coverage and temporal resolution gaps
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of daily, dekadal, and monthly climate data products that can be used for hydrological and climate
change and impact studies at a watershed or regional scale. In addition, the data sets can be used for
local and regional climate projections using climate models such as Statistical DownScaling Model
(SDSM) (Wilby and Dawson, 2004).

2. Study area and Data
2.1 Study region

The study focuses on the evaluation of daily, dekadal, and monthly climate data sources for regions of
East Africa, particularly Ethiopia, Kenya, and Tanzania (Fig. 1). The region is divided by the Great Rift
Valley and is topographically one of the most diverse and complex parts of Africa, characterized by
multiple rainfall regimes. Generally, the rainfall cycle (climatological annual cycle) in East Africa is
linked to the position changes of the Inter-Tropical Convergence Zone (ITCZ) (Endris et al., 2013).
Variability in the rainfall patterns in this region is partly induced by local factors such as heterogeneity
of land surface and complex topography and their interaction with global climate forcing systems.
Countries of the region face similar weather and climate variabilities (spatial and temporal variabilities)
and increasing temperature and decreasing precipitation trends (Pricope et al., 2013). In addition, all
East African countries face similar issues such as frequent droughts, floods, poverty, and lack of clean
and adequate water supply. The conditions can worsen in the near future due to climate change;
therefore, sustainable adaptation and mitigation strategies are required, which rely on advanced climate
and hydrological models and the respective data inputs.

2.2 Data sets

The reference data sets used for evaluation of multiple data products in this study are based on daily
rainfall, maximum temperature (T-max), and minimum temperature (T-min) derived from 332 rain
gauges and synoptic stations. Station data for Ethiopia was provided by the National Meteorological
Agency (NMA) of Ethiopia for the period 1954-2016. The daily data provided by NMA were carefully
and extensively checked for its quality and some missing data were infilled from hardcopies. For Kenya
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and Tanzania, the global summary of the day available at the National Climate Data Center (NCDC)
(https://www.ncdc.noaa.gov/) is used. For evaluation, based on the criteria outlined above, we
considered satellite-based rainfall estimates, Observational-Reanalysis Hybrid (ORH), and historical
period of Regional Climate Models (RCMs) driven by Global Climate Models (GCMs) to be compared
against field-based meteorological stations. The three satellite-based rainfall estimates fulfilling all
criteria are the African Rainfall Climatology Version 2.0 (ARC2) (Novella et al., 2013), the Climate
Hazards Group InfraRed Precipitation (CHIRP) and CHIRP with Station data version 2 (CHIRPS)
(Funk et al., 2015). Not included was, for example, TAMSAT, which is available at higher spatial and
temporal resolution and for a longer time period but contains considerable data gaps (Maidment et al.,
2017, https://icdc.cen.uni-hamburg.de/1/daten/atmosphere/tamsat-rainfall-africa/) during the evaluation
period. ENACTS and TARCAT are available only from dekadal (10 days) time scales. In addition,
MERRA-2 and CFS-R are not included in this study due to their coarse spatial resolution compared to

the other reanalysis products (i.e., ORH).

ARC2 is the second version of the ARC and is compatible with the algorithm of the Rainfall Estimation
Version 2 (RFE 2.0) (Novella et al., 2013). The product is a composite of three hourly geostationary
Infrared (IR) data, which makes it different from RFE, centered over Africa provided by the European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and quality controlled
daily rainfall records acquired from the Global Telecommunication System (GTS) gauges. ARC2 is
consistent with the historical data sets of the Climate Prediction Center Merged Analysis of
Precipitation (CMAP) (Xie and Arkin, 1997) and Global Precipitation Climatology Project (GPCP)
(Novella et al., 2013). The data set is updated regularly and it is available at a spatial resolution of 0.1°
covering the period from 1983—present.

CHIRPS is a semi-global rainfall product designed for drought monitoring and global environmental
changes (Funk et al., 2015). The product provides daily, pentadal, dekadal, and monthly data at a 0.05°
spatial resolution available at Climate Hazards Group (CHG
ftp://ftp.chg.ucsb.edu/pub/org/chg/products). CHIRPS combines a 0.05° resolution of satellite images
and data from ground stations to form a gridded rainfall time series. Station data (see also below) are
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used to produce a preliminary two day rainfall product by blending data from sparsely located GTS
gauges with rainfall estimates retrieved from the Cold Cloud Duration (CCD) at every pentad. In
addition, the final product is developed by blending the best available monthly and pentadal station data
with the monthly and pentadal rainfall estimates retrieved from the CCD, respectively, to produce
gridded rainfall product (Funk et al., 2015). The development process of CHIRPS includes the 0.05°
monthly precipitation climatology (CHPclim), satellite only Climate Hazards Group InfraRed
Precipitation (CHIRP), and station blending techniques. The second version of CHIRPS, which is
updated regularly, provides an improved daily rainfall time series (1981-present) with a spatial
resolution of 0.05° ranging from 50°S to 50°N (and all longitudes) (Funk et al., 2015). The development
process of CHIRPS and its application in drought monitoring in Africa (e.g. Ethiopia) is explained in
detail by Funk et al. (2015). CHIRPS is not only used for drought monitoring, but also for other global
environmental applications (Zambrano-Bigiarini et al., 2016), water resource management, and climate
dynamics (Ceccherini et al., 2015; Deblauwe et al., 2016). ORH is a global (Sheffield et al., 2006) and
regional (Northern/West/East Africa) (Chaney et al., 2014) three-hourly, daily, and monthly
meteorological data set covering the period between 1901-2012. ORH is developed by a spatial
downscaling of the NCEP-NCAR reanalysis (Kalnay et al., 1996) up to a spatial resolution of 0.1°
using a bilinear interpolation. ORH merges multiple data products such as the NASA Langley Surface
Radiation Budget (SRB),the monthly temperature data from the University of East Anglia Climate
Research Unit (CRU), Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis
(TMPA) (Huffman et al., 2007) and other observational based rainfall products (Chaney et al., 2014).
The spatial downscaling of ORH is done with the inclusion of changes in elevation and it is evaluated
against ground stations (global summary of the day) available at the US National Climatic Data Center
(NCDC). ORH is corrected for temporal inhomogeneity and biases and random errors are omitted
through assimilation with quality controlled and gap filled ground station data available at NCDC
(https://www.ncdc.noaa.gov/) as a global summary of the day (Chaney et al., 2014). This data is freely
available from the Terrestrial Hydrology Research Group, University of Princeton

(http://hydrology.princeton.edu). Even though ORH is not updated regularly, it has been widely used in
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climate and hydrological studies (e.g., Troy et al., 2011; Wang et al., 2011; Demaria et al., 2012;
Sheffield et al., 2014)

Compared to the other rainfall products, monthly ground station data from Ethiopia, Kenya, and
Tanzania are included in CHIRPS. Evaluating CHIRPS based on ground station data might thus raise
concerns about the independence of data. However, not all stations used in this study are included in
CHIRPS and in general the stations are not consistently used in the development process of CHIRPS. In
addition, the station data used in CHIRPS is mainly a monthly total from a limited number of stations.
For example, in Ethiopia, where all station data originate from NMA, during 01/1983-02/1983 and
08/2005-12/2005 the monthly stations used in CHIRPS declined from 139 to 132 and from 175 to 1609,
respectively. In 2015, the number of station included in CHIRPS even declined to below 10. Moreover,
in Kenya and Tanzania, during the period of 01/1983-12/2005 the number of station used in CHIRPS
declined from 142 to 62 and from 171 to 55, respectively (ftp://chg-
ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/). Besides the difference in
temporal resolution (monthly vs. daily) and the number of stations between station data included in
CHIRPS and the validation data set, the latter deviated from the former since we used original data
provided by NMA (Ethiopia) which were quality-controlled and extended by adding data from hard
copies. Overall, while not fully independent, the relation between CHIRPS and the validation data set
should be weak, besides the fact that there is no other (fully independent) validation data set available.

Historical data (control model runs) of the CORDEX RCMs are also used as a potential source for
rainfall, T-max, and T-min data. RCMs are climate models with a higher spatial resolution compared to
GCMs. The driving data of RCMs are derived from GCMs or reanalysis data and can include
greenhouse gases (GHG) and aerosol forcing. Compared to GCMs, RCMs considers local factors such
as complex topography and land cover inhomogeneity in a physically based manner (IPCC, 2007). In
Africa, dynamical downscaling was performed in a large effort within the CORDEX community
(CORDEX-Africa). Within CORDEX-Africa the continent’s climate was dynamically modelled by an
international consortium, providing a spatial resolution of about 50 km. According to the IPCC report
(2007), RCMs can be used for wide range applications such as climate change studies. Following the
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recommendation of Endris et al. (2015), the historical data derived from two CORDEX RCMs, RCA
(Samuelsson et al., 2011), and COSMO-CLM or CCLM (Baldauf et al., 2011), driven by HadGEM2-ES
(MOHC, United Kingdom), MPI-ESM-LR (MPI, Germany), and GFDL-ESM2M (NOAA/GFDL,
United States) are used. Rainfall, T-max, and T-min products of both RCMs are retrieved from the
Earth System Grid Federation (ESGF) data portal.

3. Methodology

3.1 Selection of validation areas and ground stations

The evaluation of multiple daily, dekadal (10 days), and monthly rainfall, T-max, and T-min products
were conducted on selected basins of Ethiopia (EthioShedl - EthioShed17), Kenya (KenShedl and
KenShed2), and Tanzania (TanzShed1 and TanzShed2) (Fig. 1). The polygons in Fig. 1 are river basins
retrieved from the global river basins available at the WaterBase hosted by the United Nations
University (UNU-INWEH: http://www.waterbase.org/). In most regions of Africa not only are the
density and availability of field-based meteorological stations limited, but their accessibility is very
restricted for many reasons. For this study, it was only possible to get daily station data from the
National Meteorological Agency (NMA) of Ethiopia with a reasonable spatial and temporal coverage.
Therefore, the selection of validation areas is based on the availability, quality, and density of field-
based meteorological stations during the period of 1983-2005. It was almost impossible to find multiple
stations in one satellite grid cell. For Kenya and Tanzania, therefore, stations with more than 10 years
(>50 % of the study period), were included for evaluation (Table 1).

The quality of selected stations was checked and extremely high rainfall records during dry seasons,
such as daily rainfall of > 480 mm preceding and following by dry days, were excluded. Finally, a total
of 132 stations were found suitable for comparison, 2 to 12 stations located in the validation areas. In
addition to these stations in the validation areas, 78 stations, randomly distributed over the region, are
used to compare on an individual basis with the rainfall and temperature products. Compared to Kenya
and Tanzania, the quality, continuity, and spatial and temporal coverage of stations were better in
Ethiopia and only stations with missing values of less than 20 % were considered. The availability of
10
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multiple stations in a validation area helps to check the quality of individual stations by using methods
such as double mass curve (Vernimmen et al., 2012) and allows for replacement of missing values of

one station from a nearby station.

3.2 Comparing ground data with satellite, observational reanalysis, and climate model-
based data

The most commonly used method to compare ground observations with other data products such as
satellite based rainfall estimates and climate model outputs is point (station) to pixel comparison. When
comparing daily rainfall, particularly in very complex topography, on point to pixel basis it can be
challenging to acquire reasonable agreements. Therefore, in this study we used point to pixel, point to
area grid cell average, and stations average to area grid cell average to evaluate the accuracy of each
product. Area grid cell average is the average of numbers of pixels covering the basin or the validation
area. Similarly, station average is used to indicate the average value of the stations inside the validation
area. Therefore, during the comparison process, individual or the stations average is compared to the
area grid cell average of the product. The most commonly used statistical methods such as the Pearson
correlation coefficient (CC), bias, relative bias (Rbias), Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Index of Agreement (I1A) (Cohen Liechti et al., 2012; Daren Harmel and
Smith, 2007; Moazami et al., 2013) are used. CC (Eq. 1) is applied to evaluate the agreement of
individual products (P) to station data (O). A value of CC close to one shows a perfect positive fit
between the products and station data.

CcC = YL (Pi—P). (0;-0) (1)
\/Z’i"zl(Pi -P)’ -JZ?Ll(oi -0)°

The average differences and systematic bias of each product are given as bias (Eg. 2) and Rbias (Eq. 3).
Bias can be positive (overestimation) or negative (underestimation) according to the accuracy of each

product.
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The MAE and RMSE (Eg. 4 and 5), are well-known and accepted indicators of goodness of fit that
shows the differences between ground observation and model or other product outputs (Legates and
McCabe, 1999).

N . _p.
MAEZM (4)
N

N _P.)\2
RMSE = /M’T‘” (5)

The 1A (Willmott, 1981) is another widely used indicator of goodness of fit between observed and
model output. IA (Eq. 6) describes how much of the model or product output (rainfall, T-max, and T-

min products) are error-free compared to the ground observations.

02
IA = ooy ©)

In addition to the above statistical methods, the Taylor diagram (Taylor, 2001) is used to summarize the
statistical relationship between ground station data and the products for rainfall, T-max, and T-min. In
this diagram, the relationships between the two fields are explained by the correlation coefficient (R),
centered mean square (RMS) difference (E’), and standard deviation (c). The diagram is useful for
evaluating the accuracy of multiple data sources or model output against a reference or observational
data (IPCC, 2001). A single point on the diagram displays three statistical values (R, E", and o) and
their relationship is given by Eq. (7).

E'? = 64’4+ 0,°> — 2070,R (7)
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Where o and o, are the variance of the model and observation fields and R is the correlation

coefficient between the two fields (Eq. 8).

_ pZea (=N 0=

O'fO'r

R

(8)

In the diagram, the distance from the reference point (observed data) is given as the centered RMS
difference of the two fields (Eq. 9). A model with no error would show a perfect correlation to the
observation.

E'? = 2SN [(fa = f) — (= P 9)

Where f is the test (e.g. model or satellite) field and r is reference (observed) field, whereas oo, are the

standard deviations of the model and reference fields (Egs. 10 a and b).

of = (25U~ Y (102)

0r = (Eha0n— 72 (106)

Additionally, rainfall characteristics such as the number wet days, duration and amount of wet periods,
duration of dry periods, and daily and total rainfall are used to evaluate the accuracy of individual
rainfall products by comparing to the observed data. Rainfall characteristics are widely used indicators
in rainfall modelling (Wilby and Dawson, 2007; Jebari et al., 2012) and include: Number of wet days
(days y), which is the count of days with rainfall per year; duration (days) of wet and dry periods
indicating the average number of consecutive wet and dry days during the study period; the amount of

wet periods (mm), indicating the amount of rainfall observed during the identified wet period.
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4. Results

4.1 Validation of satellite, observational reanalysis, and climate model-based products

The average daily rainfall (Fig. 2) of the study region retrieved from ARC2, CHIRP, CHIRPS, ORH,
individual RCMs (RCM) and RCMs mean (RCMs) displays large discrepancies between the products
for the study period 1983-2005. Compared to dekadal and monthly resolution, the comparison at daily
time scale, particularly of rainfall, is challenging and more emphasis is given on this evaluation. RCMs
(RCA4 and CCLM) driven by HadGEM2-ES (HadGEM2), MPI-ESM-LR (MPI), and GFDL-ESM2M
(GFDL) are used in this study. For RCMs driven by each GCM, the average is used. The daily rainfall,
T-max, and T-min maps of GFDL display the result of single RCM (RCA4) driven by GFDL-ESM2M
for the period of 1983-2005. Higher and lower average daily rainfall values are displayed by GFDL and
ORH, respectively (Fig. 2). However, all the products showed a similar tendency in capturing the daily
rainfall distribution; higher in the western and lower in the eastern part of the region. In addition, the
average daily T-max and T-min (Fig. 3) of the region shows relatively higher disagreement between
ORH and individual RCMs (RCM). However, RCM shows a higher agreement in Ethiopia, Kenya, and

Tanzania for T-max and T-min.

The relation of each product with station data is given by scatter plots in Fig. 4 for eight validation
areas, four in Ethiopia, two in Kenya, and two in Tanzania. The same plots — with similar results - for
another 13 areas in Ethiopia are provided in the supplementary material (SF. 1). The monthly rainfall
plots display the relationship of each product with observed ground data and this relation is explained
by the coefficient of determination or R-Squared (R?). Based on the scatter plots, CHIRPS and CHIRP
are the most accurate rainfall products, with higher correlation and lower RMSE, and ARC2 and ORH
are the second best products. RCM and RCM’s mean (RCMs) correlate weakly in most of the validation
areas. In addition, RCM (not shown in Fig. 4) and RCMs show a strong over- and underestimation of
monthly rainfall compared to the other products. In EthioShedl, for example, CHIRPS and CHIRP are
shown to be the most accurate products, while ARC2 and ORH showed higher dispersion above and
below the regression line. Similarly, in EthioShed4 both CHIRP and CHIRPS have an equal R2, but in
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terms of biases (points below and above the regression line) CHIRPs performed better. The observed
biases in CHIRP and higher correlations in CHIRPS in all the validation areas highlights the role of the
station-satellite data blending techniques. Compared to other validation areas, the agreement of products
in EthioShed16 is comparably weak and CHIRPS and CHIRP showed the higher R? (0.48) compared to
ARC2, ORH, and RCMs.

As for the daily, dekadal, and monthly resolution, the comparison is performed in three ways: point to
pixel, point to area grid cell average, and stations average to area grid cell average using the methods
described in Section 3.2. An explanatory example is given in Table 2, using stations of EthioShdel
displaying the difference in comparing products through point (station) to pixel, point to area grid cell
average, and stations average to area grid cell average. The agreement of each product with station data
on a daily time scale and on point to pixel comparison is weak, with significantly higher biases and
errors. For rainfall, in general, the latter method, stations average to area grid cells average, provides
better correlation, higher index of agreement, and lower biases and errors. Compared to point to pixel,
the stations average to area grid cells average improves the correlations of ARC2, CHIRP, and CHIRPS
by 81.3 %, 65.7 %, and 8 %, respectively. In addition to the correlation, the method reduces the RMSE
by more than 66 %. Compared to ARC2 and CHIRP (Table 2), CHIRPS gives a significantly higher
correlation and 1A and lower biases and RMSE. During area averaging, extremely high rainfall events
obtained for a location from the various data products are levelled off by averaging and this makes the
product more representative for the area. In most of the rainfall products, there are occasionally higher
daily rainfall values recorded and the averaging removes those extremes, which are much higher than
the observed station data in the area. Compared to point to pixel, the second method, point to area grid

cell average, provides a reasonable correlation.

The agreement of each product increases with decreasing temporal resolution, from daily to dekadal and
monthly resolutions. Including the historical data of each RCM, RCMs, and ORH, the overall
comparison using some of the statistical methods is summarized in Tables 3, 5, and 6 for rainfall, T-
max, and T-min, respectively. The evaluation of each rainfall product (ARC2, CHIRP, CHIRPS, ORH,
and RCMs) showed a different degree of agreement with station data (Table 3). The same table for
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individual RCMs (RCM) for all the validation areas is provided in the supplementary material (ST 1).
At daily time scale, CHIRPS followed by ARC2 and CHIRP proved to be the most accurate rainfall
products compared to ORH, RCM, and RCMs in all the validation areas. In general, out of the 21
validation areas CHIRPS, ARC2, and CHIRP showed a higher correlation in 17, 3, and 1 validation
areas, respectively. In addition to the higher correlation, CHIRPS, CHIRP, and ARC showed lower
RMSE than ORH, RCM, and RCMS. Similarly, CHIRPS and CHIRP showed lower biases than
observed in ARC2, ORH, RCM, and RCMs in most of the validation areas.

On average, over the 21 validation areas, CHIRPS captures well the number of wet days (-0.17 %
deviation), average duration of wet (-13.4 % deviation) and dry periods (-17.6 % deviation), total
rainfall (-4.5 % deviation), average amount of wet periods (-17 % deviation), and average daily rainfall
(-7.7 % deviation) (Table 4). Next to CHIRPS, ARC2 showed higher agreement in producing the
average duration of wet (-20 % deviation) and dry periods (11.3 % deviation) and average amount of
wet periods (-38 % deviation). CHIRP, on the other hand, showed a higher agreement in the total
amount of rainfall with a 2.75 % deviation, which is higher than CHIRPS, ARC2, ORH, RCM, and
RCMS. On the contrary, ARC2 and GFDL showed higher under- (-34.7 % deviation) and
overestimation (27.2 % deviation), respectively, of the total amount of rainfall compared to the other
products. In addition, ARC2 showed a higher underestimation in number of wet days (-15.1 %
deviation) and average daily rainfall (-23.8 % deviation) compared to CHIRPS and ORH. CHIRP, on
the other hand, showed higher overestimation in number of wet days and duration and amount of wet
periods (> 59.7 % deviation) and underestimates duration of dry periods and average daily rainfall (-62
% deviation) compared to the other products. Moreover, RCMs, next to CHIRP, showed higher
overestimation in number of wet days and duration and amount of wet periods (> 44.9 % deviation) and
total rainfall amount (11.4 % deviation) and underestimate average duration of dry periods and daily
rainfall by about 41 %. In general, the observed rainfall characteristics are well captured by CHIRPS,
with a percentage difference from the observation of -0.17 % to -17.6 % for number of wet days and
duration of dry periods, respectively, compared to CHIRP, ARC2, ORH, RCM, and RCMs (Table 4).
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For T-max and T-min, only ORH, RCM, and RCMs are compared with station data. For 21 validation
areas ORH data proved to be the most accurate product for both T-max (Table 5) and T-min (Table 6).
In comparison to RCM and RCMs, ORH showed a significantly higher correlation and lower biases and
errors in most of the validation areas. In seven of the 21 validation areas, RCMs showed a higher
correlation in T-max than ORH and RCM. However, for T-min, ORH in 20 of the 21 validation areas
showed a higher correlation. In general, RCM and RCMs showed higher RMSE and biases in most of
the validation areas compared to ORH. Next to ORH and compared to RCM, RCMs appeared to be the
best data source particularly for T-max. RCMs showed a relatively higher correlation and lower biases

and errors compared to RCM in most of the validation areas.

4.2 Validation of satellite, observational reanalysis, and climate model-based products at
dekadal and monthly resolutions

To understand the role of higher spatial resolution at improving the agreement with station data, a
similar statistical evaluation was performed using the coarse resolution of CHIRPS (0.25°). Compared
to the coarse resolution of CHIRPS, the daily improved version (0.05°) used in this study showed an
increased correlation of up to 3.2 % in all the validation areas. In line with the daily evaluation, the
comparison was extended to dekadal and monthly resolutions for rainfall, T-max, and T-min using the
same statistical methods. For this analysis the observed daily ground observations and data from ARC2,
CHIRP, CHIRPS, ORH, RCM, and RCMs were aggregated to dekadal and monthly resolutions. With
decreasing temporal resolution (daily to monthly), the agreement of each product showed a marked
improvement in all the validation areas. In addition to the increase in correlation, biases (bias and

Rbias) and errors (MAE and RMSE) in rainfall are decreased at dekadal and monthly resolutions.

At dekadal and monthly resolution, the agreement of all rainfall products with station data increased
compared to daily resolutions and the result for eight validation areas of Ethiopia, Kenya, and Tanzania
are given in Fig. 5. The same plots — with similar results - for another 13 areas are provided in the
supplementary material (SF. 2). Similar to the daily evaluation, CHIRPS appeared to be the most

accurate rainfall product both at dekadal and monthly resolutions in most of the validation areas
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compared to the other products. In addition to the higher correlation of CHIRPS with station data at
monthly and dekadal time scale, the centered mean square (RMS) difference and standard deviation is
close to the observation in most of the validation areas. Following CHIRPS, CHIRP appeared to be the
second best data source for dekadal and monthly rainfall and in three validation areas (EthioShed3, 15,
and 16) showed a slightly higher correlation than CHIRPS. In two validation areas (KenShedl and 2),
ARC2 showed a slightly higher correlation than CHRIP and CHIRPS. However, in KenShed2 ARC2
showed a higher deviation from the observed value compared to CHIRP and CHIRPS. CHIRPS has, for
example, almost similar standard deviation as the station data in all the validation areas except in areas
with lower number of ground stations (EthioShed12-15 and TanzShedl). Overall, CHIRPS, CHIRP,
and ARC2 were found to be the best performing rainfall product while ORH, RCM, and RCMs are the
least performing products.

Moreover, for T-max and T-min, the correlation of ORH, RCM, and RCMs increased from daily to
dekadal and monthly resolutions. The agreement of each product with station data, for eight validation
areas of Ethiopia, Kenya, and Tanzania, is given in Fig. 6 and Fig. 7 for T-max and T-min, respectively.
The same plots — with similar results - for another 13 areas are provided in the supplementary material
(SF. 3 and SF. 4 for T-max and T-min, respectively). Compared to RCM and RCMs, the correlation
between ORH and station data is higher in most of the validation areas. In addition, ORH showed lower
centered mean square (RMS) difference and biases (bias and Rbais). In addition, compared to the RCM
and RCMs the standard deviation of ORH is close to the respective observations in most of the
validation areas. Compared to RCM, the standard deviation and centered mean square (RMS) difference

of RCMs is lower in most of the validation areas.

5. Discussion

Detection of rainfall characteristics by satellite observations or climate model simulations’ output
(GCM and RCM) is very challenging as compared to temperature. This is especially evident in East
Africa, where the topography is complex and characterized by multiple rainfall regimes. In particular, it

is difficult to estimate rainfall with satellite imageries in the mountainous region of East Africa (Cattani
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et al., 2016) because these products are inevitably not representing the regional rainfall patterns and
complexity of the region’s topography (Romilly and Gebremichael, 2010). Here, for an improved
understanding of the climatic condition of this complex region and its impact on environmental
resources, daily rainfall, T-max, and T-min products from high resolution satellite imageries,
observational-reanalysis, and climate models outputs are compared against ground observations. Such
an evaluation was not available as of yet for the considered region. Therefore, an in-depth evaluation
was performed, particularly on a daily time scale, of the satellite-based rainfall products (ARC2
CHIRPS and CHIRP), ORH, and RCMs (CCLM and RCA) driven by three GCMs. ARC2, CHIRP, and
CHIRPS are rainfall products, whereas ORH and RCMs provide rainfall, T-max, and T-min.

From the comparison (using point to pixel, point to area grid cell average, and stations average to area
grid cell average), the stations average to area grid cell average showed the best correlation and least
biases and errors in all the validation areas. A study by Duan et al., (2016) in Adige Basin (Italy) found
that comparing rainfall products such as CHIRPS on a watershed scale showed a marked improvement
in overall agreement compared to point to pixel on daily and monthly time scale. Comparing the coarse
resolution of satellite products and of RCMs using the point to pixel method cannot be expected to
result in a high agreement with station data. Ground stations provide point data measured over
continuous time periods, whereas satellite products provide area averages based on discontinuous (rain)
estimates. Field-based stations (as point measurements) cannot be considered as reference data for
evaluation of area-based rainfall estimates (Cohen Liechti et al., 2012; Wang and Wolff, 2010), if not
compared at a monthly or annual time scale. This is similar to our finding that the point to pixel
comparison for all products inside and outside the validation areas show weak statistical relations with
ground stations (e.g. see Table 2). The correspondence of all products at a daily time scale and in all the
validation areas was found comparably weak and the findings are in agreement with earlier studies
(Cohen Liechti et al., 2012; Dembélé and Zwart, 2016).

At daily time scale, CHIRPS followed by ARC2 and CHIRP showed higher correlation and lower errors
and biases in all the validation areas compared to ORH, RCM, and RCMs. In addition, CHIRPS
captures the daily rainfall characteristics well while ARC2 showed higher underestimation of the
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average daily and total rainfall. The agreement of all the rainfall products increases from daily to
dekadal and monthly time scale (Fig. 5) and this is consistent with other studies (Cohen Liechti et al.,
2012; Dembélé and Zwart, 2016; Kimani et al., 2017). Generally, CHIRPS with high spatial resolution,
followed by CHIRP and ARC2, was the best performing rainfall product in terms of correlation, biases
and errors and in characterizing regional rainfall characteristics. By contrast, ORH, RCM, and RCMs
appeared to be less precise rainfall products at all time scales and in all validation areas. When looking
at the performance of different data products in the selected validation areas (Fig. 4), dispersion is
comparably higher in areas with lower number of ground stations. An additional confounding factor
could be the very complex topography of the region. This might explain why products with coarser
spatial resolution (ORH, RCM, and RCMs) showed higher dispersion compared to products with higher
spatial resolution (CHIRPS, CHIRP, and ARC?2).

The daily rainfall data (global summary of the day) available at the National Climate Data Center
(NCDC) needed to be controlled for quality before application. In East Africa, particularly Ethiopia, the
available data at NCDC is very poor and only few stations are available. Therefore, products developed
based on the global summary of the day such as ORH cannot be expected to provide accurate results
particularly for the most complex climate variable, rainfall, as CHIRPS and ARC2. CHIRPS
incorporates monthly station data obtained from different regional meteorological organization, e.g.,
from Ethiopia, Kenya, and Tanzania. In all the validation areas one to seven stations were included in
the development of CHIRPS in different months during 1981-2005. In EthioSdedl (Table 2), for
example, six of the nine stations we considered in this study are included in CHIRPS. The inclusion of
monthly station data can be assumed to improve CHIRPS” performance compared to other rainfall
products. This particular feature of CHIRPS (compared to CHIRP and other data products) is somewhat
problematic for our analysis, since the correlated data are not fully independent. However, since only
monthly data from a limited number of stations were included in CHIRPS, the dependency is rather
weak and indirect. In fact, the improved performance of CHIRPS was shown even in areas were station

data is not included (e.g. Arijo, Bedele, and Hurma stations in EthioShed1) and on daily time scale.
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Even though ORH was one of the least performing rainfall product, it appeared to be the most accurate
data source for T-max and T-min at daily, dekadal, and monthly resolutions compared to RCM and
RCMs. Nikulin et al., (2012) presented a detailed comparison of daily gridded observations with
multiple RCMs including RCA and CCLM and they found large discrepancies over the whole region of
Africa. However, in this region, RCMs appeared to be the second best data source for both T-max and
T-min and RCM are less precise with slightly higher biases and errors. In this region, other studies
(Endris et al., 2013; Kim et al., 2014) concluded that the multi-model or ensemble mean of CORDEX
RCMs provides reasonable results compared to individual RCMs (RCM). The systematic bias of RCM
and RCMs is higher in most of the validation areas compared to the other products, particularly for
rainfall, that can be improved by applying different bias correction techniques such as the empirical
quantile mapping (Lafon et al., 2013; Maraun, 2013; Teng et al., 2015) before application to different
hydrological and climate models (e.g., SDSM). In general, in topographically complex regions such as
East Africa, RCMs require further improvements in terms of spatial resolution and accuracy by adding

more local information in the modelling process, particularly for precipitation.
6. Summary and Conclusion

The evaluation of rainfall, T-max, and T-min from different sources against station data was performed
for large parts of East Africa (Ethiopia, Kenya, and Tanzania) using three methods: point to pixel, point
to area grid cell average, and stations average to area grid cell averages. Compared to the other two
methods the latter method (stations average to area grid cell average) provides a better correlation and
index of agreement (1A) and lower errors (MEA and RMSE) and biases (bias and Rbias). Using this
method, individual rainfall, T-max, and T-min products were compared at daily, dekadal (10 days), and
monthly resolutions. At daily time CHIRPS, ARC2, and CHIRP provide a better agreement with station
data compared to ORH, RCM, and RCMs. Compared to CHIRPS and CHIRP, ARC2, ORH, RCM, and
RCMs showed higher biases and errors in most of the validation areas. Overall, the performance of
CHIRPS is higher than the other rainfall products in capturing the daily rainfall characteristics such as
number of wet days, duration of wet and dry periods, total and daily rainfall, and amount of wet periods.
ARC?2 better captures duration of wet and dry periods, but showed higher underestimation of the total
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and daily rainfall and number of wet days compared CHIRPS and CHIRP. RCM and RCMs, on the
other hand, showed higher overestimation in number of wet days, duration and amount of wet periods,

and total rainfall and underestimate average duration of dry periods and daily rainfall.

ORH, on the contrary, appeared to be one of the least-performing rainfall products for the study region,
but the most accurate product, compared to RCM and RCMs, for T-max and T-min at daily time scale
in most of the validation areas. The evaluation of the above products at dekadal and monthly time scales
showed that CHIRPS with high spatial resolution (0.05°) has higher correlation and lower errors and
biases than the other rainfall products. As the temporal resolution gets coarser (e.g. monthly), the
correlation between ground observation and the above products significantly increases. In addition,
biases (bias and Rbias) and errors (MAE and RMSE) significantly decreased. Similar to that of rainfall,
the comparison at dekadal and monthly resolution showed an improved correlation and lower errors and
biases for both T-max and T-min. Compared to RCM and RCMs, ORH with higher spatial resolution
was found to be more accurate at dekadal and monthly resolutions. Next to ORH, RCMs showed a

better performance than RCM, with lower biases and errors.

In general, CHIRPS for rainfall and ORH for T-max and T-min performed best in the considered
regions of Ethiopia, Kenya, and Tanzania. Further studies need to confirm whether this finding holds
for other regions as well and our approach may represent a blueprint how to address this question. Since
CHIRPS and ORH are available with higher spatial and temporal resolution and for longer periods,
these data sources can be used for long-term climate studies (trend, variability, and extreme indices) and
input for climate or hydrological models. Considering the typical need for daily data for model input, it
remains to be investigated whether poor daily data with a limited bias and similar variance are an
acceptable replacement of missing station data when used for impact model studies. In addition, the
products can be used to check the plausibility of available ground stations or substitute ground
observation in regions of Ethiopia, Kenya, and Tanzania where ground station data are not available or

accessible.
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Table 1: General characteristics of selected validation areas and meteorological stations covering the time period

1983-2005.
Validation Basin area | Average area Number of | Average station | Average annual Average T-max
areas/basins (km?) elevation (m) | stations elevation (m) rainfall (mm) /T-min
EthioShed1 8980 1516 9 1881 1758 26.3/13.6
EthioShed?2 12828 2279 12 2009 968.6 25.9/11.4
EthioShed3 15123 2192 9 2104 1202.6 25.3/11.7
EthioShed4 8323 2180 7 1954 994.42 31.8/16.5
EthioShed5 5625 1720 10 1800 1039.1 26.4/13.4
EthioShed6 11204 2830 8 2510 1168.7 22.1/8.0
EthioShed7 12445 1830 8 1973 1524.53 25.7/12.4
EthioShed8 6522 1930 5 2022 1628.35 26.0/14.0
EthioShed9 4666 1526 4 1738 578.4 28.0/14.4
EthioShed10 5986 2520 8 2580 1133.1 21.2/9.3
EthioShed11 11496 1256 7 1468 945 27.4/15.2
EthioShed12 3868 520 2 400 343.8 34.1/22.3
EthioShed13 4934 1301 4 2413 588 26.2/13.1
EthioShed14 2835 1360 4 1239 706 31.8/16.5
EthioShed15 1121 2307 4 2183 495 24.3/11.1
EthioShed16 3012 2102 5 2148 1110 26.0/11.8
EthioShed17 9909 1998 12 2056 2075 23.8/10.2
KenShed1 11712 1980 4 1024 1156.1 25/13.5
KenShed2 7861 2328 3 1602 1418.6 24/13.2
TanzShedl 8092 1244 3 1137 1137.8 28.7/17.5
TanzShed?2 2154 1097 3 1428 1136.2 28.2/17.8
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Table 2: An example of the statistics used to compare ground rainfall data with satellite products (e.g. ARC2,
CHIRP, and CHIRPS) in EthioShedl. The three modes of comparison are compared based on a range of
statistical variables (section 3.2). The Point (station) to area grid cell average is computed by comparing
individual station to the area grid cell average of each product. Best fit of the last three rows is indicated in bold,
best fit of the nine stations are also highlighted.

Station ARC2 CHIRP CHIRPS
cC Bias | Rbia | MAE | RM | IA CC | Bias | Rbia | M RM | IA | CC | Bias | Rbi | MA | RM 1A

S SE S AE | SE as E SE

Anger 032 | -0.55 | - 4.64 104 | 05 | 03 | 045|119 | 48 | 958 | 0. | 04 | - -4.1 | 440 | 940 | 0.6
14.7 8 2 7 7 5 | 0 0.15

Arijo 029 | -1.25 | - 5.02 101 | 05 | 02 | 012 | 34 59 | 102 [ 0. |03 |- - 5.08 | 9.33 | 0.6
37.6 4 3 3 4 9 49 | 7 042 | 125 1

Bedele 0.33 | -1.40 | - 5.00 106 | 05 | 03 | - 93 |52 (932 |0 |04 |- - 496 | 930 | 0.6
28.7 7 5 4 0.45 1 55 | 1 054 | 111 2

Dedesa 029 | -0.71 | - 4.77 105 | 05 | 02 | 013 | 34 51 | 104 | 0. |03 |- -58 | 481 (992 | 05
18.0 3 1 8 6 9 50 | 4 0.23 5

Gimbi 032 | -1.03 | - 5.10 107 | 05 | 03 | 012 | 2.8 51 |98 [0 |04 |- -45 | 491 | 976 | 0.6
239 8 5 9 7 59 | 2 0.20 4

Nekemt 0.44 | -1.20 | - 471 106 | 06 | 03 | 0.02 | 0.3 57 | 109 | 0. |04 |- - 530 | 104 | 0.6
23.4 9 4 8 9 6 5 |1 0.75 | 14.6 4 2

Alge 032 | -1.08 | - 5.13 102 | 05 | 03 | - - 49 (912 | 0. |03 |- -9.4 | 536 | 10.0 | 0.6
27.6 5 6 045 [ 117 | 9 56 | 7 0.36 1

Ayira 0.3 -1.02 | - 5.18 106 | 05 | 04 | - - 49 (898 |0 |03 |- -96 | 541 | 100 | 0.6
26.1 8 3 0 0.18 | 480 | 5 60 | 6 0.37 7

Hurma 031 | -1.01 | - 5.20 104 | 05 |03 | - - 45 |1 886 | 0. |03 |- - 515 [ 959 | 0.6
25.7 4 4 8 056 | 145 | 9 54 | 7 0.60 | 15.8

Average of | 0.32 | -1.03 | - 4.97 105 | 05 | 03 | - - 51 | 972 (0 |03 |- -9.7 | 5.04 | 9.76 | 0.6

point — 25.1 1 5 5 0.09 | 206 | 9 55 | 8 0.40

pixel

Average of | 0.37 | -1.1 - 4.82 959 [ 05 | 03 |- -55 | 10. | 951 | 0. |04 |- - 486 | 938 | 05

point — 26.8 3 7 021 18 54 | 0 0.46 | 115 8

area grid

cells

average

Stations 058 | -1.3 - 5.66 322|107 |05 |- 57 |56 [329 |0. |06 |- - 538 | 3.08 | 0.7

average - 27.3 4 8 0.27 75 | 4 059 | 120 9

area grid

cells

average
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Table 3: Evaluation results of multiple daily rainfall products against field meteorological stations covering the
period of 1983-2005 for 21 validation areas of East Africa. For ease of comparison, only selected statistical
estimators are given in the table. For individual RCMs) their mean (RCMs) is given here. Best fit is indicated in

bold.
Validation ARC2 CHIRPS CHIRP ORH RCMs
area CC | Rbias [ RMS | CC | Rbia | RMS | CC | Rbia | RM | CC | Rbia | RMS | CC | Rbia | RM
E S E S SE S E S SE
EthioShedl | 0.59 | -312 | 564 | 064 | 57 |55 |057 |-72 |57 |020]-16.7 | 10.81 | 052 | -37.2 | 6.1
EthioShed2 | 0.58 | 273 | 566 | 0.64 | -12.0 | 538 | 058 | -57 |56 | 018|198 |86 | 043 | 458 | 48
EthioShed3 | 0.63 | -29.4 | 468 | 0.69 | -12.6 | 437 | 0.64 | -10.8 | 446 | 0.25 | -11.7 | 9.86 | 060 | 48 | 4.65
EthioShed4 | 0.59 | -37.4 | 495 | 061 | 19 | 534 | 049 |39 |535 |012|-15 | 1214 | 030 | 38.7 | 6.38
EthioShed5 | 0.40 | -11.8 | 465 | 0.43 | 121 | 472 | 039 | 87 | 435 | 010 | 245 | 848 | 014 | 93 | 468
EthioShed6 | 0.47 | -426 | 355 | 0.64 | 520 | 3.66 | 047 | 56 | 365 | 0.11 | 168 | 7.73 | 0.21 | 605 | 6.74
EthioShed7 | 0.55 | -27.8 | 527 | 0.70 | -1.4 | 468 | 049 | 49 | 564 | 012 | -136 | 10.7 | 038 | -39 |5.77
EthioShed8 | 0.33 | -22.7 | 7.29 | 046 | 2.7 | 656 | 0.44 | 2.0 | 560 | 0.11 | -224 | 120 | 0.37 | 2.8 | 7.28
EthioShedd | 0.30 | -7.2 | 5.16 | 0.33 | -9.4 | 443 | 0.28 | -26.0 | 403 | 0.06 | -22.1 | 7.46 | 0.07 | -39.4 | 4.38
EthioShed10 | 0.59 | -382 | 436 | 0.60 | 0.7 | 481 | 053 | 2.7 | 470 | 0.18 | 148 | 10.92 | 045 | 39.4 | 521
EthioShed1l | 045 | -38.1 | 458 | 0.48 | 0.2 | 486 | 043 | -00 | 437 | 010 | -109 | 7.33 | 0.13 | -51.9 | 4.73
EthioShed12 | 042 | 313 | 3.75 | 0.35 | 315 | 415 | 032 | 243 |40 |01 |351 |558 | 007 |-148 | 410
EthioShed13 | 0.46 | -38.0 | 550 | 0.52 | -14.4 | 52 | 0.37 | -164 | 570 | 0.13 | -132 | 9.35 | 0.26 | 124 | 5.92
EthioShed14 | 040 | -143 | 476 | 0.41 | 20 | 478 | 035 | 20 | 453 | 010 | 13.7 | 7.85 | 0.12 | -48.7 | 4.75
EthioShed15 | 0.39 | -353 | 472 | 0.45 | -11.3 | 458 | 0.35 | -155 | 474 | 011 | 972 | 84 | 018|379 |511
EthioShed16 | 0.29 | -42.3 | 506 | 0.35 | 122 | 572 | 029 | 39 | 504 | 012 | 127 | 789 | 0.16 | 112 | 517
EthioShedl7 | 0.45 | 254 | 3.89 | 0.56 | 7.0 | 3.82 | 046 | 93 |3.75 | 0.13 | 238 | 7.67 | 0.20 | -14.4 | 4.1
KenShedl | 062 | 64 |35 |04 |586 |556 | 031 |45 |560 |036|21 |566 |01 |221 |472
KenShed2 | 0.72 | 22 | 439 | 038 | -49 | 872 | 038 | 242 | 688 |05 | 221 | 723 |02 |673 | 756
TanzShedl | 0.3 | 40 | 583 | 043 | 29 |57 | 040|307 | 603 | 024|137 | 744 | 013|382 | 64
TanzShed2 | 03 |72 |023 | 044 |19 |02 |038 362 |55 |0411|12 |03 |o02L |22 |o02L
5
10
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Table 4: Summary of daily rainfall characteristics retrieved from multiple rainfall products and averaged over the
validation areas of Ethiopia, Kenya and Tanzania. Values in brackets give the deviation from the observed value
(%). The value which comes closest to the observed value is highlighted in bold.

Rainfall characteristics Obs. ARC2 | CHIRP | CHIRPS | ORH HadGEM2 | MPI GFDL RCMs
Number of wet days (days/year) | 189.58 | 162.98 | 351.06 | 189.26 192.14 205.08 243.55 210.42 299.36
(-15.1) | (59.7) | (-0.17) (1.34) (7.85) (24.92) (10.42) (44.9)
Average duration of wet periods | 5.86 478 (- | 167.96 | 5.13 (- 3.02 (- 11.70 12.17 9.37 (46) | 21.36
(days) 20) (186) 13.4) 64) (66.5) (69.9) (113.9)
Total amount of precipitation 953.63 | 671.62 | 980.24 | 912.0 (- | 1027.02 | 841.73 (- 1055.7 1253.38 | 1068.6
(mml/year) (-34.7) | (2.75) | 4.5) (7.41) 12.5) (10.2) (27.2) (11.4)
Average amount of wet periods | 30.20 | 20.56 | 498.43 | 25.46 (- | 15.64 (- 50.12 55.45 59.64 78.88
(mm) (-38) (177) 17) 63.5) (49.6) (59) (65.6) (89.3)
Average duration of dry periods | 5.37 6.01 153(- | 45¢(- 2.55 (- 6.91 5.67 (5.4) | 6.55 3.55 (-
(days) (11.3) | 111.3) | 17.6) 71.31) (25.04) (19.8) 41)
Average daily precipitation 5.28 416 (- | 2.78 (- | 4.88 (- 54(2.3) | 3.88 (- 4.19 (- 5.69 3.48 (-
(mm/day) 23.8) 62) 7.7) 31.5) 22.8) (7.6) 41)
5
10
15
20
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Table 5: Statistical evaluation of daily T-max retrieved from climate model and reanalysis-based products against
ground observations over the period of 1983-2005 for 21 validation areas of East Africa. For ease of comparison,
only selected statistical estimators are given in the table. Best fit is indicated in bold.

Validation ORH HadGEM2 GFDL MPI RCMs
areas CC | Rbia | RMS | CC | Rbia | RMS | CC | Rbia | RMS | CC | Rbia | RMS | CC | Rbia | RMS
s E s E s E s E s E

EthioShedl | 0.63 | 3.1 265 | 071 |-35 | 283 |05 |-32 |304 |068|-6.2 -6.2 072 | -43 2.56

EthioShed2 0.63 | -79 | 277 | 057 |-17.0 | 507 | 048 | -21 595 | 051 | -193 | 557 0.63 | -19.1 | 5.30

EthioShed3 | 0.71 | 4.1 230 | 077 | -6.7 | 272 |039|-68 |324 |0.73|-89 3.09 0.78 | -7.5 2.53

EthioShed4 | 0.64 | 5.0 267 | 042 | -156 | 495 | 052 | -19.1 | 5.74 | 043 | -16.9 | 5.22 0.56 | -17.2 | 5.06

EthioShed5 061 | 21 225 | 063 |-56 |312 |046|-103 | 398 | 062|101 | 3.83 0.65 | -8.7 3.23

EthioShed6 | 0.70 | -3.3 | 1.69 | 0.53 | -11.6 | 3.51 | 045 | -19.4 | 487 | 0.48 | -15.6 | 4.16 0.58 | -15.6 | 3.92

EthioShed7 063 | -28 | 230 | 063 |-13.8 |448 | 052 |-145 | 477 | 0.64 | -16.7 | 4.99 0.66 | -15.0 | 4.51

EthioShed8 | 0.63 | 1.4 233 | 065 |-77 |331 |056|-108 | 410 | 0.65 |-124 | 411 0.69 | -10.3 | 3.50

EthioShed9 | 0.35 | 2.3 259 | 030 |-74 |351 |028|-128 489 |021|-95 |41 033 | -99 | 381

EthioShed10 | 0.51 | 17.8 | 440 | 045 | -05 |270 | 034 |-41 |29 | 039 |-29 2.72 0.50 | -2.5 2.27

EthioShed11l | 0.52 | 1.6 2.4 054 | 3.0 278 | 045|-09 |31 0.56 | -1.6 2.84 0.60 | 0.2 2.34

EthioShed12 | 0.42 | -1.2 | 223 | 043 |-53 |29 | 0.16| -6 3.6 0.44 | -5.7 3.10 0.50 | -4.6 2.50

EthioShed13 | 0.4 175 | 577 | 033 |-50 |[397 |029|-75 |46 032 | -6.4 4.15 0.37 | -6.3 3.90

EthioShed14 | 0.51 | 0.1 272 | 043 | -11.4 | 48 0.41 | -158 | 6.17 | 0.38 | -13.1 | 5.28 0.47 | -135 | 5.20

EthioShed15 | 0.22 | 3.0 31 026 | -6.3 | 3.9 03 |-98 |39 0.14 | -10.2 | 45 0.27 | -8.8 3.73

EthioShed16 | 0.4 -31 [ 345 | 023 |-127 | 5.1 025 |-194 | 6.4 0.24 | -15.2 | 5.45 0.30 | -15.8 | 5.43

EthioShed17 | 0.62 | 5.2 2.3 058 | -36 | 292 | 045 |-78 |32 053 | -7.6 3.31 061 | -6.4 2.66

KenShed1 0.59 | 9.6 3.2 0.39 | 4.6 3.03 |[037 |09 294 1034 | 23 2.85 0.46 | 2.6 2.46

KenShed?2 065 |-73 | 262 | 048 |-71 |3.02 |04 |-17.2 | 497 | 041 |-118 | 3.83 0.53 | -12.1 | 3.62

TanzShed1 0.66 | -55 | 311 | 056 |-92 |416 | 039 |-114 | 482 | 048 | -11.1 | 458 0.58 | -10.6 | 4.20

TanzShed2 048 | -41 |28 0.35 | -14 4.9 022 | -139 | 503 | 035 | 164 |54 0.40 | -148 | 4.90
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Table 6: Statistical evaluation of daily T-min retrieved from climate model and reanalysis-based products against
ground observations over the period of 1983-2005 for 21 validation areas of East Africa. For ease of comparison,
only selected statistical estimators are given in the table. Best fit is indicated in bold.

Validation ORH HadGEM2 GFDL MPI RCMs
areas CC | Rbia | RMS | CC | Rbia | RMS | CC | Rbias | RMS | CC | Rbia | RMS | CC | Rbia | RMS
s E s E E s E s E

EthioShed1 054 | 7.1 176 | 045 | 128 | 255 | 0.37 | 3.7 244 104 |104 | 232 | 05190 1.97

EthioShed2 0.77 | -11.3 | 211 | 059 | -6 2.2 0.54 | -18.7 | 327 | 058 | -7.1 | 2.28 | 0.67 | -10.7 | 2.14

EthioShed3 | 0.65 | 6.8 212 | 055|155 | 271 | 05249 231 | 051|133 | 258 |062 | 112 | 220

EthioShed4 | 0.76 | 12.1 | 250 | 0.60 | -12.3 | 3.01 | 045 | -26.8 | 471 | 0.61 | -11.6 | 3.07 | 0.62 | -16.9 | 3.28

EthioShed5 045 | -109 | 265 | 0.28 | 6.9 228 |031]-39 229 022 |39 215 | 036 | 2.3 1.78

EthioShed6 | 0.69 | -104 | 1.9 053 | 165 | 238 | 047 | 6.7 238 | 049|159 | 242 |0.61 | 131 | 203

EthioShed7 | 0.63 | -7.6 | 2.01 | 023 | 94 260 | 0.26 | -0.5 287 1029 |64 230 | 035 |51 2.03

EthioShed8 | 0.33 | -0.1 165 | 0.24 | 16.7 | 3.08 | 0.21 | 8.6 278 | 015 | 12 2.6 0.27 | 124 | 2.46

EthioShed9 | 0.68 | 7.5 284 | 064 |-21 | 287 |059|-80 382 |058|-18 |313 |065 |-40 | 291

EthioShed10 | 0.67 | 16.2 | 258 | 0.50 | 9.4 246 | 038 | -3.1 266 | 050 | 8.8 251 | 054 | 50 2.13

EthioShed11 | 0.36 | -17.2 | 3.22 | 0.18 | 178 | 3.48 | 0.24 | 138 | 3.20 | 0.16 | 158 | 3.28 | 0.27 | 158 | 3.10

EthioShed12 | 0.46 | -6.6 247 | 041 |-38 | 240 | 034 | -6.6 2.9 039|-19 | 226 (045 |-41 |221

EthioShed13 | 0.57 | 31.2 | 477 | 054 | 2.7 276 | 0.46 | -8.9 342 | 05423 286 | 056 | -1.3 | 2.67

EthioShed14 | 0.72 | 4.6 268 | 061|-56 |327 |055|-163 | 462 | 059 |-55 |332 | 063 |-9.2 |340

EthioShed15 | 0.62 | -1.8 216 | 041|098 261 | 04405 241 | 036 | 6.7 254 | 051 |57 2.19

EthioShed16 | 0.50 | -8.2 345 | 042 | -7.7 3.7 031 |-231 | 498 | 042 -71 | 366 | 044 |-12.7 | 3.77

EthioShed17 | 0.61 | 7.1 217 | 043|197 | 296 | 044 | 9.0 244 1036|171 | 287 | 053 | 153 | 2.46

KenShed1 052 | 148 | 266 | 0.31 | 9.0 244 | 017 | 3.2 246 |03 | 104 | 252 |034 |75 2.18

KenShed?2 040 |-213 | 3.26 | 025 -181 | 3.15 | 0.25 | -246 | 4.0 032 | -16.1 | 288 | 035 | -19.6 | 3.15

TanzShed1 0.53 | -12.0 | 3.12 | 0.44 | -15 369 |038|-189 | 423 |044|-153|371 |05 |-16.2 | 3.72

TanzShed2 051 | -16.2 | 3.87 | 058 | -17.3 | 3.9 0.46 | -16.8 | 404 | 058 | -185 | 416 | 0.61 | -17.5 | 3.93

28



15°N

10°N

5°N

Legend

B Validation areas
[77] Study area and watersheds
771 Africa

20°E 25°E 30°E 45°E  50°E 55°E

Figure 1: Map of Africa and study regions (Ethiopia, Kenya, and Tanzania) with data validation areas
(EthioShed1-17, KenShed1&2, and TanzShed1&2). The basins are retrieved from the WaterBase global data
portal (http://www.waterbase.org/).
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Figure 2: Average daily rainfall (mm day™) maps of East Africa retrieved from ARC2, CHIRP, CHIRPS, ORH,
RCM, and RCMs for the study period 1983-2005. All the maps are given in a 0.05° spatial resolution.
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Figure 3: Maps of average daily T-max and T-min (°C) for East Africa generated from ORH and RCMs for the
study period 1983-2005. All the maps are given in a 0.1° spatial resolution.
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Figure 4: Scatter plots of monthly rainfall for ARC2, CHIRP, CHIRPS, ORH, and RCMs for eight validation
areas covering the period of 1983-2005 and aggregated from daily data. Shaded area displays the data density
around the regression line.
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Figure 5: Taylor diagram displaying the agreement between ground observation and synthesized dekadal and
monthly rainfall over eight validation areas of Ethiopia, Kenya, and Tanzania covering the period of 1983— 2005.
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Figure 6: Taylor diagram displaying the agreement between ground observation and synthesized dekadal and
monthly T-max over the eight validation areas of Ethiopia, Kenya, and Tanzania covering the period of 1983—
5  2005.
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Figure 7: Taylor diagram displaying the agreement between ground observation and synthesized dekadal and
monthly T-min over eight validation areas of Ethiopia, Kenya, and Tanzania covering the period of 1983— 2005.
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