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Review by Anonymous Referee #1, posted 27/09/2017

Reviewer’s This paper is of a great interest to the community of hydrologists in Africa. It is a first attempt

comment to estimate the seasonnal river discharge and its interrannual variability of the Ogooue River in
Gabon, from satellite data only. The main interest of this project is to build simulated water
heights and discharge time series for virtual gauging stations along the river course, while
discharge observed time series end in 1984 for most of the stations, and rainfall data are also
difficult to update. The satellite data and the methods used are validated against some in situ
data series, and show a good capacity to simulate coherent discharge time series for most of
the stations, even if the absolute precision remain of several tenth of cm, which is still difficult
to use for real time operational alerts. The paper is well organised and written, and the
illustrations are appropriate. | only recommend some minor corrections to clarify some points,
enlarge the references list to a few uncited papers related to the core of the study (at least
Mahe et al. 1990, see below), and correct some minor errors.

Author’s We thank the referee for the feedback and comments on the article. Particularly, we further

response thank the referee for the suggested references, and for providing the paper by Mahe et al.
(1999). Although we were aware of the paper through citations, we had not been able to
retrieve it or the paper by Mahe et al. (1990) until recently.

Changes p.5 1.8: References to the paper by Mahe et al. (1999) and Mahe et al. (1990) have been added.

Reviewer’s P1 Lines 16-17: the abstract indicates that this study is the best current baseline

comment characterization of hydrological conditions in the Ogooué river. It is partly true, if you consider
the previous publication of Mahe et al. 2013 which shows monthly discharges for the Ogooue
river over the period 2000- 2007 in regard of previous periods until 1990 (the 90’s are missing
time series).

Author’s Indeed the previous publication by Mahe et al. (2013) also offers a characterization of

response hydrological conditions based on the most up-to-date in-situ observations of discharge at the
Lambaréné station. However, the current study is the first example of a catchment-scale
representation of the Ogooué river regime, including multiple fluxes and storages at daily time
step, which can serve as a stepping-stone for simulations of scenarios of change in the basin.

Changes No changes made to the manuscript

Reviewer’s P 2 Line 27: accuracy between 30 and 70 cm: can the author estimate the discharge value error

comment considering this height margin?

Author’s Estimating river discharge from radar altimetry observations (and thus the propagation of

response uncertainty into discharge values) is quite tricky, as it requires information on river bathymetry




and the establishment of a rating curve. Michailovsky et al. (2012) converted radar altimetry
observations to discharge using in-situ observations from field campaigns and historical records
and obtained RMSE values ranging from 4.5 to 7.2% of the mean annual discharge amplitude,
corresponding to between 19.9 and 69.4 m”3/s for a water level RMSE between 30 and 70 cm
relative to the in-situ levels. While this is possible for missions with repeat ground tracks
crossing the river line at specific points with relatively short return periods (e.g. 30 days for
Envisat), bathymetry observations throughout the entire river would be required in order to
apply this to the CryoSat-2 mission, which is highly impractical.

Furthermore, as historical rating curves and bathymetry observations are not available for the
Ogooué, we compare the altimetry water height amplitudes observed by radar altimetry
directly to the simulated water height amplitudes. Thus, we do not need to estimate discharge.
We use Envisat and Jason-2 observations in the calibration and the accuracy of these missions
do impact the estimated discharge values, however the objectives are weighted by the
expected accuracy (in this case, 50 cm based on literature) to avoid overfitting to observation
uncertainties. CryoSat-2 has a very long return period but a high spatial resolution therefore we
reference the amplitudes to a mean elevation over small river stretches. Because of these
simplifications and challenges, CryoSat-2 observations are only used for qualitative validation of
the water height simulated by the model.

Reference:

Michailovsky, C. I., S. McEnnis, P. a M Berry, R. Smith, and P. Bauer-Gottwein. 2012. “River
Monitoring from Satellite Radar Altimetry in the Zambezi River Basin.” Hydrology and
Earth System Sciences 16 (7): 2181-92. doi:10.5194/hess-16-2181-2012.

Changes p.2 . 30-32: Added reference to uncertainty as demonstrated by Michailovsky et al. (2012)
which illustrates the resulting error in discharge estimate.

Reviewer’s P 3 Lines 25-29: About the previously used models, lumped models have proved less efficient

comment to represent the two annual flood peaks of equatorial rivers, mainly due to a very
approximative estimation of PE (Paturel et al 2003) (Dezetter et al 2008)
Paturel, J.E., Ouedraogo, M., Mahe, G., Servat, E., Dezetter, A., Ardoin, S. (2003). The influence
of distributed input data on the hydrological modelling of monthly river flow regimes in West
Africa. Hydrological Sciences Journal, 48, 6, 881-890.
Dezetter, A,, Girard, S., Paturel, J.E., Mahé, G., Ardoin-Bardin, S., Servat, E. (2008). Simulation
of runoff in West Africa: Is there a single data-model combination that produces the best
simulation results ? Journal of Hydrology, 354, 203-212.

Author’s We thank the referee for the comment and references, it is true that the importance of

response

adequately estimating PET is often overlooked.




Changes p.41.1-3: Added a comment on the importance of adequate estimates of PET with a reference
to the papers mentioned above.

Reviewer’s P 4 Line 29: Hydrological monitoring efforts “by ORSTOM hydrologists during the 50’s to

comment the 80’s”

Author’s response Reply: Thank you for the clarification.

Changes P5. 1.3 Updated accordingly
Reviewer’s P 4 Line 30: “. . .available informations are from 1984” for most stations, (Mahe et al., 1990;
comment 1994)
Mahé, G., Lerique, J., Olivry, J.C. (1990). L'Ogooué au Gabon. Reconstitution des débits
manquants et mise en évidence de variations climatiques a I'équateur. Hydrologie
Continentale, Ed. ORSTOM, Paris, 5, 2, 105-124.
Mahé, G., Delclaux, F., Crespy, A. (1994). Elaboration d’une chaine de traitement
pluviométrique et application au calcul automatique de lames précipitées (bassinversant de
I’Ogooué au Gabon). Hydrologie Continentale, 9, 2, 169-180.
Author’s Thank you for the comment. It is true that this is not the case for all stations, indeed only
response about half of the stations have observations dating until the 1980s and only two until 1984.
Changes p.5 1.5 Added clarification
Reviewer’s P 41.32: there is much more in the paper of Mahe et al. 2013 (update of the 1990’s paper), for
comment instance the dramatic reduction of the Spring flood at Lambarene since the 80’s, confirmed
during the 2000’s as showed in the 2013’s paper.
Author’s We thank the referee for the comment and completely agree: although the paper is a region-
response scale investigation, more details are available concerning the Ogooué as well.
Changes p.5 1.7-10 Updated paragraph with additional details from the paper by Mahe et al. (2013).

Reviewer’s comment P 5 Figure 1: the text in white is difficult to read




Author’s response

Thank you for the comment. The figure will be made more reader-friendly.

Changes Figure 1: Increased font size and changed color to black and lighter
elevation color

Reviewer’s P 6 Line 7: historical precipitations at four locations: which ones?

comment

Author’s We had access to historical precipitation observations at four locations in the basin: Booué

response (1948-1980), Fougamou (1950-1980), Lebamba (1954-1974) and Petit Okano (1954-1976).

Changes p.6 1.18-20 the location and time of observation at the four locations made available by our
project partners added to the text.

Reviewer’s P 9 Figure 3: too small

comment

Author’s The figure will be enlarged

response

Changes Figure 3: Font size and marker size increased

Reviewer’s P 11 Line 1: the storage constants are fixed how? And at which value?

comment

Author’s The storage constants are spatially and temporally uniform within each calibration zone

response but are modified during the calibration.

Changes p.11 1.6-7 Modification for clarity

Reviewer’s P 11: 3.7 Watershed Delination: Why not used the existing delineation available at the

comment SIEREM website? This site is cited by the authors, but it is difficult to know for what purpose
it is cited. http://www.hydrosciences.fr/sierem/index_en.htm
http://www.hydrosciences.fr/sierem/consultation/consultationgraphbas.asp?basid=OGOOUE
http://www.hydrosciences.fr/sierem/produits/gis/Ogooue.asp free GIS files soil WHC for 1 2
square degrees, from the FAO soil map of the world. Gives the water height for the upper soil
layer. Please cite Boyer et al., 2006 to refer to SIEREM Boyer, J.F., Dieulin, C., Rouché, N.,
Cres, A., Servat, E., Paturel, J.E., Mahé, G. (2006). SIEREM: an environmental information
system for water resources. In: Water Resource Variability: Hydrological Impacts. Proc. of the
5th FRIEND World Conference, La Havana, Cuba, IAHS Publ. 308, 19-25.

Author’s We thank the author for the comment and reference. The SIEREM website has been used to




response inform which observations are available in the basin. We make our own watershed
delineation in order to ensure that sites of interest and observation stations are resolved by
the model. The delineation is very similar to the one provided at the SIEREM website.
Regarding the FAO soil map, the maximum soil storage parameter in the model is aggregated
vertically and horizontally making a direct comparison tricky.

Changes p.28 1.8 added citation of suggested reference

Reviewer’s P 19 Table 4: the caption mentions number between parenthesis, but there are none in

comment the table. Please clarify.

Author’s response

We thank the referee for noticing this inconsistency.

Changes Table 4: Numbers have been removed and all station names are now indicated in Figure 1
instead.

Reviewer’s P 19 Line 7: total water storage 70.6 and 83%. OK, but which part of this percentage

comment participates to surface runoff?

Author’s The deep aquifer storage releases water directly to the river as return flow as shown in Figure

response 5. Any decrease in the storage is due to the return flow exceeding the recharge of the aquifers.
The deep aquifer holds the lion’s share in water storage change because the storage is
aggregated to monthly time steps before comparison to the GRACE observations. Most of the
low frequency variations are observed in the deep aquifer because of the smaller storage
constant and high frequency variations are averaged out in the other storages.

Changes p.20 1.10-p.21 1.2 Added clarification in text.

Reviewer’s P 25 Line18-19: there are more than a few decades of observations for the Ogooue river at

comment Lambarene, the time series starts in 1929, and some missing years have been reconstructed.
See Mahe et al. 1990

Author’s The text implies that the most recent records at most stations are more than a decade old. The

response authors did not have access to any observations ulterior to 1984 at any station, but did have

decade-long records available at all locations used for calibration and validation.

Changes

p.26 1.19 Text has been reformulated to avoid misunderstandings




Reviewer’s P 27 Line 6: OK to thank SIEREM, but the authors should refere to the Boyer et al 2006
comment paper (see up)

Author’s response | We thank the referee for the clarification

Changes See response above




Response to the review of Anonymous Referee #2, posted 13/10/2017

Reviewer’s The paper investigated the use of multi-mission remote sensing data to force, calibrate and
comment validate a lumped conceptual rainfall-runoff model on an ungauged Ogooué river basin in
Africa. The paper is clear and well written. | enjoyed to read this study because is well thought
out and organized. The Figures are appropriated even if | would prefer bigger (especially Figure
3, 6and 7). | recommend the publication of the paper after minor changes below specified.
Author’s We thank the referee for the feedback on the article.
response
Changes Figure 3: increased font and marker size
Figure 6: increased size and modified graphics and text setup
Figure 7: Removed redundant subplots and increased font size
Also:
Figure 9: Font increased to improve readability
Reviewer’s Some references are not properly assigned to the concept. An example is the paper of Berry et
comment al. (2012) mentioned at P1 Line24 and P2 Line 13 to underline the decline of in-situ gauging
networks. | think different papers can replace this citation [1, 2, 3]. Please check also the
reference Schumann and Domeneghetti (2016) at P25 Line 26.
References:
[1] C. Vorosmarty, A. Askew, W. Grabs, R. G. Barry, C. Birkett, P. D6ll, B. Goodison, A. Hall, R.
Jenne, L. Kitaev, J. Landwehr, M. Keeler, G. Leavesley, J. Schaake, K. Strzepek, S. S. Sundarvel, K.
Takeuchi and F. Webster, “Global water data: A newly endangered species,” Eos Trans AGU,
vol. 82, no. 5, pp. 54-58, Jan. 2001.
[2] N. Sneeuw, C. Lorenz, B. Devaraju, M. J. Tourian, J. Riegger, H. Kunstmann and A. Bardossy,
“Estimating runoff using hydro-geodetic approaches,” Surv. Geophys., vol. 35, no. 6, pp. 1333—
1359, 2014.
[3] D. M. Hannah, S. Demuth, H. A. J. van Lanen, U. Looser, C. Prudhomme, G. Rees, K. Stahl and
L. M., Tallaksen, “LargeaA” Rscale river flow archives: importance, current ~ status and future
needs,” Hydrol Process., vol. 25, no. 7, pp. 1191-1200, Mar. 2011.
Author’s We thank the referee for pointing this out and for the suggestions. We agree that more
response appropriate references should be cited at the mentioned places.
Changes Updated following references:

p.11.21: Awange et al. 2014 to Tanner and Hughes, 2015 (more representative example of a
study using hydrological models to obtain information about river basin hydrology)

p.11.23: Berry et al., 2012 to Vérésmarty et al., 2001 and Hannah et al., 2011

p.2 |.2: Added Sneeuw et al., 2014




p.2 1.14: Replaced Berry et al., 2012 with Hannah et al., 2011
p. 26 1.28: updated reference to Domeneghetti et al. 2014

Reviewer’s Plots a, b, c of Figure 2 are not mentioned and commented in the text. Please description.
comment

Author’s Thank you for pointing this out, indeed a reference to the subfigures is missing.

response

Changes p.6 1.14: Added reference to subfigures: “The spatial and temporal distribution of rainfall is

relatively similar (Figure 2, a and b), however (...)"

Reviewer’s comment | Moreover, P6 Line 4 “(Figure 2, c and d)” should be replaced with “(Figure 2, d and e)”.

Author’s response

Thank you for pointing this out, indeed the reference to the subfigures is incorrect.

Changes p.6 1.16: Figure reference updated

Reviewer’s P19 Line 2: “.. . and simulated the two models in the two basin helves”. What does the
comment authors mean with “two models”?

Author’s The “two models” refer to the two versions forced with the two different remote sensing
response precipitation products, i.e. the FEWS-RFE forced model and the TRMM forced model.
Changes p.20 1.3 Changed to “TRMM and FEWS-RFE forced models

Reviewer’s Table 4: in the caption parenthesis are mentioned but they are not present in the table.
comment Please correct.

Author’s We thank the referee for pointing this out.

response

Changes Table 4: Locations are indicated by name in Figure 1, therefore the mention of the numbers

in parenthesis have been removed from the caption.

Reviewer’s comment

Table 7: the acronym MD is not specified in the text or in the caption.




Author’s response

We thank the referee for pointing this out.

Changes

Table 7: changed to bias for consistency with Table 8




Additional changes:

General:

e Punctuation and grammar changed where needed
e Tables made homogeneous

Table 2:

e Corrected unit of Manning’s roughness coefficient
e X_GW given in fraction rather than % for consistency with model setup as will be released with GW-A
toolbox (see code accessibility)

Table 3:

e Numbers in subscript removed from Figure 6 and therefore also from Table 3
Figure 9:

e Fontincreased to improve readability

Table 5

e Specified objective function given in table
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Informing a hydrological model of the Ogooué with multi-mission
remote sensing data
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Abstract. Remote sensing provides a unique opportunity to inform and constrain a hydrological model and to increase its value
as a decision-support tool. In this study, we applied a multi-mission approach to force, calibrate and validate a hydrological
model of the ungauged Ogooué river basin in Africa with publicly available and free remote sensing observations. We used
a rainfall-runoff model based on the Budyko framework coupled with a Muskingum routing approach. We parametrized the
model using the SRTM DEM, and forced it using precipitation from two satellite-based rainfall estimates, FEWS-RFE and
TRMM 3B42 v.7, and temperature from ECMWF ERA-Interim. We combined three different datasets to calibrate the model
using an aggregated objective function with contributions from: (1) historical in-situ discharge observations from the period
1953-1984 at six locations in the basin, (2) radar altimetry measurements of river stages by Envisat and Jason-2 at 12 locations
in the basin and (3) GRACE total water storage change. Additionally, we extracted CryoSat-2 observations throughout the
basin using a Sentinel-1 SAR imagery water mask and used the observations for validation of the model. The use of new satel-
lite missions, including Sentinel-1 and CryoSat-2, increased the spatial characterization of river stage. Throughout the basin,
we achieved good agreement between observed and simulated discharge and river stage, with a RMSD between simulated and
observed water amplitudes at virtual stations of 0.74 m for the TRMM forced model and 0.87 m for the FEWS-RFE forced
model. The hydrological model also captures overall total water storage change patterns, although the amplitude of storage
change is generally underestimated. By combining hydrological modelling with multi-mission remote sensing from ten dif-
ferent satellite missions, we obtain new information on an otherwise unstudied basin. The proposed model is the best current

baseline characterization of hydrological conditions in the Ogooué in light of the available observations.

1 Introduction

River basin hydrology, ecosystem health and human livelihood are intrinsically linked, emphasizing the need for knowledge

about hydrological processes at river basin scale. While hydrological models can increase the understanding of the hydrological

regime and its vulnerability to changes (Awange-et-al;204+4)(Tanner and Hughes, 2015), physical observations of hydrological

states are required to force and calibrate hydrological models and are crucial to produce useful simulations. Paradoxically, in-

situ gauging networks have thinned out over recent decades Berry-et-al5; 2042} Vorosmarty et al., 2001; Hannah et al., 2011
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. Satellite remote sensing provides a unique opportunity to acquire information on important components of the land-surface
water balance and bridge this gap (Tang-etal52009)(Tang et al., 2009; Sneeuw et al., 2014). Remote sensing estimates can
supplement and, to some extent, replace in-situ observations, where these are insufficient or impossible to acquire

Xie-etal; 2042 Knoeche-etals2044)(Getirana, 2010; Xie et al., 2012; Knoche et al., 2014). As more remote sensing-based es-
timates of hydrological variables become globally and publicly available the need for sound and scientifically founded methods
to integrate remote sensing observations with hydrological models increases (van Griensven et al., 2012).

Several studies have benefitted-benefited from using remote sensing based estimates to provide hydrological models with
necessary basin-scale information and forcing inputs (e.g. Bauer-Gottwein et al. (2015); Stisen et al. (2008); Awange et al.
(2016)). A large number of satellite-based products are publicly available, offering gridded, large-scale information at global
scale. Furthermore, hydrological models often contain conceptual parameters, which are either impossible or impractical to
measure directly (Xu et al., 2014). In order to estimate the best-fitting parameter values - and subsequently evaluate model
performance — model simulations are compared to observations of hydrological variables. Traditionally, hydrological models
use discharge measurements to calibrate and validate hydrological models (Bauer-Gottwein et al., 2015; Knoche et al., 2014).
However, in many river basins, in-situ data is limited or insufficient (Berry-et-al5-2042)(Hannah et al., 2011). Instead, remote
sensing observations of hydrological state variables such as river level (Schneider et al., 2017), total water storage or soil
moisture (Milzow et al., 2011; Xie et al., 2012; Abelen and Seitz, 2013) can be used to calibrate and validate the hydrological
model performance and improve parameter estimation. Alvarez-Garreton et al. (2014) improved model parametrization by
exploring multiple hydrological state variables in a multi-objective calibration.

A commonly used supporting dataset is total water storage change inferred from gravimetric remote sensing. Since 2002,
the Gravity Recovery and Climate Experiment (GRACE) mission has recorded and mapped temporal anomalies in the Earth’s
gravity field. Changes in terrestrial water storage can be inferred from these anomalies. The dataset has been successfully used
to evaluate catchment-scale total water storage and as part of hydrological model calibration (Xie et al., 2012; Awange et al.,
2014; Eicker et al., 2014; Mulder et al., 2015).

The use of radar altimetry to infer river levels is a relatively new field of research as the utility of the observations over
narrow water bodies is limited by the footprint of the altimeter and consequent topographicat-noiserisk of contamination from
surrounding land, large ground track spacing and low overpass frequency (Schumann and Domeneghetti, 2016). Since the
1990s, technological advances and the improvement of retracking algorithms have enabled the extraction of radar altimetry
observations of water heights over inland water bodies (Berry and Benveniste, 2013), with accuracies of between 30 and
70 cm — even for rivers less than several hundred meters wide (Villadsen et al., 2015; Schumann and Domeneghetti, 2016).

Michailovsky et al. (2012) used in-situ observations from field campaigns and historical records to obtain discharge estimates

from radar altimetry observations and obtained RMSE values ranging from 4.5 to 7.2% of the mean annual discharge amplitude
corresponding to 19.9 and 69.4 m3/s respectively for a water level RMSE between 30 and 70 cm relative to the in-situ levels.

Radar altimetry has been used in several studies to inform hydrological models both for calibration and in data assimilation

schemes (Michailovsky et al., 2013; Getirana and Peters-Lidard, 2013; Getirana, 2010). Repeat ground track missions, such as

Envisat or Jason-2 are typically favored in hydrological studies, as time series can be obtained at fixed locations over the river
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(virtual stations), similarly to traditional gauging stations. Increasing the spatio-temporal resolution of river level observations
by applying a multi-mission approach can improve model calibration (Domeneghetti et al., 2014) and the representation of
river hydraulics (Tourian et al., 2016).

Therefore, recent studies have focused on densifying the altimetry dataset by incorporating observations from drifting ground
track missions as well (Schneider et al., 2017). The long repeat period results in a higher spatial resolution, as more points
are sampled along the river. Water masks with sufficiently high resolution are required to extract the observations properly.
Schneider et al. (2017) used a water mask based on Landsat Normalized Difference Vegetation Index (NDVI) observations to
extract CryoSat-2 observations over the Brahmaputra. However, optical data is not suitable in tropical regions with frequent
cloud cover. New, publicly available Synthetic Aperture Radar (SAR) observations from Sentinel-1 enable the extraction of
water masks with high spatial and temporal resolution, facilitating the extraction of CryoSat-2 observations over rivers globally.

The biggest obstacle in using remote sensing data products in hydrological modelling is the difficulty to define uncertainties
in the data (Tang et al., 2009; van Griensven et al., 2012). The latter is still poorly described at a global scale, and current
sensors and extraction algorithms are not precise enough to close the water balance based on remote sensing data (Tang et al.,
2009). Furthermore, Gebregiorgis et al. (2012) showed a very high correlation between runoff error and precipitation misses
(85%), highlighting the importance of accurate precipitation estimates. Because of the crucial role of precipitation in driving the
land-surface water balance, several precipitation datasets are often compared, if possible to in-situ observations, and evaluated
through their performance as model input prior to selecting a specific product (e.g. Awange et al. (2016); Milzow et al. (2011);
Cohen Liechti et al. (2012); Stisen and Sandholt (2010)).

However, if only one hydrological variable is considered, calibration of the hydrological model can compensate for data
errors, and in turn conceal deficiencies in the model structure. Knoche et al. (2014) and van Griensven et al. (2012) amengst
among others, stipulate that while remote sensing input data has opened for new possibilities in terms of catchment-scale
modelling, calibration focused on discharge observations tends to compensate for input-data errors by compromising the rep-
resentation of other hydrological processes. Awange et al. (2016) recommend evaluating the sensitivity of multiple outputs
(e.g. groundwater recharge or actual evapotranspiration) to assess the effect of different data sets and uncover interdependeney
interdependence between model evaluation and data. Furthermore, Knoche et al. (2014) identified a correlation between sensi-
tivity to input data errors and model complexity, showing that lumped conceptual models can provide good results in spite of
the reduced complexity (Xu et al., 2014). While several studies have investigated the benefits of using a single type of remote
sensing data to supplement in-situ data, few studies have combined several remote sensing data types with available in-situ
data to inform hydrological models (Milzow et al., 2011).

The choice of model determines the input requirements as well as the level of parametrization, both of which increase
with model complexity. Previous studies have used models with varying complexity ranging from fully-distributed physically
based hydrologic and hydrodynamic models (Stisen and Sandholt, 2010; Paiva et al., 2011) to semi-distributed models (Xie
et al.,, 2012; Han et al., 2012), and simpler, lumped conceptual rainfall-runoff models (Knoche et al., 2014; Brocca et al.,
2010). Whilst gridded remote sensing data offers the possibility to parametrize and drive fully-distributed models with high

spatio-temporal resolution, the choice of model must reflect the user requirements and capacities as well as the availability and
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uncertainty of the observations used to define the model (Johnston and Smakhtin, 2014). Furthermore, Paturel et al. (2003)

and the follow-up study by Dezetter et al. (2008) highlighted the importance of reliable Potential Evapotranspiration (PET
estimates and of a robust, suitable numerical model, particularly in arid regions. Here, we select a model structure, which can

accommodate the integration of different types of remote sensing observations and is suitable in data scarce regions and for a
wide range of user requirements.

In this study, we investigate how multi-mission remote sensing observations can be used to inform a hydrological model
of a large ungauged basin, the Ogooué, Gabon. We show how combining multiple, publicly available datasets can increase
the spatio-temporal characterization of river hydrology and improve model parameter definition. Remote sensing observations
of precipitation and temperature are used to force the model, and observations of water height and total water storage from
satellite altimetry and gravimetric observations respectively are used to supplement historical in-situ discharge observations in

the model calibration and validation.

2 The Ogooué

The Ogooué is the fourth largest river in Africa by volume of discharge with a mean annual rate of 4700 m? s. It is 1200 km long
and drains approximately 224 000 km?, 90% of which lie within Gabon (Figure 1). The river originates in the Ntalé mountains
on the Batéké Plateau in Congo and runs northwest into Gabon. The basin is characterized by plateaus and hills bordering a
narrow coastal plain. Although the hills are not very high (mean elevation in the catchment is 450 m), steep slopes and cliffs
several hundred meters above the plain below create characteristic chutes and rapids, and between Lastourville and Ndjolé, the
river is unnavigable. After Ndjolé, the river runs west and reaches the 100 km wide and 100 km long Ogooué Delta. The lower
part of the Ogooué is navigable and gentler than the rest of the river, with relatively low bed slopes, between 0.07 - 0.13 m km.
The river has numerous tributaries. The largest are the Ivindo, which flows from Northeast to Southwest Gabon before draining
into the Ogooué just below the Chutes and Rapids of the Ivindo, and the Ngounié, which flows from the Chaillu Mountains
along Gaben’s-Seuthern-berder-the southern border of Gabon before joining the Ogooué just upstream of Lambaréné.

The climate is equatorial with two rain seasons: February to May and October to December. Mean annual precipitation is
1831 mm and temperatures vary between 21 and 28°C. The dense vegetation cover across the basin attenuates the potential
flooding from the heavy rain in the two rainy seasons, and the basin is not particularly prone to flooding. Large portions of the
river are fed by baseflow during the drier austral winter months, when cooler temperatures greatly reduce evapotranspiration
(Mengue Medou et al., 2008).

The main challenge for water resources management in the region is the reconciliation of conservation and development
plans. The Ogooué is home to several important ecosystems including several Ramsar sites (i.e. wetlands of international
importance) such as the Chutes and Rapids of the Ivindo, Mbougou Baduma and the Doumé Rapids. Conservation of these
wetlands is intrinsically linked to the hydrological regime in the basin. The Ogooué also plays a significant role in development
plans in Gabon, both as part of the energy infrastructure and as a transport waterway (World Bank, 2012). Thousands of

endemic species have been identified in the region surrounding the Grand Poubara hydropower station and in potential mining
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sites, and the risk of pollution from mineral industries and transport combined with changes to the flow regime are not negligible
for the riparian ecosystems (Mezui and Boumono Moukoumi, 2013).

Hydrological monitoring efforts in-the+960s-and—+976s-by ORSTOM hydrologists from the 1950s until the 1980s have
produced decade-long time series of discharge measurements at several locations in the basin; however, the most recent publicly
available observations are from 19841984 at Lambaréné, and earlier for all other in-situ stations. Published studies focusing

on the hydrological regime of the Ogooué have focused on large scale investigations of West African rivers and histerical

—on the reconstruction of historical discharge observations
Mabhe et al., 1990; Mahe and Olivry, 1999; Mahe et al., 2013). Mahe et al. (1990) highlighted a reduction and temporal shift

in the Spring flood at Lambaréné since the 1980s, which was later confirmed in the 2010s in Mahe et al. (2013) and attributed
to changes in the regional climate pattern. To the authors’ knowledge, there are no previous hydrological modelling studies of

the basin.
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Figure 1. Basemap of the hydrological model of the Ogooué basin along with in-situ discharge stations and altimetry virtual stations.

3 Data and Methods
3.1 Climate Forcing

Daily temperature and precipitation observations are required to force the hydrological model. We used-use the ERA-Interim

reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) as temperature input. Global, 6 hourly
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2 m temperature estimates at 0.75degree-° spatial resolution can be accessed from 1979 to present with 2 months delay.
We select two widely used and well documented satellite-based rainfall estimates to force the model based on results from
previous studies comparing satellite rainfall estimates (SRFE) products over the African continent (Thiemig et al., 2013;
Stisen and Sandholt, 2010; Awange et al., 2016). The Famine Early Warning System — Rainfall Estimate (FEWS-RFE) has
been operational since 2001 and is specifically designed for the African continent. The Tropical Rainfall Measuring Mission
(TRMM) is a global mission launched by NASA in late 1997 and operational until 2015. The TRMM 3B42 v.7 product is
a reanalysis product produced from observations from the Global Precipitation Measurement (GPM) since 2015. The dataset
has a temporal resolution of 3 hours and a spatial resolution of 0.25degrees-° and is provided between 50degrees-south-"S and
S50degreesnorth®N. All climate data is aggregated to daily observations. We placed-place virtual climate stations at the centroid
coordinates of each model subbasin and transfermed-transform the gridded precipitation and temperature data to point data

using zonal statistics over the subbasins of the hydrological model.
3.2 Intercomparison of precipitation data

We eompatred-compare the two precipitation products in order to identify any significant differences in precipitation trends.
The spatial and-temporal-(Figure 2 a and b) and temporal (Figure 2 ¢) distribution of rainfall is relatively similar; however,
TRMM predicts significantly more rain than FEWS-RFE (1600-2400 mm per year versus 1200-2200 mm). The annual average
precipitation and double mass plot (Figure 2, e-and-d-d and e), reveal that while the overall inter-annual variations are similar,
the magnitude varies strongly: ranging from nearly similar annual magnitude in 2010 and 2011 to 500 mm more rain in
2006 and 100 mm less rain in 2014 predicted by TRMM compared to FEWS-RFE. A-comparison-We compare the satellite
observations fo historical precipitation observations at four locations in the basinreveated—: Booué (1948-1980), Fougamou
(1950-1980), Lebamba (1954-1974) and Petit Okano (1954-1976). The comparison reveals that while both products record
more days with rain, TRMM is closest to the observed mean monthly precipitation with a RMSD of between 11 and 19% of
the observed precipitation compared to RMSD values of 18 to 33% for FEWS-RFE. The satellite-based estimates are gridded
data, observing rain events over larger areas than the gauge-stations, thus increasing the probability of recording at least one
smaller event every day. Secondly, the period of record differs between the in-situ data and the SRFE observations by over
two decades, leaving room for changes in the long-term trends. The analysis indicates the products are relatively similar and
we found-find no large discrepancies in terms of trends between the in-situ and remotely sensed observations. Without up-to-
date in-situ precipitation, records covering the entire basin it is impossible to conclude which product best reflects the present

precipitation patterns over Gabon. Therefore, we estimate the model parameters using both products as model forcing.
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Figure 2. Average annual precipitation in the Ogooué basin based on FEWS-RFE (a) and TRMM 3B42 v7 (b), Long-term monthly average
(c) and annual average (d) precipitation from TRMM 3B42 v7 and FEWS-RFE v2 and double mass plot (e).

3.3 GRACE Total Water Storage

We obtain total water storage observations over the Ogooué from the JPL mascon surface mass change solution applied to
Gravity Recovery and Climate Experiment (GRACE) gravimetric observations (Longuevergne et al., 2010; Watkins et al.,
2015). Data from April 2002 to present can be derived at monthly intervals. A mascon-set of multiplicative gain factors are
provided with the dataset and can be applied to compensate for the attenuation of small scale mass variations due to the
sampling and processing of the GRACE observations — for instance in hydrological studies were these may be significant — by
reducing the difference between the smoothed and unfiltered total water storage variations (Long et al., 2015). The gain factors
have a spatial resolution of 0.5degrees®; however, at this resolution the correlation between neighboring cells is much higher.
We aggregate the scaled solution to the native resolution of the mascons to produce time series for the two regions within the

Ogooué using zonal statistics, splitting the basin along the frontier of two mascons (Figure 1).
3.4 SAR Imagery

Sentinel-1 is a two-satellite constellation launched by the European Space Agency (ESA) in 2014 for land and sea monitoring.
The two satellites orbit 180° apart, at a 700 km altitude, ensuring optimal coverage and a short revisit time of 6 days on
average. Both Sentinel-1 satellites carry a SAR instrument working in C-band, which penetrates cloud cover. Over land, the
satellite operates in Interferometric Wide swath (IW) mode by default, with a swath width of 250 km and a 5 x 20 m ground
resolution. Sentinel-1 satellites carry dual-polarization SAR instruments, which can transmit and receive signals in vertical (V)

and horizontal (H) polarization. In IW mode, dual polarizations VV and VH are available over land.
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Level-1 Ground Range Detected (GRD) IW Sentinel-1 images acquired in May and June 2016 over the study area are pre-
processed in the ESA Sentinel Application Platform preeessing-toolbox (SNAP). The images are (1) calibrated, (2) speckle
filtered using the Refined Lee filter and (3) geocoded using Range-Doppler terrain correction with the 3 s-arc-second Shuttle
Radar Topography Mission (SRTM) DEM as topographic reference. Due to the lower reflectance of water compared to land;
the histogram of the filtered backscatter coefficient is expected to contain two peaks of different magnitudes: very low values
of backscatter corresponding to water pixels, and higher values representing the land pixels. The threshold separating water
from non-water points is the minimum between the two peaks. We define a threshold value for each individual scene and
adjust it manually to ensure the best balance between false positives (where soil moisture enhances absorption thus decreasing

backscattering) and false negatives (waves on the water surface enhance reflection and increase backscattering).
3.5 Altimetry

We obtain remotely sensed river stages from Envisat and Jason-2 from the River&Lake and Hydroweb project databases (Berry
et al., 2005; Santos da Silva et al., 2010) at 12 locations in the basin within the Sentinel-1 water mask, at temporal resolution
corresponding to the satellites’ return periods: 35 days and 10 days respectively, for the periods 2002-2009 and 2008-2012.
Additionally we obtained-obtain CryoSat-2 Level 2 data from the National Space Institute, Technical University of Denmark
(DTU Space) for the period 17/07/2010 to 21/02/2015. The data provided by DTU Space is based on the 20 Hz L1b dataset
provided by ESA and has been retracked using an empirical retracker. Details concerning data processing are described in
(Villadsen et al., 2015). Finally, ICESat laser altimetry observations were-are obtained from the Inland Water Surface spot
heights (IWSH) database for the period 2003-2009. Details on the processing of the ICESat observations can be found in
O’Loughlin et al. (2016). The 48 ICESat observations within the Ogooué basin provided on the IWSH database have been
filtered using a using a global water mask and transect-averaged (O’Loughlin et al., 2016). All the obtained river stages are
transect averaged. We project all altimetry observations onto the EGM2008 geoid.

We filter the CryoSat-2 observations over the Sentinel-1 river mask using a point-in-polygon approach, and reprejected
reproject the points onto the model river line. 762 CryoSat-2 ground tracks cross the Ogooué basin during the period of record,
resulting in 1521 single observations within the river mask. Obvious outliers in the CryoSat-2 dataset are removed using the
SRTM DEM. Over the Ogooué, the CryoSat-2 altimeter operates in Low Resolution Mode (LRM). The CryoSat-2 waveform
may include topographical noise due to its large footprint in LRM, particularly in the middle part of the river. CryoSat-2 heights
are almost consistently smaller than SRTM derived heights. The difference can be attributed to topographical noise and the
density of vegetation in the basin, as SRTM contains averaged topography within 90 m pixels and may be recording the top
of the canopy. Furthermore, we identified-identify discrepancies in the longitudinal cross-section of the SRTM DEM along the
river line. We redueedreduce the risk of removing potentially valid CryoSat-2 observations based on erroneous SRTM heights
by correcting the SRTM heights to the immediate downstream value, if they exceed the upstream elevation by more than 1
m. We define CryoSat-2 outliers as observations more than 20 m lower than the SRTM height or more than 3 m higher. Most

outliers are from single observation transects.
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~In cases where CryoSat-2 overpasses are parallel to the
river line, important spatial variations may be lost in a single transect average. However, as most of the Ogooué runs perpen-
dicular to CryoSat-2 satellite tracks, we transect-average the observations to obtain a time series. For tracks crossing subbasin
borders, two separate means are calculated. We obtain 524 transect-averaged observations from the 1342 outlier-filtered single
observations. Most observations are concentrated in the lower Ogooué (downstream of Ndjolé), furthest downstream of the
river network. Figure 3 shows the longitudinal profile of the SRTM elevation with the ICESat and CryoSat-2 single observa-
tions for the entire river (CryoSat-2 outliers are shown in grey). The river network includes confluent branches, resulting in
three possible “routes” in the basin: the Ogooué (from the Batéké plateau to the Delta), the Ivindo (from the Eastern Gabon
plateau through the confluence to the Ogooué to the Delta) and the Ngounié (from the upstream Ngounié to the Ogooué delta).
To ensure each point is associated to a single chainage, we define the latter as the distance of each point on the river to the main
outlet in kilometers. Outliers are concentrated between around chainage 150 and downstream of the Batéké Plateau (chainage
780 on the Ogooué, lower branch in Figure 3). In the upstream regions, the river drops off plateaus and runs through narrow
valleys surrounded by steep slopes, increasing the risk of reflections from the surrounding land surface. Visual inspection of
the longitudinal profile does not suggest clear bias (see inset in Figure 3); however the ICESat observations are generally larger
than the CryoSat-2 observations, which is explained by time of observation: 62.5% of the ICESat observations are sampled

during the wet seasons (February-April and September-December) against only 39.0% of the CryoSat-2 observations.
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Figure 3. Longitudinal profile of the single CryoSat-2 observations, transect-averaged ICESat observations and corrected SRTM reference

heights on the Ogooué and its tributaries.

While the altimetry water heights are referenced to EGM2008, the model simulates water depth. To circumvent this discrep-
ancy, we compare water height anomalies. For repeat ground track missions, the average water height recorded at each virtual
station is subtracted from each observations to obtain the water height anomalies. Due to the coarse resolution of CryoSat-2
observations, the observations are interpolated over space and time, considering only the day of year (DOY) of the observation.
The mean water height at a given chainage is subtracted from the interpolated water heights and from the individual obser-
vations to obtain relative water heights or anomalies. The amplitude of Envisat and Jason-2 observations are compared to the

CryoSat-2 amplitudes in order to evaluate potential inter-satellite bias throughout the basin (Table 1). Concurrence between



the missions strengthens the model evaluation and justifies the multi-mission approach. The interpolated mean annual water
elevation at a given chainage is subtracted from the observations and only the day of year (DOY) of the observation is consid-
ered. Figure 4 shows the spatio-temporal distribution of the Envisat/Jason-2 observations against the CryoSat-2 observations.

The two rain seasons are clearly visible with all missions, with the annual minimum in June-September (DOY 153-244).
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Figure 4. Spatio-temporal characterization of the annual water elevation changes of the lower Ogooué.

Table 1. Comparison of CryoSat-2 and Envisat/Jason-2 water height amplitudes for three branches of the Ogooué with sufficiently dense

CryoSat-2 observations. The dispersion of the amplitudes predicted by CryoSat-2 are given by the standard deviation for the given river

section.

CryoSat-2 CryoSat-2 Amplitude . . Envisat/Jason-2
Virtual Stations
Observations [m] Amplitude [m]
Upstream of Makokou (Ivindo) 32 334+1.5 1 2.22
Upstream of Sindara (Ngounié) 41 2.8+£09 3 24-32
Downstream of Ndjolé (Ogooué) 156 3.4+0.7 4 24-3.7

3.6 Hydrological Model

The hydrologic-hydrodynamic modelling framework used in this study consists of a lumped conceptual rainfall-runoff model
based on the Budyko framework and developed by Zhang et al. (2008), coupled to a cascade of linear reservoirs and a Musk-

ingum routing compartment (Chow et al., 1988). Figure 5 shows the model flow chart.

10
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Figure 5. Flow chart of the hydrologic-hydrodynamic model along with the two main modifications to Zhang et al. (2008)’s rainfall-runoff

model: the deep aquifer and the tributary processes.

Zhang et al. (2008) simulate catchment water balance down to a daily time scale using a holistic approach based on the
Budyko-framework, which assumes that two parameters control the equilibrium water balance: water availability and atmo-
spheric demand. The former is approximated by precipitation, while the latter is represented through potential evapotranspi-
ration. In Zhang et al. (2008)’s approach, catchment storage is conceptualized as two compartments: root zone storage and
groundwater storage. In this study, we add a deep aquifer, splitting groundwater recharge using a simple, time constant par-
titioning coefficient. The two aquifers have different storage constants used to calculate baseflow in the model. The storage
constants are spatially and temporally uniform within each calibration zone but are adjusted in the calibration. At each time
step, Budyko’s limits concept is used to partition precipitation into direct runoff and catchment rainfall retention, to compute
groundwater recharge from the catchment retention and soil storage and to partition soil water availability into actual evapo-
transpiration (ET) and the updated soil storage. In natural systems, several processes delay direct runoff before it reaches the
main channel (overland flow, transmission losses, evaporation losses, bank storage etc. (Neitsch et al., 2009)) and the basin
contains a number of lakes and wetlands, which are not directly resolved by the model. Therefore, we implement conceptual
tributary reaches in the form of a Nash cascade of linear reservoirs to route the direct runoff and baseflow from the shallow
aquifer to the main channel.

We use Muskingum routing to route discharge from one subbasin outlet node to the next (Chow et al., 1988). The approach
has two parameters: a proportionality coefficient, K, between the cross-sectional area of the flood flow and the discharge at a
given section and a dimensionless weighting factor, X. Traditionally, K and X are calibrated using inflow and outflow observa-
tions, however in poorly gauged catchments, the parameters can be fitted through calibration and assumptions about channel

properties. We estimate K based on segment lengths and average river flow velocity calculated from Manning’s equation using
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trapezoidal cross-sections and a calibrated roughness coefficient (Todini, 2007). In this study, we selected a 1:2 run to rise ratio,

resulting in relatively limited changes in widths. X and Manning’s roughness coefficient, n, are calibrated.
3.7 Watershed Delineation

We use the SRTM Digital Elevation Model (DEM) and TauDEM watershed delineation hydroprocessing routine (Tarboton,
2015) to derive the drainage network and subbasins. The DEM resolution is reduced to approximately 1 km in order to comply
with memory and CPU constraints. We place model outlets at points of interest including in-situ gauging stations and upstream
of key wetlands. The latter are included for reference in future scenario development studies in the catchment. Reach geometry
including bed slope, reach lengths and widths are estimated by the hydroprocessing tool and refined based on the Sentinel-1
water mask and a high resolution SRTM DEM. We further subdivide the main channel into reach segments in order to ensure

numerical stability of the routing model. We place cross-sections every 5-25 km.
3.8 Calibration

In order to include multiple observations of varying spatio-temporal scale, a holistic calibration approach is used. A warm-up
period of 1 year allows the model to stabilize. Based on the basin geography, we divide the basin into six calibration zones

with common parameter values (Figure 1):

The Batéké Plateau: The Haut-Ogooué until Lastoursville station (Subbasins 4, 8 and 12)

The Eastern Gabon Plateau: the upstream Ivindo basin until the Makokou station (Subbasins 9 and 10)

The Ogooué and the Ivindo catchments until the Booué station (Subbasins 13, 14, 16, 17 and 18)

The Ogooué until the Ndjolé station (Subbasins 1, 2, 5, 6, 19, 20, 21 and 22)

The Ngounié (Subbasins 3, 7, 11 and 15)

The lower Ogooué and Delta until Port Gentil, using the Lambaréné station at the outflow of subbasin 25 for calibration

(Subbasins 11, 15, 23, 24, 25, 26, 27)

The calibration parameters are shown in Table 2. In total 60 parameters are calibrated.

12



Table 2. Calibrated model parameters - one set of 10 parameters is defined for each calibration region. Calibration ranges are based on early

trials, manual calibration and parameter definitions.

Parameter Symbol Description [Unit] Calibration Range

Budyko parameter governing the partition between
(e5) . [0 1-0. 7]
catchment retention and runoff [-]

Budyko parameter governing the partition between
Q2 ) [0.1—-0.7]
catchment retention and runoff [-]

d Baseflow recession coefficient [day™'] [0.003 —0.7]
Simax Maximum soil water storage [mm] [100 — 1500]
Number of identical reservoirs in series in Nash
NNash [1 — 10]
cascade [-]
KNash Reservoir storage constant in Nash cascade [day] [1-10]
Partitioning coefficient of recharge to shallow and deep
Xew 16—95}[0 — 0.95
aquifer [%-]
daeep Deep aquifer baseflow recession constant [-] [0.001 —0.2]
X Muskingum weighting factor [-] [0—0.5]
n Manning’s #-roughness coefficient [-s/m"*] [0.015 — 0.05]

The following sections describe the individual objective functions combined for the calibration as well as the validation of

the model.
The hydrological model is calibrated using a global search algorithm, the Shuffled Complex Evolution — University of
Arizona (SCEUA) algorithm developed by Duan et al. (1992) and implemented in Python by Houska et al. (2015) in the
5 SPOTPY plugin. The algorithm has been widely used in hydrological studies. The parameters are calibrated by evolving 10
complexes and with convergence criteria of 0.1% change in objective function and parameter value over 100 model runs. We
use an aggregated objective function in order to exploit all available and suitable observations in the basin. The objective

function contributions minimize the difference between the observed and simulated

— Flow Regimes at Lastoursville, Makokou, Booué, Ndjolé, Fougamou and Lambaréné, using historical observations from

10 the 1930s to the 1980s — the flow regime is characterized by the

— Flow Duration Curves

— The daily or monthly climatology benchmark depending on available observations
— Stages at 12 virtual stations throughout the basin

— Catchment total water storage — due to the coarse resolution of GRACE, the calibration regions are aggregated into two

15 calibration zones upstream and downstream of Booué.
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When several objective functions are optimized at once, the optimal solutions representing the trade-offs between the differ-
ent objectives lie on the so-called "Pareto front". However, it is computationally expensive to compute the full Pareto front for a
meaningful number of parameter sets and for high-dimensional problems (Madsen, 2000). Instead, priorities can be given to the
individual solutions prior to calibration based on the applications of the model to achieve a compromise between the individual
contributions. The aggregated objective function ¢, and calibration objective, was defined as the Weighted Root Mean Square
deviation (WRMSD) between the objective function value resulting from the simulation and the objective function value ¢,.,;

for a perfect fit.

N
= ]]\-[;(Qbref,i —¢sim,i)2 X W ey

Here, w; is the weight assigned to each individual objective function contributions. We weigh the observations within the
objective functions prior to aggregation in order to account for input-data error and uncertainty. Because all the objective
functions are functions of scaled or weighted residuals, weights of 1 are deemed reasonable for most contributions, except the
contributions from GRACE, which are given a weight of 2 to balance the low number of available GRACE observations.

The goodness-of-fit measures used for each partial objective function are different for the different contributions. We cali-
brate the FDC based on the method described in (Westerberg et al., 2011). Selected percentiles are chosen based on a discharge
volume interval approach. The area under the FDC is divided into 20 equal discharge volume bins with 5% volume increments,
resulting in 19 equally spaced evaluation points. The performance measure is based on a scaled score approach. At a given

evaluation point, i, a perfect fit gives a score, S, of 0, while values differing by more than 10% are given scores of 1 and -1

respectively. The performance measure is defined as

N-1
> sy
Rppo=1- "=

No1 2)

The remaining contributions are evaluated based on the WRMSD, using data uncertainty or variability as weights, yielding

the performance measure

N 2
1 Ysim,t — Yobs,t
WRMSD =, | — _ 3
v () ®

o? is the standard deviation of the observations for the climatology of day t, and the observation uncertainty for the TWSC
and water height contributions. For the water stage comparison, we select a measurement uncertainty of 0.5 m based on previous
studies (e.g. Santos da Silva et al. (2010); Birkinshaw et al. (2010)). Villadsen et al. (2015) provide a summary obtained-of
RMSDs-of RMSDs obtained in literature. GRACE measurement uncertainties are provided with the dataset (Longuevergne
et al., 2010; Watkins et al., 2015).
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No bathymetry observations are available for the Ogooué; therefore, we compare altimetry water heights to simulated relative
water depths. Water depth in the middle of a given reach can be estimated directly from the reach storage, and combined with
the water depth of the prism storage to linearly interpolate the water depth along the river line at any distance from the cross-

sections.
3.9 Sensitivity Analysis

A global sensitivity analysis is carried out based on a Latin-Hypercube Sampling (LHS) of the parameter space. We used the
FAST Extended algorithm (Saltelli et al., 1999) implemented in SPOTPY by Houska et al. (2015). FAST provides two sensi-
tivity measures: the first sensitivity index and a total sensitivity index, ineluading-which includes contributions from parameter
interaction. Over 200 000 model iterations are performed. We use a multi-objective approach, in order to evaluate the sensi-
tivity of the individual contribution groups to different parameter-parameters and identify how including different observation

groups constrains different parameters.

4 Results and Discussion
4.1 Sensitivity Analysis and Parameter Calibration

The sensitivity analysis provides useful information on how the different contributions to the global objective function constrain
different parameters. The sensitivity indices are shown in Figure 6. We find that the contributions to the calibration objective
function are sensitive to different model parameters. For instance, the climatology constrains the Nash cascade parameters,
while the FDC performance statistic is not very sensitive to changes in those parameters. The parameter sensitivity indices
relative to the GRACE objective are more evenly distributed. The altimetry objective is most sensitive to the routing parameters,
in particular channel roughness. Comparison between the calibration objective and the contributions shows a clear dominance
of the FDC in the aggregated objective function. Simulating the full Pareto front allows the user to assess trade-offs between

individual contributions but is computationally expensive.
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Figure 6. Sensitivity analysis of the model parameters on contributions to aggregated objective function (top) on (from second row down):

FDC, climatology, GRACE and altimetry water height. The 10 most sensitive parameters are highlighted for each objective.

The aggregated objective function values are 0.81 and 0.86 for TRMM and FEWS respectively. The models perform very
similarly regardless of the climate forcing, although the statistics of the TRMM model are slightly better overall. Evaluation

of the parameter space post-calibration in Figure 7 shows a clear convergence of all parameters to their optimal value. Only X

appears to be less constrained in the shown region.
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Figure 7. Parameter space post-calibration for the Ngounié calibration zone and the TRMM model. The yellow dots represent the best model

runs and the red dots indicate the best parameter values. Example for TRMM model, Ngounié parameters.

All calibrated parameter values of both models are provided in Table 3. Very few parameters converged to the upper boundary
of the a-priori parameter interval: knaqp 1S close but not equal to the lower boundary in the TRMM model in the Ogooué Delta
and Ndjolé region, and Xgw is equal to 0.95 in the FEWS-RFE model in the Eastern Gabon Plateau region. The a-priori
parameter interval could be extended to allow larger values of Xgw, and consequently close to no recharge to the deep aquifer.
Parameter correlation between the parameters governing the partitioning of water between different reservoirs and delaying
runoff is inevitable. Both parameter sets are physically reasonable and the basin median is very similar between the two models;
however, some of the most sensitive parameters are quite different, suggesting a propagation of the difference in precipitation
through the model. In particular, the TRMM parameters are more heterogeneous throughout the basin. Furthermore, the TRMM
model has a higher retention efficiency in 4 out of 6 regions and a higher ET efficiency in all basins (larger « values). The
TRMM model also has more recharge to the deep aquifer (smaller Xgw in all regions). This reflects that TRMM predicts larger

volumes of precipitation throughout the basin.
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Table 3. Calibrated parameters from the two models forced by TRMM and FEWS-RFE precipitation. The-numbers-in-parenthesis-correspond

a1 a2 d Shnax NNash KNash Xaw ddeep X n
Batéké Plateau
13.4
TRMM 0.41 0.25 0.18 466 5 1.17 0.010 0.22 0.019
0.134
250
FEWS-RFE 0.38 0.23 0.26 633 5 3.25 0.006 0.22 0.017
0250
Eastern Gabon Plateau
87.6
TRMM 0.53 0.30 0.31 559 6 4.43 0.016 0.29 0.026
0876
95.0
FEWS-RFE 0.64 0.27 0.19 795 7 3.34 0.014 0.13 0.037
0950
Booué
3.4
TRMM 0.57 0.28 0.42 844 5 5.67 0.018 0.36 0.041
0.034
194
FEWS-RFE 0.43 0.26 0.47 934 4 3.88 0.015 0.42 0.050
0194
Ndjolé
364
TRMM 0.26 0.61 0.30 1142 6 0.20 0.008 0.22 0.049
0364
383
FEWS-RFE 0.24 0.53 0.43 737 4 4.84 0.015 0.38 0.015
0383
Ngounié
249
TRMM 0.39 0.30 0.27 379 2 2.29 0.013 0.19 0.044
0249,
308
FEWS-RFE 0.44 0.27 0.21 1524 1 5.69 0.013 0.26 0.040
0308
Ogooué Delta
95
TRMM 0.42 0.20 0.47 856 5 0.44 0.011 0.14 0.036
0.095
520
FEWS-RFE 0.24 0.20 0.64 797 6 5.05 0.018 0.24 0.034
0520
Basin median
1945
TRMM 0.41 0.28 0.31 702 5 3.35 0.012 0.22 0.036
0192
18 3455
FEWS-RFE 0.38 0.25 0.35 79 5 4.36 0.015 0.25 0.034
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4.2 Spatial Characterization of discharge

Figure 8 shows the observed and simulated flow duration curves (FDC) and climatology at the downstream calibration station,
Lambaréné. The flow regime in the Ogooué consists of precipitation-driven direct runoff peaks as seen from the steep slope
of the FDC for low exceedance probabilities, and a sizeable baseflow, characterized by a non-zero minimum flow value and
a flattening curve at higher exceedance probabilities. Generally, the FDC simulated by both models are within 10% of the
observed FDC at all six calibration stations (Rgpc > 0). Furthermore, the calibration is deemed reasonable if the simulated

climatology falls within one standard deviation of the observation (WRMSD < 1). For both models, this is the case at all

calibration stations.
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Figure 8. Flow duration curves and daily discharge climatology benchmark at the Lambaréné calibration stations, the surfaces in the clima-

tology plot represent the 90% confidence interval.

Table 4 shows the performance statistics for the FDC and climatology contributions to the calibration objective at the cal-
ibration and validation stations. Both models are within the validation criteria at all calibration stations and two out of five
validation stations. Overall, the performances of the two models are similar in terms of simulating flow regime in the basin:
The TRMM model performs better based on 10 out of 19 validated performance measures.

The calibration objective incorporates two important evaluation criteria: the model’s ability to capture the seasonality and
probability distributions of discharge throughout the basin. The results indicate the model is capable of simulating both, re-
gardless of precipitation forcing. Day-to-day comparison with up-to-date discharge is necessary to evaluate the success of the
calibration strategy compared to traditional approaches but in cases where no current observations are available, the approach

used in this study is a good compromise.
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Table 4. Performance measures for the TRMM and FEWS-RFE models based on the discharge observations. The—number—between
tons ins—Values in bold highlight the best validated performance.

Station (reach) Rrpc Climatology, WRMSD
TRMM FEWS-RFE TRMM FEWS-RFE
Batéké Plateau
Calibration  Lastoursville 0.39 0.63 0.56 0.33
Validation  Leyami -0.08 -0.14 1.43 1.14
Eastern Gabon Plateau
Calibration ~ Makokou 0.43 0.36 0.65 0.59
Validation  Belinga -0.64 -0.76 0.68 0.92
Booué
Calibration ~ Booué 0.60 0.79 0.41 0.51
Validation  Loa-Loa -0.05 -0.04 0.62 0.75
Ndjolé
Calibration  Ndjolé 0.67 0.60 0.52 0.82
Validation  Portes de I’Okanda 0.58 0.71 0.38 0.58
Ngounié
Calibration  Fougamou 0.76 0.67 0.37 0.36
Validation  Sindara 0.68 0.67 0.57 0.53
Ogooué Delta
Calibration =~ Lambaréné 0.67 0.71 0.31 0.42

4.3 Simulated Total Water Storage Change

Figure 9 shows the total water storage change in the two basin halves observed by GRACE and simulated by the twe-medelsin
the-two-basin-halvesTRMM and FEWS-RFE forced models. The monthly total water storage simulated by the model consists
of the sum of water stored in the root zone, the shallow aquifer and deep aquifer, the tributary processes and the main channel.
The tributary processes represent 9.2% and 10.1% of the total storage change throughout the basin in the TRMM and FEWS-
RFE model respectively, indicating a significant contribution from water retention processes. This is consistent with the large
number of wetlands and lakes in the basin. The deep aquifer holds the lion”’s share in total water storage change: respectively
70.6% and 83.0% of total water storage change in the TRMM and FEWS-RFE models;-while-the-. The soil storage contributes
12.2% and 1.9% and around 2.5% of the change originates from the shallow aquifer in both models. Storage changes in the main

channel contribute 5.5% and 2.4% to the total water storage change respectively. This pattern is due to the monthly aggregation
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of simulations. Most of the low frequency variations are observed in the deep aquifers, which have smaller storage constants
while high frequency variations are averaged out in the other stores. The largest difference between the models relates to the

changes in soil water storage. The TRMM model generally has larger o parameters: larger retention efficiency leads to larger

positive soil storage changes and higher evapotranspiration efficiency leads to larger negative soil storage changes.
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Figure 9. Total water storage change and precipitation anomaly referenced to the monthly climatology over the period of simulation for the

Eastern-eastern (top) and Westera-western (bottom) basins.

Table 5 shows the performance statistics for the TWSC contribution. The TRMM model generally performs better although
the performance statistics are higher than the validation criteria (WRMSE < 1), suggesting the residuals exceed the obser-
vation uncertainty. However, the models both capture the TWSC in the basin quite well, albeit storage change is generally
underestimated. The best performance is achieved in the Westera-western basin (bottom plots), with WRMSE values below 1.4
for the calibration and validation period. We compute the precipitation anomalies relative to the mean monthly precipitation.
On average, the TRMM estimates fluctuate more, as seen in the larger anomalies (5.8 cm per month, compared to 5.0 cm for

FEWS-RFE). Due to the delay between precipitation signal and storage response, we obtain better fits in years where the pre-
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cipitation anomalies match the observed storage change: e.g. in late 2006-early 2007, FEWS-RFE estimated more rain during
the rainy season, resulting in an overestimation of the relative TWS in the subsequent year. Similarly, both products predict
little to no positive water storage change in 2009 and have a larger number of negative than positive precipitation anomalies.
Thus, the discrepancies between the GRACE observations and the simulated total water storage changes can be attributed to
three factors: the trade-off between fitting the water storage in the basin versus other calibration objectives, uncertainties in the
GRACE observations, particularly considering the size of the study region and the spatial resolution of the observations and
finally, differences in trends in water storage and precipitation anomalies. The latter can be due to water retention or diversion

in the basin not accounted for by the model or to uncertainties in the precipitation estimates.

Table 5. GRACE objective functions( WRMSD [-]) for the two models for the calibration and validation periods.

Calibration Validation

TRMM FEWS-RFE TRMM FEWS-RFE

East 2.11 2.19 2.55 2.68
West 1.21 1.33 1.16 1.33

4.4 River Stage

For comparative purposes, we reference the observed and simulated water heights to the long term mean. At virtual stations, we
calculate the long-term mean based only on dates where satellite observations were acquired. The results are shown in Table
6. Simulated water depths depend on the river cross-sectional geometry. We do not calibrate river cross-sectional geometry
in order to limit the number of fitting parameters. Nevertheless, the simulated depth amplitudes are realistic. The simulated
amplitudes are within the 90% confidence intervals of the observation at all but one virtual station. The NSE is above 0.5
during the calibration period in nine out of 12 virtual stations for the TRMM forced model and in eight out of 12 for the
FEWS-RFE model. Performance slightly decreases in the validation period, in particular for the Ngounié virtual stations and
the FEWS-RFE model. When comparing the simulated water depth amplitudes, to those observed at each station, the RMSD
is 0.74 m for the TRMM model and 0.87 m for the FEWS-RFE, corresponding to 0.85 and 0.94 times the standard deviation
of annual water height amplitude (Table 7).This is comparable to the study by Schneider et al. (2017), in which they obtained
an average RMSE of 0.83 m for the Brahmaputra after calibrating the river cross-sections in a hydrodynamic model against

Envisat virtual stations. Figure 10 shows the water height fluctuations at two of the virtual stations.
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Table 6. Performance statistics for altimetry at Virtual Stations—fer-, The values in parenthesis indicate the individual-virtual-stations—the

model subbasin (Figure 1). The first line shows the statistics for the calibration period, the second for the validation period. Values in bold
are within the validation criteria (NSE > 0.5, WRMSD < 1).

Virtual Station Amplitude [m] NSE WRMSD
Mission (Subbasin ID) Altimetry Mission [90% CI] TRMM  FEWS TRMM FEWS TRMM  FEWS
Coordinates, chainage
Ogooué
Envisat (12) 2.35[1.52-3.87] 1.21 1.08 0.43 0.20 0.81 0.96
1.224°S, 13.334°E, 695 km 0.61 0.51 0.70 0.79
Envisat (20) 4.22[1.17-5.39] 2.83 2.02 0.60 0.41 1.54 1.86
0.061°S, 11.642°E, 385 km 0.21 0.10 1.70 1.81
Envisat (24) 2.87 [1.25-3.65] 1.80 1.82 0.74 0.63 0.72 0.86
0.506°S, 10.302°E, 187 km 0.46 0.25 1.00 1.18
Envisat (26) 2.87[1.84-4.71] 2.70 2.72 0.78 0.77 0.68 0.70
0.835°S, 10.027°E, 133 km 0.53 -0.08 0.95 1.44
Envisat (26) 3.74 [2.06-5.80] 3.40 3.71 0.67 0.73 1.14 1.04
0.921°8S, 9.675°E, 83 km 0.52 -0.33 1.30 2.15
Envisat (27) 2.42 [1.54-3.96] 2.22 2.27 0.78 0.75 0.57 0.61
1.073°S, 9.256°E, 30 km 0.55 0.15 0.90 1.30
Ivindo
Jason-2 (10) 4.72 [1.13-5.85] 3.80 4.15 0.34 0.33 2.00 2.02
1.1°N, 13.076°E, 677 km 0.06 -0.12 2.13 2.32
Envisat (14) 2.22 [1.11-3.33] 1.56 1.74 0.62 0.57 0.75 0.80
0.251°N, 12.422°E, 533 km 0.39 0.11 0.83 1.00
Ngounié
Envisat (7) 2.69 [1.44-4.13] 3.74 2.79 0.66 0.64 0.87 0.89
1.272°S, 10.650°E, 305 km -0.48 -1.72 1.94 2.63
Envisat (11) 2.42 [1.43-3.86] 2.65 2.67 0.82 0.73 0.54 0.67
1.142°8S, 10.678°E, 273 km 0.05 -0.59 1.38 1.78
Envisat (11) 3.18 [1.19-4.37] 2.86 2.77 0.41 0.39 1.43 1.46
1.042°S, 10.701°E, 263 km -0.24 -0.68 1.57 1.83
Envisat (15) 2.99 [2.04-5.03] 2.84 2.63 0.75 0.55 0.73 0.97
0.601°S, 10.323°E, 183 km 0.39 -0.39 1.22 1.83
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Table 7. Basin amplitude statistics at all virtual stations: bias and Root Mean Square Deviation (RMSD). The percentages are relative to the

mean observed amplitude.

WRMSE RMSD [m] Bias [m]
(%) (%)
TRMM FEWS TRMM FEWS TRMM FEWS

0.85 0.94 0.74 0.87 0.41 0.42
(24.8%) (28.8%) (13.8%) (14.0%)

VS -1.079° S 9.254 ° E, 30 km from outlet, Reach 27

671 == Envisat
—— TRMM
— FEWS

Water level [m],
S

Relative to long term mean
N

o

|
N
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Figure 10. Results for water height simulation at a selected virtual stationsstation.

Figure 11 shows the simulated water height anomaly climatology from the Batéké Plateau to the Delta, and all available al-
timetry observations. Sharp changes in amplitude reflect the confluence of river branches briefly increasing width (e.g. chainage
450-420 at the confluence of the Ivindo and the Ogooué) and to the nature of the topography: the river is narrow between Booué
and Ndjolé (chainage 420-260), before reaching the plain and eventually the delta, where the river width reaches up to 1300

5 m. At chainage 180, the Ngounié joins the Ogooué and the river width increases by 500 m. The temporal pattern agrees well
and the spatial patterns are comparable. The RMSD between CryoSat-2 anomalies and model simulations between 1 and 2 m
in most regions in the basin (Table 8), part of which can be attributed to the approximated mean water level and to the time
of observation. Due to its long repeat period, CryoSat-2 samples more often during certain seasons over different parts of the
river. Schneider et al. (2017) obtained an RMSD of 2.5 m between simulated water heights and CryoSat-2 observations over

10 the Brahmaputra — thus we deem the obtained results satisfactory in light of the available information.
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Figure 11. Interpolated relative water heights [m] based on the simulated daily water depth climatology in the Ogooué by the model forced
with TRMM 3B42 v7 (top) and the FEWS-RFE (bottom) precipitation and altimetry observations from CryoSat-2, ICESat and Envisat. The
VS visible in the figure correspond to those in reach 27, 26, 24, 20 and 12.

Table 8. CryoSat-2 versus simulated relative water depths.

River stretch Number of CryoSat-2 observations RMSD [m] Bias [m]
TRMM FEWS- TRMM FEWS-
RFE RFE
Upstream of Makokou (Ivindo) 32 1.76 1.69 0.01 0.07
Upstream of Sindara (Ngounié) 47 2.37 2.06 -0.19 0.10
Between Ndjolé and Lambaréné (Ogooué) 46 0.94 0.98 0.02 -0.02
Downstream of Lambaréné (Ogooué) 110 1.03 1.15 -0.08 -0.14
Ogooué river 353 1.85 1.85 -0.09 -0.21

While altimetry observations from drifting ground track missions increase the spatial resolution, observations from the
virtual stations give a temporal characterization of water height fluctuations at specific locations in the basin. The obtained
accuracy is of the order of magnitude of values reported in the literature — better results could be obtained with knowledge
about the bathymetry or by calibrating the river cross-sections. In this study, increasing the number of calibration parameters
would not be suitable because only a limited number of CryoSat-2 observations are available and no contemporary discharge
observations to validate timing.

Similarly, to the water storage amplitudes, the water level amplitudes are slightly underestimated, particularly in the Eastern

eastern basin. The model parameters are most sensitive to improving the FDC and climatology benchmark contributions, which

are based on historical discharge observations. Changes in precipitation patterns since the time of observation are likely to have
affected discharge patterns. The comparison to contemporary satellite altimetry observations strengthens the validation of the

model; however, the underestimation of water height amplitude and total water storage change in the basin may indicate that
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the model compensates for changes in precipitation patterns and uncertainties in the precipitation products in order to fit the

historical discharge dataset.
4.5 Discussion

This study uses free, publicly available remote sensing observations relevant to the proposed model structure to characterise
the basin. Several more types of remote sensing products are available but not included. For instance, no reliable soil moisture
estimates can be produced for the Ogooué basin because the dense vegetation masks the microwave returns from the underlying
soil (Tang et al., 2009). We select the most relevant products and explore how new data sources may supplement existing
datasets and extend their applicability. To the authors’ knowledge, this study is the first to use SAR imagery from Sentinel-
1 to extract CryoSat-2 observations over an inland water body, and the first study to evaluate CryoSat-2 observations over
the Ogooué. The size of the Ogooué (approximately 1.3 km at its widest and 390 m on average), makes it as an interesting
study area for altimetry observations. However, without cloud penetrating technologies, it would be very difficult to produce a
satisfactory water mask of the river. The possibility to develop detailed water masks for virtually any inland water body from
SAR imagery greatly expands the applicability of altimetry observations from drifting ground track missions over rivers.

In poorly gauged basins, the paucity of observations limits the estimation of the model parameters and consequently model
complexity (Johnston and Smakhtin, 2014). Remote sensing data has been used in several studies to compensate for gaps
in in-situ observations and has enabled the definition of distributed or semi-distributed models even in poorly gauged basins
(van Griensven et al., 2012). Furthermore, the accessibility of remote sensing observations creates modelling opportunities in
basins, where in-situ data is insufficient on its own (Johnston and Smakhtin, 2014). This is the case for the Ogooué, which
to the auther’s-authors’ knowledge only has deecade-old-discharge-ebservations-discharge observations prior to 1984 at best,
and precipitation records at a dozen stations. The model used in this study has a fairly simple and flexible structure with
few parameters and limited input data requirements, which can accommodate several basin and river network configurations.
Furthermore, although the model currently does not support reservoir characterization or abstraction losses, these can be
implemented within the model structure. By starting with a simple structure and gradually adding complexity (deep aquifer,
tributary processes), the principle of parsimony is respected.

The remote sensing observations used in this study help characterize the otherwise ungauged basin and the model can

produce valuable information for water managers. Several studies have benefitted from including altimetry observations

) D

\ § y ) 5 23 s
Schneider et al., 2017; Michailovsky et al., 2013; Domeneghetti et al., 2014) and total water storage observations (Xie et al.,

2012; Milzow et al., 2011) in river basin models. In this study, the altimetry missions generally agree very well and the observa-
tions provide valuable information on water heights throughout the river. Although it would be useful to confirm the remotely
sensed observations with ground observations, the availability of contemporary observations strengthened the evaluation of
the hydrological model of the Ogooué. Without additional observations or on-ground information on the basin, the presented

model is the best available representation of the Ogooué basin. However, model simulations can never replace observations
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and remote sensing observations have never been evaluated in the basin before. Therefore, ground truthing efforts and in-situ
gauging campaigns would greatly strengthen the conclusions of this study.

A model should always be evaluated in light of its intended application (Johnston and Smakhtin, 2014). The model developed
in this study, is the first model of the Ogooué river basin, and provides otherwise unavailable information regarding the baseline
river flow regime. It can be used in a broad range of applications, including flood forecasting, climate change evaluation and
as an impact assessment tool for planned water infrastructure investments. For instance, the hydrologic impact of hydraulic
infrastructures at the inlet to downstream key wetlands resolved by the model can be assessed and compared to the baseline

developed in this study.

5 Conclusions

In this study, we explore the use of multi-mission remote sensing to inform a hydrological model of the fourth largest African
river by discharge, the Ogooué in Gabon. We set up a lumped conceptual rainfall-runoff model based on the Budyko framework
coupled to a Muskingum routing scheme. We force the model using remote sensing precipitation and calibrated using a com-
bination of historical in-situ discharge observations from the 1960s and 1970s, and total water storage observations from the
GRACE mission. Remote sensing enables the evaluation of the model against contemporary observations and helps constrain
model parameters by including information other than discharge measurements.

In addition, this study shows the potential of the new ESA Sentinel missions by deriving a detailed river mask from Sentinel-
1 radar imagery, used to extract altimetry observations from CryoSat-2. The multi-mission approach increases spatial and
temporal coverage and acts as a useful supplement to the observed in-situ discharge in terms of validation, in regions were
the missions agree. We validate the water height simulations against the altimetry observations at multiple points in the basin.
With the methods applied in this study, a dynamic river mask can be defined and used to extract relevant observations over
inland water bodies of interest from existing and new satellite altimetry missions. New radar altimetry missions as Sentinel-3
carrying state-of-the-art equipment are expected to provide higher accuracy observations. Combined with the water masking
method proposed in this study, relevant time series of river water heights can be extracted and used in hydrological modelling
studies.

Progress in remote sensing technologies, instruments and extraction algorithms now allows for the observation of most hy-
drological states and fluxes from space. This offers a unique possibility to obtain observations in poorly gauged or remote areas
and to supplement hydrological modelling applications with the necessary input-data and useful observations for parameter es-
timation. The model used in this study can be applied in scenario evaluations and provides an otherwise unavailable insight into
the hydrological regime of the Ogooué at catchment scale. By combining hydrological modelling with multi-mission remote
sensing from ten different satellite missions, we obtain new information on an otherwise unstudied basin. The proposed model

is the best current baseline characterization of hydrological conditions in the Ogooué in light of the available observations.
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