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Abstract 9 

The Upper Ganga Basin, Uttarakhand, India has high hydropower potential and plays an important 10 

role in development of state economy. Thus, knowledge about water yield is of paramount 11 

importance to this region. The paper deals with use of contemporary water yield estimation 12 

models, such as the distributed model (InVEST), Lumped Zhang model and their validation to 13 

identify the most suited one for water yield estimation in this region. Earlier, while utilizing these 14 

models, water yield was estimated by considering a single value of some important model 15 

parameters which in fact show distributed variation at finer (pixel) scale. Therefore, in this study, 16 

pixel level computations are performed to assess and ascertain the need for incorporating spatial 17 

variation of such parameters in model applications. To validate the findings, the observed sub-18 

basin discharge data is analyzed with the computed water yield for four decades, i.e. 1980, 1990, 19 

2001 and 2015. The results obtained are in good agreement with the water yield obtained at pixel 20 

scale.    21 
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1. Introduction 23 

Accurate assessment of key ecosystem services (ES) such as water yield have gained focus in 24 

recent years in ES modelling as fresh water availability in a region are essential for agriculture, 25 

industry, human consumption, hydropower, etc., (Readhead et al., 2016). Hydrological ecosystem 26 

services generally include drinking water supply, power production, industrial use, irrigation, and 27 

many more. Accurate estimation of water yield further facilitates in identification of hotspots for 28 

stormwater harvesting in order to fulfill fresh water demand in the region (Pathak et al., 2017). 29 

These hydrological ES are dependent on different factors such as watershed characteristics (e.g. 30 

topography, land use land cover (LULC), soil type) and climatic condition. To incorporate these 31 

concepts into assessment and decision making, there has been a proliferation of ecosystem 32 

modelling tools and methods. Models for ES valuation often focus on using globally available 33 

data, accepting large number of spatially explicit inputs and producing spatially explicit output, 34 

and limiting the model structure to key biophysical processes involved in land-use change (Guswa 35 

et al. 2014). Precise estimation of ES using these models is a complicated task owing to spatial 36 

variability and dependence of ES on various topographical and climatic factors. Further, validation 37 

and uncertainty assessment in model output have proven to be a key obstacle to the application of 38 

ES models. In the literature, studies focusing on comparison of different ES models have projected 39 

some light over the model output validation issues, however, there still exist lack of studies 40 

highlighting validation of these models for Indian river basins. The benefits that can be derived 41 

from ES should be analyzed and quantified in a spatially explicit manner (Sanchez et al. 2012). 42 

The uncertainties in the determination of spatial and temporal distribution of the climatic variables, 43 

especially precipitation, constitute a major obstacle to the understanding of hydrological behaviour 44 

at the catchment scales (Milly et al. 2002). 45 
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The Integrated Valuation of ES and Tradeoffs (InVEST) model, developed by Natural Capital 46 

Project (Tallis et al. 2010) is a tool which provides a framework to planners and decision makers 47 

to assess trade-offs among ES and enables their comparison in various climate and land use change 48 

scenarios. It includes a biophysical component which facilitates the provision of freshwater or 49 

water yield by different parts of the landscape and a valuation component, representing the benefits 50 

of water provisioning to people. The model works on simplified Budyko theory, which has a long 51 

history and still continues to receive interest in the hydrological literature (Budyko 1979; Zhang 52 

et al. 2001; Zhang et al. 2004; Ojha et al. 2008; Zhou et al. 2012; Donohue et al. 2012; Xu et al. 53 

2013; Wang et al. 2014). The InVEST model applies a one-parameter formulation of the Budyko 54 

theory in a semi-distributed manner (Zhang et al. 2004). The model is capable of quantifying the 55 

water yield of a catchment under the influence of change in different drivers viz. climate variables 56 

and catchment characteristics (e.g. land use change). Various studies have been carried out in the 57 

past demonstrating the application of InVEST model to different river basins around the world. 58 

Sanchez-Canales et al. (2012) carried out sensitivity analysis of three parameters i.e. z (seasonal 59 

precipitation coefficient), precipitation (annual) and ET0 (annual reference evapotranspiration) 60 

using the InVEST model for a Mediterranean basin and found precipitation to be the most sensitive 61 

parameter for the study region. Later, Terrado et al. (2014) applied the InVEST model for heavily 62 

humanized Llobregat river basin. The model is applied for both extreme wet and dry conditions 63 

and the role of climatic parameters is emphasized. Hoyer et al. (2014), applied this model in 64 

Tualatin and Yamhill basins of northwestern Oregon under a series of urbanization and climate 65 

change scenarios.  The results show that the climatic parameters have more sensitivity than other 66 

inputs for a water yield model.  Hamel et al. (2014), applied the same water yield model for the 67 

Cape Fear catchment, North Carolina and concluded that the precipitation is the most influencing 68 
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parameter. Goyal et al. (2017) analyzed the InVEST water yield model for the hilly catchment by 69 

considering two catchments i.e. Sutlej river catchment and Tungabhadra river catchment. The 70 

climate parameters i.e. precipitation and ET0 are observed to be most influencing parameters for 71 

water yield in both the river basins. With the aforementioned studies, there exist certain factors 72 

limiting the application of InVEST model such as the absence or inadequate comparison with 73 

observed data, calibration of the model without prior identification of sensitive parameters, and 74 

lack of validation of the predictive capabilities in the context of Land Use Land Cover change (Bai 75 

et al. 2012; Nelson et al. 2010; Su et al. 2013; Terrado et al. 2014).  76 

The InVEST model operates on the principle of Budyko theory (Budyko, 1958, 1974). Based on 77 

works of Schreiber (1904) and Ol’Dekop (1911), Budyko proposed formulations explaining the 78 

relationship between precipitation and potential evapotranspiration (PET) in order to couple water 79 

and energy balances, defined as Budyko hypothesis. Several attempts have been made later to 80 

obtain an analytical solution of the Budyko hypothesis (Schreiber, 1904; Ol’Dekop, 1911; Turc, 81 

1954; Mezentsev, 1955; Pike, 1964; Fu, 1981; Choudhury, 1999; Zhang et al., 2001, 2004; 82 

Porporato et al., 2004; Yang et al., 2008; Donohue et al., 2012; Wang and Tang, 2014; Zhou et al., 83 

2015). Among these approaches, solutions provided by Fu (1981), called Fu’s equation gained 84 

significant attention as the work represented the effect of catchment properties on water balance 85 

components by incorporating an addition parameter ‘w’. Fu’s equation can provide a full picture 86 

of the evaporation mechanism at the annual timescale. Therefore, Fu’s equation could be used 87 

through top-down analysis for providing an insight into the dynamic interactions among climate, 88 

soils, and vegetation and their controls on the annual water balance at the regional scale (Yang et 89 

al., 2007). 90 
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Considering the lack of studies on analysis and validation of ES in Indian sub-continent especially 91 

for Himalayan catchments and to assess the applicability of various water-balance model to 92 

Himalayan catchments, the present work attempts to compute and analyse water yield in Upper 93 

Ganga basin using InVEST model. The work primarily considers in detail, the spatial variation of 94 

InVEST model parameters and uses different strategies to compute water yield. Accordingly, 95 

water yield is estimated for four years i.e. 1980, 1990, 2001 and 2015 and the most appropriate 96 

strategy is identified. The parameters that are computed at basin level scale in previous studies are 97 

estimated at pixel scale in order to avoid the dependence of model parameters on size of the 98 

catchment. In addition, pixel level estimations of water yield are expected to be more accurate than 99 

output obtained using conventional approach. The term ‘finer scale’ in the paper represents the 100 

incorporation of spatial variations through pixel level estimation of parameters involved in 101 

InVEST model which are otherwise taken as lumped. The work also attempts to compare the 102 

outcomes of spatially distributed water yield model and conventionally used lumped Zhang model. 103 

2. Background Theory 104 

2.1 Water Yield Models 105 

In this section, two water yield models, i.e. InVEST water yield model, which is a distributed 106 

model and Lumped Zhang model are described. 107 

2.1.1 InVEST model 108 

The InVEST water yield model (Tallis et al. 2010) is designed to provide the information regarding 109 

the changes in the ecosystem that are likely to alter the flow. It is based upon the Budyko theory 110 

which is an empirical function that yields the ratio of actual to potential evapotranspiration (PET) 111 

(Budyko, 1979). To describe the degree to which long-term catchment water-balance deviates 112 
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from the theoretical limits, number of scholars have proposed one-parameter functions that can 113 

replicate the Budyko curve (Fu 1981, Choudhury 1999, Zhang et al. 2004, Wang et al. 2014). To 114 

observe and represent pixel-level changes to the landscape, InVEST model incorporates, 115 

explicitly, the spatial variability in precipitation, PET, soil depth and vegetation. The model 116 

operates at grid scale and acquire the inputs in raster format into a GIS environment such as 117 

ArcGIS.   118 

The InVEST water yield model is based on an empirical function known as the Budyko curve 119 

(Budyko 1974). Annual Water yield, Y (x) is determined for each pixel for a landscape as follows: 120 

𝑌 (𝑥) =  (1 −  
𝐴𝐸𝑇 (𝑥)

𝑃 (𝑥)
) × 𝑃 (𝑥)                                             (1) 121 

where, 𝐴𝐸𝑇 (𝑥) is the actual annual evapotranspiration per pixel 𝑥; and  𝑃 (𝑥) is the annual 122 

precipitation per pixel 𝑥. Actual evapotranspiration (AET) is essentially determined by climate 123 

factors (precipitation, temperature, etc.) and mediated by catchment characteristics (vegetation 124 

cover, soil characteristics, topography, etc.). On the other hand, potential evapotranspiration (PET) 125 

represents the evaporating potential of the climate system at a specific location and time of year 126 

without the consideration of catchment characteristics and soil properties (Allen et al., 1998). 127 

Several attempts have been made in past to establish a relationship between AET and PET among 128 

which solution provided by Fu (1981) is adopted worldwide. Fu (1981) provided an analytical 129 

solution to the Budyko hypothesis and related AET with PET by incorporating a dimensionless 130 

parameter ‘w’ which denotes the effect of catchment characteristics. 131 

The InVEST model uses the expression of the Budyko curve proposed by Fu (1981) and Zhang et 132 

al.  (2004). The ratio of mean annual PET to annual precipitation, known as index of dryness, is 133 

expressed as:  134 
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𝐴𝐸𝑇 (𝑥)

𝑃 (𝑥)
=  1 +  

𝑃𝐸𝑇 (𝑥)

𝑃 (𝑥)
−  [1 +  

𝑃𝐸𝑇 (𝑥)

𝑃 (𝑥)
]

(
1

𝜔
)

                              (2) 135 

where, 𝑃𝐸𝑇 (𝑥) is the annual potential evapotranspiration per pixel 𝑥 (mm); and  𝑤 (𝑥) is a non-136 

physical parameter that influences the natural soil properties. The 𝑃𝐸𝑇 (𝑥) is calculated using the 137 

following expression: 138 

𝑃𝐸𝑇 (𝑥) = 𝐾𝑐 (𝑥)  × 𝐸𝑇𝑜 (𝑥)                                   (3) 139 

where, 𝐸𝑇𝑜 (𝑥) is the annual reference evapotranspiration per pixel 𝑥 which is computed based 140 

on evapotranspiration from grass of alfalfa grown at that location using equation (6). 𝐾𝑐 (𝑥) is the 141 

vegetation evapotranspiration coefficient that is influenced by the change in characteristics of land 142 

use land cover at every pixel (Allen et al., 1998). The values of  𝐸𝑇𝑜 (𝑥) are adjusted by 𝐾𝑐 (𝑥) 143 

for each pixel over the land use land cover map. 𝑤 (𝑥) is an empirial parameter and the expression 144 

given by Donohue et al. (2012) for the InVEST model has been applied to define 𝑤 (𝑥) which is 145 

as follows: 146 

𝑤 (𝑥) = 𝑧 × 
𝐴𝑊𝐶 (𝑥)

𝑃 (𝑥)
+ 1.25                                  (4) 147 

Thus, the minimum value of the parameter 𝑤 (𝑥) is 1.25 corresponding to bare soil where root 148 

depth is zero (Donohue et al. 2012) . The Donohue model was originally developed for Australia, 149 

however, the online documentation on InVEST model states its application globally. The 150 

parameter, z is known as seasonality factor whose value varies from 1 to 30. It represents the nature 151 

of local precipitation and other hydrogeological parameters. The parameter, 𝐴𝑊𝐶 (𝑥) depicts 152 

volumetric plant available water content expressed in depth (mm) which can be expressed by 153 

following formula for each pixel 𝑥: 154 

𝐴𝑊𝐶 (𝑥) = 𝑀𝑖𝑛. (Restricting layer depth, root depth)  × 𝑃𝐴𝑊𝐶              (5) 155 
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Root restricting layer depth is defined as the depth of the soil upto which the soil can allow the 156 

penetration of roots and root depth is defined as the depth where 95 percent of the root biomass 157 

occurs. Plant Available Water Content (PAWC) is generally taken as the difference between the 158 

field capacity and wilting point. It depends upon the soil properties and can be computed by the 159 

Soil-Plant-Air-Water (SPAW) software. PAWC is calculated using the method described by 160 

Mckenzie et al. (2003). Modified Hargreaves method and Hargreaves method were employed for 161 

computing the reference evapotranspiration for the study area at pixel scale. 162 

Modified Hargreaves method 163 

𝐸𝑇𝑜 = 0.0013 × 0.408 × 𝑅𝐴 × (𝑇𝑎𝑣𝑔 + 17.0) × (𝑇𝐷 − 0.0123 × 𝑃)0.76          (6) 164 

where, ETo is reference evapotranspiration, Tavg is average daily temperature (oC) defined as the 165 

average of mean daily maximum and mean daily minimum temperature, TD (oC) is the temperature 166 

range computed as the difference between mean daily maximum and mean daily minimum 167 

temperature, and RA is extraterrestrial radiation expressed in [MJm-2d-1]. 168 

Hargreaves method 169 

𝐸𝑇𝑜 = 0.0023 × 0.408 × 𝑅𝐴 × (𝑇𝑎𝑣𝑔 + 17.8) × 𝑇𝐷0.5                       (7) 170 

where, ETo is reference evapotranspiration, Tavg is average daily temperature (oC) defined as the 171 

average of mean daily maximum and mean daily minimum temperature, TD (oC) is the temperature 172 

range computed as the difference between mean daily maximum and mean daily minimum 173 

temperature, and RA is extraterrestrial radiation expressed in (MJm-2d-1). 174 

For computing the extraterrestrial radiation (RA), following equation is used  175 

𝑅𝐴 =  
24(60)

𝜋
 × 𝐺𝑠𝑐 × 𝑑𝑟 × [𝑤𝑠 sin(𝜑) sin(𝛿) + cos(𝜑) cos(𝛿) sin(𝑤𝑠)]     (8) 176 
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where, RA is extraterrestrial radiation [MJm-2d-1], dr is the inverse relative distance Earth-Sun, Gsc 177 

is solar constant equals to 0.0820 MJm-2min-1, ws is sunset hour angle (rad), δ is solar declination 178 

(rad) and φ is latitude (rad).     179 

Determination of Seasonality factor (z) parameter 180 

The seasonality factor (z) parameter depends upon the local precipitation patterns such as the 181 

hydrological characteristics of the area, its rainfall intensity and topography. In the InVEST water 182 

yield model (Tallis et al. 2010), parameter z can be computed in three different ways. First method 183 

is suggested by Donohue et al. (2012), in which parameter z is expressed as one fifth of the number 184 

of rain events per year. Second method is suggested by Xu et al. (2013), which relates 𝑤 (𝑥) with 185 

latitude, NDVI (Normalized Difference Vegetation Index), area, etc. Third method experiments 186 

with various selections of w (one value of w for the entire study region) till there is a good match 187 

between observed and computed water yield. Unfortunately, this method is not suited for a pixel 188 

based analysis as the number of pixels will be extremely large making the method to be 189 

computationally intensive. 190 

2.1.2 Lumped Zhang model 191 

In this model, the mean value of the different parameters is used as an input to compute the average 192 

value of the water yield for the whole watershed. The averaged actual evapotranspiration, potential 193 

evapotranspiration, w, precipitation are described by Zhang et al. (2004). 194 

3. Study Area and Data 195 

3.1 Study Area  196 

The Ganga river in India is ranked amongst the world's top 20 rivers in regards to the water 197 

discharge. The Ganga river is segregated into three zones, viz., Upper Ganga basin, Middle Ganga 198 
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basin and Lower Ganga basin. The area chosen for the present study, i.e., Upper Ganga basin is 199 

situated in the northern part of India within the geographical coordinates 300 38’ - 310 24’ N 200 

latitude and 780 29’ - 800 22’ E longitude covering an area of 22,292.1 km2 upto Haridwar. The 201 

altitude of the study area varies from 7512 m in the Himalayan terrains to 275 m in the plains. 202 

Approximately 433 km2 of entire region of the basin is under glacier landscape and 288 km2 is 203 

under fluvial landscape. About 60% of the basin is utilized for agricultural, 20% of the basin is 204 

under the forest area, especially in the upper mountainous region. Nearly 2% of the basin is 205 

permanently covered with snow in the mountain peaks. Most predominant soil groups found in the 206 

region are sand, clay, loam and their compositions. In the Upper Ganga river basin, the average 207 

annual rainfall varies from 550 to 2500 mm (Bharati et al. 2011) where a major fraction of total 208 

annual rainfall is received during monsoon months (June-September). The geographical location 209 

and other information of the Upper Ganga river basin are represented in Fig. 1. 210 



11 
 

211 

Figure 1. Graphical representation of study area, Upper Ganga basin 212 

3.2 Data  213 

3.2.1Precipitation and Temperature 214 

The daily time series of precipitation and temperature for the study area is acquired from India 215 

Meteorological Department (IMD) at a grid size of 0.25 degrees and 1 degree, respectively. The 216 

Upper Ganga basin comes in the latitude ranging from 29.5 degrees north to 31.5 degrees north 217 

and longitude ranging from 77.75 degrees east to 80.25 degrees east. The daily time series of 218 
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precipitation was aggregated to obtain the annual time series at each grid point. Various analysis 219 

in the study are carried out for four years i.e. 1980, 1990, 2001 and 2015. 220 

3.2.2 Soil Map 221 

Spatial maps of soil were collected from National Bureau of soil survey and land use planning 222 

(NBSSLUP) at 1:250000. Digital maps of soil available at a resolution of 1200m×1200m were 223 

resampled to the resolution of land use data i.e. 30m×30m using ‘resample’ tool in ArcGIS in order 224 

to maintain the scale homogeneity.  The attribute table of the raster layer contains fields like soil 225 

depth, soil texture, percentage carbon content, drainage, slope, erosion, soil temperature and 226 

mineralogy. The relevant feature, i.e. soil depth and soil texture are converted into the raster image 227 

for the Upper ganga basin.  228 

3.2.3 LandUse/Land Cover map 229 

Satellite images were acquired from different sensors of Landsat viz. Landsat 3/4 MSS/TM, 230 

Landsat 4 TM, Landsat 7 ETM and Landsat 8 OLI sensors for the year 1980, 1990, 2001 and 231 

2015 respectively. The images are available at different resolution and for several bands out of 232 

which Green (G), Red (R) and Near Infrared (NIR) band images are combined to create False 233 

Colour Composite (FCC) for the study area in ERDAS Imagine. FCCs are then classified using 234 

supervised classification in ERDAS in six different classes, i.e. Forest, Water, Agricultural, 235 

Wasteland, Snow and Glacier and Built-up land. Classification of the area is based upon their 236 

similar response under different bands. Each class is then recognized with the help of ground 237 

truth and high resolution satellite images. 238 

4. Methodology 239 
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In the present work, five different strategies are employed to compute water yield. For the ease of 240 

presentation, these strategies are referred as A, B, C, D and E. In strategy A, an average value of 241 

precipitation, temperature, extraterrestrial radiation and parameter ‘w’ is used for the entire basin. 242 

This strategy is essentially based on Lumped Zhang Model. Strategies B, C, D and E are designated 243 

corresponding to a particular variation of InVEST model where water yield is computed using 244 

different approach for estimating w parameter. For computing parameter ‘w’, Xu et al. (2013) 245 

relationship for large basin and global level is given by equation (9) and equation (10) respectively.  246 

For Large basins: 247 

𝑤 = 0.69387 − 0.01042 × 𝑙𝑎𝑡 + 2.81063 × 𝑁𝐷𝑉𝐼 + 0.146186 × 𝐶𝑇𝐼           (9) 248 

For global model: 249 

𝑤 = 3.50412 − 0.09311 × 𝑠𝑙𝑝 − 0.03288 × 𝑙𝑎𝑡 + 1.12312 × 𝑁𝐷𝑉𝐼 − 0.00205 × 𝑙𝑜𝑛𝑔 −250 

0.00026 × 𝑒𝑙𝑒𝑣                                                                   (10) 251 

where, slp is slope gradient, lat is absolute latitude of basin center, CTI is compound topographic 252 

index, NDVI is normalized difference vegetation index, long is longitude and elev is elevation.  253 

In strategy B, entire basin is considered for computing the parameter w for large basins by Xu et 254 

al. (2013) (equation 9). In strategy C, entire basin is considered for computing the parameter w for 255 

global model (equation 10) by Xu et al. (2013). In strategy D, parameter w is computed at each 256 

pixel in order to incorporate the spatial distribution of the hydrologic variables involved in the 257 

computations. In Strategy E, parameter z is computed according to the number of rain events in a 258 

year and subsequently equation (4) is used to compute the parameter w.  259 
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For all the strategies, extraterrestrial radiation (RA) parameter is computed for each month using 260 

equation (8) and a raster layer is generated. Precipitation data is obtained from Indian 261 

Meteorological Department (IMD) at grid size of 0.25 degree for the study area. It has been 262 

interpreted and converted to raster format by using Inverse Distance Weighted (IDW) interpolation 263 

technique in ArcGIS environment for obtaining the values for all pixels at a resolution equal to the 264 

resolution of the Landsat satellite images. The temperature dataset is obtained from IMD at grid 265 

size of 1o × 1o for the study area and has been interpreted and converted to raster format by using 266 

IDW interpolation technique for obtaining the values for all pixels. Subsequently, the mean 267 

monthly value of average temperature (Tavg) and the difference between mean daily maximum 268 

and mean daily minimum (TD) is obtained. The climate datasets used in the present study are of 269 

the finest resolution available so far for the study region. The precipitation and temperature data 270 

sets were downscaled to a resolution of land use data using IDW interpolation technique. Gridded 271 

datasets of temperature and precipitation used in the present study have been developed using 272 

quality controlled stations and well-proven interpolation technique. Further details about the 273 

datasets of precipitation and temperature are given in Srivastava et al. (2009) and Pai et al. (2014), 274 

respectively. 275 

Modified Hargreaves method is applied for obtaining the value of reference evapotranspiration at 276 

each pixel for each month (Droogers et al. 2002). In this method, the inputs are RA, precipitation, 277 

Tavg and TD. Some of the months, i.e. July 1980, July 1990, August 1990, June 2001, July 2001, 278 

August 2001, June 2015, July 2015 and August 2015 showed negative values of reference 279 

evapotranspiration as obtained from Modified Hargreaves method. For the above months, the 280 

Hargreaves method as recommended by Droogers et al. (2002) is applied for obtaining the positive 281 

values for the reference evapotranspiration. Thus, all the mean values for a month are added up to 282 
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get the mean yearly values for the year 1980, 1990, 2001 and 2015. To computed potential 283 

evapotranspiration, the yearly values obtained for the reference evapotranspiration have been 284 

multiplied by the vegetation evapotranspiration coefficient (Kc) which varies with the LULC 285 

characteristics as expressed in equation (3). The value of the Kc is taken from Allen et al. (1998) 286 

as shown in Table 1. In this study, Kc is taken same for all the four years as shown in Table. 1 and 287 

is used to obtain potential evapotranspiration which is subsequently used to obtain the annual water 288 

yield at each pixel of the study area. 289 

Table 1. Value of Kc corresponding to LandUse/LandCover classes 290 

S.No. LandUse/LandCover Percentage 

cover 

(1980) 

Percentage 

cover 

(1990) 

Percentage 

cover 

(2001) 

Percentage 

cover 

(2015) 

Kc 

1 Forest 17.84 16.32 15.78 15.19 1 

2 Water 21.87 21.27 19.47 17.65 1 

3 Wastelands 51.1 52.36 54.18 55.46 0.2 

4 Built-up Area 2.07 2.14 2.27 2.49 0.4 

5 Agricultural 3.67 4.04 3.76 4.22 0.75 

6 Snow and Glacier 3.45 3.87 4.54 4.99 2 

 291 

5. Results 292 

5.1 Reference Evapotranspiration, ETo (x) 293 

Reference Evapotranspiration (ET0) is computed for the upper Ganga Basin using a high-294 

resolution monthly climate dataset. Modified Hargreaves method is applied for obtaining the 295 

values of reference evapotranspiration at each pixel for each month (Droogers et al. 2002). ET0 is 296 
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a function of RA, precipitation, Tavg and TD which are already computed pixel wise for each 297 

month for the year 1980, 1990, 2001 and 2015. Some of the months i.e. July 1980, July 1990, 298 

August 1990, June 2001, July 2001, August 2001, June 2015, July 2015 and August 2015 showed 299 

negative values of reference evapotranspiration on applying Modified Hargreaves method. Thus, 300 

for the above months, the Hargreaves method is applied for obtaining the positive results. Hence, 301 

all the mean values for the months are added up to get the mean yearly values of evapotranspiration 302 

for the years 1980, 1990, 2001 and 2015, as represented in Fig 2.   303 

 304 

Figure 2. Reference Evapotranspiration (mm) of Upper Ganga Basin for the years 1980, 1990, 305 

2001 and 2015. 306 

5.2 Potential Evapotranspiration, PET (x) 307 
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The annual values obtained for the ET0 is multiplied by the vegetation evapotranspiration 308 

coefficient (Kc) which varies with the Land Use Land Cover characteristics, as expressed in 309 

equation (3). The value of the Kc is taken from Allen et al. (1998). The values of the vegetation 310 

evapotranspiration coefficient are taken from the Table 1. Thus, the potential evapotranspiration 311 

is computed for Upper Ganga Basin for the years 1980, 1990, 2001 and 2015 as represented in 312 

Fig. 3. 313 

314 

Figure 3. Potential Evapotranspiration (mm) of Upper Ganga Basin for the years 1980, 1990, 2001 315 

and 2015. 316 

5.3 Water Yield, Y(x) 317 

As mentioned in the methodology, the water yield for the Upper Ganga basin are computed using 318 

five strategies namely A, B, C, D and E: 319 
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Strategy A: Water yield computed using Lumped Zhang Model 320 

Here, the basin average values of all the input parameters are considered and the water yield is 321 

computed for the Upper Ganga basin for the year 1980, 1990, 2001 and 2015 which are obtained 322 

as 658.52 mm, 925.68 mm, 603.71 mm and 1194.25 mm, respectively. 323 

Strategy B: Water yield obtained by taking the single weighted mean value of parameter ‘w’ 324 

from Xu et al. (2013) for Large basins. 325 

By considering a single value of the parameter w for the whole basin, the water yield is computed 326 

for Upper Ganga basin (equation 9). The weighted mean value for the parameter w for the years 327 

1980, 1990, 2001 and 2015 are obtained as 1.507, 1.541, 1.403 and 1.507, respectively. The spatial 328 

distribution of water yield for the Upper Ganga basin for different years is represented in Fig. 4. 329 

The mean values of water yield as obtained using this method for the year 1980, 1990, 2001 and 330 

2015 are 755.65 mm, 959.48 mm, 742.39 mm and 1131.42 mm, respectively.  331 
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332 

Figure 4. Water yield obtained by taking the single weighted mean value of parameter w from Xu 333 

et al. (2013) for large basins. 334 

Strategy C: Water yield obtained by taking the single weighted mean value of parameter ‘w’ 335 

from Xu et al. (2013) for global model. 336 

In this strategy, water yield is computed by considering a single value of the parameter w for the 337 

entire Upper Ganga basin using equation 10. The weighted mean value for the parameter w for the 338 

years 1980, 1990, 2001 and 2015 are obtained as -0.967, -0.955, -1.010 and -0.968, respectively. 339 

The spatial distribution of water yield for the Upper Ganga basin for aforesaid years is shown in 340 

Fig. 5. The mean values of water yield for the year 1980, 1990, 2001 and 2015 are 1239.92 mm, 341 

1549.46 mm, 1149.93 mm and 1754.59 mm, respectively. 342 
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343 

Figure 5. Water yield obtained by taking the single weighted mean value of parameter “w” from 344 

Xu et al. (2013) for global model. 345 

Strategy D: Water yield obtained using pixel level estimation of parameter ‘w’ from Xu et al. 346 

(2013)  347 

In this strategy, the values of parameter w are computed at pixel level. The water yield computed 348 

for the years 1980, 1990, 2001 and 2015 for the Upper Ganga Basin is shown in Fig. 6. The mean 349 

values of water yield for the year 1980, 1990, 2001 and 2015 are 1240.02 mm, 1549.44 mm, 350 

1149.89 mm and 1754.62 mm, respectively. 351 
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 352 

Figure 6. Water yield obtained by computing pixel wise value of parameter w from Xu et al. 353 

(2013)  354 

Strategy E: Water yield obtained using pixel level estimation of parameter ‘w’ from Donohue et 355 

al. (2012) 356 

Equation (4) represents the parameter w as a function of the parameters ‘z’, AWC and 357 

precipitation. The parameter w in the equation used in strategy ‘E’ has been proposed by Donohue 358 

et al. (2012) which is also cited in online documentation of InVEST model, however, the final 359 

equation used for estimating water yield is obtained from the InVEST model. Considering this 360 

fact, Donohue et al. (2012) has been cited in Strategy ‘E’. The water yield is computed for Upper 361 

Ganga Basin for different years is shown in Fig. 7. The mean values of water yield for the years 362 

1980, 1990, 2001 and 2015 are 1241.09 mm, 1552.38 mm, 1153.95 mm and 1753.53 mm, 363 

respectively. 364 
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365 

Figure 7. Water yield obtained by computing pixel wise value of parameter “w” from Donohue et 366 

al. (2012) 367 

5.2 Validation of ET and water yield estimates 368 

For validation purpose, the basin average annual values of PET and AET estimated using various 369 

strategies are compared with the corresponding basin average values obtained from available 370 

global datasets (Table 2). Model simulated AET values are obtained from GLDAS global ET 371 

datasets from Noah model outputs. Basin average values of PET dataset are obtained from Climate 372 

Research Unit (CRU) PET datasets (CRU TS v. 4.01) available at resolution of 0.5o.  From the 373 

comparison, both AET (GLDAS) and PET (CRU TS) values are found to be in agreement with 374 

the satellite estimated values. Spatial maps of Global datasets of AET and PET are shown in Figure 375 

8 and 9, respectively. 376 



23 
 

    377 

    378 

Figure 8. Spatial distribution of AET obtained from GLDAS Noah output datasets. 379 

 380 

    381 

 382 

Figure 9. Spatial distribution of PET obtained from CRU datasets. 383 

 384 
 385 
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Table 2: Comparison of model estimated PET and AET with satellite estimates 386 

 387 

Parameter     InVEST model 

(mm) Year 
Source 2 

(GLDAS) 

Source 2 

(CRU) 

Strategy 

A 

(Lumped 

Zhang 

Model) 

Strategy 

B 

(Large 

Model) 

Strategy 

C 

(Global 

model) 

Strategy 

D (Xu et 

al. 2013) 

Strategy 

E 

(Donohue 

et al. 

2012) 

AET 1980 555.0355  696.84 486.07 679.52 679.68 680.01 

 1990 646.168  815.02 592.3 735.23 735.27 736.25 

 2001 588.084  680.76 408.86 548.28 548.39 550.38 

 2015 716.8316  900.11 625.41 743.48 743.52 744.34 

         

PET 1980  1175.964 1376.64 1382.12 1382.12 1382.12 1382.12 

 1990  1156.497 1456.16 1461.86 1461.86 1461.86 1461.86 

 2001  1184.847 1457.08 1462.96 1462.96 1462.96 1462.96 

 2015  1156.686 1544.20 1550.42 1550.42 1550.42 1550.42 

 388 

The validation of water yield obtained from various strategies is performed upto Rishikesh gauging 389 

site of Upper Ganga basin (Fig. 10). The discharge data of the basin is obtained from Irrigation 390 

department of Uttarakhand state. Present work considers runoff from both precipitation as well as 391 

snowfall for the region, where 32% of the observed discharge has been removed as it is contributed 392 

by glacier ice melt as explained by Maurya et al. (2011) for our study area. The above mentioned 393 

fraction of discharge had been quantified using isotope study which separates the contribution of 394 

glacier melt in quantifying discharge (Maurya et al., 2011). A comparison of the water yield 395 

computed and observed for the study region for different years by various proposed strategies is 396 

shown in Table 3. 397 
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   398 

Figure 10. Graphical representation of sub-basin Rishikesh  399 

Table 3. Observed vs computed water yield by various proposed strategies for Rishikesh sub-400 

basin. 401 

Strategies 1980 1990 2001 2015 

Observed discharge (mm) 1831.31 2422.43 2187.22 2835.81 

Observed (mm) (after reducing approx. 

32% snow melting contribution) 

1245.29 1647.25 1487.31 1928.35 

Water Yield_Strategy A (mm) 652.47 914.35 598.25 1189.72 

Water Yield_Strategy B (mm) 745.38 917.77 697.75 1092.17 

Water Yield_Strategy C (mm) 1229.90 1506.82 1102.62 1718.17 

Water Yield_Strategy D (mm) 1229.99 1506.74 1102.61 1718.18 

Water Yield_Strategy E (mm) 1230.77 1508.88 1106.86 1720.16 

 402 

As can be seen in Table 3, values of water yield estimated using strategy A to E are systematically 403 

increasing but are not steady in nature as water yield estimated using strategy A and B lies in range 404 
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650 – 750 mm whereas water yield from strategy C-E lies in range 1229 – 1231 mm for the year 405 

1980 (see Table 3). Similar results are also evident for other years too. Also, water yield estimated 406 

using strategy C-E are more or less same for a given year as these strategies involve pixel based 407 

estimation of water yield considering spatial variation in Budyko parameters. The parameters 408 

involved in Budyko model such as w are found to be dependent on various factors such as 409 

catchment characteristics, vegetation cover, etc. as well as climate seasonality (Li et al. 2013). Ahn 410 

and Merwade (2017) have analyzed the relationship between basin characteristics and parameter 411 

w for 175 stations spread over the USA. Considering their study, no precise conclusion can be 412 

drawn regarding relationship between basin characteristics and value of parameter w especially in 413 

case of basin area characteristics. Moreover, no definite relationship has been yet identified 414 

between basin characteristics and model parameters and is a subject matter for further study. 415 

6. Discussion 416 

The study aimed to apply the InVEST water yield model, a tool that is gaining interest in ecosystem 417 

services community for Upper Ganga Basin having highly variable topography consisting of hilly 418 

areas, plain areas and the regions which are totally covered with snow. The InVEST model is based 419 

upon Budyko theory which requires low amount of data and low level of expertise, thus making it 420 

acceptable world-wide. Monthly precipitation, monthly average value of temperature, monthly 421 

value of difference of mean daily maximum and mean daily minimum and extraterrestrial radiation 422 

parameters for the Upper Ganga Basin for each month of all the four years i.e. 1980, 1990, 2001 423 

and 2015 are converted into raster format for various analysis. The monthly reference 424 

evapotranspiration is thus computed using input parameters in GIS environment by applying the 425 

modified Hargreaves equation for all the months except some months where the modified 426 

Hargreaves equation shows the negative results for the reference evapotranspiration value. For 427 
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those months, Hargreaves method is applied to obtain the positive value of reference 428 

evapotranspiration as also suggested by Goyal et al. (2017). Reference evapotranspiration when 429 

multiplied with Kc gives the potential evapotranspiration. All monthly values are added up to 430 

obtain the annual value of reference evapotranspiration. Kc is a function of Land Use Land Cover, 431 

thus, supervised classification is done to prepare the raster Land Use Land Cover map for the 432 

Upper Ganga Basin. Subsequently, the annual value of potential evapotranspiration is obtained for 433 

the study area for the years 1980, 1990, 2001 and 2015.  434 

The paper focuses on various methodologies used for water yield estimation as discussed in the 435 

paper and is applied on the Upper Ganga basin. Thus, water yield is computed both from InVEST 436 

model as well as Lumped Zhang model. The value of the parameter w is computed using four 437 

ways, i.e. mean single value obtained from Xu et al. (2013) for large basins and global model, 438 

pixel wise value of parameter w from Xu et al. (2013) and pixel wise value of parameter w from 439 

Donohue et al. (2012). Although, the Upper Ganga basin lies in large basin category as per the 440 

definition from Xu et al. (2013), but, the yield computed using global model is in good agreement 441 

with the observed data for the Upper Ganga basin. In the study, pixel level estimation of parameter 442 

w is made in order to incorporate the spatial variability of the parameter in water yield estimation. 443 

Thus, two pixel wise values of parameter w are computed for the Upper Ganga basin for years 444 

1980, 1990, 2001 and 2015 by considering two approaches as given by Xu et al. (2013) and 445 

Donohue et al. (2012). Also, the water yield is computed from Lumped Zhang model which works 446 

on the approach of considering mean values of all the parameters involved in the computation of 447 

water yield. Thus, water yield is computed in five different ways for the Upper Ganga basin for 448 

the years 1980, 1990, 2001 and 2015. 449 
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At Rishikesh gauging site, surface runoff data is obtained by extracting the snow melt from the 450 

discharge data as the snow melting contributes about 32 percent of total runoff (Maurya et al., 451 

2011). Using this fact, the observed yield is compared with the computed water yield based on 452 

different proposed strategies for the years 1980, 1990, 2001 and 2015 as represented in Table 3. 453 

The results obtained from Donohue et al. (2012) and Xu et al. (2013) are computed at pixel level 454 

(Strategy C, Strategy D and Strategy E), thus, exhibit better performance than other approaches 455 

and are in good agreement with the observed data. It is clear that in order to go for hydrological 456 

analysis for any watershed, pixel wise computation is advisable.  The parameters involved in the 457 

Budyko model are dependent on various factors such as basin characteristics (size, topography, 458 

stream length, slope, etc.), climate seasonality, etc. (Li et al., 2013). The factors affecting model 459 

parameters again vary both spatially and temporally. Moreover, the relationship between these 460 

factors and model parameters are not yet well defined (Ahn and Merwade, 2017). In such scenario, 461 

adopting a hypothesis by assuming either of these controlling factors (such as ‘w’) to be constant 462 

spatially or temporally is inappropriate. Considering these facts, the present study attempts to 463 

incorporate the spatial variability of model parameter for estimation of water yield at pixel level. 464 

As the computations are made at pixel level in GIS environment, the assumption of dependence 465 

of model parameters over scale of the catchment may also be disregarded. The computations made 466 

in present work are based on empirical equations, however, the application of these equations has 467 

been well documented worldwide for estimation of various water balance components at various 468 

basin scales (Zhang et al., 2008; Ma et al., 2008; Ning et al., 2017; Rouholahnejad et al., 2017; 469 

Wang et al., 2017). Hence, it is recommended that for such a large basin there is a strong need to 470 

compute all the parameters involved in the computations of water yield at pixel scale rather than 471 

adopting mean values for entire watershed. 472 
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7. Summary and Conclusions 473 

The present study aimed to apply the InVEST annual water yield model, a tool that is gaining 474 

interest in the ecosystem services community. While such simple models having low requirements 475 

for data, high level of expertise are needed for practical applications of such model as a single 476 

representative value of model parameter for the entire basin does not provide accurate estimates 477 

of water yield. In addition, performing pixel scale computation of water yield indicates a better 478 

performance and results obtained show better agreement with the observed water yield. As far as 479 

parameter w is concerned, global model works better than other representations of parameter w 480 

available in literature. In the study, the water yield is computed using five different strategies and 481 

results are analyzed with the observed data at the outlet of Upper Ganga Basin. The present study 482 

attempts to quantify annual water yield at pixel level making the computations independent of the 483 

size of catchment. Therefore, the proposed methodology is expected to perform well for the 484 

catchment of any given size. Changes in catchment water storage over time are required to be 485 

quantified in order to validate the applicability of Budyko’s model to long term data for the 486 

catchment under study.  Earlier, some of the important parameters for the water yield used to be 487 

computed at a basin level scale which brings noise in the results. Thus, by considering all the 488 

parameters involved in the model at pixel level scale, the results obtained are higher in accuracy.  489 

The study attempts to incorporate the spatial variability of parameters involved in the model 490 

thorough pixel level estimation of parameters which are otherwise taken as lumped in the previous 491 

studies. Study results show that the water yield estimated considering spatial variability in model 492 

parameters are in better agreement with the observed water yield as compared to the water yield 493 

estimated by considering the parameters to be lumped over the study region. Further, the 494 

computations of various parameters are made at pixel level, therefore, the estimates of water 495 
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balance components using this approach are expected to be independent of the assumption of 496 

dependence of parameters on catchment size. As the variation between Budyko’s model 497 

parameters and their controlling factors has not shown well defined relationship (Ahn and 498 

Merwade, 2017), the study emphasizes water yield estimation using pixel based computations. 499 

Therefore, it can be inferred that: (i) between two approaches used, i.e. considering entire basin 500 

and pixel level approach, the pixel level approach is found to provide better results and (ii) in pixel 501 

based computations, results are further improved with the use of a parameter w based on a global 502 

model rather than regional models of parameter w for large basins in Himalayan region. 503 
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