
Comments to Anonymous Referee #1 

 

The manuscript generates component of annual water balance based on a hydrologic model. 

The analysis is very routine and there is very little validation of output. Some of the concepts 

also needs to be corrected such as, the ET is calculated without considering wind and 

humidity. The manuscript, in this form, is not suitable to be published in HESS. 

 

1. There is no validation for variables such as ET and soil mositure. The authors must 

validate the model with satellite estimates of ET and soil moisture. 

 

Reply: As suggested by reviewers, estimated values of both AET and PET have been validated 

with available satellite estimates from GLDAS (AET) and CRU TS (PET). The final equation used 

for estimating water yield involves two ET estimates viz. AET and PET which both are been 

validated using satellite based estimates for the respective years.  

 

Parameter     InVEST model 

(mm) 

 

Source 2 

(GLDAS) 

Source 2 

(CRU) 

Strategy 

A 

(Lumped 

Zhang 

Model) 

Strategy 

B (Large 

Model) 

Strategy 

C 

(Global 

model) 

Strategy 

D (Xu et 

al. 2013) 

Strategy 

E 

(Donohue 

et al. 

2012) 

AET 1980 555.0355  696.84 486.07 679.52 679.68 680.01 

 1990 646.168  815.02 592.3 735.23 735.27 736.25 

 2001 588.084  680.76 408.86 548.28 548.39 550.38 

 2015 716.8316  900.11 625.41 743.48 743.52 744.34 

         

PET 1980  1175.964 1376.64 1382.12 1382.12 1382.12 1382.12 

 1990  1156.497 1456.16 1461.86 1461.86 1461.86 1461.86 

 2001  1184.847 1457.08 1462.96 1462.96 1462.96 1462.96 

 2015  1156.686 1544.20 1550.42 1550.42 1550.42 1550.42 

 

2. There is no specific scientific hypothesis, the article just reports results from some 

empirical equations without proper analysis. 

 

Reply: Authors agree that the study lacks a precise scientific hypothesis. However, the parameters 

involved in the Budyko model are dependent on various factors such as basin characteristics (size, 

topography, stream length, slope, etc.), climate seasonality, etc. (Li et al. 2013). The factors 

affecting model parameters again vary both spatially and temporally. Moreover, the relationship 

between these factors and model parameters are not yet well defined (Ahn and Merwade, 2017). 

In such scenario, adopting a hypothesis by assuming few of these controlling factors (such as ‘w’) 

to be constant spatially or temporally is inappropriate. Considering these facts, the present study 

attempts to incorporate the spatial variability of model parameter for estimation of water yield at 

pixel level. As the computations are made at pixel level in GIS environment, the assumption of 

dependence of model parameters over scale of the catchment may also be disregarded.   



Authors also agree that the computations made in present work are based on empirical equations, 

however, the application of these equations has been well documented worldwide for estimation 

of various water balance components at various basin scales (Zhang et al. 2008; Ma et al. 2008; 

Ning et al. 2017; Rouholahnejad et al. 2017; Wang et al. 2017). An illustrative summary of such 

studies has been added in the revised manuscript.   

3. I do not see a proper conclusion coming out of this work. 

Reply: Present study attempts to compute water yield from a Himalayan catchment using InVEST 

water yield model. The study attempts to incorporate the spatial variability of parameters involved 

in the model thorough pixel level estimation of parameters which are otherwise taken as lumped 

in the previous studies. Study results show that the water yield estimated considering spatial 

variability in model parameters are in better agreement with the observed water yield as compared 

to the water yield estimated by considering the parameters to be lumped over the study region. 

Further, the computations of various parameters are made at pixel level, therefore, the estimates 

of water balance components using this approach are expected to be independent of the assumption 

of dependence of parameters on catchment size. As the variation between Budyko’s model 

parameters and their controlling factors has not shown well defined trend (see Fig 1), the study 

emphasizes water yield estimation using pixel based computations. 

 



 

 

Figure 1: The relationship between basin characteristics and optimal w values (Source: Ahn and 

Merwade, 2017) 

 

4. The write up is extremely poor and needs significant revision. 

Reply: As per reviewer’s suggestion, the write up has been improved wherever required. Our 

endeavor will be that the revised paper is much better than the current version.  
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Comments to Anonymous Referee #2 

 

This study estimates the water yield for the Upper Ganga basin using variations of the 

Budyko model that relates aridity index (ratio of long term potential evapotranspiration to 

precipitation) to evaporation ratio (ratio of long term actual evapotranspiration to 

precipitation). Several versions of a parameterized form of the Budyko curve, developed over 

the past years, are used to estimate long term streamflow for the basin. It is also assessed 

whether the inclusion of spatial variability of basin properties improves predictive skill. 

Though the study does not make any new contributions, it has the potential to contribute to 

understanding hydrology of this particular basin. However, in its present form it has major 

drawbacks: 

 

1. Literature review: The study overlooks a significant body of literature in streamflow 

modeling in the region. Studies are available both at the scale of entire India, the Ganga 

basin as well as finer scales. In addition, the premise of the study is poorly developed and 

developments related to Budyko’s theory are improperly explained. In fact, the work by 

Donohue et al. (2012) is cited but equations from InVEST’s online documentation are instead 

used. It is not straightforward to connect the equations in the manuscript with Donohue et 

al. (2012) formulations. Overall, the introduction needs connection to a wider literature base, 

along with better exposition of developments in Budyko theory. 

 

Reply: The present study focuses on incorporation of spatial variability of various parameters 

involved in computing water yield using InVEST model. The work does not involve modelling of 

streamflow rather it attempts to compare the outcomes of spatially distributed water yield model 

and conventionally used lumped Zhang model. Authors agree that the literature on hydrological 

modelling of water balance components is available for Ganga basin and its sub-catchments (finer 

scale), however, the term ‘finer scale’ in the paper represents incorporation of spatial variations 

through pixel level estimation of parameters involved in InVEST model which are otherwise taken 

as lumped. Authors agree that the parameter ‘w’ in the equation involved in strategy “E” have been 

proposed by Donohue et al. (2012) which is also cited in online documentation of InVEST model, 

however, the final equation used for estimating water yield is from the InVEST model. 

Considering this fact, Donohue et al. (2012) has been cited in Strategy ‘E’. If suggested by 

reviewer, the citation can be removed from the Strategy ‘E’. Various advancements in the 

Budyko’s theory have been addressed properly in revised manuscript. 

 

2. Methods: The methods rely on previously developed relationships between Budyko 

parameter and observable catchment properties. However, some of these relationships, such 

as those in Donohue et al. 2012 were developed for Australia. Similarly, Xu et al. (2013) 

report that the global model could explain only 53% of observed variation of Budyko’s 

parameter in their dataset. The large basin model worked well but is the Upper Ganga basin 

large enough in comparison to the 32 basins used in Xu et al. (2013)? 

 

Reply: The Donohue et al. (2012) model was developed for Australia, however, the online 

documentation on InVEST model also states its application globally. Although, the Upper Ganga 

basin lies in large basin category as per the definition from Xu et al. (2013), but, the yield computed 

using global model is in good agreement with the observed data for the Upper Ganga basin.  



 

3. Climate data: The resolution of climate data used to compute fine scale variables is of 

concern. The introduction stresses on a stronger control of precipitation (and potential 

evapotranspiration) on runoff estimates, as compared to Budyko’s parameter, but the 

analysis works with coarse climatic data. Though precipitation and temperature data were 

downscaled to the resolution of land use data (by a statistical technique that is not described 

well.), the effect of elevation on these variables was neglected (for example lapse rate was not 

accounted for in temperature estimates). As the basin has significant elevation variations, 

this may lead to biases in water yield estimates. 

 

Reply: The climate datasets used in the present study is at the finest resolution available so far for 

the study region. The precipitation and temperature data sets were downscaled to a resolution of 

land use data using Spline interpolation technique. The details regarding Spline interpolation 

technique has been added in the revised manuscript. Gridded datasets of temperature and 

precipitation used in the present study has been developed using quality controlled stations and 

well-proven interpolation technique. Further details about the datasets are given in Srivastava et 

al. (2009) and Pai et al. (2014).  

 

4. Validation: For the validation catchment, 32% of observed discharge is removed as it is 

assumed to be snowmelt. But snow melt still counts within the hydrological budget of the 

region as it is contributed by precipitation falling as snow, which is being used in the Budyko 

model. If the melt contribution was from long term glacier melts that contribute water to the 

region in addition to precipitation falling as rain or snow, one may remove it. Even that will 

be challenging at annual time scales if the basin has significant storage. Unless the distinction 

between glacier and snow melt is made, and some reasoning as to why Budyko’s approach 

can be applied at annual time steps, it will be hard to justify this reduction. There is also the 

issue of claiming predictive skill over an entire basin by looking at performance at a single 

sub-basin in a single year. Note that most approaches based on the Budyko’s curve must 

work with long term data as even at annual time scales, catchment’s water storage changes 

may be significant and the Budyko model may be invalid (Donohue et al. 2007). The 

discussion should reflect the limitations of this approach. 

 

Reply: Present work considers runoff from both precipitation as well as snowfall for the region, 

but 32% of the observed discharge has been removed as it is contributed by glacier ice melt to the 

streamflow for this catchment as explained by Maurya et al. (2011) for our study area. The above 

mentioned fraction of discharge had been quantified using isotope study which separates snow 

melt contribution from that of the glacier melt (Maurya et al. 2011). The present study attempts to 

quantify annual water yield at pixel level irrespective of the size of catchment. Therefore, the 

proposed methodology is expected to perform well for the catchment of any given size. Changes 

in catchment’s water storage over time are required to be quantified in order to validate the 

applicability of Budyko’s model to long term data for the catchment under study. This limitation 

of the proposed methodology has been added in the revised manuscript.   

 

5. Interpretation of results: For some reason, as we move from strategy A to E, catchment 

water yield steadily increases, or, ET decreases. This indicates a systematic change in the 

Budyko parameter as we go from simpler to more complex relationships requiring more 



data. Why would the Budyko parameter scale in this manner? This also seems to be in 

contradiction of the result by Choudhary (1999) who showed that as larger areas are used in 

a lumped form, Budyo’s parameter changes such that actual evapotranspiration reduces. 

See also the discussion in Donohue et al. (2007). Given the limited data for validation, it is 

important to physically interpret the results instead of focusing on which method is the best. 

 

Reply: Values of water yield estimated using strategy A to E are systematically increasing but are 

not steady in nature as water yield estimated using strategy A and B lies in range 650 – 750 mm 

whereas water yield from strategy C-E lies in range 1229 – 1231 mm for the year 1980 (see Table 

1). Similar results are also evident for other years too. Also, water yield estimated using strategy 

C-E are more or less same for a given year as these strategies involve pixel based estimation of 

water yield considering spatial variation in Budyko parameters. Parameters involved in Budyko 

model such as ‘w’ are found to be dependent on various factors such as catchment characteristics, 

vegetation cover, etc. as well as climate seasonality (Li et al. 2013). Ahn and Merwade (2017) 

have analysed the relationship between basin characteristics and factor ‘w’ for 175 stations spread 

over the USA. Results are shown in Fig. 1 (Ahn and Merwade, 2017). As evident from figure, no 

precise conclusion can be drawn regarding relationship between basin characteristics and value of 

‘w’ especially in case of basin area characteristics. In that case, rationalizing the relationship 

between basin size and value of Budyko model parameters as documented by Choudhary (1999) 

is not appropriate. Moreover, no straight forward relationship has yet been identified between basin 

characteristics and model parameters and it is a subject matter for further study. Authors again 

want to emphasize over the fact that study focuses on analyzing estimates of water yield computed 

considering spatial variation in Budyko model parameters at pixel level with water yield computed 

considering model parameters as lumped for the entire catchment. Authors agree that the data 

available for validation of parameters estimated at various levels are limited, however, estimated 

values of AET and PET used in computation of water yield are validated using satellite estimate 

of the variables for corresponding years (Table 1). From the comparison, both AET (GLDAS) and 

PET (CRU TS) values are found to in agreement with the satellite estimates. Necessary tables are 

added to the revised manuscript.  

 

 



 
Figure 1: The relationship between basin characteristics and optimal w values (Source: Ahn and 

Merwade, 2017) 

 

Table 1: Comparison of model estimated PET and AET with satellite estimates 

 

Parameter     InVEST model 

(mm) Year 
Source 2 

(GLDAS) 

Source 2 

(CRU) 

Strategy 

A 

(Lumped 

Zhang 

Model) 

Strategy 

B 

(Large 

Model) 

Strategy 

C 

(Global 

model) 

Strategy 

D (Xu et 

al. 2013) 

Strategy 

E 

(Donohue 

et al. 

2012) 

AET 1980 555.0355  696.84 486.07 679.52 679.68 680.01 

 1990 646.168  815.02 592.3 735.23 735.27 736.25 

 2001 588.084  680.76 408.86 548.28 548.39 550.38 

 2015 716.8316  900.11 625.41 743.48 743.52 744.34 

         

PET 1980  1175.964 1376.64 1382.12 1382.12 1382.12 1382.12 

 1990  1156.497 1456.16 1461.86 1461.86 1461.86 1461.86 



 2001  1184.847 1457.08 1462.96 1462.96 1462.96 1462.96 

 2015  1156.686 1544.20 1550.42 1550.42 1550.42 1550.42 

 

 

Minor Comment 

Structure: The paper can be re-structured to improve clarity. Sections 2 and 4 have 

overlapping items, while ‘data’ generally goes better with ‘Study area’. 

Reply: Review suggestions regarding modification of structure of the paper are duly considered 

in the revised manuscript. Our endeavor will be that the revised paper is much better than the 

current version. 
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The Upper Ganga Basin, Uttarakhand, India has high hydropower potential and plays an important 10 

role in development of state economy. Thus, knowledge about water yield is of paramount 11 
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models, attempts were made to consider a single value of some important model parameters which 15 

in fact show a variation at a pixel level scale. Therefore, in this study, the pixel level computations 16 

are performed to assess and ascertain their need in model applications. To validate the findings, 17 

the observed sub-basin discharge data is analyzed with the computed water yield for four decades, 18 

i.e. 1980, 1990, 2001 and 2015. The results obtained are in good agreement with the water yields 19 

obtained at pixel scale.    20 
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1. Introduction 22 

Efficient development and optimum utilization of water resources is of great significance to the 23 

overall development of any country. Many rivers, springs and lakes in the mountain regions are 24 

fed by the significant contribution of runoff from the snow melt and glacier melt. High spatial and 25 

temporal variability in hydro-metrological conditions in mountainous environments requires 26 

spatial models that are physically realistic and computationally efficient (Liston et al. 2006).  27 

Hydrological ecosystem services (ES) often include drinking waters supply, power production, 28 

industrial use, irrigation, and many more. These hydrological ES are dependent on the 29 

characteristics of different watersheds such a topography, land use land cover (LULC), soil type 30 

and its climatic condition.  31 

To quantify the impact of land-use and land management decisions on ecosystem services, a 32 

number of tools have been developed by various researchers (Bagstad et al. 2013). Accordingly, 33 

models for ecosystem-service valuation often focus on using globally available data, accepting 34 

large number of spatially explicit inputs and producing spatially explicit output, and limiting the 35 

model structure to key biophysical processes involved in land-use change (Guswa et al. 2014).  36 

Due to the spatial variability and dependency on so many topographical and climatic factors, the 37 

proper analysis of ES happens to be a complicated task. The benefits that can be derived from ES 38 

should be analyzed and quantified in a spatially explicit manner (Sanchez et al. 2012). The 39 

uncertainties in the determination of spatial and temporal distribution of the climatic variables, 40 

especially precipitation constitutes a major obstacle to the understanding of hydrological behavior 41 

at the catchment scales (Milly et al. 2002). 42 



3 
 

The literature indicates attempts to develop different ecosystem assessment tools. In this respect, 43 

Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), developed by Natural 44 

Capital Project (Tallis et al. 2010) is worth mention. It includes a biophysical component, 45 

computing the provision of freshwater or water yield, by different parts of the landscape and a 46 

valuation component, representing the benefits of water provisioning to people. This model is very 47 

simplified and is based upon the Budyko theory, which has a long history and still continues to 48 

receive interest in the hydrological literature (Budyko 1979; Zhou et al. 2012; Zhang et al. 2004; 49 

Ojha et al. 2008; Zhang et al. 2001; Donohue et al. 2012; Xu et al. 2013; Wang et al. 2014). The 50 

InVEST model applies a one-parameter formulation of the theory in a semi-distributed way (Zhang 51 

et al. 2004).  52 

In literature, some of the limitations related to InVEST annual water yield model, are that there is 53 

an absence or inadequate comparison with observed data, calibration of the model without prior 54 

identification of sensitive parameters, and lack of validation of the predictive capabilities in the 55 

context of Land Use Land Cover change (Bai et al. 2012; Nelson et al. 2010; Su et al. 2013; Terrado 56 

et al. 2014).  57 

In 2012, the sensitivity analysis is done by Sanchez-Canales et al. using the InVEST model for a 58 

Mediterranean region basin for three parameters i.e. Z (seasonal precipitation coefficient), 59 

precipitation (annual) and ET0 (annual reference precipitation) and found that precipitation as the 60 

most sensitive parameter. Later in 2014, Terrado et al., applied the InVEST model for the heavily 61 

humanized Llobregat river basin. The model is applied for both extreme wet and dry conditions 62 

and the role of climatic parameters is emphasized. Hoyer et al. (2014), applied this model in 63 

Tualatin and Yamhill basins of northwestern Oregon under the series of urbanization and climate 64 

change scenarios.  The results show that the climatic parameters have more sensitivity than other 65 
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inputs for a water yield model.  Hamel et al. (2014), applied the same water yield model for the 66 

Cape Fear catchment, North Carolina and concluded that the precipitation is the most influencing 67 

parameter. Goyal et al. (2017) analyzed the InVEST water yield model for the hilly catchment by 68 

taking two catchments i.e. Sutlej river catchment and Tungabhadra river catchment. The climate 69 

parameters i.e. precipitation and ET0 are observed to be most influencing parameters. However, 70 

spatial variability of some of the model parameters is not accounted for in this work. 71 

This work primarily considers in detail, the spatial variation of used model parameters and uses 72 

different strategies to compute water yield. Such water yield estimates are computed for four years 73 

i.e. 1980, 1990, 2001 and 2015 to identify most successful strategy. The parameters that are earlier 74 

computed at basins level scale are reduced to pixel level scale in order to study hydrological 75 

processes of catchment at pixel level to increase the efficiency of the results.  76 

Accurate assessment of key ecosystem services (ES) such as water yield have gained focus in 77 

recent years in ecosystem service modelling as fresh water availability in a region are essential for 78 

agriculture, industry, human consumption, hydropower, etc. (Readhead et al., 2016). Hydrological 79 

ecosystem services often include drinking waters supply, power production, industrial use, 80 

irrigation, and many more. These hydrological ES are dependent on different factors such as 81 

watershed characteristics (e.g. topography, land use land cover (LULC), soil type) and climatic 82 

condition. To incorporate these concepts into assessment and decision making, there has been a 83 

proliferation of ecosystem modelling tools and methods. Models for ecosystem services valuation 84 

often focus on using globally available data, accepting large number of spatially explicit inputs 85 

and producing spatially explicit output, and limiting the model structure to key biophysical 86 

processes involved in land-use change (Guswa et al. 2014). Precise estimation of ES using these 87 

models is a complicated task owing to spatial variability and dependence of ES on various 88 
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topographical and climatic factors. Further validation and uncertainty assessment in model output 89 

have proven to be a key obstacle to the application ES models. In the literature, studies focusing 90 

on comparison of different ES models have projected some light over the model output validation 91 

issues, however, there still exist lack of studies highlighting validation of these models for Indian 92 

basins. Further, the benefits that can be derived from ES should be analyzed and quantified in a 93 

spatially explicit manner (Sanchez et al. 2012). The uncertainties in the determination of spatial 94 

and temporal distribution of the climatic variables, especially precipitation constitutes a major 95 

obstacle to the understanding of hydrological behaviour at the catchment scales (Milly et al. 2002). 96 

The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, developed by 97 

Natural Capital Project (Tallis et al. 2010) is a tool which provides a framework to planners and 98 

decision makers to assess trade-offs among ecosystem services and enables their comparison in 99 

various climate and land use change scenarios. It includes a biophysical component, computing 100 

the provision of freshwater or water yield, by different parts of the landscape and a valuation 101 

component, representing the benefits of water provisioning to people. This model works on 102 

simplified Budyko theory, which has a long history and still continues to receive interest in the 103 

hydrological literature (Budyko 1979; Zhou et al. 2012; Zhang et al. 2004; Ojha et al. 2008; Zhang 104 

et al. 2001; Donohue et al. 2012; Xu et al. 2013; Wang et al. 2014). The InVEST model applies a 105 

one-parameter formulation of the theory in a semi-distributed way (Zhang et al. 2004). The model 106 

is capable of quantifying water yield of a catchment under the influence of change in drivers viz. 107 

climate variable and catchment characteristics (e.g. land use change). Various studies have been 108 

carried out in the past demonstrating application of InVEST model. Sanchez-Canales et al. (2012) 109 

carried out sensitivity analysis of three parameters i.e. z (seasonal precipitation coefficient), 110 

precipitation (annual) and ET0 (annual reference precipitation) using the InVEST model for a 111 
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Mediterranean region basin and found precipitation to be the most sensitive parameter for the study 112 

region. Later, Terrado et al. (2014) applied the InVEST model for the heavily humanized Llobregat 113 

river basin. The model is applied for both extreme wet and dry conditions and the role of climatic 114 

parameters is emphasized. Hoyer et al. (2014), applied this model in Tualatin and Yamhill basins 115 

of northwestern Oregon under the series of urbanization and climate change scenarios.  The results 116 

show that the climatic parameters have more sensitivity than other inputs for a water yield model.  117 

Hamel et al. (2014), applied the same water yield model for the Cape Fear catchment, North 118 

Carolina and concluded that the precipitation is the most influencing parameter. Goyal et al. (2017) 119 

analyzed the InVEST water yield model for the hilly catchment by taking two catchments i.e. 120 

Sutlej river catchment and Tungabhadra river catchment. The climate parameters i.e. precipitation 121 

and ET0 are observed to be most influencing parameters. However, there exist certain factors 122 

limiting the application of InVEST models such as the absence or inadequate comparison with 123 

observed data, calibration of the model without prior identification of sensitive parameters, and 124 

lack of validation of the predictive capabilities in the context of Land Use Land Cover change (Bai 125 

et al. 2012; Nelson et al. 2010; Su et al. 2013; Terrado et al. 2014).  126 

The InVEST model operates on the principle of Budyko theory (Budyko, 1958, 1974). Based on 127 

works of Schreiber (1904) and Ol’Dekop (1911), Budyko proposed formulations explaining the 128 

relationship between precipitation and potential evapotranspiration (PET) in order to couple water 129 

and energy balances, defined as Budyko hypothesis. Several attempts have been made to obtain 130 

an analytical solution of the Budyko hypothesis (Schreiber, 1904; Ol’Dekop, 1911; Turc, 1954; 131 

Mezentsev, 1955; Pike, 1964; Fu, 1981; Choudhury, 1999; Zhang et al., 2001, 2004; Porporato et 132 

al., 2004; Yang et al., 2008; Donohue et al., 2012; Wang and Tang, 2014; Zhou et al., 2015). 133 

Among these approaches, solutions provided by Fu (1981), called Fu’s equation gained attention 134 
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as the work represented the effect of catchment properties on water balance components by 135 

incorporating an addition parameter ‘w’. Fu’s equation can provide a full picture of the evaporation 136 

mechanism at the annual timescale. Therefore, Fu’s equation could be used through top-down 137 

analysis for providing an insight into the dynamic interactions among climate, soils, and vegetation 138 

and their controls on the annual water balance at the regional scale (Yang et al., 2007). 139 

Considering the lack of studies on analysis and validation of ES in Indian sub-continent especially 140 

for Himalayan catchments and to assess the applicability of various water-balance model to 141 

Himalayan catchments, the present work attempts to compute and analyse water yield in Upper 142 

Ganga basin using InVEST model. The work primarily considers in detail, the spatial variation of 143 

InVEST model parameters and uses different strategies to compute water yield. Accordingly, 144 

water yield is estimated for four years i.e. 1980, 1990, 2001 and 2015 and the most appropriate 145 

strategy is identified. The parameters that are computed at basins level scale in previous studies 146 

are estimated at pixel scale in order to avoid the dependence of model parameters on size of the 147 

catchment. In addition, pixel level estimations of water yield are expected to be accurate than 148 

output obtained using conventional approach. The term ‘finer scale’ in the paper represents 149 

incorporation of spatial variations through pixel level estimation of parameters involved in 150 

InVEST model which are otherwise taken as lumped. The work also attempts to compare the 151 

outcomes of spatially distributed water yield model and conventionally used lumped Zhang model. 152 

2. Background Theory 153 

2.1 Water Yield Models 154 

In this section, two water yield models, i.e. InVEST water yield model, which is a distributed 155 

model and Lumped Zhang model isare described as follows. 156 
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2.1.1 InVEST model 157 

The InVEST water yield model (Tallis et al. 2010) is designed to provide the information regarding 158 

the changes in the ecosystem that are likely to alter the flows. It is based upon the Budyko theory 159 

which is an empirical function that yields the ratio of actual to potential evapotranspiration 160 

(Budyko, 1979). To describe the degree to which long-term catchment water-balances deviate 161 

from the theoretical limits, a number of scholars have proposed one-parameter functions that can 162 

replicate the Budyko curve (Fu 1981, Choudhury 1999, Zhang et al. 2004, Wang et al. 2014).  163 

To observe and represent pixelparcel-level changes to the landscape, InVEST model 164 

incorporatesrepresents explicitly the spatial variability in precipitation and PET, soil depth and 165 

vegetation. The model operates at grid scale runs in the gridded format and acquires the inputs in 166 

the raster format into a GIS environment such as ArcGIS. which in turn helps to understand the 167 

heterogeneity of the factors influencing the water yield such as precipitation, land use land cover, 168 

soil type, etc. GIS and remote sensing plays a very crucial role in gathering the spatial and temporal 169 

information of any hydrological processes. GIS could be utilized as a suitable tool for solving 170 

water resources problems from local to global scale, spatially as well as temporally (Khatami et 171 

al. 2014).  172 

The InVEST water yield model is based on an empirical function which is known as the Budyko 173 

curve (Budyko 1974). The model takes the input as raster format and runs on the gridded map. 174 

Water yield Y (x) is determined for each pixel annually foron a landscape as follows: 175 

𝑌 (𝑥) =  (1 −  
𝐴𝐸𝑇 (𝑥)

𝑃 (𝑥)
) × 𝑃 (𝑥)                                             (1) 176 

Wwhere, 𝐴𝐸𝑇 (𝑥) is the actual annual evapotranspiration per pixel 𝑥; and  𝑃 (𝑥) is the annual 177 

precipitation per pixel 𝑥. Actual evapotranspiration (AET) is essentially determined by climate 178 
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factors (precipitation, temperature, etc.) and mediated by catchment characteristics (vegetation 179 

cover, soil characteristics, topography, etc.). On the other hand, potential evapotranspiration (PET) 180 

represents the evaporating potential of the climate system prevail at a specific location and time of 181 

year without the consideration of catchment characteristics and soil properties (Allen et al., 1998). 182 

Several attempts have been made in past to establish relationship between AET and PET, among 183 

which solution provided by Fu (1981) are adopted worldwide. Fu (1981) provided an analytical 184 

solution to the Budyko hypothesis and related AET with PET by incorporating a dimensionless 185 

parameter ‘w’ which denotes the effect of catchment characteristics. 186 

Mean annual evapotranspiration of any catchment is strongly determined by precipitation and 187 

potential evapotranspiration. The secondary role is played by the catchment characteristics, i.e. 188 

soil, topography, etc.    189 

The InVEST model uses thean expression of the Budyko curve proposed by Fu (1981) and Zhang 190 

et al.  (2004). The ratio of mean annual potential evapotranspiration to annual precipitation, known 191 

as index of dryness, is expressed as:can be used to determine the mean annual evapotranspiration 192 

by using one additional parameter.  193 

𝐴𝐸𝑇 (𝑥)

𝑃 (𝑥)
=  1 +  

𝑃𝐸𝑇 (𝑥)

𝑃 (𝑥)
−  [1 +  

𝑃𝐸𝑇 (𝑥)

𝑃 (𝑥)
]

(
1

𝜔
)

                              (2) 194 

Wwhere, 𝑃𝐸𝑇 (𝑥) is the annual potential evapotranspiration per pixel 𝑥 (mm); and  𝑤𝜔 (𝑥) is a 195 

non-physical parameter that influences the natural climatic soil properties.  196 

The 𝑃𝐸𝑇 (𝑥) is calculated usingby the following expression: 197 

𝑃𝐸𝑇 (𝑥) = 𝐾𝑐 (𝑥)  × 𝐸𝑇𝑜 (𝑥)                                   (3) 198 
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wWhere, 𝐸𝑇𝑜 (𝑥) is the annual reference evapotranspiration per pixel 𝑥 which is calculated based 199 

on evapotranspiration of grass of alfalfa grown at that location shown in the equation (6). 𝐾𝑐 (𝑥) 200 

is the vegetation evapotranspiration coefficient that is influenced by the change in characteristics 201 

of land use land cover for every pixel (Allen et al. 1998). The values of  𝐸𝑇𝑜 (𝑥) are adjusted by 202 

𝐾𝑐 (𝑥) for each pixel over the land use land cover map. 𝑤𝜔 (𝑥) is an empirial parameter and the 203 

expression given by Donohue et al. (2012) for the InVEST model has been applied to define 𝜔 (𝑥) 204 

which is as follows: 205 

𝑤𝜔 (𝑥) = 𝑧 ×  
𝐴𝑊𝐶 (𝑥)

𝑃 (𝑥)
+ 1.25                                  (4) 206 

Thus, the minimum value of the parameter 𝑤𝜔 (𝑥) is 1.25 corresponding to for bare soil where 207 

root depth is zero (Donohue et al. 2012) which is evident from the above expression. The Donohue 208 

model was developed for Australia, however, the online documentation on InVEST model states 209 

its application globally. The Other parameter z is known as seasonality factor whose values vary 210 

from 1 to 30. It represents the nature of local precipitation and other hydrogeological parameters. 211 

The parameter 𝐴𝑊𝐶 (𝑥) depicts volumetric plant available water content which is expressed in 212 

depth (mm) which can be expressed by following formula for each pixel 𝑥: 213 

𝐴𝑊𝐶 (𝑥) = 𝑀𝑖𝑛. (Restricting layer depth, root depth)  × 𝑃𝐴𝑊𝐶              (5) 214 

Root restricting layer depth is defined as the depth of the soil upto which the soil can allow the 215 

penetration of roots and root depth is defined as the depth where 95 percent of the root biomass 216 

occurs. Plant Available Water Content (PAWC) is generally taken as the difference between the 217 

field capacity and wilting point. It depends upon the soil properties and can be computed by the 218 

Soil-Plant-Air-Water (SPAW) software. PAWC is calculated using the method described by 219 

Mckenzie et al. (2003). 220 
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 Modified Hargreaves method and Hargreaves method were employed Ffor computing the pixel 221 

wise reference evapotranspiration for the study area at pixel scale., two methods are applied, i.e. 222 

modified Hargreaves method and Hargreaves method. 223 

Modified Hargreaves method 224 

𝐸𝑇𝑜 = 0.0013 × 0.408 × 𝑅𝐴 × (𝑇𝑎𝑣𝑔 + 17.0) × (𝑇𝐷 − 0.0123 × 𝑃)0.76          (6) 225 

wWhere, ETo is reference evapotranspiration, Tavg is average daily temperature (oC) defined as the 226 

average of the mean daily maximum and mean daily minimum temperature, TD (oC) is the 227 

temperature range computed as the difference between mean daily maximum and mean daily 228 

minimum temperature, and RA is extraterrestrial radiation expressed in [MJm-2d-1]. 229 

Hargreaves method 230 

𝐸𝑇𝑜 = 0.0023 × 0.408 × 𝑅𝐴 × (𝑇𝑎𝑣𝑔 + 17.8) × 𝑇𝐷0.5                       (7) 231 

wWhere, ETo is reference evapotranspiration, Tavg is average daily temperature (oC) defined as the 232 

average of the mean daily maximum and mean daily minimum temperature, TD (oC) is the 233 

temperature range computed as the difference between mean daily maximum and mean daily 234 

minimum temperature, and RA is extraterrestrial radiation expressed in (MJm-2d-1). 235 

For computing the parameter extraterrestrial radiation (RA), following equation is used is shown 236 

in the equation (8). 237 

𝑅𝐴 =  
24(60)

𝜋
 × 𝐺𝑠𝑐 × 𝑑𝑟 × [𝑤𝑠 sin(𝜑) sin(𝛿) + cos(𝜑) cos(𝛿) sin(𝑤𝑠)]     (8) 238 
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wWhere, RA is extraterrestrial radiation [MJm-2d-1], dr is the inverse relative distance Earth-Sun, 239 

Gsc is solar constant equals to 0.0820 MJm-2min-1, ws is sunset hour angle (rad), δ is solar 240 

declination (rad) and φ is latitude (rad).     241 

Determination of Seasonality factor (z) parameter 242 

The seasonality factor (z) parameter varies depending upon the local precipitation patterns such as 243 

the hydrological characteristics of the area, its rainfall intensity and topography. According to the 244 

InVEST water yield model InVEST (Tallis et al. 2010), the parameter z can be computed in three 245 

different ways. First method is suggested by Donohue et al. (2012), in which that the parameter z 246 

is can be expressed as the one fifth of the number of rain events per year. Second method is 247 

suggested by Xu et al. (2013), which relates 𝜔 (𝑥) with latitude, NDVI (Normalized Difference 248 

Vegetation Index), Aarea, etc. Third method experiments with various selections of w (one value 249 

of w for the entire study region) till there is a good match between observed and computed water 250 

yield. Unfortunately, this method is not suited to a pixel based analysis as the number of pixels 251 

will be extremely large making the method to be computationally intensive. 252 

2.1.2 Lumped Zhang model 253 

In this model all the mean values of the parameters are used as an input to compute the average 254 

value of the water yield for the whole watershed. In this model the averaged actual transpiration, 255 

potential evapotranspiration, w, precipitation is used as described by Zhang et al. (2004) 256 

3. Study Area 257 

In India, tThe Gangaes river in India is rankeds amongst the world's top 20 rivers in regards to the 258 

flow discharge. The River Ganga river is segregated into three zones, viz., Upper Ganga basin, 259 

Middle Ganga basin and Lower Ganga basin. The area choosen for the present study, i.e., Upper 260 
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Ganga river basin is situated in the nNorthern part of India within the geographical coordinates 261 

300 38’ - 310 24’ N latitude and 780 29’ - 800 22’ E longitude with an area of 22,292.1 km2 upto 262 

Haridwar.which encompasses an area of around 22,292.1 km2. The altitude of the study area varies 263 

from 7512 m in the Himalayan terrains to 275 m in the plains. Approximately 433 km2 of the entire 264 

region of the basin is under glacier landscape and 288 km2 is under fluvial landscape. The river 265 

basin of Ganga is located in the state of Uttarakhand, India within the geographical coordinates 266 

300 38’ - 310 24’ N latitude and 780 29’ - 800 22’ E longitude with an area of 22,292.1 km2 upto 267 

Haridwar. About 60% of the basin is utilized for agricultural, 20% of the basin is under the forest 268 

area, especially majorly in the upper mountainous region., and Nnearly 2% of the basin is 269 

permanently covered with snow in the mountain peaks. Most predominant soil groups found in the 270 

region are sand, clay, loam and their compositions. Due to favorable agricultural conditions 271 

majority of the population practices agriculture and horticulture. However, a large portion of the 272 

total population lives in cities along Ganga river. In the Upper Ganga river basin, the average 273 

annual rainfall varies from 550 to 2500 mm (Bharati et al. 2011) and a major fraction of total 274 

annual rainfall is received during monsoon months (June-September). part of the rains is due to 275 

the south-westerly monsoon that prevails from July to late September. The geographical location 276 

and other information of the study area Upper Ganga river basin are represented in Fig. 1. 277 

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript

Formatted: Superscript



14 
 

278 

Figure 1. Graphical representation of study area, Upper Ganga basin  279 

4. Methodology 280 

4.1 Data  281 

4.1.1Precipitation and Temperature 282 

The daily time series data of precipitation and temperature for the study area is acquired from India 283 

Meteorological Department (IMD) at a grid size of 0.25 degrees and 1 degree, respectively. The 284 

study area Upper Ganga basin comes in the latitude ranging from 29.5 degrees to 31.5 degrees and 285 
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longitude ranging from 77.75 degrees to 80.25 degrees. The daily time series of precipitation was 286 

aggregated to obtain the annual time series at each grid point. Various analysis in the study are 287 

carried out for four years The data is extracted for all the four years, i.e. 1980, 1990, 2001 and 288 

2015. 289 

4.1.2 Soil Map 290 

Spatial mapsData of soil wereis collected from National Bureau of soil survey and land use 291 

planning (NBSSLUP) at 1:250000. Digital maps of soil available at a resolution of 1200m×1200m 292 

were resampled to the resolution of land use data i.e. 30m×30m using ‘resample’ tool in ArcGIS 293 

in order to maintain the scale homogeneity. The cell size of this data is 1200m×1200m which is 294 

different from that of land use data which has a cell size of 30m×30m. So this data is resampled 295 

using ‘resample’ tool in ArcGIS. The attribute table of the rastervector layer contains fields like 296 

soil depth, soil texture, percentage carbon content, drainage, slope, erosion, soil temperature and 297 

mineralogy. The relevant feature, i.e. of soil depth and soil texture are converted into the raster 298 

image for the Upper ganga basin.  299 

4.1.3 LandUse/Land Cover map 300 

Different sensors are used for obtaining the satellite images for different years. For the year 1980, 301 

1990, 2001 and 2015, Landsat 3/4 ETM, Landsat 4 ETM, Landsat 7 and Landsat 8 ETM sensors 302 

are used to download the image. Satellite images were acquired from different sensors of Landsat 303 

viz. Landsat 3/4 MSS/TM, Landsat 4 TM, Landsat 7 ETM and Landsat 8 OLI sensors for the year 304 

1980, 1990, 2001 and 2015 respectively. The images are available at different resolution and for 305 

several bands out of which Green (G), Red (R) and Near Infrared (NIR) band images are combined 306 

to create False Colour Composite (FCC) for the study area in ERDAS Imagine. 307 
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These satellite images are different in their grid size and all the satellite data is taken as raw data 308 

from USGS. This data is available in form of different bands combinations and different 309 

resolutions depending upon the type of sensors. As per the type of sensors, the bands are stacked 310 

in ERDAS and a new stacked image is generated.  FCCs are then This image is now classified 311 

using supervised classification in ERDAS in six different classes, i.e. Forest, Water, Agricultural, 312 

Wasteland, Snow and Glacier and Built-up land. Classification of the area is based upon their 313 

similar response under different bands. Each class is then recognized with the help of ground truth 314 

and high resolution satellite images. 315 

4.2 Methodology to compute water yield involves the following steps.  316 

In the present work, five different strategies are employed to compute water yield..For computing 317 

water yield five strategies are considered here. For the ease of presentation, these strategies are 318 

referred as A, B, C, D, E. In strategy A, an average value of pPrecipitation, tTemperature, 319 

eExtraterrestrial rRadiation and parameter ‘“w’” is used for the entire basin. This strategy is 320 

essentially based on Lumped Zhang Model. 321 

 Strategies B, C, D and E are designated corresponding to particular variation of InVEST model 322 

where water yield is computed using different approach for estimating ‘w’ parameter. “w” is 323 

estimated differently. For computing parameter ‘“w’”, Xu et al. (2013) relationship for large basin 324 

and global level is given by equation (9) and equation (10) respectively.  325 

For Large basins: 326 

𝑤 = 0.69387 − 0.01042 × 𝑙𝑎𝑡 + 2.81063 × 𝑁𝐷𝑉𝐼 + 0.146186 × 𝐶𝑇𝐼           (9) 327 

For global model: 328 
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𝑤 = 3.50412 − 0.09311 × 𝑠𝑙𝑝 − 0.03288 × 𝑙𝑎𝑡 + 1.12312 × 𝑁𝐷𝑉𝐼 − 0.00205 × 𝑙𝑜𝑛𝑔 −329 

0.00026 × 𝑒𝑙𝑒𝑣                                                                   (10) 330 

wWhere, slp is slope gradient, lat is absolute latitude of basin center, CTI is compound topographic 331 

index, NDVI is normalized difference vegetation index, long is longitude and elev is elevation.  332 

In strategy B, entire basin is considered for computing the parameter ‘“w’” for large basins 333 

(equation 9) by Xu et al. (2013). In strategy C, entire basin is considered for computing the 334 

parameter ‘“w’” for Global model (equation 10) by Xu et al. (2013). In strategy D, parameter ‘“w’” 335 

is computed at each pixel in order to incorporate the spatial distribution of the hydrologic variables 336 

involved in the computations. considered pixel wise as all the hydrological parameters involved in 337 

the computations vary spatially. In Strategy E, parameter ‘“z’” is computed according to the 338 

number of rain events in a year and subsequently equation (4) is used to compute the parameter 339 

“’w’”.  340 

For all the strategies, other steps involving computation of Extraterrestrial Radiation, Precipitation, 341 

Temperature, Reference Evapotranspiration and Potential Evapotranspiration are briefly described 342 

as follows: 343 

4.2.1 eExtraterrestrial rRadiation (RA) (x) 344 

The value of this parameter is computed at a monthly interval in a raster format for different pixels 345 

for each month using equation (8). and a raster layer is generated.   346 

4.2.2 Precipitation; P(x) 347 

The data is obtained from Indian Meteorological Department (IMD) at grid size of 0.25 degree for 348 

the study area and has been interpreted and converted to raster format by using Inverse Distance 349 
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Weighted (IDW) IWD interpolation technique in ArcGIS environment for obtaining the values for 350 

all pixels at a resolution equal to the resolution of the lLandsat satellite image for the study area. 351 

The temperature dataset is obtained from IMD at grid size of 1o × 1o for the study area and has 352 

been interpreted and converted to raster format by using IDW interpolation technique for obtaining 353 

the values for all pixels at a resolution equal to the resolution of the Landsat satellite images. 354 

Subsequently, the mean monthly value of average temperature (Tavg) and the difference between 355 

mean daily maximum and mean daily minimum (TD) is obtained. The climate datasets used in the 356 

present study are of the finest resolution available so far for the study region. The precipitation and 357 

temperature data sets were downscaled to a resolution of land use data using Spline interpolation 358 

technique.  359 

4.2.3 Temperature Tavg (x) and TD (x) 360 

The temperature data is obtained from IMD at grid size 1 degree for the study area and has been 361 

interpreted and converted to raster format by using IWD interpolation technique for obtaining the 362 

values for all pixels at a resolution equal to the resolution of the landsat satellite image for the 363 

study area. Subsequently, the mean monthly value (Tavg) and the difference between mean daily 364 

maximum and mean daily minimum (TD) is obtained. Gridded datasets of temperature and 365 

precipitation used in the present study has been developed using quality controlled stations and 366 

well-proven interpolation technique. Further details about the datasets are given in Srivastava et 367 

al. (2009) and Pai et al. (2014). 368 

4.2.4 Reference Evapotranspiration (ETo)  369 

Modified Hargreaves method is applied for obtaining the values of reference evapotranspiration at 370 

each pixel for the study area for each month (Droogers et al. 2002). It is calculated based on the 371 
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evapotranspiration of grass of the study area. In this method, the inputs are Ra, precipitation, Tavg 372 

and TD. Some of the months, i.e. July 1980, July 1990, August 1990, June 2001, July 2001, August 373 

2001, June 2015, July 2015 and August 2015 showed the negative values of reference 374 

evapotranspiration as obtained from by applying Modified Hargreaves method. Thus, for the above 375 

months the Hargreaves method, as previously recommended by (Droogers et al. (2002), is applied 376 

for obtaining the positive values for the reference evapotranspiration.  377 

Thus, all the mean values for the month are added up to get the mean yearly values for the year 378 

1980, 1990, 2001 and 2015.   379 

4.2.5 Potential Evapotranspiration PET (x) 380 

To computed potential evapotranspiration, Tthe yearly values obtained for the reference 381 

evapotranspiration have been multiplied by the vegetation evapotranspiration coefficient (Kc) 382 

which varies with the LULC characteristics as expressed in equation (3). The value of the 383 

vegetation evapotranspiration coefficient is taken from Allen et al. (1998) as shown in . The Table 384 

1. shows the values taken for the coefficient of various classes of landuse/landcover. In this study, 385 

Kc is taken same for all the four years from Table. 1 and is used to obtain potential 386 

evapotranspiration which is subsequently used to obtain the yearly potential evapotranspiration at 387 

each pixel of the study area. 388 

Table 1. Value of Kc corresponding to LandUse/LandCover classes 389 

S.No. LandUse/LandCover Percentage 

cover 

(1980) 

Percentage 

cover 

(1990) 

Percentage 

cover 

(2001) 

Percentage 

cover 

(2015) 

Kc 

1 Forest 17.84 16.32 15.78 15.19 1 
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2 Water 21.87 21.27 19.47 17.65 1 

3 Wastelands 51.1 52.36 54.18 55.46 0.2 

4 Built-up Area 2.07 2.14 2.27 2.49 0.4 

5 Agricultural 3.67 4.04 3.76 4.22 0.75 

6 Snow and Glacier 3.45 3.87 4.54 4.99 2 

 390 

1. In this study, Kc is taken same for all the four years from Table. 1 and is used to obtain 391 

potential evapotranspiration which is subsequently used to obtain the yearly potential 392 

evapotranspiration at each pixel of the study area.  393 

6.5. Results 394 

6.15.1 Reference Evapotranspiration,; ETo (x) 395 

Reference Evapotranspiration is computed for the upper Ganga Basin using a high-resolution 396 

monthly climate dataset. Modified Hargreaves method is applied for obtaining the values of 397 

reference evapotranspiration at each pixel for the study area for each month (Droogers et al. 2002). 398 

The reference evapotranspiration is a function of REa, precipitation, Tavg and TD which are 399 

already computed pixel wise for each month for the year 1980, 1990, 2001 and 2015. 400 

Some of the months i.e. July 1980, July 1990, August 1990, June 2001, July 2001, August 2001, 401 

June 2015, July 2015 and August 2015 showedd the negative values of reference 402 

evapotranspiration byon applying Modified Hargreaves method. Thus, for the above months, the 403 

Hargreaves method is applied for obtaining the positive results. Hence, all the mean values for the 404 

months are added up to get the mean yearly values of evapotranspiration for the years 1980, 1990, 405 

2001 and 2015, as represented in Fig 2.   406 
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 407 

Figure 2. Reference Evapotranspiration (mm) of Upper Ganga Basin for the years 1980, 1990, 408 

2001 and 2015. 409 

6.25.2 Potential Evapotranspiration,; PET (x) 410 

The annual yearly values obtained for the reference evapotranspiration is multiplied by the 411 

vegetation evapotranspiration coefficient (Kc) which varies with the Land Use Land Cover 412 

characteristics, as expressed in equation (3). The value of the vegetation evapotranspiration 413 

coefficient is taken from Allen et al. (1998). The values of the vegetation evapotranspiration 414 

coefficient are taken from the Table 1. Thus, the potential evapotranspiration is computed for 415 

Upper Ganga Basin for the years 1980, 1990, 2001 and 2015 as represented in Fig. 3. 416 
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417 

Figure 3. Potential Evapotranspiration (mm) of Upper Ganga Basin for the years 1980, 1990, 2001 418 

and 2015. 419 

5.3 Water Yield;, Y(x) 420 

As mentioned in the methodology, the water yield for the Upper Ganga basin are computed using 421 

fivevarious strategies A, B, C, D and E: 422 

Strategy A: By computing wWater yield computed using from Lumped Zhang Model 423 

Here, the basin average mean values of all the input parameters are considered and the water yield 424 

is computed for the Upper Ganga basin for the years 1980, 1990, 2001 and 2015 whichand is are 425 

obtained as 658.52 mm, 925.68 mm, 603.71 mm and 1194.25 mm, respectively. 426 

Strategy B: Water yield obtained by taking the single weighted mean value of parameter ‘“w’” 427 

from Xu et al. (2013) for Large basins. 428 
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By considering athe single value of the parameter ‘“w’” for the whole basin the water yield is 429 

computed for Upper Ganga basin (equation 9). The weighted mean value for the parameter “’w’” 430 

for the years 1980, 1990, 2001 and 2015 are obtained as 1.507, 1.541, 1.403 and 1.507 respectively. 431 

The spatial distribution of water yield for the Upper Ganga basin for differentthe years are 432 

represented in Fig. 4. The mean values of water yield as obtained using this method for the years 433 

1980, 1990, 2001 and 2015 are 755.65 mm, 959.48 mm, 742.39 mm and 1131.42 mm respectively.  434 

435 

Figure 4. Water yield obtained by taking the single weighted mean value of parameter ‘“w’” from 436 

Xu et al. (2013) for large basins. 437 

Strategy C: Water yield obtained by taking the single weighted mean value of parameter ‘“w’” 438 

from Xu et al. (2013) for global model. 439 

By considering athe single value of the parameter ‘“w’” for the whole basin the water yield is 440 

computed for Upper Ganga basin (equation 10). The weighted mean value for the parameter ‘“w”’ 441 
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for the years 1980, 1990, 2001 and 2015 are obtained as (-0.967), (-0.955), (-1.010) and (-0.968) 442 

respectively. The spatial distribution of water yield for the Upper Ganga basin for the years are 443 

shownrepresented in Fig. 5. The mean values of water yield for the years 1980, 1990, 2001 and 444 

2015 are 1239.92 mm, 1549.46 mm, 1149.93 mm and 1754.59 mm respectively. 445 

446 

Figure 5. Water yield obtained by taking the single weighted mean value of parameter “w” from 447 

Xu et al. (2013) for global model. 448 

Strategy D: Water yield obtained by usingcomputing pixel level estimation wise value of 449 

parameter ‘“w’” from Xu et al. (2013)  450 

In this strategy, Tthe values of parameter “’w’” is computed at pixel level. The water yield 451 

computed for the years 1980, 1990, 2001 and 2015 for the Upper Ganga Basin are represented in 452 

Fig. 6. The mean values of water yield for the years 1980, 1990, 2001 and 2015 are 1240.02 mm, 453 

1549.44 mm, 1149.89 mm and 1754.62 mm respectively. 454 
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 455 

Figure 6. Water yield obtained by computing pixel wise value of parameter “w” from Xu et al. 456 

(2013)  457 

Strategy E: Water yield obtained using by computing pixel level estimation wise value of 458 

parameter ‘“w”’ from Donohue et al. (2012) 459 

The equation (4), represents the parameter ‘“w”’ which is athe function of the parameters ‘z’, 460 

AWC and P. The parameter ‘w’ in the equation involved in strategy ‘E’ have been proposed by 461 

Donohue et al. (2012) which is also cited in online documentation of InVEST model, however, the 462 

final equation used for estimating water yield is from the InVEST model. Considering this fact, 463 

Donohue et al. (2012) has been cited in Strategy ‘E’.Thus, tThe water yield is computed for Upper 464 

Ganga Basin for the years are shown in Fig. 7. The mean values of water yield for the years 1980, 465 

1990, 2001 and 2015 are 1241.09 mm, 1552.38 mm, 1153.95 mm and 1753.53 mm respectively. 466 
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467 

Figure 7. Water yield obtained by computing pixel wise value of parameter “w” from Donohue et 468 

al. (2012) 469 

5.2 Validation of results in sub-basin Rishikesh of Upper Ganga Basin.ET and water yield 470 

estimates 471 

For validation purpose, the basin average annual values of PET and AET estimated using various 472 

strategies are compared with the corresponding basin average values obtained from available 473 

global datasets (Table 2). Model simulated AET values are obtained from GLDAS global ET 474 

datasets from Noah model outputs. Basin average values of PET dataset are obtained from Climate 475 

Research Unit (CRU) PET datasets (CRU TS v. 4.01) available at resolution of 0.5o.  From the 476 

comparison, both AET (GLDAS) and PET (CRU TS) values are found to in agreement with the 477 

satellite estimated values. Spatial of Global datasets of AET and PET are shown in Figure 8 and 478 

9, respectively. 479 
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    480 

    481 

Figure 8. Spatial distribution of AET obtained from GLDAS Noah output datasets. 482 

 483 

    484 

 485 

Figure 9. Spatial distribution of PET obtained from CRU datasets. 486 

 487 
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 488 
Table 2: Comparison of model estimated PET and AET with satellite estimates 489 

 490 

Parameter     InVEST model 

(mm) Year 
Source 2 

(GLDAS) 

Source 2 

(CRU) 

Strategy 

A 

(Lumped 

Zhang 

Model) 

Strategy 

B 

(Large 

Model) 

Strategy 

C 

(Global 

model) 

Strategy 

D (Xu et 

al. 2013) 

Strategy 

E 

(Donohue 

et al. 

2012) 

AET 1980 555.0355  696.84 486.07 679.52 679.68 680.01 

 1990 646.168  815.02 592.3 735.23 735.27 736.25 

 2001 588.084  680.76 408.86 548.28 548.39 550.38 

 2015 716.8316  900.11 625.41 743.48 743.52 744.34 

         

PET 1980  1175.964 1376.64 1382.12 1382.12 1382.12 1382.12 

 1990  1156.497 1456.16 1461.86 1461.86 1461.86 1461.86 

 2001  1184.847 1457.08 1462.96 1462.96 1462.96 1462.96 

 2015  1156.686 1544.20 1550.42 1550.42 1550.42 1550.42 

 491 

The validation of the water yields obtained from variouss proposed strategies isare performed 492 

uptofor Rishikesh gauging site(Fig. 8), a sub-basins of Upper Ganga basin (Fig. 10). As the data 493 

of the study area is classified and thus, the representation of complete data is forbidden. The 494 

discharge data of the basin is obtained from Irrigation department of, Uttarakhand state. The 495 

surface runoff data is extracted from the snow melting data from the discharge data as the snow 496 

melting contributes about 32 percent in study area as suggested by Maurya et al. (2011). Present 497 

work considers runoff from both precipitation as well as snowfall for the region, but 32% of the 498 

observed discharge has been removed as it is contributed by glacier ice melt to the streamflow for 499 

this catchment as explained by Maurya et al. (2011) for our study area. The above mentioned 500 

fraction of discharge had been quantified using isotope study which separates snow melt 501 

contribution from that of the glacier melt (Maurya et al., 2011). A comprehensive work on water 502 

balance of Upper Ganga Basin has been discussed by Jain et al. (2017), with reference to (Table 503 

4., in Jain et al., (2017). For a pPrecipitation value of 1236.1 mm, Gground water contributes by 504 
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an amount offlow of 293.92 mm and snow melt contributes by 73.84 mm. It is apprehended that 505 

gGround water flow and snow melt equals to 367.76 mm which is approximately equals to 29.75 506 

percent of Precipitation. SubsequentlyIndirectly, this percentage contribution is also supported by 507 

the value reported by Maurya et al. (2011). A comparison of Thus, the water yield computed and 508 

observed for the study region has been validated for different years by various proposed strategies 509 

ares shown in Table 32. 510 

   511 

Figure 108. Graphical representation of sub-basin Rishikesh  512 

Table 32. Observed vs computed water yield by various proposed strategies for Rishikesh sub-513 

basin. 514 

Strategies 1980 1990 2001 2015 

Observed discharge (mm) 1831.31 2422.43 2187.22 2835.81 

Observed (mm) (after reducing approx. 

32% snow melting contribution) 

1245.29 1647.25 1487.31 1928.35 

Water Yield_Strategy A (mm) 652.47 914.35 598.25 1189.72 
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Water Yield_Strategy B (mm) 745.38 917.77 697.75 1092.17 

Water Yield_Strategy C (mm) 1229.90 1506.82 1102.62 1718.17 

Water Yield_Strategy D (mm) 1229.99 1506.74 1102.61 1718.18 

Water Yield_Strategy E (mm) 1230.77 1508.88 1106.86 1720.16 

 515 

Values of water yield estimated using strategy A to E are systematically increasing but are not 516 

steady in nature as water yield estimated using strategy A and B lies in range 650 – 750 mm 517 

whereas water yield from strategy C-E lies in range 1229 – 1231 mm for the year 1980 (see Table 518 

3). Similar results are also evident for other years too. Also, water yield estimated using strategy 519 

C-E are more or less same for a given year as these strategies involve pixel based estimation of 520 

water yield considering spatial variation in Budyko parameters. Parameters involved in Budyko 521 

model such as ‘w’ are found to be dependent on various factors such as catchment characteristics, 522 

vegetation cover, etc. as well as climate seasonality (Li et al. 2013). Ahn and Merwade (2017) 523 

have analysed the relationship between basin characteristics and factor ‘w’ for 175 stations spread 524 

over the USA results are presented in Ahn and Merwade, (2017). As evident from their study, no 525 

precise conclusion can be drawn regarding relationship between basin characteristics and value of 526 

‘w’ especially in case of basin area characteristics. Moreover, no straight forward relationship has 527 

yet been identified between basin characteristics and model parameters and it is a subject matter 528 

for further study. 529 

7.6.Discussion 530 

The study aimed to apply the InVEST water yield model, a tool that is gaining interest in ecosystem 531 

services community for Upper Ganga Basin, having the variability in the topography and 532 

consisting of hilly areas, plain areas and the regions which are totally covered with snow. The 533 
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InVEST model is based upon Budyko theory which requires low amount of data and low level of 534 

expertise, thus making it acceptable world-wide. Monthly precipitation, monthly average value of 535 

temperature, monthly value of difference of mean daily maximum and mean daily minimum and 536 

extraterrestrial radiation parameters are computed for the Upper Ganga Basin for each month of 537 

all the four years i.e. 1980, 1990, 2001 and 2015 and converted into the raster format for the further 538 

analysis. The monthly reference evapotranspiration is thus computed using input parameters in the 539 

GIS environment by applying the modified Hargreaves equation for all the months except some 540 

months where the modified Hargreaves equation shows the negative results for the reference 541 

evapotranspiration value. For those months Hargreaves method is applied to obtain the positive 542 

value of reference evapotranspiration as also suggested by Goyal et al. (2017). Reference 543 

evapotranspiration when multiplied with Kc gives the potential evapotranspiration. All the monthly 544 

values of different years are added up to obtain the yearly value of reference evapotranspiration. 545 

Kc is the function of Land Use Land Cover, thus supervised classification is done to prepare the 546 

raster Land Use Land Cover map for the Upper Ganga Basin. Thus, the yearly value of potential 547 

evapotranspiration is obtained for the study area for the years 1980, 1990, 2001 and 2015.  548 

The paper focuses on all the methodologies discussed in the paper and is applied on the Upper 549 

Ganga basin. Thus, water yield is computed both from InVEST model as well as Lumped Zhang 550 

model. The value of the parameter ‘“w’” are computed in four ways, i.e. mean single value 551 

obtained from Xu et al. (2013) for large basins and global model, pixel wise value of parameter 552 

‘“w’” from Xu et al. (2013) and pixel wise value of parameter “’w’” from Donohue et al. (2012). 553 

Although, the Upper Ganga basin lies in large basin category as per the definition from Xu et al. 554 

(2013), but, the yield computed using global model is in good agreement with the observed data 555 

for the Upper Ganga basin.  556 
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In the study, pixel level estimation of parameter ‘w’ is made in order to incorporate the spatial 557 

variability of the parameter in water yield estimation. The purpose to introduce the value of 558 

parameter “w” at pixel level so that it does not seem logical to compute a single value of parameter 559 

“w” for such a large basin. Thus, two pixel wise values of parameter ‘“w’” is computed for the 560 

Upper Ganga basin for years 1980, 1990, 2001 and 2015 by considering two approaches as given 561 

by from Xu et al. (2013) and Donohue et al. (2012). Also, the water yield is computed from 562 

Lumped Zhang model which works on the approach of considering mean values of all the 563 

parameters indulged in the computations of water yield. Thus, in five ways water yield are 564 

computed for the Upper Ganga basin for the years 1980, 1990, 2001 and 2015. 565 

At For site Rishikesh gauging site, the contributing area to water yield is extracted from the Upper 566 

Ganga basin and the discharge data is taken from the irrigation department, Uttarakhand to 567 

compare the results. The surface runoff data is obtained by extractinged from the snow melting 568 

data from the discharge data as the snow melting contributes about 32 percent of total runoffin 569 

study area as suggested by (Maurya et al., (2011). Using this fact, the observed yield is compared 570 

with the computed water yield based on different proposed strategies for the years 1980, 1990, 571 

2001 and 2015 represented in Table 23.  572 

The results obtained from Donohue et al. (2012) and Xu et al. (2013) computed at pixel level 573 

(Strategy C, Strategy D and Strategy E), thus represents better performance than other and are in 574 

good agreement with the observed data. It is clear that in order to go fordo hydrological processing 575 

for any watershed, pixel wise classification and computation is advisable necessary.   The 576 

parameters involved in the Budyko model are dependent on various factors such as basin 577 

characteristics (size, topography, stream length, slope, etc.), climate seasonality, etc. (Li et al., 578 

2013). The factors affecting model parameters again vary both spatially and temporally. Moreover, 579 



33 
 

the relationship between these factors and model parameters are not yet well defined (Ahn and 580 

Merwade, 2017). In such scenario, adopting a hypothesis by assuming few of these controlling 581 

factors (such as ‘w’) to be constant spatially or temporally is inappropriate. Considering these 582 

facts, the present study attempts to incorporate the spatial variability of model parameter for 583 

estimation of water yield at pixel level. As the computations are made at pixel level in GIS 584 

environment, the assumption of dependence of model parameters over scale of the catchment may 585 

also be disregarded.  The computations made in present work are based on empirical equations, 586 

however, the application of these equations has been well documented worldwide for estimation 587 

of various water balance components at various basin scales (Zhang et al., 2008; Ma et al., 2008; 588 

Ning et al., 2017; Rouholahnejad et al., 2017; Wang et al., 2017).  589 

Hence, it is recommended, that for such a large basin there is a strong need to compute all the 590 

parameters involved in the computations of water yield at pixel level scale rather than adopting 591 

the mean values for entire watershed. 592 

8.7.Summary and Conclusions 593 

The present study aimed to apply the InVEST annual water yield model, a tool that is gaining 594 

interest in the ecosystem services community. While such simple models havingwith low 595 

requirements for data, high and level of expertise are needed for practical applications use of such 596 

model as with a single representative value of model parameter for the entire basin does not provide 597 

good estimates of water yield. On the other hand, performing pixel scale computation of water 598 

yield indicates a better performance and results obtained show better agreement with the observed 599 

water yield. As far as parameter Regarding the use of parameter ‘“w’ ”is concerned, global model 600 

works better than other representation of ‘“w”’ available in literature.  601 
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The water yield is computed usingin five different strategies ways and results are analyzed with 602 

the observed data of sub-basins of Upper Ganga Basin. The present study attempts to quantify 603 

annual water yield at pixel level irrespective of the size of catchment. Therefore, the proposed 604 

methodology is expected to perform well for the catchment of any given size. Changes in 605 

catchment’s water storage over time are required to be quantified in order to validate the 606 

applicability of Budyko’s model to long term data for the catchment under study.  Earlier, some 607 

of the important parameters for the water yield used to be computed at a basin level scale which 608 

brings noise in the results. Thus, by considering all the parameters involved in the model at pixel 609 

level scale, the results obtained are higher in accuracy.  610 

The study attempts to incorporate the spatial variability of parameters involved in the model 611 

thorough pixel level estimation of parameters which are otherwise taken as lumped in the previous 612 

studies. Study results show that the water yield estimated considering spatial variability in model 613 

parameters are in better agreement with the observed water yield as compared to the water yield 614 

estimated by considering the parameters to be lumped over the study region. Further, the 615 

computations of various parameters are made at pixel level, therefore, the estimates of water 616 

balance components using this approach are expected to be independent of the assumption of 617 

dependence of parameters on catchment size. As the variation between Budyko’s model 618 

parameters and their controlling factors has not shown well defined relationship (Ahn and 619 

Merwade, 2017), the study emphasizes water yield estimation using pixel based computations. 620 

 Thus it canis inferred that: (i), 621 

1) Bbetween two approaches used, i.e. considering entire basin and pixel level approach, the 622 

pixel level approach is found to provide better results and (ii) . 623 

Formatted: Normal,  No bullets or numbering



35 
 

2) Iin pixel level based computations, results further improved with the use of  a parameter 624 

‘“w’” based on   a global model than regional models of ‘“w’” for large basins in Himalayan basin. 625 
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