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Abstract. Recent studies have highlighted the need for improved characterizations of aerodynamic conductance and 

temperature (gA and T0) in thermal remote sensing-based surface energy balance (SEB) models to reduce uncertainties in 

regional-scale evapotranspiration (ET) mapping. By integrating radiometric surface temperature (TR) into the Penman-15 

Monteith (PM) equation and finding analytical solutions of gA and T0, this need was recently addressed by the Surface 

Temperature Initiated Closure (STIC) model. However, previous implementations of STIC were confined to the ecosystem-

scale using flux tower observations of infrared temperature. This study demonstrates the first regional-scale implementation 

of the most recent version of the STIC model (STIC1.2) that physically integrates Moderate Resolution Imaging 

Spectroradiometer (MODIS)-derived TR and ancillary land surface variables in conjunction with NLDAS (North American 20 

Land Data Assimilation System) atmospheric variables into a combined structure of the PM and Shuttleworth-Wallace 

framework for estimating ET at 1 km × 1 km spatial resolution. Evaluation of STIC1.2 at thirteen core AmeriFlux sites covering 

a broad spectrum of climates and biomes across an aridity gradient in the conterminous US suggests that STIC1.2 can provide 

spatially explicit ET maps with reliable accuracies from dry to wet extremes. When observed ET from one wet, one dry, and 

one normal precipitation year from all sites were combined, STIC1.2 explained 66 % of the variability in observed 8-day 25 

cumulative ET with a root mean square error (RMSE) of 7.4 mm/8-day, mean absolute error (MAE) of 5 mm/8-day, and 

percent bias (PBIAS) of -4 %. These error statistics show higher accuracies than a widely-used SEB-based Surface Energy 
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Balance System (SEBS) and PM-based MOD16 ET, which were found to overestimate (PBIAS = 28 %) and underestimate 

ET (PBIAS = -26 %), respectively. The performance of STIC1.2 was better in forest and grassland ecosystems as compared 

to cropland (20 % underestimation) and woody savanna (40 % overestimation). Model inter-comparison suggested that ET 

differences between the models are robustly correlated with gA and associated roughness length estimation uncertainties which 

are intrinsically connected to TR uncertainties, vapour pressure deficit (DA), and vegetation cover. A consistent performance 5 

of STIC1.2 in a broad range of hydrological and biome categories as well as the capacity to capture spatio-temporal ET 

signatures across an aridity gradient points to its potential for near real time ET mapping from regional to continental scales. 

1 Introduction 

Evapotranspiration (ET) is highly variable in space and time and plays a fundamental role in hydrology and land-atmosphere 

interactions. Over the past few decades, the use of satellite data to map spatially-explicit and regional-scale ET has advanced 10 

considerably. This is due to the advancements in ET modeling as well as progress in thermal remote sensing satellite missions, 

and our ability to retrieve the land surface temperature (LST) or radiometric surface temperature (TR) that is highly sensitive 

to evaporative cooling and surface moisture variations. Because LST governs the land surface energy budget (Kustas and 

Norman, 1996;Kustas and Anderson, 2009), thermal ET models principally focus on the surface energy balance (SEB) 

approach in which TR represents the lower boundary condition to constrain energy-water fluxes (Anderson et al., 2012). 15 

Contemporary SEB models emphasize on estimating aerodynamic conductance (gA) and sensible heat flux (H) while solving 

ET (i.e., latent heat flux, E) as a residual SEB component. Despite the advancements in mapping spatially-distributed ET, 

some fundamental challenges remain in existing SEB algorithms including, (a) the inequality between TR and the aerodynamic 

temperature (T0) which is essentially responsible for the exchanges of H and E (Chávez et al., 2010;Boulet et al., 2012), (b) 

a non-unique relationship between T0 and TR due to differences between the roughness lengths (i.e., effective source/sink 20 

heights) for momentum (z0M) and heat (z0H) within vegetation canopy and substrate complex (Troufleau et al., 1997;Paul et al., 

2014;van Dijk et al., 2015b), (c) the unavailability of a universally agreed model to estimate T0 (Colaizzi et al., 2004), and (d) 

the lack of a physically-based preeminent gA model. To overcome these challenges, we implement the current version of a 

recently developed analytical ET model, Surface Temperature Initiated Closure (STIC, version 1.2 (Mallick et al., 

2014;Mallick et al., 2015;Mallick et al., 2016), using Moderate Resolution Imaging Spectro-Radiometer (MODIS) data to 25 

develop spatially-distributed ET maps. 

The STIC formulation provides analytical solutions to gA, T0, and canopy (or surface) conductance (gC), and simultaneously 

captures the critical feedbacks between gA, gC, T0, and vapour pressure deficit surrounding the evaporating surface (D0) thereby 

obtaining a ‘closure’ of the surface energy balance. In state-of-the-art SEB models, an emphasis on estimating gA and H is 

motivated due to the perception of the broad applicability of the Monin-Obukhov Similarity Theory (MOST) or Richardson 30 
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Number (Ri) criteria, and the requirement of minimum inputs for determining these variables. However, these approaches 

created further problems, particularly in accommodating T0 versus TR inequalities, as well as adapting the differences between 

z0M and z0H (Paul et al., 2014). Compensating these temperature and roughness length disparities consequently led to the 

inception of the kB-1 term as a fitting parameter (Verhoef et al., 1997a), and later the progress of the two-source ET model 

(Kustas and Norman, 1997;Norman et al., 1995;Anderson et al., 2011). Although useful, the above approaches still rely on 5 

empirical response functions of roughness components to characterize gA that has an uncertain transferability in space and time 

(Holwerda et al., 2012b;van Dijk et al., 2015b). In contemporary SEB modeling, gA sub-models are stand-alone and lack the 

necessary physical feedbacks between the conductances, T0, and D0 to ‘close’ the surface energy balance. The feedback of gA 

on gC and D0 is critical in semiarid and arid ecosystems (Kustas et al., 2016), where soil moisture stress and sparse vegetation 

can cause substantial disparities between TR versus T0 (Kustas et al., 2016;Paul et al., 2014;Timmermans et al., 2013;Gokmen 10 

et al., 2012). Therefore, thermal-based ET modeling needs explicit consideration of these important biophysical feedbacks to 

overcome the existing uncertainties in regional-scale ET mapping (Kustas et al., 2016). Hence, a genuine question in regional 

ET mapping is: How can state-of-the-art SEB models overcome the existing challenges in regional evapotranspiration 

mapping that arise due to uncertain conductance parameterizations, and can analytical models help this verification process? 

The prime focus of STIC (Mallick et al., 2014;Mallick et al., 2015;Mallick et al., 2016) is based on physical integration of 15 

TR into the Penman-Monteith (PM) equation, which is fundamentally constrained to account for the necessary feedbacks 

between ET, TR, DA, gA, and gC (Monteith, 1965). Monteith (1981) highlighted the fact that the biophysical conductances (i.e., 

gA and gC) regulating ET are heavily temperature dependent, after which a stream of research demonstrated the dominant 

control of TR into gC and associated canopy-scale aerodynamics (Moffett and Gorelick, 2012;Blonquist et al., 2009). Somewhat 

surprisingly, the idea of integrating TR into the PM model was never attempted because of complexities associated with gC 20 

parameterization (Bell et al., 2015;Matheny et al., 2014), until the concept of STIC was formulated (Mallick et al., 

2014;Mallick et al., 2015). The recent version of STIC, STIC1.2, combines PM with the Shuttleworth-Wallace (SW) model 

(Shuttleworth and Wallace, 1985) to estimate the source/sink height temperature and vapour pressure (T0 and e0) (Mallick et 

al., 2016). By algebraic reorganization of aerodynamic equations of H and E, Bowen ratio evaporative fraction hypothesis 

(Bowen, 1926) and modified advection-aridity hypothesis (Brutsaert and Stricker, 1979), STIC1.2 formulates multiple state 25 

equations where the state equations were constrained with an aggregated moisture availability factor (M). Through physically 

linking M with TR and the source/sink height dew point temperature (TSD), STIC1.2 established a direct feedback between TR 

and ET, while simultaneously overcoming the empirical uncertainties in conductances and T0 estimations.  

Despite providing analytical solutions for the key conductances in PM-based ET modeling, the STIC 1.2 model has yet to 

gain a profound interest among the thermal remote sensing community and those interested in regional-scale ET modeling. 30 

This could largely be attributed to the fact that the model is only used for understanding ecosystem-scale ET partitioning and 

their biophysical controls at the eddy covariance (EC) footprints (Mallick et al., 2015;Mallick et al., 2016), where all the 

necessary forcing variables were measured at the flux tower sites. In this paper, we present the first ever implementation of 

the STIC1.2 model using MODIS LST and associated land surface products, and its validation in thirteen core AmeriFlux sites 
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across an aridity gradient in the conterminous US in three different precipitation conditions representing dry, normal, and wet 

years, respectively. ET estimates from STIC1.2 are also compared against two parametric ET models, namely SEBS (Surface 

Energy Balance System) (Su, 2002) and MOD16 (Mu et al., 2007;Mu et al., 2011). Through the implementation and validation 

of the STIC1.2 model at a regional-scale, the current study addresses the following research questions: 

1. What is the performance of STIC1.2 when applied at the regional-scale across an aridity gradient and during 5 

contrasting rainfall years in the conterminous US? 

2. How does STIC1.2-derived ET compare against other global ET models that are driven by TR and relative humidity 

(RH)? 

3. Under which conditions do the models agree and which factors cause their differences? 

4. How well do the models capture spatio-temporal ET variability across an aridity gradient?  10 

A description of methods including models, study sites, dataset, and data processing is given in section 2, followed by the 

results in section 3. An extended discussion of the results and potential of the method in thermal remote sensing applications 

is elaborated in sections 4 and 5, respectively. Symbols used for variables in this study are listed in the Appendix in Table A1. 

2 Methods 

2.1 Model Descriptions 15 

Most surface energy balance models consist of several modules for estimating net radiation (RN), ground heat flux (G), and 

partitioning of available energy (ϕ = RN- G) into H and λE through the derivation of evaporative fraction (Ʌ). Ʌ is defined as 

the ratio of λE to ϕ. In this paper, we used the widely-used net radiation balance equation (Eq. (1)) to compute RN (Allen et al., 

2007;Allen et al., 2011) and the formulation of Bastiaanssen (2000) to compute G (Eq. 4) in SEBS and STIC1.2. 

RN = RS (1– αo) + εoRld - Rlu (1) 

G = RN (TR-273.15)/αo (0.0038αo + 0.0074αo
2)(1 - 0.98NDVI 4) (2) 

H = (1- Ʌ)× (RN – G) (3) 

λE = Ʌ× (RN – G) (4) 

where RS is the incoming shortwave radiation, αo is the surface albedo, εo is the surface emissivity, NDVI is the normalized 20 

difference vegetation index, λ is the latent heat of vaporization, and Rld and Rlu are incoming and outgoing longwave radiation, 

respectively. Using the formulation of Allen et al. (2007) and Bastiaanssen (2000) for estimating RN and G, respectively, we 

found that the estimated eight-day mean RN and G during the terra overpass time were within 14 % of the observed RN and G 

at the flux sites (Fig. S1). 

While the derivation of H in SEBS is based on aerodynamic equation (Su, 2002), SEBS estimates λE as the residual of the 25 

surface energy balance (i.e., λE = RN-G-H). On the contrary, STIC1.2 directly estimates H and λE through the PM equation 

(Mallick et al., 2016) by solving state equations for the conductances. MOD16 estimates λE directly using a modified PM 

framework (Mu et al., 2007;Mu et al., 2011), where the conductances are estimated based on a biome property look up table 
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(BPLUT) and meteorological scaling functions. As discussed in section 1, there exist some fundamental differences among 

STIC1.2, SEBS, and MOD16. However, since the primary focus of the paper is the regional-scale implementation and 

evaluation of the STIC1.2 model, we only provide detailed descriptions of STIC1.2 and suggest readers follow associated 

literature for detailed descriptions of the other two models (see subsections 2.1.2 and 2.1.3). The key model structures of SEBS 

and MOD16 are briefly explained in subsections 2.1.2 and 2.1.3. 5 

2.1.1 STIC1.2 

STIC1.2 is the most recent version of the original STIC formulation (Mallick et al., 2014;Mallick et al., 2015), which is a one-

dimensional physically-based SEB model that treats the vegetation-substrate complex as a single unit (Fig. 1). The fundamental 

assumption in STIC1.2 is the first order dependency of gA and gC on T0 and soil moisture through TR. Such an assumption 

allows a direct integration of TR in the PM equation (Mallick et al., 2016). The common expression for λE in the PM equation 10 

is, 

𝜆𝐸 =  
𝑠𝜙 +  𝜌A𝑐P𝑔A𝐷A

𝑠 +  𝛾 (1 + 
𝑔A

𝑔C
)

 
(5) 

where ρA is the air density (kg m-3), cp is the specific heat of air (J kg-1 K-1), γ is the psychrometric constant (hPa K-1), s is the 

slope of the saturation vapour pressure versus TA (hPa K-1), DA is the saturation deficit of the air (hPa) at the reference level, 

and ϕ is the net available energy (i.e., RN - G). The units for all the surface fluxes and conductances are W m-2 and m s-1, 

respectively. 15 

In Eq. (5), the two biophysical conductances (gA and gC) are unknown and the STIC1.2 methodology is based on finding 

analytical solutions for the two unknown conductances to directly estimate ET (Mallick et al., 2014;Mallick et al., 2015). The 

need for such analytical estimation of these conductances is motivated by the fact that gA and gC can neither be measured at 

the canopy or larger spatial scales, and there is not an appropriate model of gA and gC that currently exists (Matheny et al., 

2014;van Dijk et al., 2015b). By integrating TR with standard SEB theory and vegetation biophysical principles, STIC1.2 20 

formulates multiple state equations (Eqs. (7)-(10) below) in order to eliminate the need for empirical parameterization for gA, 

gC, and T0. The state equations for the conductances and T0 were expressed as a function of those variables that can be estimated 

by remote sensing observations. In the state equations, a direct connection of TR is established by estimating an aggregated 

moisture availability index (M). The information of M is subsequently used in the state equations of gA, gC, T0, and evaporative 

fraction (Λ) (Eqs. (7)-(10) below), which is eventually propagated into their analytical solutions. M is a unitless quantity, which 25 

describes the relative wetness of the surface and also controls the transition from potential to actual evaporation. Therefore, M 

is critical for providing a constraint against which the conductances can be estimated. Since TR is extremely sensitive to the 

surface water content variations, it is extensively used for estimating M in a physical retrieval scheme (detail in Appendix A3) 

(also in Mallick et al., 2016). We hypothesize that linking M with the biophysical conductances will simultaneously integrate 

the information of TR into the PM equation (Eq. (5)) in the framework of STIC1.2. 30 
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In STIC1.2, the estimation of M is based on Venturini et al. (2008), where M is expressed as the ratio of the vapour pressure 

difference between the source/sink height and air to the vapour pressure deficit between source/sink height to the atmosphere 

as follows. 

𝑀 =
(𝑒0 − 𝑒A)

(𝑒0
∗ − 𝑒A)

=
(𝑒0 − 𝑒A)

𝜅(𝑒S
∗ − 𝑒A)

=
𝑠1(𝑇SD − 𝑇D)

𝜅𝑠2(𝑇R − 𝑇D)
 

(6) 

Where e0 and e0
* are the actual and saturation vapour pressure at the source/sink height; eA is the atmospheric vapour pressure; 

eS
* is the saturation vapour pressure at the surface; TD is the air dewpoint temperature; s1 and s2 are the psychrometric slopes 5 

of the saturation vapour pressure and temperature between (TSD – TD) versus (e0 – eA) and (TR – TD) versus (eS
* - eA) relationship 

(Venturini et al., 2008); and κ is the ratio between (e0
* - eA) and (eS

* - eA). Despite T0 driving the sensible heat flux, the 

comprehensive dry-wet signature of the underlying surface due to aggregated moisture variability is directly reflected in TR 

(Kustas and Anderson, 2009). Therefore, using TR in the denominator of Eq. (6) tends to give a direct signature of the surface 

moisture availability. In Eq. (6), both s1 and TSD are unknowns, and an initial estimate of TSD is obtained using Eq. (6) of 10 

Venturini et al. (2008) where s1 was approximated in TD. From the initial estimates of TSD, an initial estimate of M is obtained 

as M = s1 (TSD - TD)/s2 (TR - TD).  However, since TSD also depends on λE, an iterative updating of TSD (and M) is carried out by 

expressing TSD as a function of λE which is described in detail in Appendix A3 (also in Mallick et al., 2016).  

The state equations of STIC1.2 are provided below and their detailed descriptions are available in Mallick et al. (2014; 2015; 

2016). 15 

𝑔A  =  
𝜙

𝜌A𝑐P [(𝑇0 − 𝑇A) + (
𝑒0 − 𝑒A

𝛾
)]

 
(7) 

𝑔C  =  𝑔A

(𝑒0 − 𝑒A)

(𝑒0
∗ − 𝑒0)

 
(8) 

𝑇0  =  𝑇A + (
𝑒0 − 𝑒A

𝛾
) (

1 − 𝛬

𝛬
) 

(9) 

𝛬 =  
2𝛼𝑠

2𝑠 +  2𝛾 +  𝛾
𝑔A

𝑔C
(1 + 𝑀)

 
(10) 

Here α is the Priestley-Taylor coefficient (unitless) (Priestley and Taylor, 1972). In Eq. (10), α appeared due to using the 

Advection-Aridity (AA) hypothesis (Brutsaert and Stricker, 1979) for deriving the state equation of Λ (Mallick et al., 

2016;Mallick et al., 2015). However, instead of optimising it as a ‘fixed parameter’, α is dynamically estimated by constraining 

it as a function of M, conductances, source/sink height vapour pressure, and temperature (Mallick et al., 2016). The derivation 

of the equation for α is described in Appendix A3. 20 

Given values of M, RN, G, TA, and RH or eA, the four state equations (Eqs. (7)-(10)) can be solved simultaneously to derive 

analytical solutions for the four unobserved state variables and to simultaneously produce a ‘closure’ of the PM model that is 

independent of empirical parameterizations for both gA and gC (Appendix A2). However, the analytical solutions to the four 

state equations contain three accompanying unknowns; e0, e0
*, and α, and as a result there are four equations with seven 
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unknowns. Consequently, an iterative solution must be found to determine the three unknown variables (Appendix A3) (also 

in Mallick et al., 2016). 

In STIC1.2, the key modifications to the original STIC formulation (Mallick et al., 2014) include estimation of the 

source/sink height vapour pressures by combining PM and Eq. (8) of Shuttleworth-Wallace (Shuttleworth and Wallace, 1985), 

as detailed in Appendix A3 (also in Mallick et al., 2016). STIC1.2 consists of a feedback loop describing the relationship 5 

between TR and λE, coupled with canopy-atmosphere components relating λE to T0 and e0 (Mallick et al., 2016). Upon finding 

analytical solution of gA and gC, both the variables are returned into Eq. (5) to directly estimate λE. For the image-based 

implementation of STIC1.2, we make a key adjustment to the original ecosystem-scale STIC1.2 version (Mallick et al., 2016) 

to apply the model at an instantaneous scale (i.e. MODIS image acquisition time) by removing the calculation of hysteresis 

occurrence using hourly data (Mallick et al., 2015). Such adjustment was necessary to adapt the model to single time-of-day 10 

TR data from MODIS acquisition. 

2.1.2 SEBS 

SEBS formulation uses an empirical model for estimating z0M, the Bulk Atmospheric Similarity Theory for planetary boundary 

layer scaling, and the Monin-Obukhov atmospheric surface layer similarity for surface layer scaling for the estimation of 

surface fluxes from thermal remote sensing data (Su, 2002;Su et al., 2001). To estimate H, SEBS solves the similarity 15 

relationships for the profile wind speed (u) and the mean difference between potential temperatures (Δθ; K) at the surface and 

reference height (z)): 

 u =
u*

k
[ln (

z – d0

z0M

) – ψ
M

(
z – d0

L
) + ψ

M
(
z0M

L
)] 

(11) 

∆θ =
H

ku*𝜌cp

[ln (
z – d0

z0H

) –  ψ
H

(
z – d0

L
) + ψ

H
(
z0H

L
)] 

(12) 

L = –
𝜌𝐴cpu*

3θv

kgH
 

   (13) 

Here L is the Monin-Obukhov length (m), θv is virtual potential temperature (K) near the surface (Brutsaert, 2005), k is the 

Von Karman Constant (0.41), u* is the friction velocity (m s-1), and g is the acceleration due to gravity (9.8 m s-2). ΨM and ΨH 

are the stability corrections for momentum and heat transport, respectively. 20 

One of the key characteristics of the SEBS model is the use of a semi-physical adjustment factor (kB-1) to compensate for 

the differences between z0M and z0H
 (Su et al., 2001): 

z0H = z0M/exp(kB-1) (14) 

The pixel-level energy balance at a dry limit (λE= 0 or H = ϕ) and a wet limit (potential ET, Ep, rate based on Penman 

equation) is used in SEBS to estimate relative evaporation (ΛR, the ratio of actual to the maximum evaporation rates) to further 

compute Λ (Su, 2002). 25 
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Λr = 1 –
H − Hwet

Hdry − H
wet

 (15) 

Λ = 
ΛR × λE

wet

RN − G
 (16) 

where Hwet and Hdry are H under the wet and dry limiting conditions, respectively. λEwet is the λE at the wet limit. 

2.1.3 MOD16 algorithm 

The MOD16 algorithm is based on the PM equation (Eq. (5)) and is designed to estimate ET by summing wet soil evaporation, 

interception evaporation from the wet canopy, and transpiration through canopy over vegetated land surfaces. The original PM 

equation was modified by Mu et al. (2007, 2011) for estimating global ET components and is primarily driven by MODIS-5 

derived vegetation variables (leaf area index, fractional vegetation cover) and daily meteorological inputs including RS, TA, 

and DA.  

Key inputs in the MOD16 ET product include the global 1 km × 1 km MODIS collections, including annual land cover 

(MOD12Q1), 8-day LAI/FPAR (MOD15A2), 8-day albedo (MCD43B2 and MCD43B3 products), and the global GMAO 

daily meteorological reanalysis data (1.00° × 1.25° resolution). The MODIS 8-day albedo products and daily surface 10 

downwelling shortwave radiation and air temperature from daily meteorological reanalysis data are used to calculate RN. The 

vegetation cover fraction from the MODIS 8-day FPAR products is used to allocate the RN between soil and vegetation. Daily 

TA, DA and RH, and 8-day MODIS LAI information are used to estimate individual resistances from soil and canopy, and soil 

heat flux, respectively. A Biome-Property-Lookup-Table (BPLUT) is used to assign minimum and maximum resistances for 

all land cover categories, and the biome-specific resistances are constrained through different environmental scalars. Readers 15 

are referred to Mu et al. (2011) for a detailed description of the derivation of key ET components and the parameters used in 

the MOD16 algorithm for estimating ET. 

2.2 Study sites 

For validating the STIC1.2 model, we selected thirteen core AmeriFlux sites covering a broad spectrum of biomes which also 

represent a wide range of climatic, elevation (5 to 3050 m), precipitation (P; 380 to 1320 mm year-1), temperature (1.50 to 20 

17.92 °C), and aridity gradients across the conterminous United States (Fig. 2; Table 1). AmeriFlux is a subnetwork of 

FLUXNET which is a global micrometeorological eddy covariance (EC) network for measuring carbon, water vapour, and 

energy exchanges between the biosphere and atmosphere (Baldocchi and Wilson, 2001). AmeriFlux core sites are the EC flux 

tower sites that deliver high-quality continuous data to the AmeriFlux database (http://ameriflux.lbl.gov). Currently, there are 

44 core sites distributed in 12 clusters. We selected 13 out of 44 sites, which also represent the primary EC sites of the selected 25 

clusters. These sites also cover a broad class of aridity index (AI) (Food and Agriculture Organization, FAO, 2015): arid 

(AI<0.30), semiarid (0.50>AI>0.30), subhumid (0.65>AI>0.50), and humid (AI>0.65). Each of these four AI categories 

contained at least two validation sites. Four MODIS subsets (Fig. 2) covering at least two validation sites within each region 
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(labeled as East (E), Midwest 1 (MW1), Midwest 2 (MW2), and West (W), from the east to west, respectively) were used for 

image processing to implement the STIC1.2 model. For the regional-scale intercomparison of ET models, similar MODIS 

subsets were used. 

 

2.3 Datasets 5 

Key remotely sensed data for model implementation were obtained from the MODIS Terra 8-day composites. Meteorological 

inputs were obtained from hourly NLDAS-2 (North American Land Data Assimilation System - 2) forcing data (Xia et al., 

2012). Daily meteorological variables, which were derived from hourly NLDAS and PRISM (Parameter-elevation 

Relationships on Independent Slopes Model; PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu) 

data, were obtained from the University of Idaho (http://climate.nkn.uidaho.edu/METDATA/). A list of datasets used in the 10 

present analyses is given in Table 2. The PRISM precipitation dataset was used to select dry, wet, and normal years for each 

site. 

2.4 Data processing 

2.4.1 Selection of dry, wet and normal rainfall years 

Dry, wet, and normal years were selected based on 30-year (1980-2010) precipitation from PRISM data. For each site, we 15 

selected the driest (dry), wettest (wet), and closest to the 30-year mean (normal) years based on PRISM precipitation data (Fig. 

3). 

2.4.2 MODIS-based variables: surface albedo, NDVI, LST, surface emissivity, and LAI 

Broadband surface albedo was estimated using all the narrow band surface reflectances from MOD09A1, and NDVI was 

computed using near infrared and red band surface reflectance MOD09A1 products. TR information was obtained from the 20 

MOD11A2 LST products for the study years. For estimating surface emissivity, we took mean emissivity from band 31 and 

32 (Bisht et al., 2005) from the MOD11A2 products. While the information of LAI from MOD15A2 and MCD15A2 products 

(mean of the two) were used for computing the extra resistance parameter (kB-1) (Su, 2002;Su et al., 2001), NDVI was used 

for estimating z0M and d0 (van der Kwast et al., 2009) in SEBS.  

2.4.3 Meteorological Variables at the Satellite Overpass: RH, TA, u, and RS 25 

Half-hourly gridded meteorological datasets from the North American Land Data Assimilation System (NLDAS-2) at 4 km × 

4 km spatial resolution were used as inputs in the STIC1.2 (RS, TA, and RH) and SEBS (u, RS, TA, and RH) models. Because 

RH was not explicitly available in the NLDAS-2 dataset, we derived RH from surface pressure (Pa) and specific humidity (kg 

kg-1) information using the method developed by McIntosh and Thom (1978). The half-hourly meteorological variables at the 
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time of MODIS Terra overpass during every 8-day period were averaged to ensure that the weather dataset is well 

representative of all the corresponding 8 days within each MODIS 8-day period.  

Additional inputs of daily meteorology (RS, TA, u, and RH) required for computing 8-day ET were obtained from the University 

of Idaho (http://climate.nkn.uidaho.edu/METDATA/), and these data products were derived from hourly NLDAS and PRISM 

datasets. Daily weather data were also aggregated to the corresponding MODIS 8-day periods. 5 

2.4.4 Derivation of regional-scale eight-day and annual ET maps (STIC1.2 and SEBS)  

Net available energy (ϕ = RN – G, W m-2) at MODIS Terra overpass time was partitioned into H and 𝜆E by both models as 

explained in sections 2.1.1 and 2.1.2. Instantaneous Λ was then computed as the ratio of λE to ϕ. For the extrapolation of 

instantaneous 𝜆E to daily ET under clear sky conditions, the instantaneous Λ is assumed to be constant for the day (Brutsaert 

and Sugita, 1992;Crago and Brutsaert, 1996) and 8-day cumulative ET (5-day for doy 361) was estimated as follows: 10 

ET8 = 
86400 × 103× Λ ×RN24-8day× n

λp
w

 
(17) 

where RN24-8day is the 8-day net radiation; and n = number of days in the 8-day period (8; n = 5 for doy 361) computed using 

the ASCE standardized PM equation using daily weather inputs (ASCE-EWRI, 2005). Combining all the sites, the estimated 

RN24-8day from MODIS was within 10 % (i.e., 9 % overestimation) of mean observed 8-day net radiation at the flux sites 

(coefficient of determination, R2, = 0.89, root mean squared error, RMSE, = 20 W m-2, Fig. S1). 

Annual ET maps were derived by summing all the corresponding 8-day ET maps within a given year. To fill the missing 8-15 

day ET values, Λ values from up to the two nearest 8-day periods were used (i.e. mean Λ values of n prior and after 8-day 

period, where n = 1 or 2). The filled Λ values were then used in Eq. (17)) (RN24-8day from the current 8-day period is used) to 

fill the missing 8-day ET values. Since there were missing daily flux data in some years, we filled missing values using linear 

interpolation between available days. For the statistical analysis, we retained those annual ET values when observed E was 

available for at least 300 days at each flux tower site. Similarly, annual ET from the models was only compared when at least 20 

38 (out of the 46) 8-day cumulative ET values were available. 

2.4.5 Regional-scale eight-day and annual ET maps from MOD16 ET 

The MOD16 ET product provides global 8-day (MOD16A2), monthly, and annual (MOD16A3) terrestrial ecosystem 

evapotranspiration datasets at 1 km × 1 km spatial resolution over 109.03 million km2 of global vegetated land areas. The 

dataset is currently available for the period of 2000-2014 and will be updated for years beyond 2014 in the future. The 8-day 25 

and annual MOD16 ET products were acquired from the Numerical Terradynamic Simulation group 

(ftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/MOD16/MOD16A2.105_MERRAGMAO/) of the University of 

Montana. ET values of the corresponding flux sites for every 8-day period within each dry, wet, and normal year were extracted 

for model intercomparison. The annual ET maps from MOD16 products (MOD16A3) were used for regional-scale model 

intercomparison of annual ET estimates from STIC1.2 and SEBS. 30 
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2.4.6 Preparation of validation datasets 

We used half-hourly surface energy balance flux data from the thirteen core EC sites of the AmeriFlux network that covers an 

aridity gradient (from arid to humid), and a wide range of elevation and biome types in the conterminous US (Table 1). A 

Bowen ratio (Bowen, 1926) based surface energy balance closure method (Chávez et al., 2005;Twine et al., 2000) was used 

to force the SEB closure at half-hour time scales. The half-hourly 𝜆E (W m-2) was converted into ET (mm hr-1) using the 5 

proportionality parameter between energy and equivalent water depth unit of ET (Mu et al., 2007;Velpuri et al., 2013). 

ET = λE/λ (18) 

Here λ is the latent heat of vaporization of water. 

Half-hourly ET data was then aggregated to hourly, daily, and eight-day temporal scales corresponding to the MODIS 8-

day periods. The 8-day sum of ET was used for validating ET estimates from MOD16, SEBS, and STIC1.2 only when flux 

data were available for the entire 8-day period. Daytime fluxes (H, λE, RN, and G) close to MODIS Terra overpass time were 10 

also averaged over the 8-day periods corresponding to MODIS 8-day DOYs. 

2.4.7 Statistical Analysis 

The three ET models were evaluated based on their ability to estimate 8-day cumulative ET at the flux tower sites during dry, 

normal, and wet years. Widely used statistical metrics, such as RMSE, R2, mean absolute error (MAE), and percent bias error 

(PBIAS) were used for evaluating the model performances. The location information of the AmeriFlux sites (Table 1 was used 15 

to extract the pixel values of ET (outputs from STIC1.2, SEBS, and MOD16 products) and other biophysical variables (Table 

2) for the statistical analysis. 

Comparisons were made for the 8-day periods when flux data were available for all 8 days corresponding to each MODIS 

8-day period, and when MODIS inputs for STIC1.2 and SEBS, and MOD16 ET data were available. Overall, the data 

availability for statistical analysis ranged from 43 % (59 out of 138 MODIS 8-day periods) at the US-kon site to 93 % (128 20 

out of 138 MODIS 8-day periods) at the US-Wkg site with an average of 65 % (SM, Table S1). 

3 Results  

3.1 What is the performance of STIC1.2 at the regional-scale across an aridity gradient and during contrasting rainfall 

years in the conterminous US? 

Combining results from thirteen core AmeriFlux sites, it is apparent that STIC1.2 captured 66 % of the observed variability 25 

(R2 = 0.66) in 8-day cumulative ET (Table 3) with an overall RMSE, MAE and PBIAS of 7.5 mm, 5.4 mm, and -3 %, 

respectively. Consistent performance of STIC1.2 was noted throughout dry, wet, and normal rainfall years, explaining about 

64-69 % of the variability in 8-day cumulative ET (Fig. 4), with a slight overestimation in dry years (PBIAS 7 %) and an 

underestimation in wet years (PBIAS -11 %; Fig. 4). Biome-specific analysis revealed relatively better performance of STIC1.2 
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in forests as compared to non-forest sites (Fig. 5). STIC1.2 explained 73 % - 89 % variability in ET from ENF (evergreen 

needleleaf forests) and DBF (deciduous broadleaf forests) with an RMSE of 5.2 - 6.4 mm. Among the non-forest sites, although 

STIC1.2 explained 60 % - 70 % of the observed ET variability in CRO (croplands) and GRA (grasslands) (RMSE 7.2 - 9.9 

mm/8-day), it explained only 23 % of the observed ET variability in WSA with a PBIAS of 44 % (Figure 5). 

At the CRO sites, STIC1.2 underestimated ET by about 20 %. At the GRA sites, a better performance of STIC1.2 was noted 5 

in the dry year as compared to the wet and normal years (Fig. S2-S4). Regardless of vegetation type, STIC1.2 had a tendency 

to underestimate ET under high wetness conditions. 

Performance evaluation of STIC1.2 across an aridity gradient suggests the better predictive capacity of STIC1.2 in subhumid 

and humid sites as compared to arid and semiarid sites (Figure 6). As seen in Figure 6, 41 % - 45 % of the variability in 8-day 

ET was explained in arid and semiarid ecosystems (RMSE 5 - 7.5 mm/8-day and MAE 4.8 - 5.1 mm/8-day), which increased 10 

to 61 % -77 % in the humid and subhumid ecosystems (with RMSE 7 - 10 mm/8-day and MAE 5 - 7.5 mm/8-day). The key 

reason is that STIC1.2 does not effectively capture very low ET values in the semiarid and arid sites, particularly in woody 

savannas (Figure 5).  

3.2 Comparison of STIC1.2 against other global ET models that are constrained by TR and RH 

STIC1.2 showed relatively high accuracy when independently compared against observed ET at thirteen AmeriFlux sites than 15 

did SEBS and MOD16. Combining all sites, the predictive capability of STIC1.2 was found to be 7 % - 17 % better than SEBS 

and MOD16, which explained about 53 % and 59 % of the variability in observed 8-day ET, respectively (Table 3). As evident 

from PBIAS, SEBS has a tendency to overestimate and MOD16 has a tendency to underestimate 8-day cumulative ET by over 

20% (28% from SEBS and -27 % from MOD16), while STIC1.2 has a small tendency to underestimate (-3 %) (Table 3). In 

addition to a high RMSE (9.6 - 10.2 mm for SEBS, 8.5 - 9.4 mm for MOD16), an overestimation tendency of SEBS (PBIAS 20 

13% - 44%) and underestimation tendency of MOD16 (PBIAS -25% to -32%) were consistent throughout dry, wet, and normal 

years (Figure 4). 

The biome-specific performance intercomparison revealed that STIC1.2 produced a substantially lower RMSE than SEBS 

and MOD16 in ENF (12 % - 17 % less RMSE), GRA (18 % - 29 % less RMSE), and DBF (7 % - 37 % less RMSE) in 8-day 

cumulative ET with better or tantamount skill in capturing the observed ET variability as compared to the two other models 25 

(Figure 5). While MOD16 was found to produce relatively lower RMSE in WSA (16 % less than STIC1.2 and 49 % less than 

SEBS), SEBS performed relatively better in CRO (5 % and 33 % less RMSE than STIC1.2 and MOD16, respectively).  

Statistical intercomparison of the predictive capacity of STIC1.2 with respect to SEBS and MOD16 across an aridity gradient 

revealed notable differences in RMSE and MAE between the models (Fig. 6), despite general agreement on the capabilities of 

individual models to explain the variability in observed ET (R2 = 0.34-0.77). STIC1.2 was found to produce the lowest RMSE 30 

in 8-day cumulative ET in arid (31 % and 43 % lower than MOD16 and SEBS, respectively), semiarid (5 % and 32 % lower 

than MOD16 and SEBS, respectively), and humid (3 % and 19 % lower than MOD16 and SEBS, respectively) ecosystems 

(Fig. 6). In the subhumid ecosystem, the performance of STIC1.2 was comparable with SEBS (PBIAS from STIC1.2 and 
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SEBS were -20 % and 2 %, other error statistics were comparable) and substantially better than MOD16 (PBIAS=-48 %). A 

consistent overestimation (underestimation) tendency of SEBS (MOD16) in arid and semiarid ecosystems is reflected in 

positive (negative) PBIAS (58 % to 84 % for SEBS; -67 to -37 % for MOD16) in these two aridity classes.  

3.3 Factors affecting agreements/disagreements between ET models 

The residual differences in 8-day ET between STIC1.2 versus SEBS (dETSTIC1.2-SEBS = ETSTIC1.2 - ETSEBS) as well as SEBS 5 

versus observed ET (dETSEBS-obs = ETSEBS - ETobs) were found to be significantly associated with TR (r = -0.301 to 0.38, p-value 

< 0.005) and DA (r = -0.30 to 0.46, p-value < 0.005) (Fig. 7a-7b).  Negative dETSTIC1.2-SEBS (positive dETSEBS-obs) was found 

with increasing TR and DA above 290 K and 2 kPa, whereas ET differences were narrowed down below these limits (Fig. 7). 

A logarithmic pattern was found between dETSTIC1.2-SEBS (dETSEBS-obs) and NDVI, with a correlation of 0.31 and 0.35, 

respectively. Major ET differences (both dETSTIC1.2-SEBS and dETSEBS-obs) (±20 mm) were found in the NDVI range of 0.15 - 10 

0.35, whereas ET differences were diminished within ±10 mm above NDVI of 0.5. 

A similar analysis of ET differences between STIC1.2 and MOD16 (dETSTIC1.2-MOD16 = ETSTIC1.2 - ETMOD16) and between 

MOD16 and the observed ET (dETMOD16-obs = ETMOD16 - ETobs) also revealed a significant correlation with TR and DA (Fig. 7d- 

7e and inset) (r = -0.30 to 0.66, p-value < 0.005), but the direction of these correlations are opposite to those found with the 

ET differences between STIC1.2 and SEBS. dETMOD16-obs was found to have no significant relationship (p-value > 0.15) with 15 

NDVI, while dETSTIC1.2-MOD16 appear to have a significant negative relationship with NDVI, which was also opposite of what 

found with ET differences between STIC1.2 and SEBS.  

To examine the relative importance of the meteorological and land surface variables in explaining the variances in dETSTIC1.2-

SEBS and dETSTIC1.2-MOD16, a random forest analysis (Liaw and Wiener, 2002) was performed between the residual ET differences 

and seven climatic/land surface variables (NDVI, DA, P, u, observed soil moisture [SM], TA, and TR) as predictors (Fig. S5). 20 

Overall, these variables explained 41 % and 57 % variances in dETSTIC1.2-SEBS and dETSTIC1.2-MOD16, respectively. The most 

important variables for explaining variance in dETSTIC1.2-SEBS were TA and NDVI. These two variables would lead to about 25-

40 % increase in mean residual errors (MSEs) if they are permuted in the random forest model. For dETSTIC1.2-MOD16, all the 

variables expect u appeared to be important in determining the variance of ET difference, as each variable would lead to about 

17 %-22 % increase in MSEs if they are permuted in the random forest model.  25 

3.4 Regional-scale intercomparison of STIC1.2 versus SEBS and MOD16 ET 

Annual ETs from STIC1.2 for the driest, wettest, and normal precipitation years for each of four study zones during the period 

2001-2014 were compared against those derived from SEBS and the MOD16A3 annual ET products. Because the study years 

were selected based on the spatial mean of precipitation across 4 km x 4 km PRISM grids, the study years (Table 4) do not 

necessarily match with those considered for ET analysis over the flux sites as presented in sections 3.1, 3.2, and 3.3. 30 

Figs. 8-11 present annual ET maps for the driest, wettest, and normal years for each of the four study zones covering all 

thirteen study sites and a distinct positive relationship was found between annual ET computed from the three models. 
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However, the magnitude of annual ET from the three models varied widely, particularly in the relatively dry zones of the 

Midwestern US (MW1 and MW2). Such differences in annual ET could be attributed to the systematic differences in 8-day 

cumulative ET among the three models (i.e., overestimation from SEBS and underestimation from MOD16).  

The mean percent difference (and standard deviation) in ET between STIC1.2 vs. SEBS and MOD16 (Table 5) from all 

pixels within the bounding box of four study zones during the contrasting rainfall years (as in Fig. 8 - 11) showed noteworthy 5 

disagreements in arid and semiarid (W and MW2) zones, where annual ET from SEBS (MOD16) were 66-85 % more (11-55 

% less) than STIC1.2. Conversely, major agreements between the models were found in the humid (E) zone where SEBS and 

MOD16 annual ET estimates were within 13 % of STIC1.2 ET. 

We further compared annual ET estimates from the models against the flux tower estimates for the years listed in Table 5 

and annual ET maps corresponding to Figs. 8-11. Comparison of annual ET at the core AmeriFlux sites revealed a consistent 10 

overestimation and underestimation from SEBS (PBIAS 23 %) and MOD16 (PBIAS -30 %) (Fig. 12). Despite the uncertainties 

due to linear interpolation for missing days or the use of neighbouring 8-day Λ in computing annual ET (as mentioned in 

section 0), STIC1.2 produced the lowest RMSE (175 mm) and MAE (134 mm) as compared to SEBS (RMSE 239 mm, MAE 

188 mm) and MOD16 (RMSE 261 mm, MAE 228 mm) (Fig. 12).  

Figure 12 provides evidence that errors in 8-day cumulative ET from SEBS and MOD16 were largely additive, as indicated 15 

by the consistent overestimation or underestimation from the models at different sites. Notably, MOD16 estimates were 

particularly poor in the MW2 zones, while SEBS was found to be poor both in the MW1 and MW2 zones. Apart from that, 

differences between STIC1.2 and the other two models were also noticed in other zones.  

To further investigate the role of biomes on ET differences between STIC1.2 and other models, we computed the mean percent 

ET difference (standard deviation) (similar to Table 5) on the five vegetation types, corresponding to those represented by the 20 

core AmeriFlux sites. The differences in annual ET between STIC1.2 vs. SEBS and STIC1.2 vs. MOD16 were mostly evident 

in all five vegetation classes, particularly in the W and MW2 spatial domains, with the maximum ET differences in grasslands 

(-135 % to 44 %) (Table 6). For almost all of the five vegetation types, ET differences between the models decreased across 

the aridity gradient from arid to humid ecosystems from western to the eastern US (±20 %). 

In order to quantify the relative contribution of these three categorical variables [e.g., (1) zones (W, MW2, MW2, E), (2) 25 

land cover types (five land cover classes), and 3) precipitation extremes (dry, wet, and normal years)] to variations in residual 

ET differences (annual) between STIC1.2 and the other two models, we performed a random forest analysis (Fig. S6). The 

three categories together explain 45 % to 60 % of the variances in the residual ET difference between STIC1.2 vs. MOD16 

and STIC1.2 vs. SEBS. However, study zone increases 51 % - 65 % of mean residual errors (MSEs) in ET if this group is 

permuted in the random forest model, thus appearing to be the most important factor among the three categorical variables. 30 

This finding is also consistent with the results in presented in Tables 5 and 6 that the residual ET differences between the 

models progressively reduced across an aridity gradient from arid to humid ecosystems. The precipitation extremes appeared 

to have no effect on the residual ET difference between STIC1.2 and SEBS, similar to the land cover effect on the residual 

difference between STIC1.2 and MOD16.  
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4 Discussion 

Overall, STIC1.2 performed reasonably well across an aridity gradient and a wide range of biomes in the conterminous US. 

One noticeable weakness of STIC1.2 appears to be its tendency to underestimate ET in the grassland and cropland biomes 

(Fig. 4 and 5). These biases could be attributed to the nature of the MODIS LST product that aggregates sub-grid heterogeneity 

in TR, vegetation cover, and radiation at 1 km × 1 km area. Due to the relatively low tower heights in CRO and GRA sites (3 - 5 

10 m), the EC towers aggregate fluxes at scales of approximately 0.009 - 0.10 km2. Such a critical mismatch of the scales 

between MODIS pixels and the flux tower footprint could be a potential source of disagreement between STIC1.2 and tower-

observed ET (Stoy et al., 2013). Another source of error could be the presence of widely varied dry and wet patches within 

one MODIS 1 km × 1 km pixel as well as around the flux towers. For example, if more than 50 % of the area falling within a 

1 km × 1 km MODIS pixel is predominantly dry, the lumped TR signal in MODIS LST product will be biased due to the 10 

dryness of the landscape (Stoy et al., 2013;Mallick et al., 2014;Mallick et al., 2015) and the resultant ET will be underestimated. 

The overestimation tendency in WSA is mainly due to the poor performance of STIC1.2 in the Tonzi Ranch site, which could 

be associated with the emissivity correction uncertainties and systematic underestimation of MODIS LST in arid and semiarid 

ecosystems (Wan and Li, 2008;Jin and Liang, 2006;Hulley et al., 2012). Since TR plays an important role in constraining the 

conductances in STIC1.2, an underestimation of TR would ultimately result in an overestimation of gC and underestimation of 15 

gA, which would result in overestimation of ET. The differences between STIC1.2 versus observed ET in WSA may also 

largely be attributed to the Bowen ratio energy balance closure correction of EC 𝜆E observations (Chávez et al., 2005;Twine 

et al., 2000). Although the Bowen ratio correction forces SEB closure, in arid and semiarid ecosystems major corrections are 

generally observed in sensible heat flux, whereas 𝜆E is negligibly corrected (Chávez et al., 2005;Mallick et al., In Review). 

Besides, direct water vapour adsorption on the land surface occurs in arid and semiarid ecosystems when air close to the surface 20 

is drier than the overlying air (McHugh et al., 2015;Agam and Berliner, 2006), and this source of moisture is unaccounted for 

in the EC measurements. This will automatically result in disagreement between STIC1.2 and observed ET. Nevertheless, the 

performance of STIC1.2 in forest ecosystems is encouraging, given the uncertainties associated with more complex SEB 

models that use MOST to parameterize the turbulent mixing in tall canopies (Finnigan et al., 2009;Garratt, 1978;Harman and 

Finnigan, 2007) that could induce substantial biases in estimated fluxes (Wagle et al., 2017;Numata et al., 2017;Bhattarai et 25 

al., 2016) 

Performance intercomparison of STIC1.2 with SEBS and MOD16 indicated overall low statistical errors for STIC1.2, and 

better agreement than SEBS and MOD16 with observed ET values. The principal differences between STIC1.2 and SEBS (as 

evident from Fig. 7a and Fig. 8 to 13), in particular, the overestimation of ET through SEBS, is in cases of high TR and DA 

with low vegetation cover (i.e., low NDVI), a characteristic feature of arid and semiarid ecosystems. In these water limited 30 

ecosystems, TR induced water stress and the diminishing ET rate leads to high atmospheric dryness (i.e., high DA), increased 

evaporative potential, and very high sensible heat flux. This leads to substantial differences between TR and T0, and the role of 

radiometric roughness length (z0H) becomes critical, which is estimated empirically through the adjustment factor kB-1 (Paul 
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et al., 2014). Although there is a first order dependence of kB-1 on TR, radiation, and meteorological variables (Verhoef et al., 

1997b), no physical model of kB-1 is available (Paul et al., 2014). Therefore, uncertainties in kB-1 estimation are propagated 

into z0H. Overestimation (or underestimation) of z0H would lead to underestimation (overestimation) of gA in SEBS, which is 

mirrored in ET differences between SEBS vs. observations (dETSEBS-obs) (Zhou et al., 2012). This is also evident when a 

logarithmic pattern was found between dETSEBS-obs and kB-1, with a correlation of 0.39 (p-value < 0.005) (Fig. 13a). Major ET 5 

differences were found (±20 mm) within a kB-1 range of 2-6 (arid, semiarid, heterogeneous vegetation), whereas ET differences 

were diminished within ±10 mm above kB-1 of 6 (subhumid, humid, homogeneous vegetation). Apart from z0H, empirical 

parameterization of z0M and a resultant ±50 % uncertainties in z0M can also lead to 25 % errors in gA estimation (Liu et al., 

2007;Verhoef et al., 1997a), which will lead to more than 30 % uncertainty in ET estimates. This is also evident from the 

exponential scatter between z0M and dETSEBS-obs (Fig. 13b) that showed a significant negative correlation between z0M and the 10 

residual ET error (r = -0.40, p-value < 0.005).   

It is important to emphasize that the momentum transfer equation for estimating gA in SEBS is based on the semi-empirical 

MOST approach that mainly holds for extended, uniform, and flat surfaces (Foken, 2006;Verhoef et al., 1997c). MOST tends 

to become uncertain on rough surfaces due to a breakdown of the similarity relationships for heat and water vapour transfer in 

the roughness sub-layer, which results in an underestimation of the ‘true’ gA by a factor 1-3 (Holwerda et al., 2012a;van Dijk 15 

et al., 2015a;Simpson et al., 1998). Since gA is the main anchor in SEBS, an underestimation of gA would lead to an 

underestimation of sensible heat flux and an overestimation of ET (Gokmen et al., 2012;Paul et al., 2014). Also, due to the 

priority of estimating gA and H, SEBS appears to ignore the important feedbacks between gC, DA, ϕ and transpiration (which 

are included in STIC1.2) which consequently led to differences between STIC1.2 and SEBS. Relatively better performance of 

SEBS at croplands, as well as in wet years could be attributed to the ability of the model to perform well in predominantly 20 

homogeneous vegetation and under wet conditions where the differences between TR and T0 are not critical.  

The wide use of the global MOD16 ET product for calculating regional water and energy balances should be evaluated on 

a case-by-case basis as one could come to different conclusions using ET outputs from the other two models considered in this 

study. A significant underestimation of actual ET by the MOD16 ET products, particularly in arid and semiarid conditions has 

already been reported (Hu et al., 2015;Ramoelo et al., 2014;Feng et al., 2012). Conversely, others have reported better 25 

performance of MOD16 ET products in humid climates (Hu et al., 2015) and forest ecosystems (Kim et al., 2012), consistent 

with the performance of the model in the two flux sites in NC in our study (Table S1). Underestimation of ET by the MOD16 

ET products in croplands has also been reported (Velpuri et al., 2013;Kim et al., 2012), though not to the same degree as we 

found in this study. This consistent underestimation of MOD16 ET in croplands and grasslands, and associated statistical errors 

in other biomes could be associated with both aerodynamic and canopy conductance parameterizations and use of biome 30 

property look-up tables for assigning biome-specific minimum and maximum conductances. Additionally the empirical scaling 

functions used for constraining the conductances and the spatial scale mismatch between MODIS and flux towers could also 

introduce additional uncertainties in MOD16 ET. Similarly, our results suggests that caution should be taken when applying 

SEBS under extreme dry condition, and also for grasslands, savannas, and deciduous broadleaf forests. The overestimation of 
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grassland ET from SEBS is consistent with a recent study (Bhattarai et al., 2016), which could be attributed to uncertain 

characterization of zOH (Gokmen et al., 2012). However, the performance of SEBS was relatively better under wet conditions, 

and in homogeneous croplands and evergreen needleleaf forests (Fig. 5, Table S1). However, for regional-scale ET modelling 

in heterogeneous landscapes, STIC1.2 appears to be better than the other two models given its consistency across a wide range 

of biomes and aridity conditions.  5 

5 Conclusions 

This paper establishes the first ever regional-scale implementation of a simplified thermal remote sensing based model, Surface 

Temperature Initiated Closure (STIC1.2) for spatially explicit ET mapping, which is independent of any empirical 

parameterization of aerodynamic/surface conductances and aerodynamic temperature. By combining MODIS land surface 

temperature, surface reflectances, and gridded weather data, we demonstrate the promise of STIC1.2 to generate regional ET 10 

at 1 km × 1 km spatial resolution in the conterminous US. Independent validation of STIC1.2 using observed flux data from a 

dry, wet, and normal precipitation years at thirteen core AmeriFlux sites covering a wide range of climatic, biome, and aridity 

gradients in the US led us to the following conclusions.  

(i) Overall, STIC1.2 explained significant variability in the observed 8-day cumulative ET with a root mean square error 

(RMSE) of less than 1 mm/day and was robust throughout dry, wet, and normal years. Biome-wise evaluation of STIC1.2 15 

suggests the smallest errors in forest ecosystems, followed by grassland, cropland, and woody savannas. Underestimation of 

ET in croplands is mainly attributed to the spatial scale mismatch between a MODIS pixel and the flux tower footprint in 

croplands, and an overestimation of ET in woody savannas is mainly attributed to the large uncertainties in the MODIS LST 

product in savannas, and surface energy balance closure correction of eddy covariance ET observations. 

(ii) STIC1.2 performed substantially better or comparable to SEBS and MOD16 in a broad spectrum of aridity, biome, and 20 

dry-wet extremes. Model evaluation in different aridity conditions suggests that all three models performed better under sub-

humid and humid conditions as compared to arid or semi-arid conditions.  

(iii) The principal difference between STIC1.2 and SEBS ET appears to be associated with the differences in aerodynamic 

conductance estimation between the two models. Empirical characterization of z0M and kB-1 in SEBS are found to be the major 

factors creating uncertainties in aerodynamic conductance and ET estimations in SEBS, which is eventually responsible for 25 

large ET differences between the two models. Similarly, the differences in aerodynamic and surface conductance estimation 

between STIC1.2 and MOD16 could also be responsible for ET differences between the two models. 

(iv) STIC1.2 is highly sensitive to uncertainties in TR and hence accurate TR maps are needed for reliable ET estimates, which 

are currently missing in arid and semiarid ecosystems. However with the improved emissivity corrected TR from new the 

MODIS LST product (MOD21; Hulley et al., 2014;Hulley et al., 2016), an improved performance of STIC1.2 is expected in 30 

woody savannas. Alternatively, the use of time difference TR from MODIS Terra Aqua can also help diminish STIC1.2 errors 

in woody savannas. Besides, gridded weather inputs (air temperature, RH, solar radiation), ideally at the resolution of TR, are 
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required for STIC1.2 implementation and hence any errors associated with the weather inputs will create biased model outputs. 

These insights should provide guidance for future implementations of STIC1.2 in the US and other regions. 
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Table 1. An overview of the thirteen core AmeriFlux sites used for the validation of the STIC1.2 model.  

Site 

Name 

Latitude Longitude Elevation Biome* Average 

TA(C) 

Average Annual P 

(mm) 

Climate** Aridity Index 

(AI***) 

Reference  

US-Me2 44.4523 -121.557 1253 ENF 6.28 523 M 1.004 Thomas et al. (2009)  

US-Ton 38.4316 -120.966 177 WSA 15.8 559 M 0.440 Baldocchi et al. (2004)  

US-

SRM 

31.8200 -110.8700 1120 WSA 17.92 380 ASC 0.258 Scott (2016a)  

US-SRG 31.7894 -110.828 1291 GRA 17 420 ASC 0.317 Scott (2016b)  

US-Wkg 31.7365 -109.942 1531 GRA 15.64 407 ASC 0.225 Scott (2016c)  

US-NR1 40.0329 -105.546 3050 ENF 1.5 800 SA 0.478 Monson et al. (2005)  

US-Kon 39.0824 -96.5603 330 GRA 12.77 867 HS 0.674 Logan and Brunsell (2015)  

US-KFS 39.0561 -95.1907 310 GRA 12 1014 HS 0.807   

US-

ARM 

36.6058 -97.4888 314 CRO 14.76 843 HS 0.551 Biraud (2002)  

US-Ne1 41.1651 -96.4766 361 CRO 10.07 790 HC 0.645 Suyker (2016)  

US-

MMS 

39.3232 -86.4131 275 DBF 10.85 1032 HS 0.984 Philip and Novick (2016)  

US-NC1 35.8118 -76.7119 5 ENF 16.6 1320 HS 1.031 Domec et al. (2015), Sun et 

al. (2010) 

 

US-NC2 35.8030 -76.6685 5 ENF 16.6 1320 HS 1.031 Domec et al. (2015), Sun et 

al. (2010) 

 

* WSA = Woody savanna, GRA = Grassland. ENF = Evergreen needleleaf forest, DBF = Deciduous broadleaf forest, CRO=croplands 

**M = Mediterranean, ASC= Arid steppe cold, SA= sub artic, HS = Humid subtropical, HC = Humid continental 

*** AI = P/Ep (Food and Agriculture Organization, FAO, 2015). We categorized the sites into arid (AI<0.30), semiarid (0.50>AI>0.30), subhumid 5 
(0.65>AI>0.50), and humid (AI>0.65) zones, such that each  AI category contained  at least two validation sites. 
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Table 2.Descriptions of MODIS and meteorological datasets used in this study. 

Dataset Name Variables Spatial 

Resolution 

Temporal Source 

MOD11A2 Land surface 

Temperature, 

emissivity 

 

1 km × 1 km 8-day Wan et al. (2015)  

MOD09A1 Surface reflectance, 

Albedo, NDVI 

 

1 km × 1 km 8-day Vermote (2015)  

MOD15A2/MCD15A2 LAI 

 

1 km × 1 km 8-day Myneni et al. (2002) 

 

NLDAS TA, RH, RS, u 4 km × 4 km hourly Mitchell et al. (2004); Xia et al. (2009) 

University of Idaho 

Gridded Surface Meteorological Data 

TA, RH, RS, u 4 km × 4 km Daily Abatzoglou (2013)  

PRSIM Precipitation 4 km × 4 km Daily PRISM Climate Group, Oregon State University 
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Table 3.Evaluation of 8-day cumulative ET from STIC1.2, SEBS, and MOD16 against observed ET from thirteen core 

AmeriFlux sites in the US combining data from one dry, one wet, and one normal year. 5 

Model R2 RMSE (mm) MAE (mm) PBIAS (%) 

STIC1.2 0.66 7.5 5.4 -3 

SEBS 0.53 9.8 7.3 28 

MOD16 0.59 8.9 6 -27 

 

 

Table 4. Study years considered for regional-scale intercomparison of annual ETs from STIC1.2, SEBS, and MOD16 

Zone (2001-2014 mean 

annual P, mm) 

Dry year (annual P, mm) Wet year (annual P, mm) Normal year (annual P, 

mm) 

W (838) 2013 (397) 2010 (1021)  2014 (856) 

MW2 (403) 2012 (259) 2010 (428)  2005 (403) 

MW1 (1037) 2012 (786) 2008 (1313)  2014 (1023) 

E (1210) 2007 (915) 2003 (1643)  2010 (1220) 

 

 10 

Table 5. Mean percentage difference in annual ET (standard deviation) between STIC1.2 vs. SEBS and MOD16 from 

all pixels within the bounding box of four study zones during dry, wet, and normal years. 

 West Mid-West 2 Mid-West 1 East 

Years STIC 1.2 -

SEBS 

STIC1.2- 

MOD16 

STIC 1.2 -

SEBS 

STIC1.2- 

MOD16 

STIC 1.2 -

SEBS 

STIC1.2- 

MOD16 

STIC1.2-

SEBS 

STIC1.2- 

MOD16 

Dry  -69 

(58) 

15 

(23) 

-85 

(37) 

55 

(23) 

-22 

(9) 

26 

(13) 

-12 

(7) 

11 

(17) 

Wet  -66 

(53) 

11 

(20) 

-73 

(34) 

43 

(23) 

-33 

(13) 

-8 

(14) 

-13 

(7) 

-1 

(14) 

Normal  -72 

(58) 

21 

(21) 

-78 

(34) 

43 

(24) 

-25 

(8) 

6 

(12) 

-13 

(7) 

6 

(15) 
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Table 6. Mean percent difference in annual ET (standard deviation) between STIC1.2 vs SEBS and MOD16 within the 

bounding box of the four study zones considering all pixels and five vegetation types based on MCD12Q1 products 5 

(Friedl et al., 2010). 

Zones STIC1.2 - SEBS STIC1.2 – MOD16 

 
All ENF DBF WSA GRA CRO All ENF DBF WSA GRA CRO 

W 

-93 

(62) 

-59 

(34) 

NA 

(NA) 

-55 

(35) 

-135 

(60) 

-49 

(19) 

24 

(23) 

26 

(24) 

NA 

(NA) 

16 

(23) 

30 

(22) 

18 

(17) 

MW2 

-86 

(34) 

-49 

(24) 

-47 

(30) 

-61 

(23) 

-94 

(31) 

-58 

(31) 

42 

(23) 

32 

(20) 

13 

(35) 

44 

(19) 

44 

(23) 

25 

(36) 

MW1 

-29 

(11) 

-17 

(11) 

-13 

(9) 

-22 

(10) 

-31 

(9) 

-31 

(9) 

15 

(10) 

25 

(17) 

-1 

(17) 

6 

(22) 

18 

(20) 

17 

(19) 

E 

-15 

(7) 

-9 

(9) 

-11 

(7) 

-15 

(7) 

-17 

(6) 

-19 

(6) 

7 

(6) 

5 

(21) 

-3 

(12) 

5 

(15) 

19 

(14) 

18 

(12) 
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Figure 1: Schematic representation of  one-dimensional description of STIC1.2 showing how a feedback is established between the 

surface layer evaporative fluxes and source/sink height mixing and coupling (dotted arrows between e0, e0
*, gA and gC, and λE). Here 

rA and rC (gA and gC) are the aerodynamic and canopy resistances (conductances); e0
* is the saturation vapour pressure at the 

source/sink height; T0 is the source/sink height temperature (i.e. aerodynamic temperature) that is responsible for transferring the 5 
sensible heat (H); e0 and eS are the vapour pressure at the source/sink height and the surface, respectively; z0H is the roughness length 

for heat transfer, d0 is the displacement height; TR is the radiometric surface temperature; M is the surface moisture availability or 

evaporation coefficient; RN and G are net radiation and ground heat flux; TA, eA, and DA are temperature, vapour pressure, and 

vapour pressure deficit at the reference height (z); and λE and H are latent and sensible heat fluxes, respectively. Inputs from MODIS 

land surface products and gridded weather datasets for the regional implementation of STIC1.2 in this paper are shown in red and 10 
blue fonts, respectively. Texts in green font represent the state variables for which analytical solution was obtained by solving the 

‘state equations’ (Eqs. (7)-(10)). Texts in burnt orange are the variables that were obtained iteratively along with the state variables. 
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.  

Figure 2: Distribution of core AmeriFlux sites (13) used in this study shown over 30-year (1980-2010) mean annual 

precipitation of the US and the processing grids (MODIS subsets) used to estimate regional-scale ET from MODIS 

datasets. 
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Figure 3: Distribution of annual precipitation during dry, wet, and normal years considered for ET evaluation at each 

site corresponding to its 30-year mean annual precipitation from the PRISM data.  
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Figure 4: Evaluation of 8-day cumulative ET from STIC1.2, SEBS, and MOD16 against observed ET from thirteen 

core AmeriFlux sites in the US during dry, wet, and normal years. 
 5 
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Figure 5: Validation of 8-day cumulative ET from STIC1.2, SEBS, and MOD16 for each biome type.  
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Figure 6: Evaluation of 8-day cumulative ET from STIC1.2, SEBS, and MOD16 for each long-term aridity index (AI) 

category. 
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 5 

Figure 7: Scatter plots of differences in STIC1.2 and (top row) SEBS and (bottom row) MOD16 ET estimates against 

input land surface variables used in these models (TR, DA, and NDVI). The pearson correlation coefficient, r (p-value 

was < 0.005 for all cases except dETMOD16-obs vs. NDVI relationship), is also shown in each plot. 
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Figure 8: Annual ET (mm) maps for the dry, wet, and normal years derived from STIC1.2, SEBS, and MOD16 for the 

western (W) bounding box covering US-Ton and US-Me2 flux sites (Fig. 1). Scatterplots between annual ET estimates 5 

from STIC1.2 vs. SEBS and MOD16 are shown on the right.   
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Figure 9: Annual ET (mm) maps for the dry, wet, and normal years derived from STIC1.2, SEBS, and MOD16 for the 

mid-western 2 (MW2) bounding box covering US-ARM, US-SRG, US-Wkg, and US-NR1 flux sites (Fig. 1). Scatterplots 

between annual ET estimates from STIC1.2 vs. SEBS and MOD16 are shown on the right.  
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Figure 10: Annual ET (mm) maps for the dry, wet, and normal years derived from STIC1.2, SEBS, and MOD16 for 

mid-western 1 (MW1) bounding box covering US-Kon, US-KFS, US-ARM, US-Ne1, and US-MMS flux sites (Fig. 1). 

Scatterplots between annual ET estimates from STIC1.2 vs. SEBS and MOD16 are shown on the right.   5 
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Figure 11: Annual ET (mm) maps for the dry, wet, and normal years derived from STIC1.2, SEBS, and MOD16 for 

the eastern (E) bounding box covering US-NC1 and US-NC2 flux sites (Fig. 1). Scatterplots between annual ET 

estimates from STIC1.2 vs. SEBS and MOD16 are shown on the right.  
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Figure 12: Comparison of annual ET from STIC1.2, SEBS, and MOD16 against observed annual ET from the core 5 

AmeriFlux sites. Missing daily observed ET at the flux sites were filled using linear interpolation between available 

days. Missing 8-day cumulative ET from STIC1.2 and SEBS were filled using constant EF approach. Annual ET 

from the models and flux sites are compared when at least 38 (out of 46) 8-day cumulative ET were available for 

computation of annual ET and at least 300 days of observed E were available at the flux tower sites.  
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 5 
 

Figure 13: Scatterplots of the residual differences in cumulative 8-day ET estimates from STIC1.2 and SEBS and the 

residual errors from SEBS (versus the observations) against kB-1 and z0M. Pearson correlation coefficient, r (p-value was 

< 0.005 for all relationships shown above), are also shown in each plot. 
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APPENDIX 

Appendix A: 

A1. Table of symbols and their description used in the study. 

Symbol Description 
 

λ Latent heat of vaporization of water (J kg−1 K−1) 

H Sensible heat flux (W m−2) 

RN Net radiation (W m−2)  

RS Shortwave radiation (W m−2) 

Rld Incoming longwave radiation (W m−2) 

Rlu Outgoing longwave radiation (W m−2) 

G Ground heat flux (W m−2) 

ϕ Available energy (W m−2) 

ET Evapotranspiration (evaporation + transpiration) as depth of water (mm) 

λE Latent heat flux (W m− 2) 

Ep Potential evaporation as depth of water (mm) 

gA Aerodynamic conductance (m s− 1) 

gC Canopy (or surface) conductance (m s− 1) 

rA Aerodynamic resistance (s m-1) 

rC Canopy (or surface) resistance (s m-1) 

M Aggregated surface moisture availability (0–1) 

TA Air temperature (°C) 

TD Dewpoint temperature of the air (°C) 

TR Radiometric surface temperature (°C) 

TSD Dew point temperature at the source/sink height  (°C) 

T0 Aerodynamic surface temperature (°C) 

RH Relative humidity (%) 

eA Atmospheric vapour pressure (hPa) at the level of TA measurement 

DA Atmospheric vapour pressure deficit (hPa) at the level of TA measurement 

eS Vapour pressure at the surface (hPa) 

eS
* Saturation vapour pressure at surface (hPa) 
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e0
* Saturation vapour pressure at the source/sink height (hPa) 

e0 Saturation vapour pressure at the source/sink height (hPa) 

s Slope of saturation vapour pressure versus temperature curve (hPa K−1) 

s1 
Slope of saturation vapour pressure and temperature between (TSD – TD) versus (e0 – eA), 

approximated at TD (hPa K−1) 

s2 
Slope of saturation vapour pressure and temperature between (TR – TD) versus (eS

* – eA), 

estimated according to Mallick et al. (2015) (hPa K−1) 

γ Psychrometric constant (hPa K−1) 

ρA Density of air (kg m−3) 

cp Specific heat of dry air (MJ kg− 1 K−1) 

Λ Evaporative fraction 

ΛR Relative evaporation (-) 
 

θ Surface (0–5 cm) soil moisture (m3 m− 3) 

LAI Leaf area index (m2 m− 2) 
 

NDVI Normalized difference vegetation Index (-)  

β Bowen ratio (-)  

θv Virtual potential temperature near the surface (K)  

εo Surface emissivity (-)  

αo Surface albedo (-)  

u* Friction velocity (m s−1)  

RN24 Daily net radiation (W m−2)  

RN24,8-day 8-day net radiation (W m−2)  

kB−1 Excess resistance to the heat transfer parameter (-)  

λEwet λE at wet limits (W m−2)  

Hwet H at wet limits (W m−2)  

Hdry H at dry limits (W m−2)  

L Monin–Obukhov length (m)  

g Acceleration due to gravity (9.8 m s−2)  

d0 Zero plane displacement height (m)  

ΨH Atmospheric stability correction for heat transport (-)  

ΨM Atmospheric stability correction for momentum transfer (-)  

z0M Roughness length for momentum transfer (m)  
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z0H Roughness length for heat transfer (m)  

z Reference height (m)  

zb Blending Height (m)  

k von Karman constant (-)  

   

A2. Derivation of ‘state equations’ in STIC 1.2 

After neglecting the horizontal advection and energy storage, the surface energy balance equation is written as: 

𝜙 = 𝜆𝐸 + 𝐻 (A1) 

While H is controlled by a single aerodynamic resistance (rA) (or 1/gA); λE is controlled by two resistances in series, the 

canopy (or surface) resistance (rC) (or 1/gC) and the aerodynamic resistance to vapour transfer (rC + rA). For simplicity, it is 

implicitly assumed that the aerodynamic resistance of water vapour and heat are equal (Raupach, 1998), and both the fluxes 5 

are transported from the same level from near surface to the atmosphere. The sensible and latent heat flux can be expressed 

in the form of aerodynamic transfer equations (Boegh et al., 2002;Boegh and Soegaard, 2004) as follows: 

𝐻 = 𝜌A𝑐P𝑔A(𝑇0 − 𝑇A) (A2) 

𝜆𝐸 =
𝜌A𝑐P

𝛾
𝑔A(𝑒0 − 𝑒A) =  

𝜌A𝑐P

𝛾
𝑔C(𝑒0

∗ − 𝑒0) 
(A3) 

Where T0 and e0 are the air temperature and vapour pressure at the source/sink height (i.e., T0 and vapour pressure) and 

represent the vapour pressure and temperature of the quasi-laminar boundary layer in the immediate vicinity of the surface 

level.  T0 can be obtained by extrapolating the logarithmic profile of TA down to z0H. 10 

By combining Eqs. (A1), (A2), and (A3) and solving for gA, we get the following equation. 

𝑔A =
𝜙

𝜌A𝑐P [(𝑇0 − 𝑇A) + (
𝑒0 − 𝑒A

𝛾
)]

 
(A4) 

Combining the aerodynamic expressions of λE in Eq. (A3) and solving for gC, we can express gC as a function of gA and 

vapour pressure gradients. 

𝑔C = 𝑔A

(𝑒0 − 𝑒A)

(𝑒0
∗ − 𝑒0)

 
(A5) 

In Eqs. (A4) and (A5), two more unknown variables (e0 and T0) are introduced resulting into two equations and four 

unknowns. Hence, two more equations are needed to close the system of equations. An expression for T0 is derived from the 15 

Bowen ratio (β) (Bowen, 1926) and evaporative fraction (Λ) (Shuttleworth et al., 1989) equation as: 

𝛽 =  (
1 − 𝛬

𝛬
) =

𝛾(𝑇0 −  𝑇A)

(𝑒0 − 𝑒A)
 

(A6) 

𝑇0 = 𝑇A + (
𝑒0 − 𝑒A

𝛾
) (

1 − 𝛬

𝛬
) 

(A7) 
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The expression for T0 introduces another new variable (Λ); therefore, one more equation that describes the dependence of Λ 

on the conductances (gA and gC) is needed to close the system of equations. In order to express Λ in terms of gA and gC, 

STIC1.2 adopts the advection – aridity (AA) hypothesis (Brutsaert and Stricker, 1979) with a modification introduced by 

Mallick et al. (2015). The AA hypothesis is based on a complementary connection between the potential evaporation (EP), 

sensible heat flux (H), and ET; and leads to an assumed link between gA and T0. However, the effects of surface moisture (or 5 

water stress) were not explicit in the AA equation and Mallick et al. (2015) implemented a moisture constraint in the original 

advection-aridity hypothesis while deriving a ‘state equation’ of Λ (Eq. A8). A detailed derivation of the ‘state equation’ for 

Λ is described in Mallick et al. (2014, 2015, and 2016).  

𝛬 =  
2𝛼𝑠

2𝑠 +  2𝛾 +  𝛾
𝑔A

𝑔C
(1 + 𝑀)

 
(A8) 

A3. Estimating e0, e0
*, M, and α in STIC 1.2 

In the early versions of STIC (Mallick et al., 2014;Mallick et al., 2015), no distinction was made between the surface and 10 

source/sink height vapour pressures and hence e0
*
 was approximated as the saturation vapour pressure at TR. e0 was estimated 

from M with an assumption that the vapour pressure at the source/sink height scales between extreme wet–dry surface 

conditions. However, the level of e0
* and e0 should be consistent with the level of T0 from which the sensible heat flux is 

transferred (Lhomme and Montes, 2014). To use the PM equation predictively, it is imperative to consider the feedback 

between the surface layer evaporative fluxes and source/sink height mixing and coupling (McNaughton and Jarvis, 1984). 15 

Therefore, STIC1.2 uses physical expressions for estimating e0
* and e0 followed by estimating TSD and M as described 

below.  

An estimate of e0
* is obtained by inverting the aerodynamic transfer equation of 𝜆E. 

𝑒0
∗ = 𝑒A + [

𝛾𝜆𝐸(𝑔A + 𝑔C)

𝜌A𝑐P𝑔A𝑔C

] 
(A9) 

Following Shuttleworth and Wallace (1985) (SW), the vapour pressure deficit (D0) (=e0
*- e0) and e0 at the source/sink 

height are expressed as follows. 20 

𝐷0 = 𝐷A + [
{𝑠𝜙 − (𝑠 +  𝛾)𝜆𝐸}

𝜌AcP𝑔A

] 
(A10) 

𝑒0 = 𝑒0
∗ − 𝐷0 (A11) 

A physical equation of  is derived by expressing  as function of the aerodynamic equations H and λE.  

𝛬 =  
𝜆𝐸

𝐻 +  𝜆𝐸
 

(A12) 

𝛬 =  

𝜌A𝑐𝑃

𝛾
𝑔A𝑔C

𝑔A + 𝑔C
(𝑒0

∗ − 𝑒A)

𝜌A𝑐P𝑔A(𝑇0 −  𝑇A) +  
𝜌A𝑐P

𝛾
𝑔A𝑔C

𝑔A + 𝑔C
(𝑒0

∗ −  𝑒A)
 

(A13) 
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𝛬 =  
𝑔C(𝑒0

∗ −  𝑒A)

[𝛾(𝑇0 − 𝑇A)(𝑔A + 𝑔C) +  𝑔C(𝑒0
∗ −  𝑒A)]

 
(A14) 

Combining Eqs. (A14) and (A8) (eliminating),  can be expressed as:  

𝛼 =  
𝑔C(𝑒0

∗ −  𝑒A) [2𝑠 + 2𝛾 +  𝛾
𝑔A

𝑔C
 (1 + 𝑀)]

2𝑠[𝛾(𝑇0 − 𝑇A)(𝑔A + 𝑔C) +  𝑔C(𝑒0
∗ −  𝑒A)]

 

(A15) 

Following Venturini et al. (2008), and the theory of psychrometric slope of saturation vapour pressure versus 

temperatures, M is expressed as the ratio of the dewpoint temperature difference between the source/sink height and air to 

the temperature difference between TR and dewpoint temperature of the air (TD). 

𝑀 =
𝑠1(𝑇SD − 𝑇D)

𝜅𝑠2(𝑇R − 𝑇D)
 

  (A16) 

Where TSD is the dewpoint temperature at the source/sink height; s1 and s2 are the psychrometric slopes of the saturation 5 

vapour pressure and temperature between (TSD – TD) versus (e0 – eA) and (TR – TD) versus (eS
* - eA) relationship (Venturini et 

al., 2008); and κ is the ratio between (e0
* - eA) and (eS

* - eA). Despite T0 drives the sensible heat flux, the comprehensive dry-

wet signature of underlying surface due to soil moisture variations is directly reflected in TR (Kustas and Anderson, 2009). 

Therefore, using TR in the denominator of Eq. (A16) tends to give a direct signature of the surface moisture availability (M).  

In Eq. (A16), both s1 and TSD are unknowns, and an initial estimate of TSD is obtained using Eq. (6) of Venturini et al. 10 

(2008) where s1 was approximated in TD. From the initial estimates of TSD, an initial estimate of M is obtained as M = s1(TSD 

- TD)/s2(TR - TD).  However, since TSD also depends on λE, an iterative updating of TSD (and M) is carried out by expressing 

TSD as a function of λE as described below (also in Mallick et al., 2016). By decomposing the aerodynamic equation of λE, 

TSD can be expressed as follows. 

𝜆𝐸 =  
𝜌A𝑐P

𝛾
𝑔A(𝑒0 − 𝑒A) =  

𝜌A𝑐P

𝛾
𝑔A𝑠1(𝑇SD − 𝑇D) 

(A17) 

𝑇SD =  𝑇D +  
𝛾𝜆𝐸

𝜌A𝑐P𝑔A𝑠1

 
(A18) 

An initial value of  is assigned as 1.26 and initial estimates of e0
* and e0 are obtained from TR and M as 𝑒0

∗ =15 

6.13753𝑒
17.27𝑇R

(𝑇R+237.3) and 𝑒0 = 𝑒A + 𝑀(𝑒0
∗ − 𝑒A). Initial TSD and M were estimated from Eq. (6) of Venturini et al. (2008) and 

Eq. (A16), respectively. With the initial estimates of these variables; initial estimate of the conductances, T0, 𝛬, and λE are 

obtained. This process is then iterated by updating e0
* (using Eq. A9), D0 (using Eq. A10), e0 (using Eq. A11), TSD (using Eq. 

A18 with s1 estimated at TD), M (using Eq. A16), and 𝛼 (using Eq. A15), with the initial estimates of gC, gA, and λE, and 

recomputing gC, gA, T0, 𝛬, and λE in the subsequent iterations with the previous estimates of e0
*, e0, TSD, M, and 𝛼 until the 20 

convergence λE is achieved. Stable values of λE, e0
*, e0, TSD, M, and 𝛼 are obtained within ~25 iterations. 
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