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Abstract. The objectives of the present study are to explore the changes in water balance components 16 

(WBCs) by co-utilizing Discrete Wavelet Transformation (DWT) and different forms of Mann–Kendal (MK) 17 

test and to develop Wavelet Denoise Autoregressive Integrated Moving Average (WD-ARIMA) models for 18 

forecasting the WBCs. The results reveal that most of the trends (about 73%) identified in potential 19 

evapotranspiration (PET) have decreasing tendency during the hydrological years 1981-82 to 2012-13 in the 20 

western part of Bangladesh. However, most of the trends (about 82%) are not statistically significant at 5% level 21 

of significance. Actual evapotranspiration (AET), annual deficit and annual surplus also show almost similar 22 

tendency. Rainfall and temperature show increasing trends, but WBCs show inverse tendency suggesting 23 

traditional concept of change in PET associated with changes in temperature, those cannot explain the change in 24 

WBCs. Moreover, it is found that generally 8-year (D3) to 16-year (D4) periodic components are effective 25 

components and are responsible for trends found in original data of WBCs in the area. The wavelet denoising of 26 

WBCs time series has been done to improve the performance of ARIMA model as actual data affected by noise 27 

and show unsatisfactory model performance. The quality of denoising time series data has been ensured by 28 

relevant statistical analysis. The performance of WD-ARIMA model has been assessed by Nash–Sutcliffe 29 

Efficiency (NSE) coefficient and coefficient of determination (R
2
). The WD-ARIMA model shows acceptability 30 

with very good performance that clearly demonstrates the advantages of denoising of the time series data for 31 

forecasting WBCs. The validation results of models reveal that the forecasted values are very close to actual 32 

ones with acceptable mean percentage error, and residuals also follow the normal distribution. The performance 33 

and validation results indicate that models can be used for short-term forecasting of WBCs. Further studies on 34 

different combinations of wavelet analysis would be facilitated to develop better model for hydrological 35 

forecasting in context of climate change, and findings of the study can be used to improve the water resources 36 

management in highly irrigated western part of Bangladesh. 37 

Keywords: Discrete Wavelet Transformation, Wavelet Denoising, Water Balance, ARIMA Model 38 
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After introducing the monthly water balance model by Thronthwaite (1948) and afterward followed by 40 

Thornthwaite and Mather (1957), this model is going through modifications for adaptation in the different areas 41 

of the world. The development of the new model is still ongoing (Xu and Singh, 1998) as the water balance 42 

model is significantly important in water resources management, irrigation scheduling and crop pattern 43 

designing (Kang et al., 2003; Valipour, 2012). Moreover, it can be used for the reconstruction of catchment 44 

hydrology, climate change impact assessment and streamflow forecasting (e.g. Alley, 1985; Arnall, 1992, Xu 45 

and Halldin, 1996; Molden and Sakthivadivel, 1999; Boughton, 2004; Anderson et al., 2006; Healy et al., 2007; 46 

Moriarty et al., 2007; Karimi et al., 2013). Therefore, detecting the changes in WBCs and more accurate 47 

forecasting of WBCs are important for achieving the sustainability of water resources management. However, 48 

hydro-meteorological time series are contaminated by noises from hydro-physical processes that affect the 49 

accuracy of analysis, simulation and forecasting (Sang et al., 2013 and Wang et al., 2014). Hence, it is necessary 50 

to denoise the time series for improving the accuracy of the obtained results. In the present study, wavelet 51 

denoising technique has been coupled with ARIMA models for forecasting the WBCs after detecting the 52 

changes in WBCs by different forms of MK tests and identifying the time period responsible for trends in 53 

WBCs time series using DWT time series data. 54 

Generally, physics based numerical models are used for understanding a particular hydrological system and 55 

forecasting the water balance or budget (e.g. Fulton et al., 2015, Leta et al., 2016) components. In this method, 56 

for reliable forecasting, a large amount of hydrological data is required to assign physical properties of the grid 57 

and model parameters and to calibrate the model simulation. However, they have a number of limitations in 58 

practice including the cost, time and availability of the data (Yoon et al., 2011; Adamowski and Chan, 2011). 59 

Data based forecasting models, statistical models, are suitable alternatives to overcome these problems. The 60 

most common statistical methods for hydrological forecasting are ARIMA models and multiple linear regression 61 

(Young, 1999; Adamowski, 2007). Many studies use ARIMA model to predict water balance input parameters 62 

like rainfall (e.g., Rahman et al., 2015; Rahman et al., 2016), temperature (e.g. Nury et al., 2016) and PET (e.g., 63 

Valipour, 2012). However, ARIMA model cannot handle non-stationary hydrological data without pre-64 

processing of the input time series data (Tiwari and Chatterjee, 2010; Adamowski and Chan, 2011). Wavelet 65 

analysis, a new method in the area of hydrological research, is such a method that is able to handle non-66 

stationary data effectively (Adamowski and Chan, 2011). However, over the course of time some research 67 

works have already been done. For example, Adamowski and Chan (2011) coupled wavelet analysis with 68 

Artificial Neural Network (ANN) models for forecasting the hydrological variables like groundwater level in 69 

Quebec, Canada. Kisi (2008) and Partla (2009) and Santos and da Silva (2014) develop a hybrid wavelet ANN 70 

models for monthly and daily streamflow forecasting respectively. A study conducted by Rahman and Hasan 71 

(2014) also finds that the performance of the wavelet-based ARIMA models is better than the classical ARIMA 72 

model for forecasting the humidity of Rajshahi meteorological station in Bangladesh. A comparative study of 73 

wavelet ARIMA models and wavelet ANN models has been conducted by Nury et al. (2017). The study shows 74 

that the wavelet ARIMA models are more effective than the wavelet ANN for temperature forecasting.  Khalek 75 

and Ali (2016) developed wavelet seasonal ARIMA (W-SARIMA) and neural network autoregressive (W-76 

NNAR) model for forecasting the groundwater level. The study also finds that the performance of W-SARIMA 77 

model is better than the performance of W-NNAR models. All of these studies mentioned above find that the 78 

performance of wavelet aided model is better than classical ARIMA models and ANN models. Moreover, the 79 
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analysis of periodicity using wavelet transformed details, and approximation components of hydro-80 

meteorological time series data can better provide insight into trends and effects of time period on trend (e.g. 81 

Nalley et al., 2013; Araghi et al., 2014; Pathak et al., 2016). As a result, wavelet transformation of hydro-82 

meteorological time series is gaining popularity in recent years to detect periodicity (e.g. Partal and Küçük, 83 

2006; Partal, 2009; Nalley et al., 2013; Araghi et al., 2014; Pathak et al., 2016). Some studies have been 84 

conducted on spatio-temporal characteristics of hydro-meteorological variables such as rainfall (e.g. Shahid and 85 

Khairulmaini, 2009; McSweeney et al., 2010; Ahasan et al., 2010; Kamruzzaman et al., 2016a, Rahman and 86 

Lateh, 2016; Rahman et al., 2016; Syed and Al Amin, 2016), temperature (e.g. Shahid, 2010; Nasher and Uddin, 87 

2013; Rahman, 2016; Syed and Al Amin, 2016; Kamruzzaman et al., 2016a), PET (Hasan et al., 2014; Acharjee, 88 

2017) in Bangladesh.  Karim et al. (2012) study the WBCs like PET, AET, deficit and surplus of water of 12 89 

districts in Bangladesh and Kanoua and Merkel (2015) study the water balance of Titas Upazila (Sub-district) in 90 

Bangladesh. So far, all studies carried out on hydrological variables in Bangladesh have the following 91 

limitations: most of the studies were limited to detect trends or forecasting of rainfall and temperature and a few 92 

studies on PET and water balance. Therefore, the present study has been conducted to detect trends and to 93 

identify periodicities in WBCs such as potential evapotranspiration (PET), actual evapotranspiration (AET), 94 

annual deficit and surplus of water by co-utilizing DWT and different forms of Mann-Kendal (MK) test in the 95 

western part of Bangladesh; and to develop WD-ARIMA models for forecasting the WBCs. To date, there is no 96 

comprehensive study that couples wavelet denoising methods with ARIMA models for forecasting WBCs. 97 

Wavelet denoising methods are widely used in many other engineering and scientific fields; however, they have 98 

been little used in hydrology (Sang, 2013).  Hence, it is expected that the new combinations will better explore 99 

insight the water balance components which will ultimately help policymakers to prepare sustainable water 100 

resources management plans. 101 

2. Study Area, Data and Methods 102 

2.1 Study area 103 

Bangladesh enjoys a humid, warm and tropical climate. The western part of Bangladesh covers about 41% or 104 

60,165 km
2
 of the country. The geographic coordinates of the study area extends between 21°36ʹ-26°38ʹN 105 

latitude and 88°19ʹ-91°01ʹE longitude. Annual rainfall and average temperature in the area vary from 1492 to 106 

2766 mm with an average of 1925 mm and 24.18 to 26.17°C with an average of 25.44°C respectively 107 

(Kamruzzaman et al., 2016a). Bangladesh is the fourth biggest rice producing country in the world (Scott and 108 

Sharma, 2009) and the livelihoods of the majority of the people (about 75%, Shahid and Behrawan, 2008; 109 

Kamruzzaman et al., 2016b) are related to agricultural practices. Crop calendar of Bangladesh is related to the 110 

climatic seasons. Rice grows in three seasons (Aus, Aman and Boro seasons) in Bangladesh. Almost 73.94% 111 

cultivable area is used for Boro rice cultivation in the country (Banglapedia, 2003). Aus and Aman rice are 112 

mainly rain-fed crops; however, Boro rice is almost groundwater-fed (Ravenscroft et al., 2005) and requires 113 

about 1m of water per square meter in Bangladesh (Harvey et al., 2006; Michael and Voss, 2009). 114 

2.2 Data 115 

National climate database of Bangladesh prepared by Bangladesh Agricultural Research Council (BARC) has 116 

been used for the study. The database is available for research and can be found in BARC website 117 
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(http://climate.barcapps.gov.bd/). The database has been prepared from the data recorded by Bangladesh 118 

Meteorological Division and contains long-term monthly climate data such as rainfall, minimum, maximum and 119 

average temperatures, humidity, sunshine hours, wind speed and cloud cover. The locations of the 120 

meteorological stations in the study area are shown in Figure 1. The data has been rearranged following the 121 

hydrological year for the period 1981-82 to 2012-13. The hydrological year in Bangladesh starts in April and 122 

ends in March. 123 

2.3 Methods 124 

In the present study, WBCs have been calculated and trends in WBCs have been identified by MK/MMK test 125 

for evaluating the long-term water balance of the highly irrigated western part of Bangladesh. DWT data of 126 

WBCs time series has been analyzed for identifying the time period responsible for the trend in the data. WBCs 127 

have been forecasted by ARIMA models and the model performance has been evaluated statistically. If the 128 

performance of the model is not satisfactory for forecasting the WBCs, the denoising of original time series has 129 

been done using discrete wavelet transformation techniques to improve the performance of the model. The 130 

descriptions of the methods have been presented in the following sections. 131 

2.3.1 Calculation of Potential Evapotranspiration and Water Balance Components  132 

Potential evapotranspiration (PET) is the key parameter to estimate WBCs. It has been calculated by Penman-133 

Monteith equation (Allen et al., 1998) in the present study. The soil-water balance concept proposed by 134 

Thornthwaite and Mather (1955) is one of the most widely used methods for estimating the WBCs. It is suitable 135 

for assessing the effectiveness of agricultural water resources management practices and regional water balance 136 

studies as it allows estimating the actual evapotranspiration (AET), water deficit and surplus (e.g., Chapman and 137 

Brown 1966, Bakundukize et al., 2011, Karim et al., 2012, Viaroli et al., 2017). AET is the amount of water 138 

which is removed from the surface due to the process of evaporation and transpiration. The amount by which 139 

PET exceeds AET is termed as deficit and surplus is the excess rainfall after the soil has reached its water holding 140 

capacity (de Jong and Bootsma, 1997). It is necessary to calculate the field capacity of the soil for estimating the 141 

WBCs. Field capacity of soil in the study area has been calculated using the soil texture map of Bangladesh 142 

prepared by Soil Resource Development Institute Bangladesh (SRDI, 1998) where the description of soils has 143 

been presented by Huq and Shoaib (2013). The values for water holding capacity of soil and rooting depth of the 144 

plants suggested by Thornthwaite and Mather (1957) have been used for WBCs estimation in the present study. 145 

The first step of the calculation is the subtraction of 5% rainfall from the monthly rainfall data as this amount of 146 

water has been lost due to direct runoff (Wolock and McCabe, 1999; Karim et al., 2012; Kanoua and Merkel, 147 

2015). The remaining amount of rainfall has been included in the calculation. The WBCs like AET, surplus and 148 

deficit have been estimated based on the formulas presented in Table 1 and details of WBCs calculation can be 149 

found in Electronically Supplementary Martial (EMS). 150 

2.3.2 Trend Test 151 

In the present study, the trends in WBCs have been detected by non-parametric Mann–Kendall (MK) (Mann, 152 

1945; Kendal, 1975) test as it shows better performance to identify trends in hydrological variables like rainfall 153 

(e.g. Shahid, 2010), temperature (e.g. Kamruzzaman et al., 2016a), PET (e.g. Kumar et al., 2016), soil moisture 154 

(e.g. Tabari and Talaee, 2013), runoff (e.g. Pathak et al., 2016), groundwater level (e.g. Rahman et al., 2016), 155 
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water quality (e.g. Lutz et al., 2016) in comparison to the parametric test (Nalley et al., 2012). MK test cannot 156 

appropriately calculate the test statistic (Z) due to underestimating the variance (Hamed and Rao, 1998) if there 157 

is a significant serial correlation at lag-1 in the time series data (Yue et al., 2002). The lag-1 auto-correlation has 158 

been checked before analyzing the time series data if there is a significant lag-1 auto-correlation at 5% level, the 159 

Modified MK test (Hamed and Rao, 1998) has been applied instead of MK test.  The estimated Z statistic of 160 

MK/MMK test has been evaluated for the direction of the trend such as positive Z statistic to indicate increasing 161 

trend and vice versa. Moreover, it also indicates the level of significance of the obtained trend, for example, if 162 

the calculated Z statistic is equal to or greater than the tabulated value of Z statistic +1.96 that indicates a 163 

significant positive trend at 95% confidence level or if it is equal to or less than -1.96 that indicates a significant 164 

decreasing trend. Moreover, the sequential values of u(t) statistic of MK test derived from the progressive 165 

analysis of MK test (Sneyers, 1990), u(t) is similar to the Z statistic (Partal and Küçük, 2006), have been used 166 

for investigating the change point detection. The magnitude of the change has been calculated by Sen’s slope 167 

estimator (Sen, 1968). There are many good explanations  (notably Nalley et al., 2012) of these methods 168 

mentioned in this section  and details regarding these, furthermore, can be referred to Mann (1945); Sen (1968); 169 

Kendall (1971); Hamed and Rao (1998); Sneyers (1990); Yue et al. (2002).  170 

2.3.3 Wavelet Transform and Periodicity 171 

The wavelet analysis has been used to identify periodicity in hydro-climatic time series data (e.g., Smith et al., 172 

1998; Azad et al., 2015; Nalley et al., 2012; Araghi et al., 2014; Pathak et al., 2016) for different parts of the 173 

world. Wavelet transform (WT), a multi-resolution analytical approach, can be applied to analyze time series 174 

data as it offers flexible window functions that can be changed over time (Nievergelt, 2001; Percival and 175 

Walden, 2000). It can be applied to detect the periodicity in hydro-climatic time series data (Smith et al., 1998; 176 

Pišoft et al., 2004; Sang, 2012; Torrence and Compo, 1998; Araghi et al., 2014; Pathak et al., 2016) and 177 

produces better performances in comparison to traditional approaches (Sang, 2013). There are two main kinds of 178 

wavelet transform such as continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The 179 

application CWT is complex, as it produces a lot of coefficients (Torrence and Compo, 1998; Araghi et al., 180 

2014), whereas DWT is simple and useful for hydro-climatic analysis (Partal and Küçük, 2006; Nalley et al., 181 

2012). The wavelet coefficients following the DTW with dyadic format can be calculated as (Mallat, 1989): 182 

     (
   

 
)    

  
 ⁄   (

         
 

  
 )               

Where ψ is the mother wavelet, the integers m and n are wavelet dilation and translation respectively. Specified 183 

fixed dilation step (so) is greater than 1 and τo is location parameter. For the practical application, the values of 184 

parameters so and τo are considered as 2 and 1 respectively (Partal and Küçük, 2006; Pathak 2016). After 185 

substituting these values in equation (1), the DWT for a time series xi becomes: 186 

       
  

 ⁄ ∑   

   

   

                           

Where W indicates wavelet coefficient at scale      and location        187 
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In the DWT, details (D) and approximations (A) time series can emerge from the original time series after 188 

passing through low-pass and high-pass filters respectively. While approximations are the high scale and low-189 

frequency components, details are the low scale and high-frequency components. Successive, iterations have 190 

been performed to decompose the time series into their several lower resolution components (Mallat, 1989; 191 

Misiti et al., 1997). In the present study, four levels (D1-D4) of decompositions have been performed following 192 

the dyadic scales and referred as D1, D2, D3 and D4 which are corresponds to 2, 4, 8 and 16year periodicity. 193 

Daubechies wavelet has been used in the present study as it performs better in hydro-meteorological studies 194 

(Nalley et al., 2012, 2013; Ramana et al., 2013; Araghi et al., 2014). To confirm about the periodicity present in 195 

the time series, correlation coefficient (Co) between u(t) of original data, u(t) of decomposition (D) time series 196 

data and different models (D1+A……..D4+D3+A) time series data have been calculated and the obtained 197 

results have been compared accordingly (Partal and Küçük, 2006; Partal, 2009). 198 

2.3.4 ARIMA Models 199 

To identify the complex pattern in data and to project the future scenario, ARIMA model (Box and Jenkins, 200 

1976) has been used in hydrological science (e.g. Adamowski and Chan, 2011; Valipour et al., 2013; Nury et al., 201 

2017; Khalek and Ali, 2016). The method includes three terms: (1) an autoregressive process (AR) represented 202 

by order-p, (2) nonseasonal differences for non-stationary data termed as order-d and (3) moving average 203 

process (MA) represented by order-q. ARIMA model of order         can be written as: 204 

                                           

Where,    and    are the intercept and white process with zero mean and constant variance 205 

respectively.       stands for AR term               
   and       represents MA term        206 

       
  . 207 

2.3.5 Wavelet Denoising 208 

Wavelet de-noising based on thresholds introduced by Donoho et al. (1995) has been applied to the hydro-209 

meteorological analysis (Wang et al., 2005 and 2014; Chou, 2011). In the present study, three-steps of analysis 210 

has been done for denoising the time series data as follows: 211 

1. Decomposing the time series data x(t) into M resolution level for obtaining the detail coefficients (      212 

and approximation coefficients using DWT.  213 

2. The detail coefficients obtained from DWT (1 to M levels) have been treated with threshold 214 

(    selection. There are soft threshold and hard threshold to deal with detail coefficients and to get 215 

decomposed coefficient. In the present study, soft threshold has been selected as it’s performs better 216 

than hard (Wang et al., 2014; Chou, 2011): 217 

 Soft threshold processing:     
    {

          (|    |    )  

       
      

|    |    

|    |    

 218 

3. Details coefficients from 1 to M level and approximate coefficients at level M have been reconstructed 219 

to get denoising time series data. 220 
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It is also necessary to select the threshold value for denoising the data. In the present study, Universal threshold 221 

(UT) method (Donoho and Johnstone, 1994) has been used for estimating the threshold value as it shows good 222 

performance in analyzing hydro-meteorological data (Wang et al., 2005; Chou, 2011).  223 

2.3.6 Assessment of Model Performance  224 

There are several indicators to assess the performance of the models. Nash–Sutcliffe Efficiency (NSE) (Nash 225 

and Sutcliffe, 1970) coefficient, a normalized goodness-of-fit statistic, is the most powerful and popular method 226 

for measuring the performance of hydrological models (McCuen et al., 2006; Moussa, 2010; Ritter and Muñoz-227 

Carpena, 2013). To evaluate and make a comparison between ARIMA and WD-ARIMA model, NSE has been 228 

used in the study. NSE can be calculated as (Nash and Sutcliffe, 1970): 229 

      
∑        

  
   

∑      ̅   
   

    (
    

  
)

 

           

Where,             are the sample size, number of observation and model estimates respectively and 230 

 ̅        are the mean and standard deviation of the observed values. The performance of a model can be 231 

evaluated based on NSE value as: very good (NSE ≥ 0.90); good (NSE = 0.80-0.90); acceptable (NSE ≥ 0.65); 232 

and unsatisfactory (NSE<0.65) (Ritter and Muñoz-Carpena, 2013). ERMS is the root mean square error that can 233 

be calculated as: 234 

          √
∑        

  
   

 
                            

The coefficient of determination (R
2
) is another goodness of fit test to measure the performance of the models. 235 

The perfect fit of the model draws a line between the actual values and fitted values, where R
2
 value is 1. If    is 236 

the observation data,  ̂  is the model forecasted values of    and N is the number of data point used, R
2 

can be 237 

given as (Sreekanth et al., 2009): 238 

       
∑      ̂  

  
   

∑     
  

    
 ∑    

  
   

 

                

Moreover, mean percentage error (EMP) and mean error (EM) have also been calculated to evaluate the validation 239 

of the model for forecasting. EMP reveals the percentage of bias (larger or smaller) of forecasted data over the 240 

actual counterparts (Khalek and Ali, 2016). EMP and EM can be calculated as follows: 241 

    (
 

 
 ∑

                         

           

 

   

)              

   
 

 
 ∑                            

 

   

             

3. Results of Analysis 242 

3.1 Exploratory Statistics of Water Balance Components  243 
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Mean annual PET during the period of 1981-82 to 2012-2013 in the study area varies from 1228 to 1460 mm 244 

(Figure 2) with an average of 1338 mm. The higher PET values are found in the central part of the area where the 245 

annual rainfall is lower, but the temperature is higher (Kamruzzaman et al., 2016a). The standard deviations of 246 

PET vary from 205 mm (in Jessore station) to 41 mm (in Bhola station). The AET value (average = 925 mm) is 247 

almost 31% less than the PET value as during the dry months (Dec-May), soil moisture condition reaches in a 248 

critical stage and AET value is much lower than PET. The annual surplus of water varies from 515 to 1277 mm 249 

with an average of 838 mm. According to Wolock and McCabe (1999), 50% of surplus water can be considered 250 

as runoff for the major parts of the world. The higher surplus amount of water has been found in the northern 251 

part of the area and along the coastal area. The annual deficit of water that mainly occurs during the dry season 252 

(Dec to May) varies from 329 to 556 mm with an average of 416 mm (Figure 2). The highest annual deficit of 253 

water found in Rajshahi which is located in the central western part of the area where the depth of groundwater 254 

below the ground surface increases rapidly (Shamsudduha et al., 2009; Rahman et al., 2016). 255 

3.2 Trend and Periodicity in Water Balance Components 256 

3.2.1 Potential Evapotranspiration 257 

The MK test or MMK test based on the lag-1 auto-correlation has been applied to detect the trend in PET. Table-258 

2 shows the Z statistic of MK or MMK test of original time series data of PET and Z statistic of the 259 

decomposition time series (D1-D4), approximation (A) and model (D1+A…..D3+D4+A) time series. The 260 

estimated Z statistic of original data ranges from -2.07 (Satkhira station) to 2.37 (Bhola station). These two 261 

stations out of total eleven show significant trends in PET. The plots of sequential u(t) statistic of SMK test of 262 

these two stations are shown in Figure 3 where the dashed lines correspond to 5% significance level (±1.96). 263 

The decreasing trend in PET in Satkhira station started in the year 1985-86 and a significant decreasing trend 264 

started in 1993-94 hydrological year, and the trend become reverse after 2007-08. However, the significant 265 

increasing trend in PET of Bhola station has been started very recently after some fluctuation. 266 

Most of the trends (73%) in PET in the study are negative and statistically insignificant at 95% confidence level 267 

or 5% significance level. Moreover, Z statistic of approximation (A) time series obtained by DWT indicates 268 

decreasing trends in PET in all stations. The calculated Z statistic of approximation (A) time series is about -1.80 269 

after rounding the figure for all stations as A time series data of all stations show a similar pattern (Electronic 270 

Supplementary Material (ESM) Fig. S1) over the time. The magnitude of change in PET ranges from -10.89 271 

mm/year in Satkhira station to 1.67 mm/year in Bhola station (Figure 4). The MK or MMK test has also been 272 

applied to the decomposition time series and model time series generates from the combination of 273 

approximation and decomposition time series data (Table 2 represents results of four stations based on 274 

alphabetic order and the full Table can be found in ESM Table S1). To find out the dominant periodicity 275 

affecting the trends in PET, two steps of analysis have been done. Firstly, the Z statistic which is the closest to 276 

the Z statistic of original time series data has been found out from the values of Z statistic of different models 277 

and decomposition (D) time series data. Secondly, the correlation coefficients (Co) of pairs of data (such as Co 278 

between u(t) statistics of SMK of the original time series data and u(t) statistics of SMK of D time series data) 279 

have been estimated and found out the highest Co from the estimated Co values for different pairs (Table 2).For 280 

example, the Z statistic of D4 time series data of Barisal station is 0.76 which is the nearest to Z statistic (0.72) 281 
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of the original time series data among the different models (Table 2). Moreover, Z statistic of model 282 

(D3+D4+A) time series data is 0.56 which is the second nearest value to original time series with the highest 283 

correlation coefficient (Co = 0.85). Again D4 is present, hence D4 (16-year) is the dominant periodic 284 

components on the trend in original data. However, D3 has also effect on the trend in the data. Therefore, D4 285 

(16-year) is the basic periodic component, but 8-year (D3) periodicity has also effect on the trend. An additional 286 

example, Z (2.47) statistic of the original time series of Bhola station is the closest to Z (2.36) statistic of the 287 

model (D2+D4+A) time series data. However, the values of the Z statistic of D2, D4, D2+A and D4+A time 288 

series are 0.61, 1.20, 0.48 and 0.90 respectively, which are not close to the Z statistic of the original time series 289 

data. Hence, it is not clear from the Z statistic which periodic component (D2/D4) is the basic periodic 290 

component for the significant trend in the original data. To get a clear idea about the dominant periodic 291 

component, Co coefficient values have been analyzed. It is seen that the Co between u(t) statistic of SMK of 292 

original time series data and u(t) statistic of SMK of D4 time series data is higher than the Co between u(t) 293 

statistic of SMK of original time series data and u(t) statistic of SMK of D2 time series data (Table 2). 294 

Moreover, Moreover, values of Z statistic of time series with D4 components like D4 and (D4+A) model time 295 

series are higher than time series with D2 component (D2 and D2+A) (Table 2). It is, therefore, clear that D4 is 296 

the main periodic component responsible for the trend in PET data of Bhola station. However, Z statistic of D4 or 297 

D4+A is not close to the Z statistic of original data (Table 2). Moreover, there is a statistically significant 298 

positive trend in original data of PET of Bhola station, but the trends of D4 and (D4+A) model time series data 299 

are not statistically significant. When D2 time series add with (D4+A) model time series data, the Z statistic of 300 

the resultant (D2+D4+A) model time series data becomes very close to original time series data. The trend of 301 

(D2+D4+A) model time series is also statistically significant like the trend in original time series data (Table 2). 302 

Hence, D2 has also effect on the trend in the original time series data. Station-wise analysis indicates that almost 303 

half of the stations show the harmoniousness between the Z statistic of (D3+D4+A) model and original time 304 

series data. When D3 and D4 time series have been analyzed separately, it is found that the higher relationship 305 

exists between D4 and original time series data. Again, three stations (Dinajpur, Ishurdi and Jessore) show the 306 

similarity in estimated Z statistic of original and (D1+D4+A) model time series data with higher Co values of 307 

u(t) statistic of SMK between D4 time series and original data except for the Ishurdi station. Moreover, two 308 

stations (Bhola and Satkhira) show significant trends in original data.  The closest Z statistic is found between 309 

original and model (D2+D4+A) time series data for both stations. Again, D4 (16-year periodicity) is the 310 

dominant periodic component based on Co for both of these stations. Therefore, 16-year periodicity is the main 311 

periodic component which is responsible for trends in PET data over the study area. Moreover, D3 (8-year) 312 

periodicity also has some effect on the trends and present in some stations (Table 2 and also see ESM Table S1). 313 

D4 (16-year) periodicity dominates in annual rainfall in Marmara region in Turkey (Partal and Küçük, 2006). 314 

Araghi et al. (2016) found that 8 to 16 year (D3 to D4) periodicity is responsible for trends in annual 315 

temperature in Iran. 316 

3.2.2 Actual Evapotranspiration 317 

All of the stations except Bogra show decreasing trends in AET and the calculated Z statistic ranges from -2.90 in 318 

Bogra station to 0.31 in Ishurdi station. Similar to the trends found in PET, trends in AET are also insignificant at 319 

5% significance level except Ishurdi station which shows significant (at 5% significant level) decreasing trend. 320 
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The magnitudes of the trends of original AET data vary from -5 mm/year in Faridpur station to 0.75 mm/year in 321 

Bogra station. The distribution of the magnitude of the trend is shown in Figure 4b. The periodicity in AET is 322 

slightly different from PET (see ESM Table S2). Almost half of the (five) stations show that D2 (4-year) is the 323 

main periodic component and D4 (16-year) has also effects on trend as Z statistic of (D2+D4+A) model time 324 

series is the nearest to original series for Khulna and Ishurdi stations. Moreover, D4 (16-year) is the main 325 

periodicity for Rangpur and Rajshahi stations. In addition, D1 (2-year) is the dominant periodicity in Barisal, 326 

Bhola and Bogra stations. AET depends on climatic factors such as PET and rainfall as well as on soil moisture 327 

conditions. The variations in periodicity in AET from PET, hence, are mainly related to soil moisture conditions of 328 

the area. 329 

3.2.3 Surplus 330 

Almost 82% stations show insignificant decreasing trends in annual surplus of water. The magnitude of trends 331 

of original annual surplus data ranges from -11.63 mm/year to 6.71 mm/year (Figure 4c). There is a similarity in 332 

periodicity characteristics of PET and surplus (See EMS Table S3). D4 (16-year) is the main periodic component 333 

present in seven stations and in most of the cases D2 is also present (D2+D4+A) except in Rajshahi. D3 (8-year) 334 

is mainly responsible for trend in surplus in three stations. Surplus mainly occurs during the rainy season (Jun-335 

Oct) in the study area when soil moisture is almost full and AET is equal to PET. Surplus mainly depends on 336 

rainfall. Therefore, it also provides an idea about the periodicity in rainfall. 337 

3.2.4 Deficit 338 

Approximately 73% stations show increasing trends in the annual deficit of water. The increasing trends are 339 

significant in two stations at 95% confidence level (see ESM Table S4). However, Satkhira station shows a 340 

significant decreasing trend (Z = -2.08) in deficit. The magnitude of trends of original annual deficit data ranges 341 

from -8.1 to 7.7 mm/year (Figure 4b). The periodicity analysis reveals that D4 (16-year periodicity) is the main 342 

responsible factor for the trends in the deficit. The Z statistic of (D2+D4+A) model time series data is close to 343 

the Z statistic of original time series data (ESM Table S4). D3 (8-years periodicity) is also responsible for trends 344 

in data of two stations. 345 

3.3 Model Selection and Forecasting Ability 346 

Firstly, ARIMA model has been selected for forecasting the WBCs time series. Four-step analysis has been 347 

done during the time series modeling: (1) stationarity in the data has been checked by Augmented (ADF) test, 348 

(2) auto-correlation function (ACF) has been used for selecting the order of MA process (see ESM Fig. S2-S5), 349 

(3) partial auto-correlation function (PACF) has been used for selecting the order of AR process (see ESM Fig. 350 

S2-S5) and (4) finally, the appropriate model has been selected based on several trials, values of model selection 351 

criteria like Akaike information criterion (AIC) and Bayesian information criterion (BIC). During the trails for 352 

selecting the model, besides the manual model selection based on ACF, PACF, AIC and BIC, the auto ARIMA 353 

function of  the ‘forecast’ package (Hyndman et al., 2017) of R (R 3.4.0 language developed by R Development 354 

Core Team, 2016) has been used to get reasonable information about the nature of the data for modeling. The 355 

best model has been selected based on lower values of AIC, BIC, and higher value of R
2
. The Q-Q plot has been 356 

prepared to check the normality of residuals. The performance of ARIMA model (parameters can be found in 357 

ESM Table S5) has been evaluated by NSE and R
2
 (Table 3). The estimated values of NSE of ARIMA model of 358 



11 

PET time series vary from -0.60 for Bhola station to 0.81 for Jessore station (Table 3). ARIMA models for 359 

almost all stations show unsatisfactory performance as the average NSE value of eleven stations is 0.38 and R
2
 360 

values range from 0.10 to 0.81 with an average of 0.38. Moreover, the NSE value of Bhola station indicates that 361 

ARIMA model is not suitable for forecasting the PET. ARIMA model has also been applied to AET, surplus and 362 

deficit time series data. After carefully checking the ACF and PACF (see ESM Figure S2–S5) of AET, it is found 363 

that there are no significant spikes in ACF and PACF. Moreover, the results obtained from auto ARIMA 364 

functions also show similar results. Therefore, ARIMA model is not satisfactory for forecasting the variability 365 

or changing pattern of AET. For WBCs like surplus and deficit, the performance of ARIMA model is almost 366 

similar to AET except for few cases. As the hydro-meteorological data are affected by noises from different 367 

hydro-physical processes (Wang et al., 2014), results obtained from ARIMA models show the unsatisfactory 368 

performance. To improve the model performance, it is necessary to remove the noise from the data. DWT 369 

denoising has been applied to the WBCs data in the present study and the quality of the denoising time series 370 

data has been checked before further processing. The important criteria to select a method for denoising the time 371 

series using wavelet transformation are the mean of the original series and denoising time series data should be 372 

close and standard deviation of denoising time series should be less than the original series (Wang et al., 2014). 373 

Figure 5(a) displays mean of the actual time series of PET and mean of wavelet denoising time series of PET. It is 374 

seen that there are no visible differences between the mean of the original time series data and DWT wavelet 375 

denoise time series data. Moreover, the standard deviation of PET of wavelet denoising time series is lower than 376 

the original time series (Figure 5b). AET, surplus and deficit time series also show the similar results (see ESM 377 

Figure S4–S5). Furthermore, lag-1 auto-correlation of wavelet denoise time series data must be higher than the 378 

original time series (Wang et al., 2014). For this consideration, wavelet denoise time series also shows that lag-1 379 

absolute value of auto-correlation is higher than that of original series value [see ESM Figure S2 (b), S3 (b), S4 380 

(b) and S5 (b)]. The performance of WD-ARIMA model is shown in Table 3. After denoising the data, the 381 

performance of ARIMA model is satisfactory for all WBCs time series data (Table 3). The average NSE value 382 

of WD-ARIMA models for PET time series of eleven stations located in the western part of Bangladesh is 0.76 383 

and an average R
2
 value is 0.67. Both performance indicators reveal that the performance of the WD-ARIMA 384 

model is better than the classical ARIMA model (Table 3). Moreover, the average NSE value of WD-ARIMA 385 

models of PET time series of these stations is 0.92 which indicates that the performance of the model is very 386 

good and the average R
2
 value is 0.89 which indicates the model can explain almost 89% variance of the data 387 

(Table 3). Results obtained from WD-ARIMA models of annual surplus and annual deficit also indicate very 388 

good performance for forecasting these variables (Table 3). The average NSE value of eleven stations of WD-389 

ARIMA models for the annual surplus is about 0.92 and average R
2
 value is 0.90. WD-ARIMA models for 390 

forecasting the annual deficit (average NSE = 0.88) also show good performance. The comparative study of the 391 

performance of the WD-ARIMA models of WBCs reveals that model performance is very good or good for AET, 392 

annual surplus and deficit. However, the performance is acceptable for PET. This deviation may arise from the 393 

variability of the PET is higher than others WBCs or may relate to the variability of climatic variables. 394 

Moreover, validations of the models have been done to explore the forecasting ability of the fitted models. The 395 

mean percentage error (EMP) of the forecasted values for the four year period from 2008-09 to 2012-13 has been 396 

calculated to know the percentage bias of the forecasted data (Table 4). The average EMP of eleven stations of 397 

WD-ARIMA models for PET is -0.6 (with ranges from 0.75 to -3.34) that indicates the forecasted values are 398 



12 

slightly lower than the actual values. The typical plots of the actual time series data versus fitted model data, the 399 

normal Q-Q plot of residuals of the models, and actual and observed values of WBCs (plots for all stations can 400 

be found in ESM Fig. S6–S9) are shown in Figure 6. The plot of actual versus forecasted values (Figure 6) 401 

indicates that generally the actual versus forecasted values are very close for the hydrologic years 2009-10 and 402 

2010-11. However, the differences are generally increasing after these periods for all WBCs (also see ESM 403 

Figure S5). Moreover, the actual versus the model calculated fitted values are very close to each other. The 404 

normal Q-Q plots reveal that the residuals of the models are near normal. The EMP values of WD- ARIMA 405 

models for AET range from -0.7 to 0.2 with an average of -0.09 which also indicates that forecasted AET values 406 

are slightly lower than actual AET values. The EMP values for annual surplus (average = -0.75) and annual deficit 407 

(average = -0.12) are almost similar to the AET and PET. It is also notable that the average EMP values for all 408 

WBCs are negative, which indicate the forecasted values of WBCs are slightly lower than the actual values for 409 

most of the stations. 410 

3.4 Discussion 411 

The present study reveals that a decreasing trend in PET dominates over the study area. However, positive trends 412 

in rainfall and temperature dominate in the western part of Bangladesh (e.g. Shahid and Khairulmaini, 2009; 413 

Kamruzzaman et al., 2016a). Moreover, a recent study has also found a negative trend in evapotranspiration in 414 

four stations located in northwest Bangladesh (Acharjee et al., 2017). Though annual rainfall and temperature of 415 

Satkhira station show positive trends (Kamruzzaman et al., 2016a), PET shows a significant downward trend. 416 

Increasing trends in temperature have been found in Yunnan Province of South China, but PET shows decreasing 417 

trend (Fan and Thomas, 2012). McVicar et al. (2012) have also found decreasing trends in PET in the different 418 

parts of the world. Therefore, temperature-based models for the estimation of PET cannot well explain the causes 419 

of changes in PET, though the temperature is the primary driver of changes in PET (IPCC, 2007). To get a 420 

detailed idea about the underlying mechanisms of changes in PET, it is necessary to do a detailed analysis of all 421 

climatic variables such as rainfall, temperature, sunshine hours, wind speed, humidity and climate controlling 422 

phenomena like El Niño Southern Oscillations (ENSO). 423 

The study has also developed WD-ARIMA models for forecasting the WBCs. The performance of the model 424 

shows the benefit of denoising of hydrological time series data like PET, AET, surplus and deficit. However, the 425 

model performance analysis criterion like NSE indicates that the performance of the model for PET forecasting is 426 

acceptable (NSE ≥ 0.65). To have a closer look at the forecasted values and actual values, the deviation between 427 

forecast values and actual values increases with increasing time steps. Therefore, WD-ARIMA models are not 428 

suitable for long-term forecasting. The present study has developed the WD-ARIMA model by coupling the 429 

discrete wavelet denoise time series data and ARIMA model. The soft threshold method has been selected for 430 

denoising the time series data and universal threshold (UT) method which has been used for the determination 431 

of the threshold value. However, there are some approaches for threshold value determination such as SURE 432 

(Stein, 1981), MINMAX (Donoho and Johnstone, 1998) and so on. Moreover, Wang et al. (2014) develop a 433 

hybrid approach for denoising the hydro-meteorological time series such as rainfall and streamflow called 434 

adaptive wavelet de-noising approach using sample entropy (AWDA-SE). The study has shown that the 435 

performance of the developed denoising method is better than conventional de-noising methods for denoising 436 

rainfall and streamflow. These approaches may apply to increase the performance of ARIMA models for 437 
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forecasting hydrological variables like PET. Moreover, there are several mother wavelet families such as 438 

Daubechies, Harr, Coiflets, Morlet, Mexican Hat and so on (Sang, 2013). In the present study, only Daubechies-439 

6 from Daubechies wavelet family has been applied as mother wavelet of discrete wavelet transformation. WD-440 

ARIMA models for forecasting the AET, surplus and deficit show very good performance, whereas the classical 441 

ARIMA model shows poor performance or unable to forecast the WBCs. Moreover, studies (e.g. Chou, 2011; 442 

Kisi, 2008; Partla, 2009; Santos and da Silva, 2014; Rahman and Hasan, 2014; Nury et al., 2016; Adamowski 443 

and Chan, 2011; Khalek and Ali, 2016) have also mentioned that the performance of wavelet aided models for 444 

forecasting non-stationary hydro-meteorological variables is better than classical ARIMA and ANN models. As 445 

the traditional methods such as Wiener filtering, Kalman filtering, Fourier transform are not suitable for non-446 

stationary hydrological time series data (Adamowski and Chan, 2011; Sang, 2013), wavelet denoising can be 447 

used to improve the performance of the classical ARIMA models for forecasting hydrological variables. 448 

5. Summary and Conclusions 449 

The study explores the changes in WBCs using wavelet aided various forms of MK test and develops wavelet 450 

aided ARIMA models for forecasting the WBCs. The results obtained from trends analysis indicate that 451 

decreasing trends are dominant in all WBCs in the western part of Bangladesh during the period of 1982-83 to 452 

2012-13. However, most of the trends are insignificant at 95% confidence level. One positive and one negative 453 

significant trend in PET have been found in Satkhira and Bhola stations respectively. The study analyzed 454 

different combinations of D and A (i.e. D+A and D+A+A) components of DWT with Co of u(t) statistic of 455 

SMK test that provides details information about the dominant periodicity that clearly affects the trend in 456 

original data and the time period which has also effect on trend in data (see section trend and periodicity or for 457 

example of Bhola station). The findings of the study reveal that to get details about the time period responsible 458 

for trends in data, it is necessary to analyze different combinations of D+A and D+A+A components rather than 459 

only details component (D) or approximation of wavelet transform data. Moreover, the study explored that 460 

changes in temperature or rainfall or both of these are not only associated with changes in PET. Before 461 

concluding the attribute of changes in PET, it is necessary to do details analysis of all the relevant climatic 462 

variables. In the western part of Bangladesh, D3 (8-year) and D4 (16-year) components have dominant effects 463 

on trends in original WBCs time series data. D2 (4-year) periodicity are also present in some cases, especially 464 

for AET. As surplus occurs during the rainy season and most of the rainfall occurs during this season, it may 465 

point out that rainfall pattern may have a similar periodicity (D3 to D4). 466 

Modeling of the study reveals that WBCs time series data is affected by noises from different hydro-physical 467 

interactions. As a result, classic ARIMA models show unsatisfactory performance for most of the cases (for 468 

example PET) or unable to model the variability and changes in AET, surplus and deficit. The study has showed 469 

that ARIMA model can be used to model the WBCs time series after the denoising the WBCs time series using 470 

DWT with a universal threshold. The quality of wavelet denoise time series data has been evaluated and found 471 

satisfactory results for WBCs denoising. The fitted WD-ARIMA model performance has been evaluated by NSE 472 

and R
2
 (average NSE and R

2
 values of eleven stations located in western part of Bangladesh are 0.76 and 0.67 473 

for PET; 0.92 and 0.89 for AET; 0.92 and 0.90 for annual surplus, and 0.88 and 0.88 for annual deficit 474 

respectively). The validation of WD-ARIMA models shows acceptable to very good performance for the short-475 

term forecasting of WBCs as the validation for the period of 2009-10 to 2012-13 shows the acceptable EMP 476 

https://www.mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.html#f3-998398
https://www.mathworks.com/help/wavelet/gs/introduction-to-the-wavelet-families.html#f3-998401
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value. However, the gap between the actual data and forecasted data increases with increasing time period. The 477 

obtained results are encouraging for further studies to find out a realistic model for real-world application under 478 

the changing climate. The results of the study can be incorporated into water resources management plans for 479 

highly irrigated western part of Bangladesh where groundwater resource is at a critical stage. Further studies, 480 

therefore, denoising of hydrological time series data using different mother wavelets such as Haar, Coiflet and 481 

determination of thresholds using MINMAX, SURE or entropy based adaptive denoising approaches would be 482 

helpful for developing the better models for hydro-climatic time series in the context of climate change and 483 

would be beneficial for managing water resources in a sustainable manner. 484 
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Figure 1: Study area western part of Bangladesh with locations of meteorological stations. 748 
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 758 
Figure 2: Distribution of mean annual (a) PET, (b) AET, (c) surplus and (d) deficit of water in the study 759 
area during the hydrologic year 1981-82 to 2012-13. 760 
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 772 

Figure 3: Sequential values of the statistics u (t) of (a) Satkhira station and (b) Bhola station. 773 
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Figure 4: Distribution of rate of changes of WBCs during the period of 1981-82 to 2012-13. 785 
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 793 

Figure 5: Comparison between actual and wavelet denoise PET time series (a) mean and (b) standard 794 
deviation. 795 
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 818 

Figure 6: Plot of best WD-ARIMA model first panel represents actual versus fitted values for the period 819 
of 1981-82 to 2012-2013, the second panel is normal Q-Q plot of residuals of the model, and the third 820 
panel shows actual, fitted and forecasted values for 2009-2010 to 2012-13 (a) PET of Rangpur station 821 
located in north; (b) AET of Ishurdi station located in the central part, (c) deficit of Rajshahi station 822 
located in NW Bangladesh and (d) surplus of Bhola station located in south of the study area. 823 
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Table 1: Calculations of water balance components (Thornthwaite and Mather, 1957)  829 

 Wet months              Dry months            

                   

Deficit 0         

Surplus            0 

Where P is the rainfall (mm),    is the direct runoff (mm),       is the potential evapotranspiration (mm),      830 
is the actual evapotranspiration (mm) and      is the changes in soil moisture storage (mm).  831 
 832 

 833 
Table 2: Z statistic of MK or MMK of original time series, approximation and different models PET of DWT 834 
(the dominant components are bold and asterisk for significant at 5% level) 835 

Stations 

Models 

Barisal Bhola Bogra Dinajpur 

Z Co MSE Z Co MSE Z Co MSE Z Co MSE 

Original 0.72 
  

2.37* 
  

-0.20 
  

-0.98 
  

A -1.80 0.24 11.56 -1.80 -0.15 17.15 -1.80 0.83 4.66 -1.80 0.83 3.47 

D1 0.91 0.50 0.50 2.02* 0.25 0.68 1.16 -0.42 5.10 -   

D2 -0.03 0.17 1.51 0.61 0.21 0.94 0.16 0.60 3.70 0.43 0.63 8.82 

D3 0.45 0.17 1.51 0.46 0.21 0.94 1.08 0.60 3.70 0.90 0.63 8.82 

D4 0.76 0.37 3.93 1.20 0.80 7.28 1.14 0.13 3.76 2.10* -0.03 13.35 

D1+A -0.89 0.35 0.71 1.58 0.11 0.72 -2.35* 0.90 0.54 -1.70 0.95 0.44 

D2+A -1.51 0.14 2.75 0.48 0.13 1.05 -1.54 0.89 0.62 -2.05* 0.93 1.25 

D3+A -0.66 0.50 1.90 0.31 0.14 1.23 -1.91 0.89 5.72 -1.56 0.95 3.03 

D4+A 0.06 0.53 9.99 0.90 0.77 8.71 -0.34 0.58 7.32 -1.79 0.85 2.41 

D1+D2+A -0.89 0.35 0.82 0.73 0.39 0.68 -1.12 0.88 0.77 -1.76 0.97 0.18 

D1+D3+A -0.81 0.58 0.88 0.79 0.31 0.69 -1.33 0.87 0.89 -1.51 0.98 0.38 

D1+D4+A 0.91 0.63 1.16 2.29* 0.83 0.35 0.24 0.87 0.53 -1.15 0.97 0.20 

D2+D3+A -0.46 0.43 1.24 1.01 0.08 2.42 -1.33 0.89 1.10 -1.37 0.96 1.35 

D2+D4+A 0.54 0.50 2.84 2.36* 0.77 0.68 0.10 0.88 0.60 -1.27 0.94 0.85 

D3+D4+A 0.56 0.85 2.04 1.83 0.90 0.74 -0.30 0.87 1.37 -1.54 0.96 2.10 

MSE, total mean square error; Co, correlation between original data and DWT models 836 
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 847 

Table 3: Comparison of performance of ARIMA model and WD-ARIMA model 848 

Stations 

PET AET Surplus Deficit 

ARIMA WD-ARIMA WD-ARIMA WD-ARIMA WD-ARIMA 

NSE R
2
 NSE R

2
 NSE R

2
 NSE R

2
 NSE R

2
 

Barisal 0.42 0.43 0.95 0.57 0.58 0.58 0.99 0.99 0.87 0.87 

Bhola -0.57 0.10 0.95 0.61 0.98 0.59 0.99 0.99 0.56 0.67 

Bogra 0.52 0.50 0.68 0.63 0.97 0.97 0.99 0.99 0.95 0.95 

Dinajpur 0.54 0.52 0.99 0.79 0.98 0.98 0.84 0.95 0.95 0.94 

Faridpur 0.32 0.30 0.65 0.50 0.99 0.99 0.99 0.99 0.87 0.88 

Ishurdi 0.34 0.31 0.39 0.57 0.99 0.99 0.98 0.56 0.88 0.89 

Jessore 0.81 0.81 0.76 0.67 0.82 0.82 0.96 0.96 0.82 0.77 

Khulna 0.31 0.29 0.45 0.41 0.98 0.97 0.99 0.99 0.94 0.94 

Rajshahi 0.58 0.56 0.60 0.61 0.99 0.99 0.98 0.98 0.97 0.97 

Rangpur 0.19 0.20 0.98 0.98 0.84 0.92 0.47 0.49 0.86 0.84 

Satkhira 0.77 0.20 0.95 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

Avg. 0.38 0.38 0.76 0.67 0.92 0.89 0.92 0.90 0.88 0.88 

 849 

 850 

Table 4: Accuracy of WD-ARIMA models of WBCs for validation of the model's predictive ability for the 851 
period of 2009-10 to 2012-2013 852 

Stations 
PET AET Surplus Deficit 

EM EMP EM EMP EM EMP EM EMP 

Barisal 0.07 -0.02 -5.36 -0.70 -0.70 -0.10 0.80 0.29 

Bhola 0.75 0.06 -0.10 -0.01 -0.80 -0.10 0.80 0.29 

Bogra -0.75 -0.19 0.19 0.02 -1.10 -0.10 -0.07 -0.03 

Dinajpur -0.16 -0.01 -0.19 -0.02 -0.10 0.00 -0.17 -0.10 

Faridpur -2.22 -0.25 -0.77 -0.07 -0.10 0.00 1.05 0.39 

Ishurdi 0.34 -0.16 -0.45 -0.05 -0.20 0.00 0.72 0.25 

Jessore 0.11 -0.02 0.26 0.02 0.70 0.00 1.52 -2.42 

Khulna -1.56 -0.22 -0.53 -0.05 0.60 0.10 0.01 -0.01 

Rajshahi -3.34 -0.35 -0.11 -0.01 -0.60 -0.10 -0.14 0.08 

Rangpur -0.11 -0.01 -0.40 -0.05 -8.50 -7.90 -0.05 -0.14 

Satkhira 0.54 0.04 -0.36 -0.04 0.50 0.10 -0.43 0.12 

Avg. -0.57 -0.10 -0.71 -0.09 -0.95 -0.75 0.37 -0.12 
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