
Answer to reviewer Rolf Hut and Zhenwu Wang

C. M. Emery, A. Paris, S. Biancamaria, A. Boone,

S. Calmant, P.-A. Garambois, J. S. D. Silva

24 janvier 2018

We would like to thank the reviewers for their very constructive comments. Please find below our
replies.
Besides, the manuscript changes linked to those comments will be in orange in the manuscript.

1. In the introduction, the third paragraph is about the resources of model errors. In my
opinion, a description of the accumulation of model errors and other uncertainties in model’s
prediction which can lead to the collapse of the model should be added. I think this part can
be regarded as a part of the explanation of the necessity of data assimilation. I recommend to
shorten the section on model error sources and add some sentences on the impact of accumu-
lation of uncertainties.
Authors’ reply : Following your comment, we propose to reduce this paragraph by shortening the list
of model uncertainty sources (which are the lack of knowledge on the real physics, the numerization/-
discretization induced errors and the uncertainties in the inputs parameters and forcings). Also, we will
add an ending remark stating that the accumulation of all these uncertainties could lead to the model
collapse if they become too important. Therefore, we propose to rephrase this port of the introduction
as follow :
"However, even if hydrological models become more and more accurate, inherent model uncertainties
are unavoidable. They originate from several sources : the lack of knowledge in the real physics, the
numerization/discretization-induced errors and the uncertainties in the inputs parameters and forcings).
All these uncertainties impact model’s outputs. In the worst case, all those uncertainties could accumu-
late and result into the collapse of the model. The model gives therefore an approximate view of the
system real state."

2. In Lopez Lopez (2016) discharge data was assimilated into a model for the Rhine
basin. I think this paper should be added to the introduction. (López López, P., Wanders, N.,
Schellekens, J., Renzullo, L. J., Sutanudjaja, E. H., and Bierkens, M. F. P. : Improved large-
scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil
moisture observations, Hydrol. Earth Syst. Sci., 20, 3059-3076, https ://doi.org/10.5194/hess-
20-3059-2016, 2016)
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Authors’ reply :Thank you for this suggestion. We will definitely add this citation in the 7th paragraph
of the introduction, next to the citation of Trudel et al. (2014).

3. Page 3, in last second paragraph, the aim of this study only mentioned that EnKF is
applied and also said something about the model and observations. From my point of view, the
using of localization methods should be mentioned. The localization methods are the crucial
key to this case study and without localization, the academic value of this research will mostly
be as a case study of an otherwise known method into a new geographical area.
Authors’ reply :We totally agree with the reviewer’s suggestion. We are going to formulate the paper
aims differently. The modified aims will state the following scientific question : how can we use remotely-
sensed data at a river reach scale in order to improve a large-scale model. Because of the "local"
information provided by the satellite and the model errors (and the difficulty to estimate them), the
use of localization method is needed. Therefore, in the same paragraph, we will add some sentences to
explicitly mention the need of "localization methods" in the quick method description. We propose to
reformulate the objective as follows :
"The objective of the present study is to investigate the contribution of remote-sensed data that provide
local information to improve a large-scale RRM via DA. The scale difference between the observations
and the model lead to also study the need to use localization methods within our DA framework. We used
an Ensemble Kalman Filter, to which we added a simple localization module, to assimilate discharges
derived from ENVISAT water surface elevation measurements. These observations are used to correct
the state of the large scale Total Runoff Integrated Pathways (TRIP, Oki and Sud, 1998) RRM version
included in the land surface modelling platform "Surfaces Externalisées" (SurfEx, Masson et al., 2013),
and developed at the Centre National de Recherches en Météorologie (CNRM, France). This particular
version is denoted by the CTRIP acronym hereinafter. CTRIP is coupled with the Interactions-Soil-
Biosphere-Atmosphere (ISBA, Boone et al., 1999) LSM at a resolution of 0.5◦

× 0.5◦."

4. In section 2, I think the description of the CTRIP RRM is excessive. It would be better
to make the context of this model shorter and simpler. Maybe the authors can reference one
of their earlier papers on the model and point to that for the model description.
Authors’ reply :As proposed by the reviewer, we will reduce the size of the CTRIP model description.
First of all, we will remove the model equations along with the description of its parameters, as they
are already described quite well in previous papers. Instead, the reader will be directed to these papers
(especially : Decharme et al., 2010 ; Decharme et al., 2012). We will keep the description of the ISBA
model as it is, as it is already quite synthetic.

5. In section 3, it has the similar issue just like section 2, the explanation of the fairly
standard EnKF is too long.
Authors’ reply :Similarly to the previous comment, we will reduce the length of the subsection by
getting rid of the first paragraph that focuses on the classical Kalman Filter. So this subsection will
directly start with the EnKF description and equations. We will also remove Eq.15, as the matrix in the
equation is already described in the preceding text.
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6. Section 3.2.4 (Localization) does not belong to “3.2 Generating the ensembles”. In my
opinion, the following structure of section 3 is better. Firstly, introduce the control variables
and observations separately. And then, give a short introduction to EnKF theory. Following,
present how to implement the EnKF with localization specifically. Last part includes diagnostics
and experiment set up.
Authors’ reply :Thank you for this suggestion, which will make the paper easier to read and highlight
the localization method. We propose the following reorganisation of the third section :

- 3. Method
- 3.1. Data assimilation variables

- 3.1.1. Control variables
- 3.1.2. Observations variables

- 3.2. EnKF for ISBA-CTRIP state estimation
- 3.2.1. EnKF theory
- 3.2.2 Localization
- 3.2.3. Generation of ensembles

- 3.3. Assimilation diagnostics

7. In page 14, section 3.2.4, the second paragraph, it said that there are three localization
methods. I prefer to state that there are two common localization methods, namely local
analysis (R localization) and covariance localization (B localization) . These two methods can
be found in following two papers. Balance and Ensemble Kalman Filter Localization Techniques
(doi :10.1175/2010MWR3328.1) -Relation between two common localisation methods for the
EnKF (doi : 10.1007/s10596-010-9202-6).
Authors’ reply :Thank you for the suggested publications. We will include them and present the two
common localization methods in section 3.2.4.
We suggest the following changes to the section :
"It exists two type of localization techniques (Greybush et al., 2011; Sakov and Bertino, 2011). The first
one is called B-localization. It is based on explicitly modifying the background error covariance matrix
Pb

e,k. It consists in multiplying the matrix Pb
e,k by a correlation matrix generated from a radial function,

namely a function of the two/three spatial dimensions which monotonously decreases with the distance
between control variables (Hamill et al., 2001; Houtekamer and Mitchell, 2001, 2005). A sparse matrix
P̃b

e,k is therefore computed, with non-zero elements centred around the matrix diagonal. This modified

matrix replaces Pb
e,k in the calculation of the Kalman gain matrix Ke,k. The other common localization

technique is called R-localization or local analysis. This one consists in proceeding the analysis step into
characteristic sub-spaces of the overall problem space."

8. The names of the different localization schemes should align with the common names
in the data assimilation field. I recommend the terms in those two papers in point 7, above. In
table 3 and corresponding parts in the main body of this research should change “-local suffix”
to “Local analysis” or “R localization” and also replace “-diagonal suffix” with “covariance
localization” or “B localization”.
Authors’ reply :Given our understanding of Greybush et al. (2011) and Sakov and Bertino (2011)
articles, it seems that we applied a B-localization method for both the experiment with suffix -diag and
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-local. The difference between these two experiment is the "localization matrix" multiplied (via the Schur
product) to the background error covariance matrix. More explicitely, to apply the localization, we used
the same equation than Moore (1973); Biancamaria et al. (2011) :

xa
= xb

+
[

S ×

(

PbHT
)] {

H
[

S ×

(

PbHT
)]

+ R
}−1 (

yo
− Hxb

)

,

where S is the localization matrix and "×" is the Schur product.
We will clearly state in the manuscript that we applied B-localization methods. As both methods are
B-localization and we will expliciltly mention it in the manuscript, we prefer not to change the names
of the experiments.

9. On page 16, the part before 3.3, it describes how to get the localization matrix. In this
study, the author used localization matrix to multiply covariance matrix directly. This way is
not wrong but it differs from the most common way to implement the localization methods.
Can you use equations to display the formulation of localization matrix ? This is helpful for
readers to understand your localization methods.
Authors’ reply :We apologize for not giving the equation in the previous version of the manuscript. The
equation we used (as mentionned in our previous comment) is taken from Moore (1973); Biancamaria
et al. (2011) :

xa
= xb

+
[

S ×

(

PbHT
)] {

H
[

S ×

(

PbHT
)]

+ R
}−1 (

yo
− Hxb

)

,

where S is the localization matrix and "×" is the Schur product. We will add this equation in the new
section 3.2.2 ("Localization").

10. In table 1, the size of the ensemble is 101. The authors do not justify the choice
of exactly 101 ensemble members in the paper. It is not possible for the reviewer to see if
the ensemble size represent the distribution of model states properly ? Could the authors use
some figures or the rank histogram of the ensemble to show the gaussianity of the ensemble ?
Otherwise, could the authors justify the choice for 101 ensemble members ?
Authors’ reply :In our data assimilation platform, the ensemble size of exactly 101 instead of 100 is
for implementation convenience. In the litterature (e.g. Greybush et al. (2011)) an ensemble size of 100
is often chosen to have a large ensemble, while maintaining a reasonable computational time of the
data assimilation experiment. The suggestion of adding ensemble histogram is a very good suggestion,
however, because the paper is already quite long, we prefer not to add such histograms in the present
study. However, we will add this explanation in section 3.2.3 ("Generation of the ensembles") : "To get
a large ensemble, while maintaining a reasonable computational time, the ensemble size has been set to
101 members."

11. In data assimilation applications with localization usually a common localization func-
tion is used. Common example is a fifth order function of Gaspari and Cohn. I didn’t find the
description of the localization function in this paper. If I missed it, please point out its location.
If the authors didn’ t use it, could the authors explain reasons and considerations ?
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Authors’ reply :You are right, in the present study, we did not use such radial functions. The localization
matrices we built only contain 0 or 1. The resulting "localized" error covariance matrices contain the
exact same values as the error covariance matrices before localization, but only at elements correspon-
ding to a "1" in the localization matrix. In a way, the localization only allows to suppress spurious effects
of far away cells. The reason why we did not use functions such as the fifth order Gaspari function is
that, in the litterature, we only found use of this function in atmospheric and oceanographic applica-
tions where the study domain are full 2D/3D domain. It has also been used, to our knowledge, in river
hydraulic model applied to a single reach (1D) river network with no modeled tributaries between the
beginning and the outlet of the river reah (e.g. Biancamaria et al. (2011)). What we want to highlight
here is that the case of a complete river network is different from the atmospheric and oceanographic
framework, as for this case discharge within the river network is not a 2D/3D field. It is a "multi-1D
ramified network". Therefore, it appeared to us that we could not directly use the same localization
method as in atmospheric and oceanographic applications (applied on a sphere or disk of influence).
Using such kind of radial function is trikky, as they could only be applied locally over the different 1D
river reaches and the case of pixels corresponding to connections with another tributary or with the
mainstream is not trivial. That’s why, we decided, as a first step to develop a localization method for a
basin-scale river network application, to have a very simple localization function : the first developments
of our localization method only select elements of the error covariance matrices but do not modify their
value. Further development of the localization method may consider the use of such function within
the river network. We discussed this difference between 2D/3D model atmospheric and "multi-1D" river
model in the description of the localization method we used for our study (in section "Localization of
the error covariance matrices").

12. It is common that localization methods can cause imbalance. The analysis of imbalance
can show the performance of localization method in specific application. I recommend adding
the imbalance analysis. If the authors think it is unnecessary, could the authors explain the
reasons ?
Authors’ reply :Thank you for this sugestion. Greybush et al. (2011) clearly show the interest of an
imbalance study. However, we do not think it is necessary for our present study. Indeed, the localization
method do not use radial function (see our reply to the above comment), but just select elements in the
error covariance matrices. Therefore, non-zero elements in the matrix are not modified. Moreover, the
CTRIP model is a relatively simple model compared to complete atmospheric model used in Greybush
et al. (2011). Indeed, CTRIP is based on a linear reservoir model. Its only prognostic variables are the
water storage in 3 reservoirs and the discharge is deduced from the storage at each time step (diagnostic
variable). Therefore, we think that the issues discussed in Greybush et al. (2011) should not be as critical
in our study.
That’s why we decided not to add the imbalance analysis. However, we suggest to raise the imbalance
question in the paper perspectives.

13. I am a bit confused about the chosen localization scales. The “diagonal error cova-
riance matrix” in this paper is to apply B localization method to form the localized covariance
matrix. In this paper (Relation between two common localization methods for the EnKF, doi :
10.1007/s10596-010-9202-6), the author used a figure to show the influence of B localization
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(covariance localization) method to the error covariance matrix. The result of this localization
method is mentioned in the paper. It said that “with non-zero elements centered around the
matrix diagonal”(page 15, the first two lines). You only keep the elements in the matrix diago-
nal which means you only use the fixed localization scale. And also, in your “-local suffix ” case,
if I understand correctly, this is the “Local analysis” or “R localization” in data assimilation.
When you design and set the influenced areas, you still used the fixed localization scale. Could
you explain the reasons why you only use a fixed localization scale in your experiment set-up ?
Can you also explain how this localization scale was chosen ? In the results part, the “local”
case has a better performance compared with the “diagonal” case. Can the authors elaborate
on the impact of different localization scales on the performance of DA ?
Authors’ reply :What we wanted to do with the "-diag suffix" experiment is to test the behavior of
the data assimilation platform in the extreme case of an error covariance matrix with a zero-correlation
length (diagonal matrix). This experiment has the objective to illustrate the case when the model cells
are completely independant from any other cells in the catchment (we only correct at the location of
the observation). This experiment is then the opposite of the "-direct" experiment, where the correla-
tion length can be considered as infinite (because there is no localization). From these two "extreme"
experiments, we wanted to build an intermediary case : the "-local suffix" experiment. The local expe-
riment can be seen as a "proof-of-concept" experiment, to show benefit of using observations to correct
surrounding pixels. It should avoid the spurious correlations observed in the "-direct" experiment (due
to the generation of the ensemble) and should improve results from "-diag" experiment, as observations
correct more than one pixel. We chose a fixed localization scale for simplicity and as a first step in the
feasibility study of the development of a localization method for a hydrology application.
The correlation lengths were determined with respect to the averaged flow velocity in the river. From
the averaged flow velocity, we can deduce the travelled distance over one assimilation window (which is
one day here) and express it as a number of model grid cells. Therefore, for any given cell and over a
day, the "area of influence" represent the set of upstream cells whose water flow will pass through the
given cell during the day (which will therefore contribute to the discharge at the given cell) and the set
of downstream cells that will receive the water from the given cell during the day (which will therefore
receive discharge from this given cell).
Concerning the last question, to our understanding, both experiments (i.e. "-diag" and "-local") cor-
respond to B-localization. In the local-experiment, the localization mask is more realistic as there are
more than one cell impacted by the correction from an observation. Therefore, the data assimilation
results are logically better. We could add one or two sentences about this point in the discussion section.
Finally, the main perspective of this study is to develop more elaborated correlations lengths (as it is
discussed in the 4th paragraph of the paper conclusions). These more elaborated correlations lengths
should be built by trying to localization method used in the literature, adapted to the specific case of a
river network at a basin-scale (see our reply to comment number 11).

14. In page 24, the last paragraph, the authors state that there are two ways to improve DA.
A more realistic ensemble method to generate ensemble and observation correction algorithms
can help to get better performance. These two conclusions are right. But, in your analysis part,
you didn’t compare the situation with specific ensemble generating method and the situation
with generating ensemble randomly. In my opinion, no evidence in this paper can support
this conclusion. Similarly, the second conclusion is not conclusive. Can you rephrase these two
conclusions and make them open ?

6



Authors’ reply :You are right, we should rephrase our last paragraph to make these two points more
open. We will change the paragraphe as follow :
"To improve these DA results, several aspects could be investigated. For example, it could be studied if a
more realistic ensemble method generation could be helpful. In the present study, only the model initial
condition and the precipitation forcing are perturbed to generate the background forecast ensemble.
More uncertainties in this ensemble could be added by also perturbing CTRIP parameters and/or ISBA
outputs. Another DA aspect to look into is the potential use of a smoothing data assimilation algorithm,
such as the Ensemble Kalman Smoother (Evensen and Leeuwen, 2000). A smoother could help to have
less "variability" in the corrected discharge. Finally, the assimilation scheme presented in this study could
be applied to other river basin in the world, as ISBA-CTRIP is a global LSM. However, more work is
needed to apply the DA platform at global scale."
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Answer to reviewer 2

C. M. Emery, A. Paris, S. Biancamaria, A. Boone,

S. Calmant, P.-A. Garambois, J. S. D. Silva

24 janvier 2018

Our replies to all the comments made by the reviewer can be found below. We thank the reviewer
for all the comments and suggestions that helped to improve our manuscript. Besides, the manuscript
changes linked to those comments will be in purple in the manuscript.

1 Major comments :

1.The objectives stated in line 5 and 6 of the abstract and those stated lines 23 -24 of page
three are different. In my opinion, the paper demonstrates quite clearly that the assimilation
improves results, but actually focuses in the difference between localization methods more than
the importance of altimeter data as a source for reducing uncertainties.
Authors’ reply :We completly understand the reviewer point of view and we agree that our objectives
were not well described. What we want to do in this study is to show the contribution of nadir altimetry
(punctual measurement) at the continental scale of a large catchment. Because of this context, the
use of localization is required. Those two aspects (use of satellite-derived discharge and localization)
are both equally important. Following the similar remark from the first referee, we will reformulate the
paragraph in the introduction to highlight the importance of these two objectives. To homogenise the
manuscript, we will also modify the abstract accordingly.

2.The description of the altimetry based discharge product section (2.3.1) is quite in depth,
however, it should really include a brief statement about QA/QC from the data source’s lite-
rature. The instrument precision is provided, but the reader has no idea what sort of error that
translates to in terms of discharge.
Authors’ reply :The quality assurance has been made by Paris et al. (2016) by constraining the ra-
ting curve coefficients within a physical range of values. They also conducted a sensitivity analysis that
shows a small sensitivity of the coefficient estimation to first guess of the coefficient values. The quality
check was done by comparing over a validation time period the satellite-derived discharge to the model
discharge used to derive rating curve over a calibration period. Discharge was also compared to some
in situ gages. Satellite-derived discharge is of course heavily correlated to the model accuracy. Overall,
a comparison to 51 in situ measurements led to a mean Nash-Sutcliff coefficient (NS) around 0.8 and
a Normalized Root Mean Square Error (NRMSE) around 10% over the validation period (Table 8 in
Paris et al., 2016). However, for upstream basins, results are not as good as for the main tributaries.
Overall, when compared to MGB outputs and in situ time series), the mean NS is equal to 0.7 and the
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mean NRMSE to 10% (In the same paper (Paris et al., 2016), a similar study has been led on the water
elevations). This information have been added to the manuscript.

3. Page7 line 30-32 I’m curious what portion of virtual stations were associated with an
adjacent cell.
Authors’ reply :19% (69 out of 367) of the VS have been associated to an adjacent cell. We will add
this information in section 2.3.1 ("Altimetry-based discharge product").

4. Section 2.3.2, this draws further questions about the objective of the study. The authors
point out that in situ data was not used in the assimilation. In my opinion, a comparative run
with assimilated in situ data could help demonstrate the value of altimeter data, if that is the
primary focus.
Authors’ reply :We agree with the reviewer. But the objective of this study is not to show that the
remote-sensed data is better for data assimilation than the in situ data. We want to show the contribution
of the altimetry when used alone (with the objective to use it on ungaged catchment or with few up-to-
date in situ gage time series). Then, in the present study, the in situ data are used as a alternative source
of data to validate the assimilation results. Therefore, we have not added an experiment assimilating
only in situ data.

5. Page 24 lines 13-16, I think this should be clarified to be within topological limitation,
(i.e. “should be impacted by all upriver observations”).
Authors’ reply :Thank you for this suggestion. We will replace "should be impacted by all available
observations" by "should be impacted by all upriver observations".

6. Page 24 line 19, This manuscript hasn’t made a case to support the inclusion of discussion
of the groundwater time constant as a major control on discharge. Please include information
on this in the results section.
Authors’ reply :This is true. However, to follow another remark from the first reviewer, this paragraph
will be rewritten and will not mention the "groundwater time constant" anymore.

7. Page 24 lines 23-32, I think the authors need to be really careful assigning usefulness
of these other altimeter mission for their assimilation protocol. The ENVISAT contemporary
missions and those after, are likely to provide data quality that could allow for the construction
of additional discharge data, but the casual mention of these missions doesn’t really address
the feasibility building rating curves and discharge data from them. The biggest issue here is
the inclusion of earlier mission, and the citation provided. To my knowledge there has been
only marginal success using pre-ENVISAT data on rivers. Using ERS 1-2 or TOPEX would most
likely only work on the main channel if at all. In Tourian et al., 2017, the authors specifically
mention that these earlier mission were not included because of poor inland performance.
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Authors’ reply :Thank you for this remark. We will delete in this paragraph reference to pre-ENVISAT
missions.

2 Minor comments :

1. Page 6 line 23, crosses the river stream is redundant.
Authors’ reply :You are right. We will replace the expression by "crosses the river".

2. Page 23 line 2 “to correct directly the discharge” should be to directly correct the
discharge.
Authors’ reply :Thank you for noticing this mistake. We will replace "to correct directly the discharge"
with "to directly correct the discharge".

Références

Paris, A., Paiva, R. C. D., Silva, J. S. D., Moreira, D., Calmant, S., Garambois, P.-A., Collischonn, W.,
Bonnet, M.-P., and Seyler, F. : Stage-discharge rating curves based on satellite altimetry and modeled
discharge in the Amazon basin, Water Resources Research, 52, 2016.
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List of all relevant changes in the manuscript

Hess-2017-516

C. M. Emery, A. Paris, S. Biancamaria, A. Boone,

S. Calmant, P.-A. Garambois, J. S. D. Silva

29 janvier 2018

- Page 1, lines 5-9. Referee 2, Major Comment #1. Reformulation of the paper objectives.
- Page 2, lines 4-18. Editor, Comment #1. More detailed overview of river routing models.
- Page 2, lines 19-23. Referee 1, Comment #1. Shortened paragraph with a remark on the

accumulation of errors.
- Page 3, lines 23-24. Referee 1, Comment #2. Adding of the reference from Lopez Lopez et al.

2016.
- Page 4, lines 3-11 Referee 1, Comment #3. Reformulation of the paper objectives.
- Page 5, lines 18-27. Referee 1, Comment #4. Shortened paragraph about the CTRIP model

description.
- Page 6, lines 20-21. Referee 2, Minor Comment #1. Sentence rewording.
- Page 7, lines 22-28. Referee 2, Major Comment #2. Dicussion about QA/QC of the discharge

product.
- Page 8, lines 10-11. Referee 2, Major Comment #3. Statistics about the association of the

virtual stations to CTRIP grid cell.
- Page 8, line 17. Referee 1, Comment #6. Reorganization of the third section "Method". See

also modifications at Page 8 line 27 ; Page 12 lines 9-10 ; Page 13 line 1 ; Page 14 line 24 ; Page

15 line 3 ; Page 15 line 24.
- Page 13, lines 7-13. Referee 1, Comment #7. Reformulation of the paragraph introducing the

localization methods. Use of the terminology found in the litterature and adding of suggested
publications.

- Page 13, lines 20-21. Referee 1, Comment #8. When the localization method for CTRIP is
introduced, explicit classification in one of the class of method found in the litterature.

- Page 13, lines 27-28. Referee 1, Comment #13. Explicit statement that the localization method
for CTRIP is defined with a fixed scale and justification why.

- Page 14, lines 16-19. Referee 1, Comment #9. Explicit formulation of the equation used to
apply the localization to the EnKF equations with associated references.

- Page 14, lines 26-27. Referee 1, Comment #10. Justification of the choice of the number of
member in the ensemble.

- Page 22, lines 27-30. Referee 1, Comment #13. Explicit comparison of the two experiments
with localization SE1-diag and SE1-local.

- Page 22, line 32. Referee 2, Minor Comment #2. English grammar correction.
- Page 24, line 12. Referee 2, Major Comment #5. Sentence rewording.
- Page 24, lines 14-16. Referee 1, Comment #12. Remark on the imbalance analysis.
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- Page 24, lines 26-27. Referee 2, Major Comment #7. Withdraw of the remark on the pre-
ENVISAT missions.

- Page 24, lines 28-33 and Page 25, lines 1-2. Referee 1, Comment #14. Reformulation of the
study perspectives.
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Abstract. Land Surface Models (LSM) are widely used to study the continental part of the water cycle. Yet, even though their

accuracy is increasing, inherent model uncertainties can not be avoided. In the meantime, remotely-sensed observations of the

continental water cycle variables such as soil moisture, lakes and rivers elevations are more frequent and accurate. Therefore,

those two different types of information can be combined, using data assimilation techniques to reduce model’s uncertainties

on its state variables or/and on its input parameters. [Referee 2 - Major Comment #1] The objective of this study is to present5

a data assimilation platform that assimilates into the large-scale ISBA-CTRIP LSM a punctual river discharge product, derived

from ENVISAT nadir altimeter water elevation measurements and rating curves, over the whole Amazon basin. To deal with

the scale difference between the model and the observation, the study also presents an initial development for a localization

treatment that allows to limit the impact of observations to areas close to the observation and on the same hydrological network.

This assimilation platform is based on the Ensemble Kalman Filter and can either correct the CTRIP river water storage or the10

discharge. RMSE compared to gauge discharges are globally reduced until 21% and at Óbidos, near the outlet, and RMSE are

reduced up to 52% compared to ENVISAT-based discharge. Finally, it is shown that localization improve results along main

tributaries.

1 Introduction

The continental part of the water cycle is commonly studied, at large scale, with hydrological modelling. These models are15

generally issued from the coupling of a Land Surface Model (LSM) with a River Routing Model (RRM). The LSM determines

the water and energy budget at the surface by spreading precipitations between the soil and the canopy. Meanwhile, the RRM

transfers water mass through the basin to the outlet and gives an estimate of river discharge.
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RRMs are mainly based on kinematic (e.g. Oki and Sud, 1998) or sometimes also on diffusive wave model (e.g. Yamazaki

et al., 2011). Several RRMs were developed since the 90s and they differ mainly in their modelling of the flow velocity

and the inclusion or not of groundwater and floodplains dynamics (Oki and Sud, 1998; Coe, 1998; Hagemann and Dümenil,

1998; Ducharne et al., 2003; Ngo-Duc et al., 2007; Paiva et al., 2011; Yamazaki et al., 2011; Decharme et al., 2012). [Editor

Comment #1] The modelling of the river flow velocity is addressed in several ways in the literature. Coe (1998) and Oki and5

Sud (1998) considered a uniform and constant flow velocity over the entire basin in SWAM and TRIP RRMs, respectively.

Other studies rather use a spatially-distributed, but still constant in time, flow velocity based on topography and river channel

characteristics (Vörösmarty et al., 1989; Hagemann and Dümenil, 1998; Ducharne et al., 2003). However, most recent models

rely on a time-varying and spatially-distributed flow velocity estimation based on the Manning formula (Manning, 1891),

e.g., Arora et al. (1999); Ngo-Duc et al. (2007); Lucas-Picher et al. (2010); Decharme et al. (2012). The first RRMs only10

modelled water flowing in the river channel only (Vörösmarty et al., 1989; Coe, 1998; Oki and Sud, 1998). Subsequent RRMs

developments included the modelling of the groundwater inflow to the river (Hagemann and Dümenil, 1998; Arora et al., 1999;

Ducharne et al., 2003; Decharme et al., 2008; Lucas-Picher et al., 2010) as well as the floodplains-river dynamics (Decharme

et al., 2008; Paiva et al., 2011; Yamazaki et al., 2011).The routing network is derived from a Digital Elevation Model (DEM):

some of them remain defined on a regular mesh grid (Oki and Sud, 1998; Decharme et al., 2012) while others use an irregular15

discretization by sub-catchments, such as MGB-IPH (Paiva et al., 2011) and CaMa Flood (Yamazaki et al., 2011), or by river

reaches, such as RAPID (David et al., 2011). More information on some global LSMs and their associated RRMs (with the

correpsonding references) could be found, for example, in Schellekens et al. (2017).

[Referee 1 - Comment #1] However, even if hydrological models become more and more accurate, inherent model un-

certainties are unavoidable. They originate from several sources: simplification and lack of knowledge in the real physics,20

numerization and discretization-induced errors and uncertainties in the inputs parameters and forcing. All these uncertainties

impact model’s outputs. In the worst case, all those uncertainties could accumulate and result into the collapse of the model.

The model gives therefore an approximate view of the system real state.

Observations of the system can be used to calibrate and/or validate the model and reduce its errors. These observations

can be obtained from in situ or remote techniques. In situ techniques mainly focus on measuring river water elevations at25

a gauge station. Another important variable of interest in river hydrology is the river discharge, which is sparsely measured

compared to water elevation. Based on river discharges and elevations measured at the same time and at the same location, it

is possible to build a rating curve that represents the elevation-discharge relationship. This rating curve is then applied to water

elevation to set continuous discharge time series. Institutions delivering in situ data provide mainly discharge. Even though

in situ measures are generally quite accurate with a high time sampling (i.e. sub-daily), their main limitations is their local30

and spatially sparse sampling over the river network. Furthermore, nowadays, remotely-sensed data from satellite missions are

more and more available and provide useful observations of rivers. The most straightforward and used instrument to measure

river water elevations is the nadir altimeter.

Altimeters were initially developed to measure oceans topography with the satellite mission GEOS-3 (1975-1978) and

SEASAT launched in 1978 (MacArthur, 1980). Nadir altimetry consists in estimating water surface elevation at the vertical (35
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or at the nadir ) of the satellite. It therefore produces punctual water elevation observations along the satellite ground track.

These missions were followed by a long series of other missions: GEOSAT (1985-1990), TOPEX-Poseidon (1992-2006),

JASON-1 (2001-2013), JASON-2 (2008-Now), JASON-3 (2016-Now), GFO (1998-2008), ERS-1 (1991-2000), ERS-2 (1995-

2003), ENVISAT (2002-2012), SARAL (2013-Now) and Sentinel-3 (2016-Now). It is with TOPEX-Poseidon that the use of

nadir altimetry to monitor lakes (Birkett, 1995; Hwang et al., 2005; Cretaux et al., 2009), floodplains (Birkett et al., 2002)5

and rivers (Birkett, 1998; Kouraev et al., 2004; Silva et al., 2010) developed widely. However, the main limitations of nadir

altimetry are their punctual measurements (at the location where the satellite track crosses a river stream) and their temporal

sampling (from 10 to 35 days, depending on the mission). Besides, contrary to ocean surfaces, the signal over continental

surfaces is impacted by vegetation and topography surrounding the river. Therefore, the purpose of this study is to combine

model outputs and altimetry-based products using Data Assimilation (DA) techniques, in order to get more precise discharge10

estimates within the Amazon basin.

DA aims to improve model skills to forecast/simulate the physical system evolution. To do so, DA techniques focus on either

correcting the model’s input parameters (Parameter Estimation) or the model’s outputs (State Estimation). State Estimation

(SE) consists in using observations to directly correct the model output state. It is based on the assumption that the model (and

the observations) are known to be imperfect. So, SE aims at correcting model outputs, which errors result from all sources of15

uncertainties previously described.

SE has been widely used in oceanography and meteorology (Evensen and Leeuwen, 1996; Houtekamer and Mitchell, 2001;

Gustaffson et al., 2012; Tanajura et al., 2015). However, DA of remotely-sensed observations to correct hydrological models

states is more recent. Moreover, it is more developed for LSMs than RRMs, as shown, for example by the global scale Land

Data Assimilation System of the NASA Goddard Earth Observing System (Reichle et al., 2014). This platform assimilates20

simultaneously SMOS soil moisture product, MODIS snow cover extent fraction and integrated GRACE terrestrial water

storage variations into an Ensemble Kalman Filter (EnKF) to correct the states of several LSMs. Other studies assimilates

similar kinds of observations, along with in situ data, into smaller-scale hydrological models [Referee 1 - Comment #2]

(Trudel et al., 2014; Lopez Lopez et al., 2016). As for RRMs, to the authors knowledge, there are few studies where remotely-

sensed and/or in situ data are assimilated into a global-scale RRMs. However, in the literature, there are several studies that25

used assimilation techniques at smaller and local scale with finer spatial resolution than global RRMs, using mostly in situ

data (Schumann and Domeneghetti, 2016). For example, Clark et al. (2008) applied the EnKF to correct soil, aquifer and

surface water storage in a small river in New-Zealand (the Wairu). More particularly, they used gauge discharge data from 4

gauges to correct water storages in the 380 sub-catchments dividing the study zone. Paiva et al. (2013a) also used an EnKF

over the Amazon basin for three different experiments, which assimilate, first, ENVISAT water surface anomalies from 21230

virtual stations, then discharge data from 109 gauges, and finally remotely-sensed discharges from 287 stations obtained from

Getirana and Peters-Lidard (2013). This study aimed at correcting discharge estimated by the MGB-IPH hydrological model

over more than 5000 sub-catchments composing the Amazon river basin. Moreover, in two different studies, Michailovsky

et al. (2013) and Michailovsky and Bauer-Gottwein (2014) assimilated for the Brahmaputra river in Asia and the Zambezi river

in Africa, respectively, using an Extended Kalman Filter, ENVISAT water surface elevation measurements from 6 and 9 virtual35
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stations in Michailovsky et al. (2013) and Michailovsky and Bauer-Gottwein (2014), respectively, to correct simulated water

volumes in 18 and 37 sub-catchments respectively.

[Referee 1 - Comment #3] The objective of the present study is to investigate the contribution of remotely-sensed data,

and in particular measurements derived from nadir altimeters that provide local information, to improve a large-scale RRM

via DA. The scale difference between the observations and the model lead to also study the need to use localization methods5

within our DA framework. We used an Ensemble Kalman Filter, to which we added a simple localization module, to assimilate

discharges derived from ENVISAT water surface elevation measurements. These observations are used to correct the state of the

large scale Total Runoff Integrated Pathways (TRIP, Oki and Sud, 1998) RRM version included in the land surface modelling

platform "Surfaces Externalisées" (SurfEx, Masson et al., 2013), and developed at the Centre National de Recherches en

Météorologie (CNRM, France). This particular version is denoted by the CTRIP acronym hereinafter. CTRIP is coupled with10

the Interactions-Soil-Biosphere-Atmosphere (ISBA, Boone et al., 1999) LSM at a resolution of 0.5◦ × 0.5◦.

In section 2, we present the study domain along with the ISBA-CTRIP model version and remotely-sensed product used in

this study. Section 3 provides first a general presentation of Ensemble Kalman Filter (EnKF) DA method. Then we introduce

the special features associated to the study and the description of the assimilation strategy. Then, in section 4, we present results

for a series of DA experiments testing the ensemble generation strategy and the correction of different state variables. Finally,15

section 5 discusses these results and some perspectives. The last section gives the conclusions and some perspectives of the

study.

2 Study domain, model and data used

2.1 Study domain: the Amazon basin

The study is focused on the Amazon river basin (see Figure 1a). It is the world’s largest river in terms of averaged discharge20

(2× 105 m3 s−1) and drainage area (6.15× 106 km2). The discharge at its mouth represents 30% of total freshwater inflow to

the Atlantic Ocean (Wisser et al., 2010) and its catchment area covers about 40% of South America. The river source is located

in the Peruvian Andes and it flows through the Brazilian rain forest while receiving water from several important tributaries.

First, the Ucayali, the Japurá River, the Purus River and, at Manaus, the Negro River (14% of the total discharge). At this point,

the river has reached 56% of its total discharge. From Manaus to its mouth, it receives water from the Madeira River (17% of25

the total discharge), the Tapajós River and the Xingu River (11% of the total discharge all together) (Molinier et al., 1993).

The Amazon basin’s geology can be divided into three major morpho-structural units: the western Andean Cordillera, the

central Amazon trough and the shields at the eastern part of the basin (Guiana shield to the North and Brazilian shield to the

South). Northern and southern regions of the basin are under a tropical climate with a dry and a wet season, but the maximum

rainfall season for the two parts occurs at different periods during the year (Meade et al., 1991). This implies that annual30

peak discharge in southern tributaries occurs a few months earlier than in northern tributaries. Meanwhile, the central basin is

under an equatorial climate zone, implying high surface temperatures, air humidity and, especially, precipitation. Thus, a vast

floodplain along the mainstream is filled every year, leading to the damping of discharge extremes.
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2.2 ISBA-CTRIP model

2.2.1 Model presentation

The ISBA model (Noilhan and Planton, 1989) is a relatively standard Land Surface Model (LSM) defined over a regular

mesh grid at global scale. The model’s equations are solved for each grid cell separately from the others. All grid cells are

only correlated through the spatial patterns of atmospheric (especially precipitation) and radiative inputs, vegetation cover5

and soil composition. By taking into account the heterogeneity in precipitation, topography and vegetation within each grid

cell (Decharme and Douville, 2006) and based on the force-restore method (Blackadar, 1976), ISBA gives a diagnosis of

the water and energy budgets in each grid cell. Especially, the ISBA-3L configuration (Boone et al., 1999), used in Alkama

et al. (2010) and Decharme et al. (2012), has been chosen for the present study. In this version, the soil is divided into three

layers: the superficial layer, the root zone and the sub-root zone. Precipitation can either fall directly on the soil surface or10

be intercepted by the canopy. The soil water content varies with canopy dripping, surface infiltration, soil evaporation, plant

evapotranspiration, surface runoff and deep drainage (for more details, see Alkama et al., 2010; Decharme et al., 2012). Then,

ISBA gives a diagnostic of each water budget component, in particular the surface runoff (QISBA,sur) and gravitational drainage

(QISBA,sub) which are the main inputs for CTRIP.

The CTRIP RRM is also defined over a regular mesh grid. In this study, it is run at the same resolution than ISBA (0.5◦ ×15

0.5◦). CTRIP is dedicated to the lateral transfer of water from one cell to the other, up to the continent-ocean interface following

a river network (Oki and Sud, 1998). The CTRIP version (Decharme et al., 2010) used in this study is coupled with the ISBA

LSM and was subsequently developed by Decharme et al. (2010, 2012). [Referee 1 - Comment #4] It consists in a system

of three reservoirs (see Figure 1b): the surface reservoir S [kg] modelling the river, the groundwater reservoir G [kg] and the

floodplain reservoir F [kg].20

Only the surface reservoir S sends water from cell to cell based on the TRIP routing network. A cell can receive water from

several upstream cells but sends water into a unique downstream cell based on a space and time-varying flow velocity v(t)

estimated with the Manning formula (Manning, 1891). For any given cell, TRIP inputs are the TRIP outflow from upstream

cells QS
in,TRIP(t) and the ISBA surface runoff for that cell QISBA,sur. Moreover, S receives water from the groundwater reservoir

G, QG
out(t), and can exchange water mass with the floodplain F , QF

out(t)−QF
in (t).25

G receives inflows from ISBA gravitational drainage QISBA,sub and outflows to the river reservoir S. This outflow represents

more a delayed contribution of the gravitational drainage to the river than a real groundwater dynamic.

The floodplain scheme activates when the water height in the river, hS , exceeds a given critical bankful height Hc. Then,

part of the precipitation is intercepted by the floodplain (PF (t)) and the water in the floodplain can either evaporates (EF (t))

or infiltrates in the soil (IF (t)). A detailed description of the floodplain scheme is given in Decharme et al. (2008, 2010, 2012).30

2.2.2 Model implementation over the Amazon

ISBA-CTRIP is run in offline mode. This implies that external atmospheric data are needed to force the model. Here, the

atmospheric data from the Global Soil Wetness Projet 3 (GSWP3, http://hydro.iis.u-tokyo.ac.jp/GSWP3) are used. The project

5
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consists in three global-scale experiments with the objective of investigating long-term changes of the energy-water-carbon

cycle components and their interactions. The 3-hourly resolution atmospheric boundary conditions used in the present study

were generated by dynamically downscaling the global 2◦-resolution 20th Century Reanalysis (Compo et al., 2011). This

reanalysis assimilates several atmospheric observations into the Climate Forecast System (CFS) operational model from NCEP

(National Centers for Environmental Prediction).5

For ISBA-CTRIP, the Amazon basin is composed of a total number of 2028 cells. A Sensitivity Analysis (SA) of the ISBA-

CTRIP has been conducted by Emery et al. (2016). In this analysis, the basin was divided into 9 hydro-geomorphological

zones which are shown in Figure 2. These zones were designed to take into account different components: (1) hydrological

component (the main course is separated from the tributaries which have their own zones); and (2) geological component (the

three major morpho-structural units are distinguishable). The 9 zones are the following: (1) the upstream Andean part of the10

basin until the city of Iquitos, Peru; (2) the main stream from Iquitos to Óbidos; (3) the main stream from Óbidos to the river

mouth; (4) left-bank tributaries from the Napo River to the Japurá River included; (5) left-bank tributaries from the Japurá River

to Óbidos including the Negro River and its drainage area; (6) right-bank tributaries from Iquitos to the Purus River confluence

at Anamã; (7) right-bank tributaries from Anamã to Óbidos including the Madeira River; (8) right-bank tributaries exiting in

zone 3 including the Tapajós River and the Xingu River; and (9) left-bank tributaries exiting in zone 3. This subdivision will15

be used within the DA platform.

2.3 Observations

2.3.1 Altimetry-based discharge product

Altimetry-based discharge product used in this study is derived from water surface elevations measured by the ENVISAT

Radar Altimeter-2 altimeter instrument at Virtual Station (VS). VS are computed where the altimeter track [Referee 2 - Minor20

Comment #1] crosses the river. The ENVISAT mission operated from September 2002 to October 2010 on its nominal orbit,

which has a 35 days repeat period and an 80 km inter-track distance at the equator. The water surface elevations measured

over the Amazon basin were initially generated by Silva et al. (2010). The final product was referenced to the EGM2008 geoid

(Palvis et al., 2012) and the vertical precision ranged from 12 cm to 30-40 cm for most of the stations (and can reach several

meters for the worst stations).25

Turning water surface elevation measures into an equivalent discharge requires the use of elevation-discharge rating curves.

The rating curves used in this study have been built and validated by Paris et al. (2016), using water surface elevations from

ENVISAT (Silva et al., 2010, 2012, 2014) and discharges simulated by the hydrological-hydrodynamic model MGB-IPH

(Model de Grandes Bacias-Instituto de Pesquisas Hidráulicas, Collischon et al., 2007). The model original version, developed

over the Amazon river basin, consists in a large-scale distributed hydrological model coupled with a hydrodynamic module that30

uses a simple storage scheme for floodplains (Paiva et al., 2011). The entire basin is divided into 5765 elementary catchments

with an area varying between 100 and 5000 km2. A surface scheme is applied for each mini-basin to estimate the main flows

and a routing network is used to direct the flows from one elementary catchment to another, down to the outlet. Two approaches
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are used to estimate the river discharge: 1- the Muskingum-Cunge method (MC) for basin heads and small tributaries, 2- the

Saint-Venant equations (HD for hydrodynamic) for the main stem and main tributaries. The Digital Elevation Model (DEM)

used is SRTM (Farr et al., 2007) and parameters, such as the river width and depth, are determined using geomorphological

relationships calibrated over the sub-basins (Paiva et al., 2013a). Moreover, the model version used to determine the rating

curves is the version developed by Paiva et al. (2013b), where gauge discharges are assimilated into the model via an Ensemble5

Kalman Filter (EnKF, Evensen, 2003), over the period between 1998 and 2010. The assimilated discharges allow to correct

the simulated discharges over both gauged and ungauged elementary catchments. With a better estimation of discharges, Paiva

et al. (2013b) also provide an estimation on discharge uncertainty (modelled as a white noise) for each elementary catchments.

The MGB-IPH discharges were used by Paris et al. (2016) as baseline to estimate the altimetric rating curves such that:

∀ j, ∀ i, ∀ talti, Qmgb,j(i)(talti,i) = ai × (Halti,i − z0,i)
bi , (1)10

where

- Halti,i is the altimetric water surface elevation at the i-th virtual station which is available at the time talti,i,

- Qmgb,j(i)(talti,i) is the discharge estimated by the MGB-IPH model, at time talti,i, in the j-th mini-basin which contains

the i-th virtual station and

- ai, z0,i and bi are the rating curve parameters to be determined. Those parameters are constant in time but vary from one15

virtual station to the other.

To calculate those parameters at each virtual station, a global optimization algorithm, the Shuffled Complex Evolution Metropo-

lis developed by Vrugt et al. (2003), was used. It allowed determining rating curves for 767 ENVISAT virtual stations. More

details about the rating curves computation can be found in Paris et al. (2016). Once rating curve parameters are determined,

altimetric water surface elevations are easily converted into equivalent "altimetric discharges". Moreover, the altimetric dis-20

charges are provided with an estimation of their uncertainty including the normalized deviation from the MGB discharge.

[Referee 2 - Major Comment #2] The quality assurance of the discharge product has been made by constraining the rating

curve coefficients within a physical range of values (Paris et al., 2016). Paris et al. (2016) also conducted a sensitivity analysis,

that showed a small sensitivity of the coefficients estimation to their first guess value. The quality check was done by comparing

the satellite-derived discharge to the modelled discharge, over a validation time period distinct from the calibration period used25

to derive rating curves. Discharge was also compared to some in situ gauges. Satellite-derived discharge is of course heavily

correlated to the model accuracy. Overall, a comparison to 51 gauges measurements led to a mean Nash-Sutcliff coefficient

around 0.8 and a Normalized Root Mean Square Error around 10% over the validation period (Table 8 in Paris et al., 2016).

Altimetric discharges has then to be compared to ISBA-CTRIP discharges. However, while the virtual stations are irregularly

distributed over the entire basin, the model is defined over a coarse regular mesh grid of 0.5◦ × 0.5◦. A preliminary treatment of30

the virtual stations is applied to associate each ENVISAT virtual station to an ISBA-CTRIP cell with respect to their localization

and the drainage network. The following algorithm has been used:
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- The CTRIP river network is compared to a realistic river system (produced with GoogleEarth) to properly associate

ISBA-CTRIP cells to a given tributaries in the basin.

- Then, each virtual station is coupled with the closest ISBA-CTRIP cell along the same tributary. It may be the cell

containing the virtual station or an adjacent cell according to the river network.

This algorithm allowed associating most of the virtual stations to a unique CTRIP cell. However, some particular cases have5

been treated. First, some virtual stations were located on tributaries too small to be represented on the CTRIP river network.

In this case, the virtual station was not included in the study. Then, there were several very close virtual stations associated to

the same ISBA-CTRIP cell. In this second case, the virtual stations with the lowest deviation from the MGB discharge were

conserved. Finally, over the 767 ENVISAT virtual stations initially available, 368 ENVISAT virtual stations were kept and

associated to an ISBA-CTRIP cell. [Referee 2 - Major Comment #3] Among them, 19% (69 virtual stations out of 368) have10

been associated to an adjacent cell.

2.3.2 In situ discharge product

At national or basin scale, water agencies can share discharge time series such as the "Agencia Nacional de Agua" (ANA,

hidroweb.ana.gov.br) in Brazil for the Amazon river basin. For the present study, we retrieved discharge time series from 145

ANA in situ stations over the entire basin. These gauge discharges have then been used to evaluate the performances of the DA15

(but they have not been assimilated in ISBA-CTRIP).

3 Method [Referee 1 - Comment #6]

The purpose of SE DA is to correct model outputs using observations while taking into consideration uncertainties in both

the model and the observations. In this work, as observed data correspond to discharge estimates, we chose to correct model

output variables such as discharge or river storage. Indeed, following the results from the ISBA-CTRIP sensitivity analysis20

(SA; Emery et al., 2016), discharge is mainly sensitive to water inflow. Figure 3 presents the general DA method in the present

study. The figure reads from top to bottom and from left to right. Three types of state variables will be considered: the river

initial storage, the river final storage (that are both the main ISBA-CTRIP state variables) and the river discharge, that will

all be compared to the observed discharge. All three can be corrected through assimilation with specific treatment, that will

be detailed in the following sections. The DA will use several operators (in Figure 3, M[k−1,k], Zk and Hk) that links state25

variables with each other.

3.1 Data assimilation variables [Referee 1 - Comment #6]

The DA technique implemented in the present study is a sequential Ensemble Kalman Filter (EnKF, Evensen, 2003). Here we

shortly give the mathematical formalism used in the rest of the paper and a brief description of the EnKF method.

8
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First of all, the the term "assimilation window" used hereafter corresponds to the period during which a complete assimilation

cycle is conducted. It is delineated by two consecutive observation time and will be denoted by [k− 1,k]. From now on, the

k-th assimilation cycle will be the cycle starting at time k− 1 and assimilating the available observation(s) at time k.

3.1.1 Control variables

The vector xk ∈ R
nx is called the control vector. It includes the nx uncertain variables to be estimated during the k-th DA5

cycle (within the time interval [k− 1,k]). As stated before, control variables are prognostic or diagnostic variables of the

ISBA-CTRIP model. Prognostic variables are the physical unknown in the differential equations’ system that describes the

model’s behaviour. Diagnostic variables are also physical variables, but they are estimated from the prognostic variables. The

choice of the control variables determines the observation operator Hk that maps the control variables into the observation

space:10

yk =Hk(xk), (2)

where yk are the control variables equivalent in the observation space also called model observations. They are then compared

to the measured observations yo
k (described in Section 3.1.2) during the DA step.

Unlike hydrodynamic models, which directly solve Saint-Venant equations and for which discharge is a model state variable

(or prognostic variable), the hydrological model ISBA-CTRIP solve differential equations describing the time evolution of15

water stock in the river (S), the groundwater (G) and the floodplain (F ). Then, water elevation and river discharge are diagnostic

variables derived from these prognostic variables. In CTRIP, river discharge QS
out is computed as follows:

QS
out = L−1vS [kg.s−1], (3)

with L [m] river section length, v the flow velocity (estimated from the Manning formula) and S the surface water mass.

Therefore, three types of variables can be considered as control variables in the data assimilation scheme: the discharge QS
out20

(denoted Q in the remaining of the study to simplify notation, which is a diagnostic variable), the river final water stock Send (a

prognostic variable) or the river initial water stock 5also a prognostic variable). Definition and complexity of the observation

operator Hk, that maps the control space into the observation space, depends on the nature of the control variable. These three

options are presented below.

- Option 1: correcting ISBA-CTRIP discharges25

For this option, the control variables, gathered into the vector xk are the ISBA-CTRIP discharges Qi,k, i= 1 . . .nx =

2028 (number of TRIP cells in the Amazon basin) estimated for each 2028 cells in the TRIP Amazon basin, at the

assimilation cycle k.

The observation operator Hk resumes to a selection operator Sk which select the observed TRIP cells at the current

assimilation cycle:30

Hk = Sk. (4)
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This operator is linear. The difficulty with this operator is that, once the assimilation analysis is produced, it is necessary

to convert the analysis discharge Qa
i,k, i= 1 . . .nx (i.e. corrected discharge obtained after assimilation), into the equiva-

lent final water stock Sa
end,i,k. Indeed, as already stated, in ISBA-CTRIP, discharge is not a pronostic variable. Correction

from the assimilation step needs to be propagated to the model prognostic variables, here, the river final stock. Moreover,

the analysis final water stock Sa
end,i,k will be used as initial condition for the model run until the next assimilation cycle:5

∀ i= 1 . . .nx, ∀ k, Sa
end,i,k = Sb

ini,i,k+1. Yet, the exact relationship linking discharge to the final river stock is unknown.

A possible solution consists in inverting Eq. 3. Assuming that the discharge estimated by ISBA-CTRIP Qa
i,k is the

instantaneous flow at the final time of the integration window:

Qa
k,i,[kg.s−1] = L−1vSa

end,k,i,[kg] ⇐⇒Qa
k,[m3.s−1] = ρ−1L−1vSa

end,k,i,[kg].

We obtain that (for more details on this approximation, see appendix A):10

Sa
end,k,i,[kg] ≈ ρLW 2/5s−3/10n3/5

(
Qa

k,i,[kg.s−1]

)3/5
, (5)

with ρ [m3.kg−1] the water density, L [m] the river section length, W [m] the river width, s [-] the riverbed slope and

n [-] the Manning coefficient in the riverbed. Then, for experiments with discharges as control variables, the formula

in Eq. 3.1.1 will be used to convert corrected discharges into river stock and then propagate the model to the next

observation time.15

- Option 2: correcting ISBA-CTRIP final water stock

For this option, the control variables, gathered into the vector xk are the ISBA-CTRIP final water stock Send,i,k, i=

1 . . .nx estimated for each 2028 cells in the TRIP Amazon basin, at the assimilation cycle k.

The computational cost for this option is the same as for the first option but, now, the observation operator is defined as

Hk = Sk ◦Zk, (6)20

where Zk, is the operator (implicitly defined within TRIP) that turns the river final stock Send,i,k into equivalent discharge

Qi,k. Even though Hk is not linear any more, this option presents the advantage of correcting the river final stock Sa
k,end

that can be directly used for the next assimilation cycle and no additional uncertainties are introduced. However, the

corresponding analysis discharge Qa
i,k is now unknown as the explicit expression of Zk is also unknown. A potential

formula to determine Qa
i,k can be deduced from Eq. 3.1.1. Such a formula will be necessary to make comparative25

statistics to ENVISAT and in situ discharges and be able to evaluate the assimilation performances.

- Option 3: correcting ISBA-CTRIP initial water stock

For this final option, the control variables, gathered into the vector xk are the ISBA-CTRIP initial water stock Sini,i,k,

i= 1 . . .nx estimated for each 2028 cells in the TRIP Amazon basin, at the assimilation cycle k.
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The discharge observations are used to correct the surface water stock at the time prior to the observation time or, in other

words, at the initial time of the integrating window. Therefore, the observation operator is written as the composition of

the model operator M[k−1,k] with the observation operator defined in Eq. 6:

Hk = Sk ◦Zk ◦M[k−1,k]. (7)

This operator is highly non-linear as it contains the full model operator. However, it is the only option where no uncertain-5

ties are added from the use of an external formula to compute corrected discharge at the observation time. Uncertainties

in the stock-discharge relationship are only due to the model uncertainties. Indeed, once the analysis initial water stock

Sa
ini,k,i is determined, the control variables update must be propagated through the next assimilation time by re-integrating

the ISBA-CTRIP model over the assimilation window. The initial water stock Sa
end,k,i and the analysis discharge Qa

k,i

are automatically determined during this run.10

3.1.2 Observation variables

In the framework of the state estimation, the observation variables, at a given day within the Amazon basin, are the discharge

estimates derived from ENVISAT water surface elevations at the virtual stations associated to an ISBA-CTRIP cell. The

ENVISAT repeatability is 35 days, therefore a given virtual station will provide an observation every 35 days at best. During

the data assimilation experiments, all virtual stations will be used simultaneously. Because of the ENVISAT orbit, the number15

of available observations at a given day will vary between 0 and 15, and these observations will be assimilated daily via the

EnKF. Then, the observation vector yo
k at the assimilation cycle k (equivalently, at the simulation day k) is composed of the

ny,k discharge measures available at day k:

yo
k =

[
yok,1, yok,2, . . . , yok,ny,k

,

]
(8)

where yok,j , j = 1 . . .ny,k is the j-th observation among the ny,k at cycle k.20

Measurement errors ǫm
k

come from errors in ENVISAT water surface elevations, errors in MGB discharges and uncertainties

in the rating curves parameters used to turn water surface elevation into discharge. Sorooshian and Dracup (1980), Clark et al.

(2008) and Paris et al. (2016) noticed that the concavity of the elevation-discharge relationship implies that the higher a

water elevation, is the more uncertain the corresponding discharge. Therefore, the observation error standard deviation σo
k,j ,

associated to the j-th observation at cycle k, is defined with respect to the instantaneous discharge measure yok,j , i.e :25

σo
k,j = ηoj × yok,j , j = 1 . . .ny,k (9)

where ηoj ∈ ]0,1[ is a constant depending on the virtual station, such that ηoj models the relative error. The observation error

standard deviation σo
k,j is then a fraction of the instantaneous discharge. For each virtual station, the value of ηoj depends

on, first, the deviation from the MGB discharge, noted σ
mgb
j [%] and determined by Paris et al. (2016). As MGB discharges

were used to determine ENVISAT discharges from ENVISAT water elevations, σmgb
j represents the deviation between the two30
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discharges data. Second, to take into account that MGB discharge is not perfect (in other words, to take into account some

deviation from the real discharge), 0.05 is added to σ
mgb
j and the sum is rounding up to the nearest whole number, giving

η
mgb
j = E

(
σ

mgb
j +0.05

)
,

where the function E is the ceiling function. Finally, ηoj is equal to the first multiple of 5, above η
mgb
j . At the end, ηoj varies

from 0.10 to 0.35 over the entire basin and is constant in time. Besides, the representativeness error ǫr
k

induced when a virtual5

station is associated to cell of the coarse TRIP mesh grid is neglected here.

Moreover, for a given assimilation cycle and also between different cycles, the observations are considered uncorrelated in

space and time. The observation error covariance matrix at cycle k Rk is then a diagonal definite positive square matrix.

3.2 The Ensemble Kalman Filter (EnKF) for ISBA-CTRIP state estimation [Referee 1 - Comment #6]

3.2.1 The EnKF sequential estimation [Referee 1 - Comment #5]10

In the EnKF framework, the model and observation operator are not linear. Therefore, the main idea is to use stochastic

ensembles to represent the control variables PDFs along with the error models (Evensen, 1994, 2003). First, the background

control variables xb
k are stochastically represented by an ensemble of ne members:

Xb
e,k =

[
x
b,[1]
k x

b,[2]
k . . . x

b,[ne]
k

]
, (10)

Each member is estimated separately through the EnKF prediction step. For each control variables case (see Section 3.1.1),15

each member of the control ensemble Xb
e,k are estimated by integrating the model operator from the corresponding analysis

member at the previous assimilation cycle, while adding external uncertainties (see Section 3.2.3):

∀ l = 1 . . .ne, x
b,[l]
k =M[k−1,k](x

a,[l]
k−1). (11)

Then, the background control ensemble must be compared to the observations. Depending on the control variables nature,

the model operator is already included (option 3) or not (option 1 and 2) within the observation operator. Besides, following20

Burgers et al. (1998), an additional noise ǫok is added to the observation vector yo
k to avoid ensemble collapse. The observation

ensemble thus obtained is noted:

Yo
e,k =

[
y
o,[1]
k y

o,[2]
k . . . y

o,[ne]
k

]
. (12)

Finally, the EnKF analysis step is applied to each member of the ensemble such that

∀ l = 1 . . .ne, x
a,[l]
k = x

b,[l]
k +Kk,e

(
y
o,[l]
k −Hk(x

b,[l]
k )

)
, (13)25

where the direct non-linear observation operator is applied to convert the control variables into equivalent model observations.

The particularity of the EnKF is that the Kalman gain (Ke,k) is stochastically estimated from the different control and model

observation ensemble, as follows:

Ke,k = [PHT ]e,k

(
[HPHT ]e,k +Rk

)−1

. (14)
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3.2.2 Localization of the error covariance matrices [Referee 1 - Comment #6]

In the framework of state estimation, the sampling error can introduce artificial correlations into the background/analysis error

covariance matrices, and generate spurious correlations between two distant grid cells in the mesh (Anderson, 2007). The

ensemble size ne is limited by computational constraints. Therefore, before the EnKF analysis step, a numerical processing of

the matrices [PHT ]e,k and [HPHT ]e,k matrices is necessary to suppress spurious correlations that can potentially degrade the5

analysis. Localization methods are designed to reduce these problems.

[Referee 1 - Comment #7] It exists two type of localization techniques (Greybush et al., 2011; Sakov and Bertino, 2011).

The first one is called B-localization. It is based on explicitly modifying the background error covariance matrix Pb
e,k. It

consists in multiplying the matrix Pb
e,k by a correlation matrix generated from a radial function, namely a function of the

two/three spatial dimensions which monotonously decreases with the distance between control variables (Hamill et al., 2001;10

Houtekamer and Mitchell, 2001, 2005). This modified matrix replaces Pb
e,k in the calculation of the Kalman gain matrix Ke,k.

The other common localization technique is called R-localization or local analysis. This one consists in proceeding the analysis

step into characteristic sub-spaces of the overall problem space.

However, all these localization techniques described above have been developed for atmospheric modelling where problems

are in two or three dimension. The use of localization in hydrology is more limited. Several studies exist to improve subsurface15

flow modelling (Devegowda et al., 2010; Delijani et al., 2014) but these approaches have a dimensionality close to atmospheric

approaches as they take place in a continuous medium in two or three dimensions. Other studies using localization allow

estimating better model parameters, still continuously defined in two or three dimensions (Sun et al., 2009; Rasmussen et al.,

2015).

The localization method used with the CTRIP river routing model [Referee 1 - Comment #8] is of the B-localization20

type. However, it can not be simply defined on a two-dimensional radial function. Indeed, the river flow is along several one-

dimensional flow directions, modelled by the routing network. The localization technique must consider the routing network

to decorrelate adjacent cells on the mesh grid but located in two different sub-catchments. Nevertheless, along a same flow

direction, the correlation between two distinct cells depends on the distance between the two cells. Then, for each assimilation

cycle, the localization consists in a localization mask delimiting an influence area for each observation. These influence areas25

gather a limited number of neighbouring downstream and upstream cells around the observed cell with respect to the river

routing network. [Referee 1 - Comment #13] We chose a fixed localization scale for simplicity and as a first step in the

feasibility study of the development of a localization method for a hydrology application.

To determine the number of cells defining the influence area, the basin subdivision in 9 hydro-geomorphological zones is

used with a mean flow velocity for each zone. The influence area, for a given observed cell, is given by the criteria below. For30

an influence area of size p cells, the area is composed of:

- the observed cell,

- the p downstream cells according to the river routing network,
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- all the cells upstream the observed one covering p upstream levels. However, the going up stops when the hydro-

geomorphological zone is different from the one of the observed cell.

The number of cells within the influence area depends on the mean flow velocities (averaged over a year of simulation) in

the zone in which the considered cell is situated. Those mean velocities are calculated from the free run simulation, namely the

ISBA-CTRIP simulation realized without any assimilation step. The ISBA-CTRIP resolution is 0.5◦ × 0.5◦, or approximately5

50km×50km. Given the river meanderings, the minimal covered distance through a cell is of 50 km. Furthermore, by comparing

the free run discharge to in situ and ENVISAT discharges, it seems that the free run underestimate discharge (and so the flow

velocity). Consequently, to fix the number p of cells defining the influence area in each hydro-geomorphological zone, the

following steps have been performed:

1. the mean velocity for the cells into a given zone is converted into an equivalent distance in km,10

2. the maximal distance within the zone is kept and rounded to the closest higher multiple of 50,

3. the number p determining the size of the influence area is the number of cells covered by the maximal rounded distance,

knowing that 50 km = 1 cell.

The number of cells into the influence area is presented, for each zone, in the Table 2.

The final localization mask is presented into a matrix of size nx ×ny,k (with nx, the number of control variables, and ny,k,15

the number of observation variables, at the assimilation cycle k) containing only 0 and 1. The localization mask [Referee 1 -

Comment #9] S has the same dimension as the matrix [PHT ]e,k. So, the localization matrix is term-to-term multiplied (sign

"×" in Eq. 15) to the error covariance matrix [PHT ]e,k such as in Moore (1973) and Biancamaria et al. (2011):

xa = xb +
[
S×

(
PbHT

)]{
H
[
S×

(
PbHT

)]
+R

}−1 (
yo −Hxb

)
. (15)

To then extend the localization to the error covariance matrix [HPHT ]e,k, the lines in [PHT ]e,k corresponding to the observed20

cells are extracted to form the second localization matrix. This second matrix is also term-to-term multiplied to [HPHT ]e,k.

This localization step is applied in each assimilation cycle with respect to the activated ENVISAT virtual stations at the current

assimilation cycle.

3.2.3 Generating the ensembles [Referee 1 - Comment #6]

The background error covariance matrices [PHT ]e,k et [HPHT ]e,k are estimated from the control variable ensemble using the25

definition suggested by Evensen (2004); Moradkhani et al. (2005); Durand et al. (2008). [Referee 1 - Comment #10] To get a

large ensemble, while maintaining a reasonable computational time, the ensemble size ne has been set to a hundred members.

Details on how they are exactly calculated are given in Appendix B. These matrices have a nx ×ny,k and ny,k ×ny,k size,

respectively. The elements in the error covariance matrices, depend only on the definition of the background ensemble stored

in the control matrix Xb
e,k and the parameter uncertainties taken into consideration to generate H(Xb

e,k). In the framework30
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of state estimation, we choose to consider uncertainty into the initial condition and uncertainty into the precipitation forcing

(Nijssen and Lettenmaier, 2004; Andreadis and Lettenmaier, 2006; Clark et al., 2008; Paiva et al., 2013b).

- Perturbation of the initial condition [Referee 1 - Comment #6]

The vector containing initial surface reservoir storage for each nx = 2028 CTRIP cell at the assimilation cycle k is

called ck. To ease the notations, we will omit, as much as possible, the assimilation cycle k subscript, knowing that, for5

all randomly perturbed variables and constants, a new ensemble is generated at each cycle.

We used the Amazon basin division into ns = 9 hydrogeomorphological zones (see Figure 2). Initial conditions are

perturbed by applying a multiplying factor over each zone η
c,[l]
s such that

∀ s= 1 . . .ns, ∀ l = 1 . . .ne, c
[l]
s,k = η

c,[l]
i .cs,k, (16)

where cs,k is the reduction of the initial condition ck to the only zone s. For the perturbation to vary from one member10

to another, the value η
c,[l]
s is the realization of a Gaussian distribution, different for each member [l] = 1 . . .ne and for

each hydrogeomorphological zone s. The Gaussian distributions used have a mean value of 1 and a standard deviation

σηc

s,k
, which values are detailled in Table 1.

The η
c,[l]
i values depend on the assimilation cycle k and on the hydrogeomorphological zone in which the i-th cell is.

- Firstly, a more important perturbation is applied to cells situated on the river mainstream (zone 2 and 3) as we15

assume that the uncertainties are more important in those zones. Indeed, discharges in these zones are the highest

of the entire basin. Besides, several cells are confluence cells and are subject to backwater effects. As ISBA-CTRIP

does not model the backwater effects, the water stock uncertainties in these celles are increased.

- Secondly, at the first assimilation cycle, the initial condition before perturbation c1 is identical for every member. At

this particular cycle, the ensemble variance after perturbation depends only on the perturbation method presented in20

Eq. 16 while, for the other assimilation cycles, the successive previous assimilation cycles introduced an additional

variability between members, before the perturbation step in Eq. 16. Therefore, the initial condition variance is more

important at the second assimilation cycle and after. Then, to generate a larger variability at the first assimilation

cycle, the standard deviation σηc

s,k
of the variable η

c,[l]
i is more important at the first cycle than for the others.

- Perturbation of precipitations [Referee 1 - Comment #6]25

Another source of uncertainties for the generation of the ensemble Hk(X
b
e) lies in the precipitation fields. Atmospheric

forcing come from GSWP3 product (see Section 2.2.2). Precipitation forcing F have been perturbed using presented by

Clark et al. (2008). The ensemble of perturbed precipitation fields F̃e is defined such that:

F̃e =
{
F̃[1], F̃[2], . . . F̃[ne]

}
=
{
ϕ
[1]
p .F, ϕ

[2]
p .F, . . . ϕ

[ne]
p .F

}
, (17)

where:30
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- F is the two-dimensional field of precipitation forcing before pertubation (with a time-step of 3 hours),

- F̃[l], for l = 1 . . .ne, is the l-th perturbed precipitation field,

- ϕ
[l]
p , for l = 1 . . .ne, is the l-th multiplying uniformly-distributed field of F to generate F̃[l]. More details on how

the fields ϕ[l]
p have been generated are given in Appendix C.

3.3 Assimilation diagnostics5

During the assimilation experiment, it is necessary to quantify the assimilation performances. The quality of the assimilation

will be evaluated in a given cell i by estimating the Root Mean Square Error (RMSE) between the simulated discharge Q∗
i and

the observed discharge Q
†
i , giving:

RMSE∗,†
i =

√√√√ 1

K†

K†∑

k=1

(
Q∗

i,k −Q
†
i,k

)2 [
m3.s−1

]
. (18)

K† represents the total number of available observed discharge Q
†
i at the studied cell for the study period. The "∗" upperscript10

can be either the upperscript "f" for the free run (without assimilation) or the upperscript "a" for the analysis run (after

assimilation). The "†" upperscript can be either "o" for the observed ENVISAT discharge or "situ" for the gauge discharge.

Based on this definition, the assimilation performance will be estimated at each cell with the normalized RMSE (RMSEn)

defined by:

RMSEn∗,†i = 100× RMSE∗,†
i

Q
†
i,•

, [−] , (19)15

where Q
†
i,• corresponds to the mean of Q†

i,k averaged over the available time steps k.

Also, to evaluate the global performance of the assimilation over the entire basin, a global RMSEn (RMSEnglobal) will be

determined by:

RMSEn∗,†global = 100× 1(∑I†

i=1wi

)
I†∑

i=1

wi.RMSEn†
i , [−] , (20)

where I† is the total number of stations and wi a weighting constant depending on the maximal discharge at the i-th station20

(maxk

(
Q

†
i,.

)
) and the maximal discharge over the basin (maxi,k

(
Q†

.,.

)
) such that:

wi =
log10

[
maxk

(
Q

†
i,.

)]

log10
[
maxi,k

(
Q†

.,.

)] . (21)

With this weighting, cells along the mainstream and the largest tributaries (with the highest discharges) have more importance

in the global statistics than cells located in basin heads.
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Besides, the analysis run is available as an ensemble. The statistics will then be estimated for each member of the ensemble

and the mean (see Eq. 22) of the ensemble will be presented such as:

RMSEna,†i =
1

ne

ne∑

l=1

RMSEna,[l],†i , (22)

where RMSEna,[l],†i is the normalized Root Mean Square Deviation of the l-th member of the analysis discharge ensemble.

3.4 Assimilation strategy5

The state estimation experiments have the objective to test the different control variables described in Sections 3.1.1. Also,

another objective is to test, validate and criticize the localization mask introduced in Section 3.2.2. In the following, experiment

names using the localization will have the "-local" suffix, the one without any localization will have the "-direct" suffix and the

one with no correlation between cells will have the "-diag" suffix. The objective of this study is to determine the best strategy to

assimilate ENVISAT discharges into the ISBA-CTRIP model using the EnKF to correct the model state variables. The different10

experiments are presented in Table 3. After analysing these 5 elementary simulations over a single year, a last experiment will

run over the entire ENVISAT observing period (from September 2002 to June 2010), based on the best configurations.

For all the DA experiments, the observation errors are those described in Section 3.1.2, the model errors are those presented

in Section 3.2.3. Moreover, each experiment in Table 3 lasts 365 assimilation cycles of 1 day (so 1 year of assimilation) from

January 1st, 2009 to December 31st, 2009. We chose this period as it overlaps with other altimetry mission (namely JASON-15

2) and future works may include comparing the two dataset contribution. The numerous ensemble ISBA-CTRIP simulations

were realized with the High Performance Computation Platform CALMIP (https://www.calmip.univ-toulouse.fr/spip/) with

the supercomputer EOS.

In SE1-direct experiment, ENVISAT discharges are assimilated to correct the initial surface reservoir storage in TRIP (and

inherently TRIP simulated discharges). For this first experiment, a classical EnKF, without any localization treatment of the20

error covariance matrices [PHT ]e,k and [HPHT ]e,k, is conducted. This first experiment will be compared to the two next

experiments, SE1-diag and SE1-local, which will highlight the contributions and /or limitations of the chosen localization

approach. Finally, the two last experiments, SE2-local and SE3-local, will test the other possible control variables and the

reliability of the operator Zk. More particularly, the experiment SE2-local is based on the control vector option 2 (see Sec-

tion 3.1.1) that assimilates discharges to correct the final rive storage, and SE3-local is based on the control vector option 125

(see Section 3.1.1) that assimilates discharges to directly correct the ISBA-CTRIP discharges.

4 Results

4.1 Free run performances

The current section briefly presents the model performance without assimilation called the free run. As all in and ENVISAT

VS have been associated to a unique ISBA-CTRIP cell, it is possible to compare observed discharge at these stations to30
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corresponding ISBA-CTRIP simulated discharge. To begin with, a sample of 12 in situ stations, spread over the entire basin

(over the mainstream and the main tributaries) is selected. The location and the name of these stations is represented in Figure

4. Figure 5 compares ISBA-CTRIP free run discharges to in situ and ENVISAT discharges at the 12 stations over one year of

simulation (year 2009). From this comparison the following observations can be drawn:

- over the majority of cells where there are both an in situ and a virtual station, the two discharge time series are similar5

(but not identical, see Figure 5 1-3,5-6,8-9,12). These results are due to the fact that gauge discharges where directly

assimilated into the MGB-IPH hydrological model to correct the MGB-IPH estimated discharges (Paiva et al., 2013a).

Then, those same estimated discharges were used to calculate parameters of the rating curves between ENVISAT water

elevations and MGB discharges (Paris et al., 2016). Even though these rating curves have been derived from a model that

assimilated in situ data, ENVISAT-derived discharges depend essentially on the remotely-sensed water surface elevations10

variations (Paris et al., 2016). Therefore, ENVISAT discharges remain independent enough from in situ data.

- A strong difference between the in situ and ENVISAT discharges could indicate either that the rating curve parameters

were not correctly estimated or that in situ/ENVISAT/MGB-IPH discharges have strong errors. As an example, see

Figure 5 11 at Itaituba where the gauge discharge is discontinuous and is even equal to 0 for some dates. Another

example is the gauge discharge at Manicoré, in Figure 5 10 (Paris et al., 2016).15

- Finally, in most cases, the free run discharge is quite different from the observed discharge. At downstream mainstream

stations (at Manacapuru and Óbidos in Figure 5 panels 2 and 3), the ISBA-CTRIP model is not able to reproduce

flooding occurring between June to August. Therefore, in the free run, the discharge peak occurs earlier in the year and

the discharge variations in this period are faster than the observed discharge variations. Similarly, at most of right-bank

tributary stations, the free run discharge peak is higher than the observed discharge peak (see Figure 5 7-12). However,20

the seasonal cycle is well-reproduced for all these stations. These results illustrate the necessity to conduct the DA

experiments.

Then, Figure 6 displays the global performances of the free run. For each ENVISAT virtual stations (see Figure 6a) and each

in situ stations (see Figure 6b), the RMSEn (defined in Eq. 19) between the simulated and the observed discharges is calculated

and its value is indicated by a colour at the location of the station over the basin. The results are similar between ENVISAT25

and gauge discharges, confirming good concordance between the two discharges data sets. RMSEn show important deviations

in basin heads on most of the tributaries as well as at confluence between right-bank tributary and mainstream. Apart from

confluence and basin heads, the largest tributaries, such as the Negro and the Madeira, are well represented. Concerning global

statistics (see Eq. 20), RMSEf,o
global is equal to 71.12% compared to ENVISAT discharges and RMSEf,simu

global is equal to 68.96%

compared to gauge discharges. These deviations are likely due to atmospheric forcing, parametrization and modelling errors,30

especially floodplains parametrization. The DA experiments will focus on correcting the model outputs which result from those

uncertainties.
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4.2 Evaluation of the localization method

The first series of experiments assimilates ENVISAT discharges to correct the ISBA-CTRIP initial river stock (see the three

first rows in Table 3). They differ on the definition of the background error covariance matrices [PHT ]e,k and [HPHT ]e,k. The

experiment SE1-direct uses the complete stochastic matrix defined in Eq. B1 and B2. In experiment SE1-diag, these matrices

are processed such that covariance between two different CTRIP cells is set to 0 if the two variables are situated in two different5

CTRIP cells. Lastly, SE1-local is based on the localized version of the matrices presented in section 3.2.2. So, Table 4 displays

the global RMSEn (see definition in Eq. 20) for the three experiments compared to the free run global statistics. From Table 4,

we can see that the RMSE between the free run discharge and both the ENVISAT and the gauge discharge is reduced for all

experiments, showing that the data assimilation platform is working correctly. The SE1-diag experiment gives the worst results

when compared to both the ENVISAT discharge and the gauge discharge. Then, compared to ENVISAT discharges, SE1-local10

gives the best results by reducing the global RMSEn of more than 56% (49% for SE1-direct) while SE1-direct presents slightly

better global statistics than SE1-local when compared to gauge discharges (RMSEn are reduces by 16.5% for SE1-direct and

15.25% for SE1-local). Overall, the global statistics are more reduced when compared to ENVISAT discharges than to gauge

discharges. This is due to the fact that gauge discharges are not directly assimilated, unlike ENVISAT discharges. The next

subsections present and analyse in more details results from each experiment.15

4.2.1 SE1-direct results

Figure 7 displays the mean analysis RMSEn (RMSEna,†i defined in Eq. 22) for each ENVISAT virtual stations (Figure 7a) and

for each in situ stations (Figure 7b). First of all, results between the ENVISAT RMSEn and in situ RMSEn are similar, due to the

similarity between ENVISAT and gauge discharge time series at most stations. According to Figure 7a, the assimilation worked

quite well along the mainstream and the main left-bank tributaries, namely the Negro river, the Japurá and the Icá, with several20

stations where RMSEn are below 20%. The assimilation performances are more moderate over right-bank tributaries where

RMSEn are mostly between 20% and 60%. Over the entire basin, RMSEn remain high in all basin heads, along small tributaries

and also at most confluences, see for example the Jutaí-Solimões confluence (RMSEn above 60%), Purus-Solimões/Madeira-

Solimões/Tapajós-Amazon confluences (RMSEn above 40%) or Xingu-Amazon confluence (RMSEn above 80%).

Figure 8 compares the mean analysis discharge in red line at the 12 stations previously introduced in section 4.1. For most25

stations, we can see that the mean analysis discharges recovers a seasonal cycle closer to the observations than the free run. It

is especially true for stations along the mainstream, namely Sao Paulo de Olivenca, Manacapuru and Óbidos (Figure 8, panels

1-3). Also, for stations along right-bank tributaries (Figure 8, panels 7-12), the analysis seasonal discharge peak is lowered

compared to the free run seasonal discharge peak and fits better the observations. This shows the good functioning of the

assimilation platform.30

Nevertheless, mean analysis discharge for all displayed stations presents a chaotic behaviour with numerous local minima

and maxima. We can assume that this behaviour is present for all CTRIP cells in the basin. Moreover, for a given cell, most

of these sudden variations are asynchronous with ENVISAT observation dates for this cell. For example, at Serrinha on the
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left panel in Figure 9, an ENVISAT observation is available on the 4-th day of the 35-days-repeat period when big off-peaks

appear on the 25-th day of the same 35-days-repeat period. The right panel on Figure 9 displays the Serrinha station (red circle)

with all ENVISAT observations available during the 25-th day (yellow circles). The inspection of contribution of all these

observations to the analysis control variable at Serrinha (not shown here), we find that it is the observation number 4 that have

the highest impact on the analysis (and not the observation number 5, as it could be expected). This observation 4, located on5

a very small Negro tributary, has low discharge value and is responsible for the low corrected discharge at Serrinha after the

assimilation step.

These abrupt variations are completely artificial and directly result from the assimilation processing. Indeed, for days with

unrealistic peaks/off-peaks, there are multiple ENVISAT observations available on the basin, which impact many cells all over

the basin, even if they are located on other sub-catchments or tributaries. This is due to the construction of the error covariance10

matrices [PHT ]e,k and [HPHT ]e,k. As these matrices are generated from the ensemble with a limited number of members,

some spurious elements may appear in the matrices and link two cells that are very distant in the basin or even situated on

different sub-basin. This first experiment highlights the necessity to treat the error covariance matrices to limit such spurious

elements.

4.2.2 SE1-diag results15

In the SE1-diag experiment, the error covariance matrices are forced to be diagonal. The objective of such processing on the

error covariance matrices is to limit the impact of a given observation only to the observed cell. According to Table 4, the

assimilation experiment allowed to reduce the global ENVISAT an in situ RMSE when compared to the free run. However,

among all three experiments, it is the one which gives the worst global performances. In this experiment, the chaotic behaviour

of the mean analysis discharge is not present any more (not shown here). Nevertheless, the mean analysis discharge remains20

close to the free run discharge except for regular peaks/off-peaks at an observation time when it is closer to the observed

discharge. Therefore, the information brought by only one local observation is not enough. With the localization (see next

section), which results are presented in the following section, the information of several neighbouring VS is used and should

more constraint the analysis discharge.

4.2.3 SE1-local results25

SE1-local uses the localization treatment presented in section 3.2.2. Figure 10 displays the RMSEn evolution from the SE1-

direct to the SE1-local experiment for both ENVISAT and gauge discharge. Green colours indicate that the SE1-local ex-

periment reduced the RMSEn compared to the SE1-direct experiment while yellow to red colours indicate that the SE1-local

experiment increased them. The RMSEn is mostly improved over the entire basin and more particularly along major right-bank

tributaries. However, the RMSEn are generally degraded along the mainstream. These maps show the good performances of the30

localization method over tributaries. Now, it appears that, compared to gauge discharges (see Figure 10b), the SE1-direct ex-

periment gives better results, especially along the mainstream. Indeed, Table 5 details the local RMSEna,†i at ENVISAT/insitu

stations located along the mainstream and confirms that SE1-direct gives better results. As the global RMSEn is defined as the
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mean of RMSEn weighted by the maximum discharge at the station (see Eq. 20), this explains why the SE1-direct experiment

gives a better global RMSEn compared to gauge discharge.

Then, Figure 11 displays the mean analysis discharge for the SE1-local compared to the free run discharge, with correspond-

ing ENVISAT discharge and gauge discharge, at the twelve in situ stations already used in Figures 5 and 8. Except for stations

along the mainstream (Figure 11,1-3) and also at Boa Sorte (Figure 11,12), the analysis discharge shows less sharp variations.5

From these results, we can say that the localization scheme is necessary and improves the assimilation.

4.2.4 Discussions on the localization scheme

The localization mask has been built to avoid the effect of spurious correlations between distant cells or ones situated on

different sub-basins. The current localization scheme meets this constraint. Indeed, results for the SE1-local experiment are

globally improved compared to the previous experiments.10

Nevertheless, along the mainstream, the initial experiment without localization gives better results. We can interpret that by

the fact that discharge along the mainstream integrates hydrological processes from all the upstream basins. So when, in the

SE1-local experiment, we limit the impact of the observation to only close cells, we suppress part of the information brought

by distant cells to mainstream cells.

Therefore, the current localization mask should be improved. The main difficulty here is to determine the size of the influence15

area for each observation. Currently, this size is predetermined and is constant in time according to averaged flow velocity. A

potential development is to consider an influence area size that can vary in time, according to the hydrological season (high-

flow/low-flow season). For example, during high-flow season, the flow velocity is higher so is the size of the influence area.

Thus, the error covariance matrices would depend on the river time and space dynamic (as if there were defined from a well-

sampled and significant ensemble).20

4.3 Impact of the chosen control variables

In the second series of experiments, all of them uses the localization scheme (see section 3.2.2) to correct different types of

state variables. After assimilating ENVISAT discharge to correct river initial storage (SE1-local experiment), we are testing in

a second experiment the assimilation of ENVISAT discharge to correct river final storage (SE2-local) and, in a last experiment,

the assimilation of ENVISAT discharge to directly correct river discharge (SE3-direct). These two other experiments need to25

use an empirical relationship (see Eq. 3.1.1) linking simulated river final storage to simulated discharge. For the SE2-local

experiment, the formula is used to convert analysis final rive storage to discharge. Indeed, experiment statistics are based on

discharge and, when correcting the final river storage, we do not have an equivalent discharge. For the SE3-local experiment,

the formula is used during the assimilation steps to convert the analysis discharge into an equivalent river storage to propagate

in time the corrected discharge.30

Table 6 displays the global RMSEn for the three experiments compared to the free run global statistics. For all experiments,

the assimilation enables to improve the RMSEn compared to the free run. Also, compared to both ENVISAT and gauge

discharge, SE3-local experiment (discharge is the control variable) gives the best results, followed by SE1-local experiment
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(initial river storage is the control variable). Finally, it is SE2-local experiment (final river storage is the control variable) that

gives the worst results, even if it is still improving the RMSEn compared to the free run.

Figures 12-13 display, for each ENVISAT (Figure 12a and 13a) and for each in situ stations (Figure 12b and 13b), mean

RMSEn difference (in percent) between SE1-local experiment and SE2-local (Figure 12) and between SE1-local experiment

and SE3-local experiment (Figure 13). Figure 12 shows a slight increase of the RMSEn in SE2-local experiment globally5

over the Amazon basin except for some basin heads. Also, the upstream part of the mainstream is more degraded (RMSEn

increased of more than 60%). These degraded results imply that the assimilation of discharges may not be adapted to correct

the final river stock. However, we need to keep in mind that the analysis discharges are determined from the analysis final river

stock using Eq. 3.1.1. The bad SE2-local experiment results can either be due to bad assimilation results or to an unadapted

formula to convert the final river storage into discharge. On the other hand, SE3-local experiment gives better general results.10

As in Table 6 and Figure 13, the SE3-local experiment shows a global improvement of the RMSEn compared to the SE1-local

experiment (apart from a few cells upstream the Amazon mainstream). Indeed, even if Eq. 3.1.1 is still used to convert the

analysis discharges back into river stock, it is used within the assimilation experiment (and not afterwards as for the SE2-local

experiment). Therefore, the formula uncertainties are accounted for within the EnKF. Also, as the observed discharges are

directly used to correct the simulated discharge, it appears logical that the assimilation gives better results as the link between15

the observed and the simulated variables is immediate.

5 Discussions

From the different approaches tested in this paper, it appears that there is not one specific configuration that gives the best

results for all rivers, when compared to both ENVISAT and gauge discharges. On the contrary, the most effective configuration

depends on the size and location of the rivers. Along the river mainstream (the Solimões and the Amazon in Figure 1a), the20

SE1-direct experiment clearly gives the best results (see the 3 first rows in Table 7). When the contribution of observations on

tributaries is suppressed with the localization, the assimilation is less effective along the mainstream cells (see pannels 1 to 3 in

Figure 8 for SE1-direct and compare to the same pannels in Figure 11 for SE1-local). This could be due to the fact that discharge

along the mainstream is the results of hydrological processes from the entire drainage area. So, using all available observations

helps the EnKF to correct the most efficiently discharge on the mainstream. However, it is different for cells along tributaries.25

As presented on Table 7, the localization method improve assimilation results for most cells along tributaries compared to

the SE1-direct experiment. Along these cells, the localization allows to suppress the impact of observation from different sub

basins, especially the ones that are not connected to these cells. [Referee 1 - Comment #13] Finally, the comparison between

the two experiments with localization (i.e. SE1-diag and SE1-local) shows that the local-experiment (SE1-local) performs

better than SE1-diag. This result was expected, as the localization mask is more realistic in SE1-local, because there are more30

than one cell impacted by the correction from one observation, contrarily to SE1-diag.

Nevertheless, among all experiments (see Table 3), the one producing the best results globally is SE3-local where the

localization method is used [Referee 2 - Minor Comment #2] to directly correct the discharge. Therefore, the SE3-local
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configuration is used for an 8 years experiment, from September 25th 2002 (first date with and ENVISAT observation on the

study domain) to September 24th 2010 (last date with an ENVISAT observation). At the basin scale, RMSEn between model

outputs and gauge discharges is reduced by 27.11% (it decreases from 96.71% to 70.49%) and RMSEn between model outputs

and ENVISAT discharges is reduced by 63.28% (it decreases from 75.10% to 27.58%). RMSEnf,situ
global is high, because a large

fraction of in situ stations (25 out of 108) are situated along very small tributaries or at basin heads, where the local RMSEnf,situ
5

is largely over 100%. These very high RMSEnf,situ have a huge impact on the global RMSEnf,situ
global (despite the weighting used

to calculate RMSEnf,situ
global). If the statistics are computed using only cells with a RMSEnf,situ below 100%, we find that the

global RMSEnf,situ
global is reduced by 14.66% (it goes from 49.80% to 42.50%) and the RMSEnf,oglobal is reduced by 50.21% (it goes

from 51.74% to 25.76%). This shows the limitation of this assimilation scheme, as ISBA-CTRIP resolution (roughly 50 km by

50 km) does not well simulate basin heads (rivers are too small to be correctly represented in coarse grid).10

Figure 14 displays, for the 12 in situ stations (see Figure 4 for their locations) already used in Figures 5 and 8, the mean

analysis discharge over the whole experiment time period (red line), which is compared to the free run discharge at the station

(blue line), the ENVISAT discharge (green markers) and the gauge discharge (black markers). Overall, analysis discharge is

quite close to observed discharges (ENVISAT and in situ).

However, despite the use of the localization, the analysis discharge keeps presenting a quite chaotic behaviour : more par-15

ticularly at Sao Paulo de Olivenca (Figure 14, panel 1), Manacapuru (Figure 14, panel 2) and during high flow season along

right-bank tributaries (Figure 14, panel 7 to 12). This shows the limit of assimilating 35-days repeat period ENVISAT obser-

vations. If no data is missing at a given VS, it means that there will be, at the most, 11 available observations during one year.

Moreover, in a state estimation context, only the model output state is corrected and not the model parametrization or, in our

set-up, forcings. Therefore, if the model is not constrained by direct or neighbouring observations, it naturally goes back to20

free run discharge. The performance of the assimilation, with respect to the daily in situ data, is therefore often limited by the

low ENVISAT observations frequency. In future works, it will be interesting to study the assimilation of similar data with a

higher frequency, such as the JASON-2 altimeter data (which has a 10 days repeat period, but a coarser spatial sampling).

6 Conclusions and perspectives

This study presents, over the Amazon basin, the assimilation of a satellite-derived discharge product into a large-scale hydro-25

logical model to correct its state variables. The remotely-sensed discharge data is derived from the ENVISAT nadir altimeter

and is assimilated into the ISBA-CTRIP model using an Ensemble Kalman Filter. Five experiments were carried out over the

year 2009. For all experiments, the assimilation were able to reduce the modelling errors compared to both observed and gauge

discharges.

The first experiments tested different definition of the background error covariance matrices, where the influence of a given30

observation is either reduced to the only observed cell (SE1-diag), or limited to a few close cells on the hydrological network

(SE1-local), or not limited and can potentially impact the entire basin (SE1-direct). Results showed that the complete stochastic

matrices gave the best results along the mainstream and the localization treatment appeared necessary along the tributaries. The
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need for the localization is explained by the spurious elements in the error covariance matrix due to the limited ensemble size

and the methodology used to generate it.

The last tests compared the corrections of different state variables: the river initial storage (SE1-local), or the river final

storage (SE2-local), or the river discharge (SE3-local). The main difficulty with this different type of variables is, on one hand,

the relationship from the control to the observed variables (gathered in the observation operator) and, on the other hand, the5

reciprocal relationship to generate inputs for the next DA cycle. Results showed that correcting river discharge gives the best

global results over the entire basin, as the link between the observed and the corrected variables is the most straightforward.

Therefore, the ultimate experiment (SE3-local-long) uses the SE3-local configuration over the whole ENVISAT observation

period (from Sept 2002 to 2010) and confirms the possibility to use such low-resolution remotely-sensed data into a large-scale

model.10

These experiments offer several perspectives. First, the localization treatment could be improved by combining the three

tested approaches according to the cell’s position on the river: discharge correction for cells along the mainstream [Referee

2 - Major Comment #5] should be impacted by all upriver observations, while correction for cells on tributaries should be

impacted only by close observations along the same sub-catchment. Moreover, the size of the area of influence for a given

observations could also vary in time according to the season (high flow/low flow). [Referee 1 - Comment #12] With ulterior15

developments of the localization method, new challenges may appear such as the risk of imbalance, already studied in the field

atmospheric DA (e.g. Greybush et al., 2011). The analysis of imbalance may need to be considered in future works.

A main limitation of assimilating ENVISAT data is its low repeat period (one observation every 35 days, at best). Indeed,

corrected discharges often present strong sudden variations between unobserved and observed dates, as the model goes back

to its free run when it is not constrained by an observation. However, there are other satellite altimetry missions with different20

repeat period. For example, JASON-2 (10-days repeat period from June 2008 to October 2016), JASON-3 (10-days repeat

period, launched in January 2016), Sentinel-3A (27-days repeat period, launched in February 2016) or Sentinel-3B (27-days

repeat period, which should be launched in 2018). Also, the incoming SWOT (Surface Water and Ocean Topography, launch

scheduled for 2021) wide-swath altimetry mission will also provide a remotely-sensed discharge product. SWOT will have a

21 days repeat period, with an almost global spatial coverage thanks to its two 50 km-swaths. All this data could be combined25

with ENVISAT data (during the overlapping period) within the assimilation scheme to have a denser network of observation

over the study domain, [Referee 2 - Major Comment #7] to get a better estimate of discharge (similar to a reanalysis) over a

multi decadal time frame (Tourian et al., 2017).

[Referee 1 - Comment #14] To improve these DA results, several aspects could be investigated. For example, it could be

studied if a more realistic ensemble method generation could be helpful. In the present study, only the model initial condition30

and the precipitation forcing are perturbed to generate the background forecast ensemble. More uncertainties in this ensemble

could be added by also perturbing CTRIP parameters and/or ISBA outputs. Another DA aspect to look into is the potential

use of a smoothing data assimilation algorithm, such as the Ensemble Kalman Smoother (Evensen and Leeuwen, 2000). A

smoother could help to have less "variability" in the corrected discharge. Finally, the assimilation scheme presented in this
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study could be applied to other river basin in the world, as ISBA-CTRIP is a global LSM. However, more work is needed to

apply the DA platform at global scale.

Code and data availability. [Editor Comment #2] The CTRIP code is open source and is available as a part of the surface modeling platform

called SURFEX, which can be downloaded at http://www.cnrm-game-meteo.fr/surfex/. SURFEX is updated approximately every 3 to 6

months and the CTRIP version presented in this paper is from SURFEX version 7.3. If more frequent updates are needed, please follow the5

procedure to obtain a SVN or Git account in order to access real-time modifications of the code (see the instructions at the previous link).The

ISBA-CTRIP model is coupled to the DA codes via the OpenPalm coupler available at http://www.cerfacs.fr/globc/PALM_WEB/. To get the

DA routines coupled to ISBA-CTRIP with OpenPalm, please directly contact C. Emery (charlotte.emery@jpl.nasa.gov) or S. Biancamaria

(sylvain.biancamaria@legos.obs-mip.fr). To obtain the GSWP3 forcings, please refer to the following url http://search.diasjp.net/en/dataset/

GSWP3_EXP1_Forcing (DOI:doi:10.20783/DIAS.501). The ENVISAT-based discharge data are available on the by contacting A. Paris10

(aparis@cls.fr). Finally, the in situ discharge used to validate the results are available on the ANA website (http://hidroweb.ana.gov.br/

default.asp).

Appendix A: Equations to compute river storage from discharge using the Manning formula

This appendix provides more details and the approximation used to derive Eq. 3.1.1. This equation allows converting simulated

discharges Qa
i,k to equivalent final river storage Sa

end,k,i using the Manning formula. We chose to invert Eq. 3. Assuming that15

the discharge estimated by ISBA-CTRIP Qa
i,k is the instantaneous flow at the final time of the integration window:

Qa
k,i,[kg.s−1] = L−1vSa

end,k,i,[kg] ⇐⇒Qa
k,[m3.s−1] = ρ−1L−1vSa

end,k,i,[kg].

To ease the notations, we will skip the units in the following equations knowing that discharges are expressed in m3.s−1 and

water stock in kg. Then, ∀ k, ∀ i:

Qa
k,i = L−1ρ−1s1/2n−1

(
WhS

W +2h−S

)2/3

Sa
end,k,i,20

We suppose : W >> hS

Qa
k,i ≈ L−1ρ−1s1/2n−1h2/3Sa

end,k,i,

Yet S = ρLWhS , so

Qa
k,i ≈ L−5/3ρ−5/3W 2/3s1/2n−1

(
Sa

end,k,i

)5/3
,

(A1)25

Finally giving Eq. 3.1.1:

Sa
end,k,i ≈ ρLW 2/5s−3/10n3/5

(
Qa

k,i

)3/5
(A2)

with ρ [m3.kg−1] the water density, L [m] the river section length, W [m] the river width, s [-] the riverbed slope and n

[s.m−1/3] the Manning coefficient in the riverbed. Then, for experiments with discharges as control variables, the formula in

25
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Eq. 3.1.1 will be used to turn back corrected discharges into river stock and propagate the model uo to the next observation

time.

Appendix B: Definition of error covariance matrices

The background error covariance matrices [PHT ]e,k et [HPHT ]e,k are estimated from the definition suggested by Evensen

(2004); Moradkhani et al. (2005); Durand et al. (2008) such that:5

[PHT ]e,k = (ne − 1)−1
(
Xb

e,k −Xb
•,k.1

T
ne

)(
H(Xb

e,k)−H(Xb
•,k).1

T
ne

)T
, (B1)

and

[HPHT ]e,k = (ne − 1)−1
(
H(Xb

e,k)−H(Xb
•,k).1

T
ne

)(
H(Xb

e,k)−H(Xb
•,k).1

T
ne

)T
, (B2)

with Xb
e,k the control matrix containing the ne control vector xb,[l]

k , l = 1 . . .ne from the background ensemble such that

Xb
e,k =

[
x
b,[1]
k . . . x

b,[Ne]
k

]
10

and H(Xb
e,k) the same control matrix expressed in the observation space such that

H(Xb
e,k) =

[
H(x

b,[1]
k ) . . . H(x

b,[ne]
k )

]
.

Xb
•,k and H(Xb

•,k) are the ensemble sample expectations of the control matrix Xb
e,k and its mapping on the observation

space H(Xb
e,k) respectively such that

Xb
•,k =

1

ne

ne∑

l=1

x
b,[l]
k H(Xb

•,k) =
1

ne

ne∑

l=1

H(x
b,[l]
k ).15

The vectors dimension are nx and ny,k respectively and 1ne
is a vector of size ne containing only 1s.

Appendix C: Perturbations of precipitations

The ensemble of perturbed precipitation fields F̃e is defined such that:

F̃e =
{
F̃[1], F̃[2], . . . F̃[ne]

}
=
{
ϕ
[1]
p .F, ϕ

[2]
p .F, . . . ϕ

[ne]
p .F

}
, (C1)

where:20

- F is the two-dimensional field of precipitation forcing before perturbation (with a time-step of 3 hours),

- F̃[l], for l = 1 . . .ne, is the l-th perturbed precipitation field,

- ϕ
[l]
p , for l = 1 . . .ne, is the l-th multiplying uniformly-distributed field of F to generate F̃[l].

26



The precipitation field F is then perturbed by applying a random multiplying field such that

ϕ[l]
p = (1− ηF,[l])+ 2U

[l]
F
.ηF,[l], (C2)

where

- U
[l]
F

is random field following a uniform law between 0 and 1,

- ηF,[l] is a scalar representing the relative error of the precipitations.5

Therefore, ϕ[l]
p is a random field following a uniform law between (1− ηF,[l]) and (1+ ηF,[l]).

The precipitation relative error ηF quantifies the uncertainties into the precipitation intensity. The variable ηF is different

for each member of the ensemble and follows a Gaussian law with expectation ηF = 30% and standard deviation σηF = 0,1%

(Clark et al., 2008; Paiva et al., 2013b).

The fields U[l]
F

, for l = 1 . . .ne, allow to introduce a time and space correlation in the precipitation error and are generated10

with the algorithm presented in Evensen (2003). This algorithm generates two-dimensional Gaussian random fields S[l] with

a zero-mean and a space-correlation length of e−1. These Gaussian random fields are turned into uniform random fields by

applying the complementary error function erfc():

U
[l]
F,k′ =

1

2
erfc

(
S
[l]
k′√
2

)
, (C3)

where k′ is the atmospheric forcing proper time-step, equal to 3 hours in ISBA-CTRIP, and shorter than the ISBA-CTRIP15

outputs time-step, equal to 24 hours. The space-PDF of U[l]
F

decreases of e−1 when the distance is equal to the space-correlation

length τx (here, the x letter exceptionally denotes the spacial dimension). For the simulations, τx is fixed to 1,0◦ (Clark et al.,

2008; Paiva et al., 2013b) and is invariant from one member to another and from one assimilation cycle to another.

For the time correlation, the parameter ϑ[l]

ϑ[l] = 1− ∆k′

τ
[l]
k

(C4)20

determines the time correlation length between the different fields S
[l]
k′ . It is concretely generated by combining the random

field from the previous time step S
[l]
k′−1 and an auxiliary random field W

[l]
k′ with the same properties such that:

S
[l]
k′ = ϑ[l]S

[l]
k′−1 +

√
1− (ϑ[l])2W

[l]
k′ , (C5)

with ∆k′ = 3 hours is the forcing time step and τ
[l]
k the time constant characterizing ϑ[l]. ϑ[l] = 0 generates a white noise

(which means a perturbation uncorrelated in time) while ϑ[l] = 1 makes the perturbation constant in time. The variable τk takes25

a different value for each member as it follows a gaussian law with an expectation equal to τk = 12 hours (or 43200 seconds)

and a standard deviation στk = 3 hours (or 10800 seconds). These values are chosen so that the time correlation has effects

during assimilation window of one day. All variables used to generate the ensembles with their value are summarized in the

Table A1.
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Figure 1. (a) The Amazon basin main tributaries and rivers with the underlying topography from SRTM. (b) Schematic representation of

ISBA-CTRIP system for a given grid cell. ISBA surface runoff (QISBA,sur) flows into the river/surface reservoir S, ISBA gravitational drainage

(QISBA,sub) feeds groundwater reservoir G. The surface water is transferred from one cell to another following the TRIP river routing network.
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Figure 2. Map of hydro-geomorphological zones defined over the Amazon basin.
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Figure 3. General framework of the DA method at a k-th assimilation cycle. Figure reads from top to bottom and from left to right. The

three main variables involved are the river initial storage, the river final storage and the river discharge. M[k−1,k] is the model operator that

maps the initial river storage into final river storage, Zk is the diagnostic operator and Hk is the observation operator that maps simulated

discharge into observed discharge for assimilation.
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Figure 4. Map of the twelve in situ stations used to evaluate assimilation performance: 1. São Paulo de Olivenca (Solimões), 2. Manacapuru

(Solimões), 3. Óbidos (Amazonas), 4. Ipiranga (Putumayo/Icá), 5. Serrinha (Negro), 6. Uaicás (Branco), 7. Porto Seguro (Jutaí), 8. Santos

Dumont (Juruá) 9. Lábrea (Purus), 10. Manicoré (Madeira), 11. Itaituba (Tapajós), 12. Boa Sorte (Xingu).
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Figure 5. Comparison between ISBA-CTRIP free run (blue line), ENVISAT-derived observed discharges (green markers) and ANA gauge

discharges (black dots) over the year 2009. For each panel, the x-axis represents time (in days) and the y-axis represents discharge (in

m3.s−1).
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Figure 6. RMSEn for the free run simulation compared to the ENVISAT discharges (a) and the gauge discharges (b).
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Figure 7. Analysis RMSEn for the SE1-direct experiment with respect to (a) the ENVISAT discharge and (b) gauge discharge.
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Figure 8. SE1-direct ensemble mean analysis discharge (red line) compared to the free run discharge (blue line), the ENVISAT observed

discharges (green markers) and the measured gauge discharges (black dots) over the year 2009. For each panel, the x-axis represents time (in

days) and the y-axis represents discharge (in m3.s−1).
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Figure 9. (Left) Same as Figure 8, panel 5 but only over the 35 first day of simulation. (Right) Location of all active ENVISAT VS on the

25-th day of the assimilation (yellow circles) compared to the location of the Serrinha stations (red circle).
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Figure 10. Analysis RMSEn difference between SE1-direct and the SE1-local experiment with respect to (a) the ENVISAT discharge and

(b) gauge discharge. Negative RMSEn differences (green colours) mean that the results of the SE1-local experiment are better than the SE1-

direct results at the given CTRIP cell. Positive RMSEn differences (yellow, orange and red colours) mean that the results of the SE1-direct

experiment are better that the SE1-local results at the given CTRIP.
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Figure 11. SE1-local ensemble mean analysis discharge (red line) compared to the free run discharge (blue line), the ENVISAT observed

discharges (green markers) and the measured gauge discharges (black dots) over the year 2009. For each panel, the x-axis represents time (in

days) and the y-axis represents discharge (in m3.s−1).
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Figure 12. Analysis RMSEn differences between SE1-local and SE2-local experiments with respect to (a) the ENVISAT discharge and (b)

gauge discharge.
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Figure 13. Analysis RMSEn differences between SE1-local and SE3-local experiments with respect to (a) the ENVISAT discharge and (b)

gauge discharge.
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Figure 14. SE3-local ensemble mean analysis discharge (red line) compared to the free run discharge (blue line), the ENVISAT observed

discharges (green markers) and the measured gauge discharges (black dots) from September, 25th 2002 et for 8 years. In each panel, the

x-axis represents time (in days) and the y-axis represents discharge (in m3.s−1).
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Table 1. Constant values used to generate the background control ensemble Xb
e,k, the observation ensemble Yo

e,k and the model observation

ensemble H(Xb
e,k). k is the assimilation index and s is the basin zone index.

Variable Description Value Eq.

ne Ens size 101 -

nx Control space size 2028 -

ny Obs space size ∈ [0,15] -

ηo Obs error 0,2 9

σηx
s,k

Error s= 2,3, k = 1 : 0,25

16
on s= 2,3, k > 1 : 0,05

initial s= 1,4 : 9, k = 1 : 0,10

condition s= 1,4 : 9, k > 1 : 0,02
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Table 2. Size of the influence area for the localization process.

Zone
Real Max Dist Rounded Max Dist Influence Area

[km] [km] [number of cells]

1 84.16 100 2

2 174.24 200 4

3 233.80 250 5

4 93.29 100 2

5 82.03 100 2

6 80.03 100 2

7 69.57 100 2

8 87.86 100 2

9 67.02 100 2
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Table 3. Presentation of the different state estimation experiments. The "SE" acronym stands for "State Estimation", the index "1", "2" or "3"

are to differentiate the control variables ("1"=initial river storage, "2"=final river storage and "3"=discharge) and the suffix "direct", "diag"

and "local" indicates the localization scheme ("direct"=without localization, "diag"=diagonal error covariance matrices and "local"=with

localization).

Exp. Name Control Variable Localization scheme

SE1-direct initial storage No - [PH
T ]e,k and [HPH

T ]e,k defined in Eq. B1-B2

SE1-diag initial storage No - Diagonal [PH
T ]e,k and [HPH

T ]e,k

SE1-local initial storage Yes - see Section 3.2.2

SE2-local final storage Yes - see Section 3.2.2

SE3-local discharge Yes - see Section 3.2.2
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Table 4. Global statistics for experiments with different the localization scheme.

Statistics
Free run SE1-direct SE1-diag SE1-local

Units
(∗= f ) (∗= a) (∗= a) (∗= a)

RMSE∗,o
global 8.3795× 103 3.2110× 103 4.8626× 103 2.4377× 103 m3.s−1

RMSEn∗,o
global 71.12 36.30 44.30 31.16 %

RMSE∗,situ
global 7.1478× 103 4.2489× 103 5.4300× 103 4.1542× 103 m3.s−1

RMSEn∗,situ
global 68.96 57.54 63.12 58.44 %
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Table 5. Local RMSEna,situ
i for the SE1-direct and SE1-local experiments at in situ stations along the mainstream (from the most upstream

to the most downstream).

Station
RMSEna,situ

i

SE1-direct SE1-local

Tamishiyacu 100.97 92.54

Tabatinga 22.24 38.81

São Paulo de Olivenca 21.77 34.86

Itapéua 17.20 28.58

Manacapuru 18.15 30.38

Jatuarana 19.72 31.01

Óbidos 16.60 28.11
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Table 6. Global statistics for experiments with different types of control variables.

Statistics
Free run SE1-local SE2-local SE3-local

Units
(∗= f ) (∗= a) (∗= a) (∗= a)

RMSE∗,o
global 8.3795× 103 2.4377× 103 4.3069× 103 2.2298× 103 m3.s−1

RMSEn∗,o
global 71.12 31.16 36.37 24.73 %

RMSE∗,situ
global 7.1478× 103 4.2489× 103 5.4300× 103 4.1542× 103 m3.s−1

RMSEn∗,situ
global 68.96 58.44 61.69 54.46 %
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Table 7. Statistics between analysis and in situ stations for the different assimilation experiments

Statistics
RMSEn∗,situ

i

Free run SE1-direct SE1-local SE3-local

1. São Paulo de Olivenca 49.67 21 .77 34.86 40.98

2. Manacapuru 36.01 18 .15 30.38 30.76

3. Óbidos 34.65 16 .60 28.11 28.33

4. Ipiranga 34.63 35.43 32 .75 33.54

5. Serrinha 20 .65 26.82 23.99 28.24

6. Uaicás 79.53 51.28 51.33 48 .92

7. Porto Seguro 44.16 46.32 39.81 38 .93

8. Santos Dumont 28.37 35.54 27 .55 33.63

9. Lábrea 50.62 40.39 40.33 39 .86

10. Manicoré 72.36 35 .04 54.38 61.96

11. Itaituba 43 .33 66.43 47.50 46.23

12. Boa Sorte 149.38 58 .99 112.58 82.75
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Table A1. Constant values used to perturb the precipitation fields. k is the assimilation index.

Variable Description Value Eq.

τx [◦] Precip spatial corr. 1.0

ηF Precip relative error mean 0,3 C2

σηF Precip relative error mean 0,1 C2

τk [s] Precip temp corr mean 43200 C4

στk [s] Precip temp corr std 10800 C4
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