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Response to the reviewers’ comments 5 

We are thankful to the Editor, Dr. Shraddhanand Shukla, and the reviewers for their thorough review of 
manuscript hess-2017-514. We have considered each comment and suggestion made by the reviewers when 
revising our manuscript.  Below we provide a point-by-point response to each of the comments. The 
reviewers’ comments are shown in blue font and our response follows immediately after that.  
 10 
RESPONSE TO EDITOR’S COMMENTS 
 
Comment from the editor: 1) Please do not exclude the summary/general statements (the first paragraph) 
made by the reviewers from your response. Please submit a revised version of your response that includes 
summary statements made by each of the reviewers. 15 
Response to the editor: We have now added the summary statement made by each reviewer in the “Response 
to Reviewer” section. 
 
Comment from the editor: 2) Reviewer #2, Comment #4: I do not think that dropping climate variability 
from this statement is fair. My suggestion would be to say something to the affect that both climate variability 20 
and climate change contribute to increased exposure increased exposure from expanding urbanization, and 
sea level rise are increasing.  
Response to the editor: As suggested, we have now modified the sentence in P1 L30 to read as follows: 
“Both climate variability and climate change, increased exposure from expanding urbanization, and sea level 
rise are increasing the frequency of damaging flood events and making their prediction more challenging 25 
across the globe.” 
 
Comment from the editor: 3) Reviewer #2, Comment #10: Please specify here which comment of the 
reviewer #1 is similar to this comment, which you have already responded. 
Response to the editor: We now indicate that our response to Reviewer #2 Comment #10 is similar to our 30 
response to Reviewer #1 Comment #3. 
 
Comment from the editor: 4) Reviewer #2, Comment #11: It is not clear to me how the revised sentence 
add any clarity. My guess is that the reviewer would like you to be more specific about the metric score use 
for making this statement and perhaps also mention if the reliability improves for certain category of events. 35 
Response to the editor:  We used the reliability diagram to quantify the reliability of the forecasts. The 
reliability diagram shows the full joint distribution of forecasts and observations to reveal the reliability of 
the probability forecasts.  Response to Comment #11 from Reviewer #2 now reads as follows: “We also 
computed reliability diagrams, as determined by Sharma et al. (2017),  for the two postprocessors (plots not 
shown) and found that QR displays better reliability than ARX(1,1) across lead times, basins, and seasons.” 40 
This information is incorporated in P11 L3-5 of the revised manuscript.  
 
Comment from the editor: 5) Reviewer #3, Comment #1: Please provide a reference or example for your 
statement "since this is a temporal resolution commonly used in operational forecasting in the U.S." 
Response to the editor: As suggested, a link to the website from Advanced Hydrologic Prediction Center is 45 
added. Response to Comment #1 from Reviewer #3 now reads as: “We also note that we use 6-hourly 
accumulations since this is the resolution of the GEFSRv2 data after day 4 and since this is a temporal 
resolution often used in operational forecasting in the U.S 
(http://water.weather.gov/ahps2/hydrograph.php?wfo=bgm&gage=cinn6).”  This information is 
incorporated in P7 L3-6 of the revised manuscript. 50 

http://water.weather.gov/ahps2/hydrograph.php?wfo=bgm&gage=cinn6)
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Comment from the editor: 6) Reviewer #3, Comment #4: I am not satisfied with this response, my guess 
would be that the reviewer may not be either. Why highlight the difference in the model structure if it has no 
bearing on your results? Also there are of course other previous studies that have used distributed models. 
Response to the editor: We understand the point of the reviewer and value the comment. However, we did 5 
conduct a very exhaustive literature review. We found that most, if not all, studies that use GEFS data as 
forcing are with lumped or semi-distributed models. The few studies that use a distributed model tend to use 
ECMWF forcing, not GEFS. Even though we do not emphasize the effect of model structure in the 
manuscript, the use of a distributed model affects quite a bit the way the forcing is used for both the 
streamflow simulations and forecasts. Hence, we still think that it is worth mentioning that this is point of 10 
distinction with previous studies. 
 
Comment from the editor: 7) Reviewer #3, Comment #8: Please make sure to provide more details 
regarding the forcing. For example please briefly mention the method, sources of observations (e.g. station 
or satellite or both?), which other studies have used the data before and how it was validated. 15 
Response to the editor: The information requested by the editor is already included in the original 
manuscript. The text in the original manuscript reads: “Both the MPEs and gridded near-surface air 
temperature data at 4 x 4 km2 resolution were provided by the NOAA’s Middle Atlantic River Forecast 
Center (MARFC) (Siddique and Mejia 2017). Similar to the NCEP stage-IV 5 dataset(Moore et al., 2015; 
Prat and Nelson, 2015), the MARFC’s MPEs represent a continuous time series of hourly, gridded 20 
precipitation observations at 4 x 4 km2 cells, which are produced by combining multiple radar estimates and 
rain gauge measurements. The gridded near-surface air temperature data at 4 x 4 km2 resolution were 
developed by combining multiple temperature observation networks as described by Siddique and Mejia 
(2017).” This information can be found in P4 L8-13 of the revised manuscript.  
 25 
RESPONSE TO REVIEWER #1 
 
Comment from Reviewer #1: This manuscript studies the relative roles of statistical preprocessing of 
meteorological inputs in a hydrological forecast system and statistical postprocessing of the resulting flow 
forecasts for four basins in the US middle Atlantic region. The paper is well written, the structure is good, 30 
and the conclusions are interesting and relevant. The methodology is sound with two exceptions detailed 
below. These are major in the sense that they are scientifically problematic and may have an impact on the 
conclusions, but they can probably be addressed quite easily.  
Response to reviewer #1: We thank the reviewer for reviewing the manuscript. We have now addressed the 
reviewer’s concern as detailed in the next comments. 35 
 
Comment from Reviewer #1: 1) p6, l4: pi_i is only a probability when y_i=0, otherwise a likelihood. 
Response to reviewer #1: We agree with the reviewer and have accordingly changed the text in the revised 
manuscript to read as follows: “For this, the predicted probability or likelihood πi of the ith observed outcome 
is determined as...” The suggested change can be found in P6 L12 of the revised manuscript. 40 
 
Comment from Reviewer #1: 2) P7, l15: ’smallest mean CRPS is selected’: I don’t fully understand how 
this works. Apparently c_{i+1} changes over time, so what exactly is minimized here? The CRPS over some 
training data with a rolling training window? Please add some more explanation. 
Response to reviewer #1: The postprocessor is implemented following a leave-one-out approach, which 45 
consists of using 7 years for training (i.e., to estimate ci+1) and the 2 remaining years for verification purposes. 
This is done separately at each lead time until the entire 9 years have been verified independently from the 
training period. Thus, we determine a different value of ci+1 for each 7-year training period and lead time. 

To select the value of ci+1 for each 7-year training period and lead time, we first generate ten equally 
spaced values of 𝑐𝑐𝑖𝑖+1. For each value of 𝑐𝑐𝑖𝑖+1, the ARX(1,1) model is trained and used to generate ensemble 50 
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streamflow forecasts, which are in turn used to compute the mean continuous ranked probability score 
(CRPS) for the 7-year training period under consideration. Thus, the mean CRPS is computed for each value 
of  𝑐𝑐𝑖𝑖+1, and the value of 𝑐𝑐𝑖𝑖+1 that produces the smallest mean CRPS is then selected for use in the 2-year 
verification period under consideration. This is repeated until all the years (2004-2012) have been 
postprocessed and verified independently of the training period. To address the reviewer’s comment, we have 5 
now incorporated this explanation in P7 L24-28 of the revised manuscript. 
 
Comment from Reviewer #1: 3) p8, l15-16: ’... is focused on flood events ... by choosing flow amounts 
greater than ...’: This kind of subsetting is very problematic and can lead to false conclusions about the 
relative predictive performance of different methods, see Lerch et al. (2017). Bellier et al (2017) give a 10 
discussion of pitfalls of sample stratification and make suggestions how one can stratify samples in a way 
that avoids these pitfalls. 
Response to reviewer #1: We are thankful to the reviewer for this constructive comment. We have read the 
suggested papers and decided to use the entire flow values, as opposed to using a sample stratification 
approach, when computing the different verification metrics, with the exception of the Brier skill score. 15 
Accordingly, we revised Figures 3-7 in the new version of the manuscript. The revised figures are 
qualitatively similar to the previous ones. However, the revised figures are more consistent in showing the 
scenario involving both preprocessing and postprocessing, S6, as having better performance than the other 
scenarios. In addition, there are now clear differences between the warm and cool season, where the warm 
season shows the different scenarios, particularly S4-S6, as being more similar to each other, while the cool 20 
season results remained similar to the ones in the original manuscript. We have now modified the original 
manuscript in several locations to reflect the differences associated with the revised figures. 
 
Comment from Reviewer #1: 4) Section 4.4.1: I’m not sure if this part of the analysis makes sense. In 
addition to the stratification issue (which demonstrably entails a bias), it is also known that the ensemble 25 
mean does not necessarily yield the best/appropriate point forecast when a relative error statistic is considered 
(see Gneiting 2011). I suggest either considering the mean error (over the entire verification data), or omitting 
this subsection entirely and maybe replace it by a subsection that studies reliability of threshold exceedance. 
Response to reviewer #1: We again thank the reviewer for this constructive comment. As suggested by the 
reviewer, we have now removed the relative mean error statistic and this sub-section from the revised 30 
manuscript. 
 
Comment from Reviewer #1: 5) P6, l31: hourly 
Response to reviewer #1: Thanks for catching this. The typo has been corrected in the revised manuscript 
(see P7 L3). 35 
 
Comment from Reviewer #1: 6) P7, eq (7): xi_{I+1} -> xi_{i+1} 
Response to reviewer #1: Thanks for catching this. We incorporated this modification in P7 Eq. (7) of the 
revised manuscript. 
 40 
Comment from Reviewer #1: 7) P9, l15: It sounds weird to say that one basin outperforms the other, please 
reformulate 
Response to reviewer #1: We have now revised the text following the reviewer’s suggestion. The revised 
sentence reads as follows (P9 L23-24): “Further, the performance of the calibrated simulation runs is similar 
across the four selected basins, although the largest size basin, WVYN6, shows slightly higher performance 45 
with Rm, NSE, and PB values of 0.85, 0.82, and -3%, respectively.” 
 
Comment from Reviewer #1: 8) p10, l24: Replace ’While’ by ’The gains ..., on the other hand,’ 
Response to reviewer #1: Following the reviewer’s suggestion, we incorporated this modification in P10 
L36 of the revised manuscript. 50 
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RESPONSE TO REVIEWER #2 
 
Comment from Reviewer #2: This review is for manuscript HESS-2017-514: Relative effects of statistical 
preprocessing and postprocessing on a regional hydrological ensemble prediction system, authored by Sanjib 5 
Sharma, Ridwan Siddique, Seann Reed, Peter Ahnert, Pablo Mendoza, and Alfonso Mejia. The manuscript 
is easy to follow. It presents some interesting results. In this work, a spatially distributed hydrological model 
is included in the study. Two postprocessors: an autoregressive model with a single exogenous variable and 
quantile regression, are comparatively evaluated. Below are my general and specific comments. 
Response to reviewer #2: Thanks for reviewing the manuscript. 10 
 
Comment from Reviewer #2: 1) I was intrigued by reading the statement “postprocessing alone performs 
similar, in terms of the relative mean error, skill, and reliability, to the more involved scenario that includes 
both preprocessing and postprocessing” in the Abstract (page 1, lines 24-25). This is one of the major 
conclusions of the work. However, further reading reveals that the results do not fully support this conclusive 15 
statement, for the following reasons:  
i) Figures 5 and 6 show appreciable performance gains of S6 over S5 for 5 cases out of 8. One can see that 
S6 outperforms S5 in terms of forecast lead times by 12 hours to 3 days.  
ii) The closeness of the results for the other cases (i.e., (e) and (f)) between S5 and S6 can be explained by 
the closeness of the raw GEFS and preprocessed GEFS precipitation, as shown in Figure 3. 20 
iii) The verification appears to be only conducted for large observed events without considering large forecast 
events, which can generate false-alarms. In short, I find this conclusion is inaccurate and can be misleading. 
Response to reviewer #2: We agree with the reviewer. We have now modified the revised manuscript to 
indicate that the scenario involving both preprocessing and postprocessing, S6, consistently outperforms the 
other scenarios. However, we also indicate that in some cases the differences between S5 (only 25 
postprocessing) and S6 are not as significant. We believe, as the reviewer suggested, that this statement and 
conclusion is more consistent with the overall results that are presented in the manuscript. 

In regards to the reviewer’s point iii), we have now revised Figures 3-7 in the new version of the 
manuscript by computing all the verification metrics over the entire verification period (please also see our 
response to reviewer # 1 comment #3 regarding this issue). The revised figures show more clearly that S6 is 30 
consistently better than the other scenarios. Qualitatively, the revised and original figures are overall similar. 
But some difference do emerge, as indicated in our response to reviewer 1, particularly between the warm 
and cool season. We have now revised the manuscript to note and discuss these differences. 
 
Comment from Reviewer #2: 2) How are the GEFS precipitation and temperature downscaled to force the 35 
HR-RDHM? A description should be provided. 
Response to reviewer #2: As suggested by the reviewer, we added the following text in the revised 
manuscript (P4 L25): “The GEFSRv2 data are bilinearly interpolated onto the 4 x 4 km2 grid cell resolution 
of the HL-RDHM model.”   
 40 
Comment from Reviewer #2: 3) Page 1, Line 12: Do you mean “Is comprised of “by “is comprised by”? 
Response to reviewer #2: This modification was incorporated into the revised manuscript (see P1 L12). 
 
Comment from Reviewer #2: 4) Page 1, Line 28: In “The intersection of climate variability and change, 
increased exposure from expanding urbanization, and sea level rise are increasing”, what do you mean by 45 
“The intersection of climate variability and change”? 
Response to reviewer #2: We meant by this statement that climate variability and climate change, which act 
together, alongside expanding urbanization and sea level rise are making flood prediction more challenging. 
We now revised the manuscript (see P1 L30) to say “Both climate variability and climate change” as we 
think this makes the sentence clearer and easier to read. 50 
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Comment from Reviewer #2: 5) Page 2, Line 6: In “for research purposes, meet specific regional needs, 
and/or real-time forecasting applications”, do you mean “to meet . . .”? 
Response to reviewer #2: In P2 L9 of the revised manuscript, the suggested change was incorporated.  
 5 
Comment from Reviewer #2: 6) Page 3, line 21: Shouldn’t it be U.S. Middle Atlantic region? 
Response to reviewer #2: We incorporated this modification into the revised manuscript (P3 L25). 
 
Comment from Reviewer #2: 7) Page 5, line 16: “Also, HCLR has been shown to outperform other widely 
used preprocessors (Yang et al., 2017)”. Should be more specific here since the paper only compares the 10 
HCLR and BMA. 
Response to reviewer #2: Following the reviewer’s comment, we made our statement more specific; it now 
reads as follows (P5 L25): “Also, HCLR has been shown to outperform other widely used preprocessors, such as 
Bayesian Model Averaging”. 
 15 
Comment from Reviewer #2: 8) Page 6, line 31:  “6-houlry” is a typo. 
Response to reviewer #2: Thanks for catching this. We incorporated this modification into the revised 
manuscript (P7 L3). 
 
Comment from Reviewer #2: 9) Page 7, line 23: “QR has similar skill performance in streamflow and 20 
normal space”. This sentence is not clear to me. Do you mean that QR has similar skill performance in the 
streamflow space as well as normal space? 
Response to reviewer #2: We rephrased this sentence to incorporate the reviewer’s comment. The revised 
sentence reads as follows (P8 L1-2): “QR is applied here in streamflow space, since it has been shown that, 
in hydrological forecasting applications, QR has similar skill performance in streamflow space as well as 25 
normal space (López et al., 2014).” 
 
Comment from Reviewer #2: 10) Page 8, line 15: How many events result from this threshold? Is the 
sampled climatological probability distribution derived from the observed data? If so, will your conclusions 
still hold if events corresponding to forecasts with large magnitudes and high probabilities also included in 30 
the verification? 
Response to reviewer #2: The reviewer makes a good point. We have now modified the manuscript by 
computing the metrics (Figs. 3-7) over the entire verification period. Overall, our conclusions did not change 
based on the revised figures. As noted before, we do see now some seasonal differences (mainly, the 
performance of scenarios S4-S6 is more similar to each other in the warm season than it was before in the 35 
original manuscript) and the ability of S6 to outperform the other scenarios is more clear now. Below we 
show in italic our complete answer to comment # 3 from Reviewer #1 which we think applies here as well. 

We have decided to use the entire flow values, as opposed to using a sample stratification approach, 
when computing the different verification metrics, with the exception of the Brier skill score. Accordingly, 
we revised Figures 3-7 in the new version of the manuscript. The revised figures are qualitatively similar to 40 
the previous ones. However, the revised figures are more consistent in showing the scenario involving both 
preprocessing and postprocessing (scenario 6) as having better performance than the other scenarios. In 
addition, there are now clear differences between the warm and cool season, where the warm season shows 
the different scenarios, particularly S4-S6, as being more similar to each other, while the cool season results 
remained similar to the ones in the original manuscript. We have now modified the original manuscript in 45 
several locations to reflect the differences associated with the revised figures. 
 
Comment from Reviewer #2: 11) Page 10, line 33: “QR displays better reliability than ARX (1,1) across 
lead times, basins, and seasons”. By what measure(s)? 
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Response to reviewer #2: This sentence was slightly modified in the revised manuscript to add clarity and 
address the reviewer’s comment. The new sentence reads (P11 L3-5): “We also computed reliability 
diagrams, as determined by Sharma et al. (2017), for the two postprocessors (plots not shown) and found that 
QR displays better reliability than ARX(1,1) across lead times, basins, and seasons.” The figures are not 
shown simply to keep the length of the manuscript and number of figures manageable. 5 
 
Comment from Reviewer #2: 12) Page 11, line 36: “reinforcing the fact that preprocessing may have little 
effect on the flood forecasts”. See the General Comments. 
Response to reviewer #2: Following the reviewer’s comment, we removed the sentence from the revised 
manuscript.  10 
 
RESPONSE TO REVIEWER #3 
 
Comment from Reviewer #3: The manuscript describes a comparative analysis of pre and post processing 
approaches and their contributions to flood forecasting performance in the Middle Atlantic Region. The 15 
analysis starts by evaluating the hydrology model performance. Then authors evaluate one pre processor and 
confirm that it improves the skill of raw precipitation forecasts. Next they evaluate two post processors and 
select the most performing one. Finally, authors evaluate multiple cases: raw, with or without pre and post 
processors. The analysis focuses on two periods for the evaluations, and 4 basins of different sizes. Authors 
conclude that post processing for flood forecasting is necessary and provides the largest skill increase. Pre –20 
processing appears unnecessary.  
The paper is very well written and organized. The approach, application and conclusion are of interest to the 
HESS community which has published extensively on ensemble flow forecasting. I have some moderate and 
minor comments below that would need to be addressed. 
Response to reviewer #3: We are thankful to the reviewer for taking the time to review our manuscript. 25 
 
Comment from Reviewer #3: 1) the pre-processor is evaluated for 6 hourly 95th percentile events but is not 
evaluated for aggregated period events, which ultimately drive to floods. There is therefore a disconnection 
between the “value” of the post processor when evaluated independently, and the “value” of the pre –
processor when verifying floods. The pre-processor has not been evaluated for the same “events”. 30 
Response to reviewer #3: The reviewer makes a good point. As we indicated before in our response to 
reviewer #1 and #2, we now use in the revised manuscript all the verification values when computing the 
verification metrics in Figures 3-7, i.e., we do not use any threshold or stratified sample. This means that all 
the preprocessed precipitation values and all the postprocessed flow values are used to compute the 
verification metrics.  35 

We also note that we use 6-hourly accumulations since this is the resolution of the GEFSRv2 data 
after day 4 and since this is a temporal resolution often used in operational forecasting in the U.S. 
(http://water.weather.gov/ahps2/hydrograph.php?wfo=bgm&gage=cinn6 ). In Fig. 3, we want simply to 
illustrate the performance of S1 and S2 relative to each other, for this purpose using 6-hourly accumulations 
seems reasonable (i.e., the relative comparison between S1 and S2 is similar for 6-houlry or daily 40 
accumulations). Further, we use the 6-hourly precipitation accumulations to force the hydrological model 
and generate 6-hourly flows. Since the observed flow data are mean daily, we compute the mean daily flow 
forecast from the 6-hourly flows. The postprocessor is applied to the mean daily values since this is the 
resolution of the observations. But there is no mismatch between precipitation and flood events. This 
information was incorporated in P7 L3-6 of the revised manuscript. 45 
 
Comment from Reviewer #3:  2) The conclusion that post processing only is needed to improve the skill of 
flow forecast seems to be based on statistics only and therefore you might get the right answer for the wrong 
reasons. The post processor maybe have the largest “value” but it does not mean that pre-processing steps 
should be skipped. I strongly recommend the authors to modify the conclusion to reflect that nuance. 50 

http://water.weather.gov/ahps2/hydrograph.php?wfo=bgm&gage=cinn6
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Response to reviewer #3: We agree with the reviewer. As suggested by the reviewer’s comment, we have 
now modified the conclusion to read as follows (P13 L28-31): “The scenario involving both preprocessing 
and postprocessing consistently outperforms the other scenarios. In some cases, however, the differences 
between the scenario involving preprocessing and postprocessing, and the scenario with postprocessing 
alone, are not as significant, suggesting for those cases that postprocessing alone can be effective in removing 5 
systematic biases.”  
 
Comment from Reviewer #3:  3) Literature review and contribution of the paper and conclusion: A HEPEX 
blog by Boucher A. M. (2015) provides a summary of the contribution of previous papers. She refers to the 
papers also mentioned below. i) The literature and the insight provided by this experiment should be put in 10 
perspective with what has been done and found by others before. 
Response to reviewer #3: Thanks for pointing us to this blog. We were indeed aware of the blog by Boucher 
A. M. (2015) (https://hepex.irstea.fr/pre-post-processing-or-both/), which summarizes different papers (e.g., 
Kang et al. (2010), Zalachori et al. (2012), Verkade et al. (2013), and Roulin and Vannitsem (2015)) related 
to preprocessing and postprocessing in streamflow forecasting. In fact, we have already discussed these 15 
paper/studies and their major findings in the original manuscript. Furthermore, our research questions and 
experimental set-up for the manuscript were designed in part to address concerns raised in the blog. 
 
ii) The fact that spatially disaggregated modeling is used might not be enough because there is no insight 
related to that modeling structure to the results. I would suggest framing the contribution differently. 20 
Response to reviewer #3: We agree with the reviewer. It is not our intention to frame the contribution in 
terms of going from lumped to distributed hydrological modeling. However, we do note in the original 
manuscript that this is one aspect of the present study that differs from previous one. It was indeed surprising 
to us that most previous pre/postprocessing studies that use GEFS forcing have been done with lumped or 
semi-distributed models. Beyond the issue of model structure indicated by the reviewer, we think it is useful 25 
to mention this aspect of the study because the use of the forcing for simulating and forecasting streamflow 
is different than with a lumped model, and the application of the preprocessor is also different.  
 
Comment from Reviewer #3: 4) Study domain – this corresponds to the Susquehanna Basin – why use 
MAR instead of the Susquehanna River Basin? 30 
Response to reviewer #3: We agree with the reviewer and have now incorporated this modification into the 
revised manuscript (see P3 L25-37).  
 
Comment from Reviewer #3: 5) Warm and cold seasons: can you describe the type of events expected in 
both seasons? 35 
Response to reviewer #3: To address the reviewer’s comment, we added the following information to the 
revised manuscript (P3 L28-32): “The climate in the upper MAR, where the NBSR basin is located, can be 
classified as warm, humid summers and snowy, cold winters with frozen precipitation (Polsky et al, 2000). 
During the cool season, a positive North Atlantic Oscillation phase generally results in increased precipitation 
amounts and occurrence of heavy snow (Durkee et al., 2007). Thus, flooding in the cool season is dominated 40 
by heavy precipitation events accompanied by snowmelt runoff. In the summer season, convective 
thunderstorms with increased intensity may lead to greater variability in streamflow.” 
 
Comment from Reviewer #3: 6) PG 6 L31: change to “hourly" 
Response to reviewer #3: Thanks for catching this. We incorporated this modification into the revised 45 
manuscript (P7 L3). 
 
Comment from Reviewer #3: 7) PG9 L4: add “observed” to “gridded precipitation” 
Response to reviewer #3: We incorporated this modification in P9 L13 of the revised manuscript. 
 50 

https://hepex.irstea.fr/pre-post-processing-or-both/
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Comment from Reviewer #3: 8) PG9 L4: please specify the source of the gridded observed precipitation 
Response to reviewer #3: The information requested by the reviewer is already included in the original 
manuscript. The text in the revised manuscript can be found in P4 L8-9 and reads as follows: “Both the MPEs 
and gridded near-surface air temperature data at 4 x 4 km2 resolution were provided by the NOAA’s Middle 
Atlantic River Forecast Center (MARFC) (Siddique and Mejia 2017).” 5 
 
Comment from Reviewer #3: 9) PG9 L24: confusing; you mean “high precipitation events defined as 6-
hourly accumulated precipitation events with a .95 non exceedance probability”? Also – see comment for the 
need to evaluate aggregated events  
Response to reviewer #3: We have now modified the original manuscript to reflect the fact that we no longer 10 
use the 0.95 threshold but instead use all the verification data. We believe this change made the sentence 
more clear. 
 
Comment from Reviewer #3: 10) PG10 – Line 35: how do you specify flood events? Are those also 6 hourly 
discharge event with a .95th non exceedance probability? Please clarify 15 
Response to reviewer #3: We believe that our previous answer to the reviewer helps to address this question 
as well.  
 
Comment from Reviewer #3: 11) Basins are not independent, could you add one comment how this might 
affect the results? In the result section at PG11 L34 it looks like you could see consistent results. It did not 20 
seem to be the case on the previous section. 
Response to reviewer #3: We believe the results will be similar if we had selected basins that are 
geographically close to each other and of similar size to the ones we selected. In fact, we initially selected 
nested sub-basins in order to investigate the forecast performance with respect to basin size or, in other words, 
the scaling of verification metrics with basin size. However, we found that, although there is some tendency 25 
for the larger basins to show better forecast skill than the small ones, the scaling is rather mild and not 
consistent. The scaling tends to show significant variability so that it is not necessarily evident for the 
conditions considered (e.g., lead times and seasons). This information is now mentioned in the revised 
manuscript to read as follows (P11 L16-18): “Although there is some tendency for the large basins to show 
better forecast skill than the small ones, the scaling (i.e., the dependence of skill on the basin size) is rather 30 
mild and not consistent across the four basins. 
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List of major changes made in the manuscript (hess-2017-514) 
 
The major changes that were incorporated into the revised manuscript are as follows: 
 We now use the entire flow values, as opposed to using a sample stratification approach, when 5 

computing the different verification metrics, with the exception of the Brier skill score. Accordingly, 
we revised Figures 3-7 in the revised manuscript. 

 We made changes throughout the result section of the manuscript to reflect the results shown in the 
revised Figures 3-7. The main difference in the revised figures with respect to the original ones is that 
seasonal differences become more obvious between the warm and cool season verification results. In 10 
addition, the verification results for the difference scenarios are more clear now than before.  

 We removed from the manuscript the relative mean error statistic and the corresponding subsection 
since this was suggested by one of the reviewers. 

 The conclusions of the paper were adjusted to reflect the result changes associated with using the 
entire flow values for the verification analysis.  15 
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Abstract. The relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at 10 
short- to medium-range forecast lead times (day 1-7) are investigated. For this purpose, a regional hydrologic ensemble prediction system 

(RHEPS) is developed and implemented. The RHEPS is comprised ofby the following components: i) hydrometeorological observations 

(multisensor precipitation estimates, gridded surface temperature, and gauged streamflow); ii) weather ensemble forecasts (precipitation 

and near-surface temperature) from the National Centers for Environmental Prediction 11-member Global Ensemble Forecast System 

Reforecast version 2 (GEFSRv2); iii) NOAA’s Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM); iv) 15 
heteroscedastic censored logistic regression (HCLR) as the statistical preprocessor; v) two statistical postprocessors, an autoregressive 

model with a single exogenous variable (ARX(1,1)) and quantile regression (QR); and vi) a comprehensive verification strategy. To 

implement the RHEPS, 1 to 7 days weather forecasts from the GEFSRv2 are used to force HL-RDHM and generate raw ensemble 

streamflow forecasts. Forecasting experiments are conducted in four nested basins in the U.S. Mmiddle Atlantic region, ranging in size 

from 381 to 12,362 km2. 20 
Results show that the HCLR preprocessed ensemble precipitation forecasts have greater skill than the raw forecasts. These 

improvements are more noticeable in the warm season at the longer lead times (>3 days). Both postprocessors, ARX(1,1) and QR, 

show gains in skill relative to the raw ensemble flood streamflow forecasts, particularly in the cool season, but QR outperforms 

ARX(1,1).  The scenarios that implement pPreprocessing alone and postprocessing separately tend to perform similarly, although the 

postprocessing alone scenario is often more effectivehas little effect on improving the skill and reliability of the ensemble flood 25 
streamflow forecasts. The scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios. In 

some cases, however, the differences between this scenario and the scenario with postprocessing alone are not as significant. We 

conclude that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone 

can often be a competitive alternative.Indeed, postprocessing alone performs similar, in terms of the relative mean error, skill, and 

reliability, to the more involved scenario that includes both preprocessing and postprocessing. We conclude that statistical 30 
preprocessing may not always be a necessary component of the ensemble flood forecasting chain.  Indeed, the scenario including both 

preprocessing and postprocessing tends to slightly outperform, in terms of the skill and reliability, to  the scenario including only 

postprocessing, but the differences among these scenarios are not as significant. We conclude that statistical postprocessing should be 

prioritized over preprocessing in the reprocessing may not always be a necessary component of the  ensemble flood streamflow 

forecasting chain.  35 

1 Introduction 

Both the climate variability and climate changeChanging cThe intersection of climate variability and change, increased exposure from 

expanding urbanization, and sea level rise are increasing the frequency of damaging flood events and making their prediction more 
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challenging across the globe (Dankers et al., 2014; Wheater and Gober, 2015; Ward et al., 2015). Accordingly, current research and 

operational efforts in hydrological forecasting are seeking to develop and implement enhanced forecasting systems, with the goals of 

improving the skill and reliability of short- to medium-range flood streamflow forecasts (0-14 days), and providing more effective 

early warning services (Pagano et al., 2014; Thiemig et al.,  2015; Emerton et al., 2016; Siddique and Mejia, 2017). Ensemble-based 

forecasting systems have become the preferred paradigm, showing substantial improvements over single-valued deterministic ones 5 
(Schaake et al., 2007; Cloke and Pappenberger, 2009; Demirel et al., 2013; Fan et al., 2014; Demargne et al., 2014; Schwanenberg et 

al., 2015; Siddique and Mejia, 2017). Ensemble flood streamflow forecasts can be generated in a number of ways, being the most 

common approach the use of meteorological forecast ensembles to force a hydrological model (Cloke and Pappenberger, 2009; 

Thiemig et al., 2015). Such meteorological forecasts can be generated by multiple alterations of a numerical weather prediction model, 

including perturbed initial conditions and/or multiple model physics and parameterizations.  10 
A number of ensemble prediction systems (EPSs) are being used to generate flood streamflow forecasts. In the United States 

(U.S.), the NOAA’s National Weather Service River Forecast Centers are implementing and using the Hydrological Ensemble 

Forecast Service to incorporate meteorological ensembles into their flood forecasting operations (Demargne et al., 2014; Brown et al., 

2014). Likewise, the European Flood Awareness System from the European Commission (Alfieri et al., 2014) and the Flood 

Forecasting and Warming Service from the Australia Bureau of Meteorology (Pagano et al., 2016) have adopted the ensemble 15 
paradigm. Furthermore, different regional EPSs have been designed and implemented for research purposes, to meet specific regional 

needs, and/or for real-time forecasting applications. Two examples, among several others (Zappa et al., 2008; Zappa et al., 2011; 

Hopson and Webster, 2010; Demuth and Rademacher, 2016; Addor et al., 2011; Golding et al., 2016; Bennett et al., 2014; Schellekens 

et al., 2011), are the Stevens Institute of Technology’s Stevens Flood Advisory System for short-range flood forecasting (Saleh et al., 

2016), and the National Center for Atmospheric Research (NCAR)’s System for Hydromet Analysis, Research, and Prediction for 20 
medium-range streamflow forecasting (NCAR, 2017). Further efforts are underway to operationalize global ensemble flood 

forecasting and early warning systems, e.g., through the Global Flood Awareness System (Alfieri et al., 2013; Emerton et al., 2016).  

EPSs are comprised by several system components. In this study, the Regional Hydrological Ensemble Prediction System 

(RHEPS) is used (Siddique and Mejia, 2017). The RHEPS is an ensemble-based research forecasting system, aimed primarily at 

bridging the gap between hydrological forecasting research and operations by creating an adaptable and modular forecast emulator. 25 
The goal with the RHEPS is to facilitate the integration and rigorous verification of new system components, enhanced physical 

parameterizations, and novel assimilation strategies. For this study, the RHEPS is comprised by the following system components: 

i) precipitation and near surface temperature ensemble forecasts from the National Centers for Environmental Prediction 11-

member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2), ii) NOAA’s Hydrology Laboratory-Research 

Distributed Hydrologic Model (HL-RDHM) (Reed et al., 2004; Smith et al., 2012a; Smith et al., 2012b), iii) statistical weather 30 
preprocessor (hereafter referred to as preprocessing), iv) statistical streamflow postprocessor (hereafter referred to as 

postprocessing), v) hydrometeorological observations, and vi) verification strategy. Recently, Siddique and Mejia (2017) employed 

the RHEPS to produce and verify ensemble streamflow forecasts over some of the major river basins in the U.S. Mmiddle Atlantic 

region. Here, the RHEPS is specifically implemented to investigate the relative roles played by preprocessing and postprocessing 

in enhancing the quality of ensemble streamflowflood forecasts.  35 
The goal with statistical processing is to use statistical tools to quantify the uncertainty of and remove systematic biases in 

the weather and streamflow forecasts in order to improve the skill and reliability of forecasts. In weather and hydrological 

forecasting, a number of studies have demonstrated the benefits of separately implementing preprocessing (Sloughter et al., 2007; 

Verkade et al., 2013; Messner et al., 2014a; Yang et al., 2017) and postprocessing (Shi et al., 2008; Brown and Seo, 2010; Madadgar 

et al., 2014; Ye et al., 2014; Wang et al., 2016; Siddique and Mejia, 2017). However, only a very limited number of studies have 40 
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investigated the combined ability of preprocessing and postprocessing to improve the overall quality of ensemble streamflow 

forecasts (Kang et al., 2010; Zalachori et al., 2012; Roulin and Vannitsem, 2015; Abaza et al., 2017). At first glance, in the context 

of medium-range streamflow forecasting, preprocessing seems necessary and beneficial since meteorological forcing are often 

biased and their uncertainty more dominant than the hydrological one (Cloke and Pappenberger, 2009; Bennett et al., 2014; 

Siddique and Mejia, 2017). In addition, some streamflow postprocessors assume unbiased forcing (Zhao et al., 2011) and 5 
hydrological models can be sensitive to forcing biases (Renard et al., 2010). 

The few studies that have analyzed the joint effects of preprocessing and postprocessing on short- to medium-range 

streamflow forecasts have mostly relied on weather ensembles from the European Centre for Medium-range Weather Forecasts 

(ECMWF) (Zalachori et al., 2012; Roulin and Vannitsem, 2015; Benninga et al., 2016). Kang et al. (2010) used different forcing 

but focused on monthly, as opposed to daily, streamflow. The conclusions from these studies have been mixed (Benninga et al., 10 
2016). Some have found statistical processing to be useful (Yuan and Wood, 2012), particularly postprocessing, while others have 

found that it contributes little to forecast quality. Overall, studies indicate that the relative effects of preprocessing and 

postprocessing depend strongly on the forecasting system (e.g., forcing, hydrological model, statistical processing technique, etc.),  

and conditions (e.g., lead time, study area, season, etc.), underscoring the research need to rigorously verify and benchmark new 

forecasting systems that incorporate statistical processing. 15 
The main objective of this study is to verify and assess the ability of preprocessing and postprocessing to improve ensemble 

streamflowflood forecasts from the RHEPS. This study differs from previous ones in several important respects. The assessment 

of statistical processing is done using a spatially distributed hydrological model whereas previous studies have tended to emphasize 

spatially lumped models. Much of the previous studies have used ECMWF forecasts, here we rely on GEFSRv2 precipitation and 

temperature outputs. Also, we test and implement a preprocessor, namely heteroscedastic censored logistic regression (HCLR), 20 
which has not been used before in streamflow forecasting. We also consider a relatively wider range of nested, basin sizes and 

longer study period than in previous studies. In particular, this paper addresses the following questions: 

• What are the separate and joint contributions of preprocessing and postprocessing over the raw RHEPS outputs? 

• What forecast conditions (e.g., lead time, season, flowflood threshold, and basin size) benefit potential increases in skill? 

• How much skill improvement can be expected from statistical processing under different uncertainty scenarios (i.e., when 25 
skill is measured relative to observed or simulated flow conditions)? 

The remainder of the paper is organized as follows. Section 2 presents the study area. Section 3 describes the different 

components of the RHEPS. The main results and their implications are examined in section 4. Lastly, section 5 summarizes key 

findings. 

2 Study area 30 

The North Branch Susquehanna River (NBSR) basin in the U.S. Mmiddle Atlantic region (MAR) is selected as the study area (Fig. 

1), with an overall drainage area of 12,362 km2. The NBSR Susquehanna River basinis region is selected as flooding is an important 

regional concern. This regione MAR  has a relatively high level of urbanization and high frequency of extreme weather events, 

making it particularly vulnerable to damaging flood events  (Gitro et al., 2014; MARFC, 2017). The climate in the upper Mid-

Atlantic Region MAR, where the NBSR basin is located,  can be classified as warm, humid summers and snowy, cold winters with 35 
frozen precipitation (Polsky et al, 2000). During the cool season, a positive North Atlantic Oscillation phase generally results in 

increased precipitation amounts and occurrence of heavy snow (Durkee et al., 2007). Thus, flooding in the cool season is dominated 

by heavy precipitation events accompanied by snowmelt runoff. While iIn the summer season, convective thunderstorms with 
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increased intensity may lead to greater variability in streamflow. In the NBSR North Branch Susquehanna River basin, we select 

four different U.S. Geological Survey (USGS) daily gauge stations, representing a system of nested subbasins, are selected as the 

forecast locations (Fig. 1). The selected locations are the Ostellic River at Cincinnatus (USGS gauge 01510000), Chenango River 

at Chenango Forks (USGS gauge 01512500), Susquehanna River at Conklin (USGS gauge 01503000), and Susquehanna River at 

Waverly (USGS gauge 01515000) (Fig. 1). The drainage area of the selected basins ranges from 381 to 12,362 km2. Table 1 5 
outlines some key characteristics of the study basins. 

[Insert Figure 1 here] 

[Insert Table 1 here] 

3 Approach 

In this section, we describe the different components of the RHEPS, including the hydrometeorological observations, weather 10 
forecasts, preprocessor, postprocessors, hydrological model, and the forecasting experiments and verification strategy. 

3.1 Hydrometeorological observations 

Three main observation datasets are used: multisensor precipitation estimates (MPEs), gridded near-surface air temperature, and 

daily streamflow. MPEs and gridded near-surface air temperature are used to run the hydrological model in simulation mode for 

parameter calibration purposes and to initialize the RHEPS. Both the MPEs and gridded near-surface air temperature data at 4 x 4 15 
km2 resolution were provided by the NOAA’s Middle Atlantic River Forecast Center (MARFC) (Siddique and Mejia 2017). 

Similar to the NCEP stage-IV dataset (Moore et al., 2015; Prat and Nelson, 2015), the MARFC’s MPEs represent a continuous 

time series of hourly, gridded precipitation observations at 4 x 4 km2 cells, which are produced by combining multiple radar 

estimates and rain gauge measurements. The gridded near-surface air temperature data at 4 x 4 km2 resolution were developed by 

the MARFC by combining multiple temperature observation networks as described by Siddique and Mejia (2017). Daily 20 
streamflow observations for the selected basins were obtained from the USGS. The streamflow observations are used to verify the 

simulated flows, and the raw and postprocessed ensemble streamflow forecasts. 

3.2 Meteorological forecasts 

GEFSRv2 data are used for the ensemble precipitation and near-surface air temperature forecasts. The GEFSRv2 uses the same 

atmospheric model and initial conditions as the version 9.0.1 of the Global Ensemble Forecast System and runs at T254L42 (~0.50o 25 
Gaussian grid spacing or ~55 km) and T190L42 (~0.67o Gaussian grid spacing or ~73 km) resolutions for the first and second 8 

days, respectively (Hamill et al., 2013). The reforecasts are initiated once daily at 00 Coordinated Universal Time. Each forecast 

cycle consists of 3 hourly accumulations for day 1 to day 3 and 6 hourly accumulations for day 4 to day 16. In this study, we use 

9 years of GEFSRv2 data, from 2004 to 2012, and forecast lead times from 1 to 7 days. The period 2004 to 2012 is selected to take 

advantage of data that were previously available to us (i.e., GEFSRv2 and MPEs for the MAR) from a recent verification study 30 
(Siddique et al., 2015). Forecast lead times of up to 7 days are chosen since we previously found that the GEFSRv2 skill is low 

after 7 days (Siddique et al., 2015; Sharma et al., 2017). The GEFSRv2 data are bilinearly interpolated onto the 4 x 4 km2 grid cell 

resolution of the HL-RDHM model. 



5 
 

3.3 Distributed hydrological model 

NOAA’s HL-RDHM is used as the spatially distributed hydrological model (Koren et al., 2004). Within HL-RDHM, the 

Sacramento Soil Moisture Accounting model with Heat Transfer (SAC-HT) is used to represent hillslope runoff generation, and 

the SNOW-17 module is used to represent snow accumulation and melting.  

HL-RDHM is a spatially distributed conceptual model, where the basin system is divided into regularly spaced, square grid 5 
cells to account for spatial heterogeneity. Each grid cell acts as a hillslope capable of generating surface, interflow and groundwater 

runoff that discharges directly into the streams. The cells are connected to each other through the stream network system. Further, 

the SNOW-17 module allows each cell to accumulate snow and generate hillslope snow melt based on the near-surface air 

temperature. The hillslope runoff, generated at each grid cell by SAC-HT and SNOW-17, is routed to the stream network using a 

nonlinear kinematic wave algorithm (Koren et al., 2004; Smith et al., 2012a). Likewise, flows in the stream network are routed 10 
downstream using a nonlinear kinematic wave algorithm that accounts for parameterized stream cross-section shapes ( Koren et 

al., 2004; Smith et al., 2012a). In this study, we run HL-RDHM using a 2-km horizontal resolution. Further information about the 

HL-RDHM can be found elsewhere (Koren et al., 2004; Reed et al., 2007; Smith et al., 2012a; Fares et al., 2014; Rafieeinasab et 

al., 2015; Thorstensen et al., 2016; Siddique and Mejia 2017). 

To calibrate HL-RHDM, we first run the model using a-priori parameter estimates previously derived from available datasets 15 
(Koren et al., 2000; Reed et al., 2004; Anderson et al., 2006). We then select 10 out of the 17 SAC-HT parameters for calibration 

based upon prior experience and preliminary sensitivity tests. During the calibration process, each a-priori parameter field is 

multiplied by a factor. Therefore, we calibrate these factors instead of the parameter values at all grid cells, assuming that the a-

priori parameter distribution is true (e.g., Mendoza et al., 2012).The multiplying factors are adjusted manually first; once the 

manual changes do not yield noticeable improvements in model performance, the factors are tuned-up using stepwise line search 20 
(SLS; Kuzmin et al., 2008; Kuzmin, 2009). This method is readily available within HL-RDHM, and has been shown to provide 

reliable parameter estimates (Kuzmin et al., 2008; Kuzmin, 2009). With SLS, the following objective function is optimized: 

𝑂𝑂𝑂𝑂 = �∑ [𝑞𝑞𝑖𝑖 − 𝑠𝑠𝑖𝑖(Ω)]2𝑚𝑚
𝑖𝑖=1  ,                                      (1) 

where 𝑞𝑞𝑖𝑖and 𝑠𝑠𝑖𝑖  denote the daily observed and simulated flows at time 𝑖𝑖, respectively; Ω is the parameter vector being estimated; 

and 𝑚𝑚 is the total number of days used for calibration. Three years (2003-2005) of streamflow data are used to calibrate the HL-25 
RDHM for the selected basins. The first year (year 2003) is used to warm-up HL-RDHM. To assess the model performance during 

calibration, we use the percent bias (PB), modified correlation coefficient (Rm), and Nash-Sutcliffe efficiency (NSE) (see appendix 

for details). Note that these metrics are used during the manual phase of the calibration process, and to assess the final results from 

the implementation of the SLS. However, the actual implementation of the SLS is based on the objective function in Eq. (1). 

3.4 Statistical weather preprocessor 30 

Heteroscedastic censored logistic regression (HCLR) (Messner et al., 2014a; Yang et al., 2017) is implemented to preprocess the 

ensemble precipitation forecasts from the GEFSRv2. HCLR is selected since it offers the advantage, over other regression-based 

preprocessors (Wilks, 2009), of obtaining the full, continuous  predictive probability density function  (pdf) of precipitation 

forecasts (Messner et al., 2014b). Also, HCLR has been shown to outperform other widely used preprocessors, such as Bayesian 

Model Averaging  (Yang et al., 2017). In principle, HCLR fits the conditional logistic probability distribution function to the 35 
transformed (here the square root) ensemble mean and bias corrected precipitation ensembles. Note that we tried different 

transformations (square root, cube root, and fourth root), and found a similar performance between the square and cube root, both 
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outperforming the fourth root. In addition, HCLR uses the ensemble spread as a predictor, which allows the use of uncertainty 

information contained in the ensembles.  

The development of the HCLR follows the logistic regression model initially proposed by Hamill et al. (2004) as well as the 

extended version of that model proposed by Wilks (2009). The extended logistic regression of Wilks (2009) is used to model the 

probability of binary responses such that 5 

𝑃𝑃(𝑦𝑦 ≤ 𝑧𝑧|𝑥𝑥) = Λ[𝜔𝜔(𝑧𝑧) − 𝛿𝛿(𝑥𝑥)],                                       (2) 

where Λ(. ) denotes the cumulative distribution function of the standard logistic distribution, y is the transformed precipitation, 𝑧𝑧 

is a specified threshold, 𝑥𝑥 is a predictor variable that depends on the forecast members, 𝛿𝛿(𝑥𝑥) is a linear function of the predictor 

variable 𝑥𝑥 , and the transformation 𝜔𝜔(. ) is a monotone nondecreasing function. Messner et al. (2014a) proposed the heteroscedastic 

extended logistic regression (HELR) preprocessor with an additional predictor variable φ to control the dispersion of the logistic 10 
predictive distribution, 

𝑃𝑃(𝑦𝑦 ≤ 𝑧𝑧|𝑥𝑥) = Λ �𝜔𝜔(𝑧𝑧)−𝛿𝛿(𝑥𝑥)
𝑒𝑒𝑒𝑒𝑒𝑒[𝜂𝜂(𝜑𝜑)]

�,                                       (3) 

where 𝜂𝜂(. ) is a linear function of φ. The functions 𝛿𝛿(. )and 𝜂𝜂(. ) are defined as: 

𝛿𝛿(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥, and                                                                                             (4) 

𝜂𝜂(𝜑𝜑) = 𝑏𝑏0 + 𝑏𝑏1𝜑𝜑,                                                      (5)   15 

where 𝑎𝑎0, 𝑎𝑎1, 𝑏𝑏0, and 𝑏𝑏1 are parameters that need to be estimated; 𝑥𝑥 = 1
𝐾𝐾
∑ 𝑓𝑓𝑘𝑘

1
2𝐾𝐾

𝑘𝑘=1 , i.e., the predictor variable 𝑥𝑥 is the mean of the 

transformed, via the square root, ensemble forecasts 𝑓𝑓; 𝐾𝐾 is the total number of ensemble members; and  𝜑𝜑 is the standard deviation 

of the square root transformed, precipitation ensemble forecasts.  

Maximum likelihood estimation with the log-likelihood function is used to estimate the parameters associated with Eq. (3) 

(Messner et al., 2014a; Messner et al., 2014b). For this, the predicted probability 𝜋𝜋𝑖𝑖 of the ith observed outcome is determined. One 20 
variation of the HELR preprocessor that can easily accommodate nonnegative variables, such as precipitation amounts, is HCLR. 

For this, the predicted probability or likelihood 𝜋𝜋𝑖𝑖 of the ith observed outcome is determined as., where 𝜋𝜋𝑖𝑖 is defined as (Messner 

et al., 2014b): 

𝜋𝜋𝑖𝑖 = �
Λ �𝜔𝜔(0)−𝛿𝛿(𝑥𝑥)

𝑒𝑒𝑒𝑒𝑒𝑒[𝜂𝜂(𝜑𝜑)]
�   𝑦𝑦𝑖𝑖 = 0

λ �𝜔𝜔(𝑦𝑦𝑖𝑖)−𝛿𝛿(𝑥𝑥)
𝑒𝑒𝑒𝑒𝑒𝑒[𝜂𝜂(𝜑𝜑)]

�   𝑦𝑦𝑖𝑖 > 0,
                                         (6) 

where 𝜆𝜆[. ] denotes the likelihood function of the standard logistic function. As indicated by Eq. (6), HCLR fits a logistic error 25 
distribution with point mass at zero to the transformed predictand. 

HCLR is applied here to each GEFSRv2 grid cell within the selected basins. At each cell, HCLR is implemented for the 

period 2004-2012 using a leave-one-out approach. For this, we select 7 years for training and the two remaining years for 

verification purposes. This is repeated until all the 9 years have been preprocessed and verified independently of the training period. 

This is done so that no training data is discarded and the entire 9-year period of analysis can be used to generate the precipitation 30 
forecasts. HCLR is employed for 6-hourly precipitation accumulations for lead times from 6 to 168 hours. To train the preprocessor, 

we use a stationary training period, as opposed to a moving window, for each season and year to be forecasted, comprised by the 

seasonal data from all the 7 training years. Thus, to forecast a given season and specific lead time, we use ~6930 forecasts (i.e., 11 

members x 90 days per season x 7 years). We previously tested using a moving window training approach and found that the 

results were similar to the stationary window one (Yang et al., 2017). To make the implementation of HCLR as straightforward as 35 
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possible, the stationary window is used here. Finally, the Schaake Shuffle method as applied by Clark et al. (2004) is implemented 

to maintain the observed space-time variability in the preprocessed GEFSRv2 precipitation forecasts. At each individual forecast 

time, the Schaake Shuffle is applied to produce a spatial and temporal rank structure for the ensemble precipitation values that is 

consistent with the ranks of the observations. 

3.5 Statistical streamflow postprocessors 5 

To statistically postprocess the flow forecasts generated by the RHEPS, two different approaches are tested, namely a first-order 

autoregressive model with a single exogenous variable, ARX(1,1), and quantile regression (QR). We select the ARX(1,1) 

postprocessor since it has been suggested and implemented for operational applications in the U.S. (Regonda et al., 2013). QR is 

chosen because it is of similar complexity as the ARX(1,1) postprocessor but for some forecasting conditions it has been shown to 

outperform it (Mendoza et al., 2016). Furthermore, the ARX (1,1) and QR postprocessors have not been compared against each 10 
other for the forecasting conditions specified by the RHEPS. The postprocessors are implemented for the years 2004-2012, using 

the same leave-one-out approach used for the preprocessor. The postprocessors are applied at each individual lead time from day 

1 to 7. For this, the 6-hourly precipitation accumulations are used to force the HL-RDHM and generate 6-hourly flows. Note that 

we use 6-hourly accumulations since this is the resolution of the GEFSRv2 data after day 4 and since this is a temporal resolution 

often commonly used in operational forecasting in the U.S. Since the observed flow data are mean daily, we compute the mean 15 
daily flow forecast from the 6-hourly flows. The postprocessor is then applied to the mean daily values from day 1 to 7.For this, 

the 6-houlry streamflow forecasts from HL-RDHM are averaged over 24 hours to get the streamflow forecast for a particular day.  

3.5.1 First-order autoregressive model with a single exogenous variable 

To implement the ARX(1,1) postprocessor, the observation and forecast data are first transformed into standard normal deviates 

using the normal quantile transformation (NQT) (Krzysztofowicz, 1997; Bogner et al., 2012). The transformed observations and 20 
forecasts are then used as predictors in the ARX(1,1) model (Siddique and Mejia, 2017). Specifically, for each forecast lead time, 

the ARX (1,1) postprocessor is formulated as follows: 

𝑞𝑞𝑖𝑖+1𝑇𝑇 = (1 − 𝑐𝑐𝑖𝑖+1)𝑞𝑞𝑖𝑖𝑇𝑇 + 𝑐𝑐𝑖𝑖+1𝑓𝑓𝑖𝑖+1𝑇𝑇 + 𝜉𝜉𝑖𝑖𝐼𝐼+1,                                                        (7) 

where q𝑖𝑖𝑇𝑇   and  q𝑖𝑖+1𝑇𝑇 are the NQT transformed observed flows at time steps i and i+1, respectively; c is the regression coefficient; 

f𝑖𝑖+1𝑇𝑇  is the NQT transformed forecast flow at time step i+1; and 𝜉𝜉 is the residual error term. In Eq. (7), assuming that there is 25 

significant correlation between 𝜉𝜉𝑖𝑖+1  and q𝑖𝑖𝑇𝑇, 𝜉𝜉𝑖𝑖+1 can be calculated as: 

𝜉𝜉𝑖𝑖+1 =
𝜎𝜎𝜉𝜉𝑖𝑖+1
𝜎𝜎𝜉𝜉𝑖𝑖

𝜌𝜌(𝜉𝜉𝑖𝑖+1, 𝜉𝜉𝑖𝑖)𝜉𝜉𝑖𝑖 + 𝜗𝜗𝑖𝑖+1,                                                                        (8) 

where 𝜎𝜎𝜉𝜉𝑖𝑖  and 𝜎𝜎𝜉𝜉𝑖𝑖+1  are the standard deviation of 𝜉𝜉𝑖𝑖  and 𝜉𝜉𝑖𝑖+1, respectively; 𝜌𝜌(𝜉𝜉𝑖𝑖+1, 𝜉𝜉𝑖𝑖) is the serial correlation between 𝜉𝜉𝑖𝑖+1 and 𝜉𝜉𝑖𝑖; 

and 𝜗𝜗𝑖𝑖+1 is a random Gaussian error generated from Ν�0,𝜎𝜎𝜗𝜗𝑖𝑖+1
2 �. To estimate Ν�0,𝜎𝜎𝜗𝜗𝑖𝑖+1

2 �, the following equation is used: 

𝜎𝜎𝜗𝜗𝑖𝑖+1
2 = [1 − 𝜌𝜌2(𝜉𝜉𝑖𝑖+1, 𝜉𝜉𝑖𝑖)]𝜎𝜎𝜉𝜉𝑖𝑖+1

2 .                                                                        (9) 30 

To implement Eq. (7), ten equally spaced values of 𝑐𝑐𝑖𝑖+1 are selected from 0.1 to 0.9. For each value of 𝑐𝑐𝑖𝑖+1, 𝜎𝜎𝜗𝜗𝑖𝑖+1
2 is determined 

from Eq. (9), using the training data to determine the other variables in Eq. (9). Then, 𝜗𝜗𝑖𝑖+1 is generated from Ν�0,𝜎𝜎𝜗𝜗𝑖𝑖+1
2 � and 𝜉𝜉𝑖𝑖+1 

is calculated from Eq. (8). The result from Eq. (8) is used with Eq. (7) to generate a trace of 𝑞𝑞𝑖𝑖+1𝑇𝑇  which is transformed back to real 

space using the inverse NQT. These steps are repeated to generate multiple traces for each value of 𝑐𝑐𝑖𝑖+1. For each value of 𝑐𝑐𝑖𝑖+1, 
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the ARX(1,1) model is trained and used to generate ensemble streamflow forecasts, which are in turn used to compute the mean 

continuous ranked probability score (CRPS) for the 7-year training period under consideration. Thus, the mean CRPS is computed 

for each value of  𝑐𝑐𝑖𝑖+1, and the value of 𝑐𝑐𝑖𝑖+1 that produces the smallest mean CRPS is then selected for use in the 2-year verification 

period under consideration. This is repeated until all the years (2004-2012) have been postprocessed and verified independently of 

the training period. Lastly, the value of 𝑐𝑐𝑖𝑖+1 R that produces the ensemble forecast with the smallest mean continuous ranked 5 
probability skill (CRPS) is selected. The ARX (1,1) postprocessor is applied at each individual lead time. For lead times beyond 

the initial one (day 1), one day-ahead predictions are used as the observed streamflow. For the cases where  𝑞𝑞𝑖𝑖+1𝑇𝑇  falls beyond the 

historical maxima, extrapolation is used by modeling the upper tail of the forecast distribution as hyperbolic (Journel and 

Huijbregts, 1978). 

3.5.2 Quantile regression 10 

Quantile regression (QR; Koenker and Bassett Jr, 1978; Koenker, 2005) is employed to determine the error distribution, conditional 

on the ensemble mean, resulting from the difference between observations and forecasts (Dogulu et al., 2015; López et al., 2014; 

Weerts et al., 2011; Mendoza et al., 2016). QR is applied here in streamflow space, since it has been shown that, in hydrological 

forecasting applications, QR has similar skill performance in streamflow space as well asand normal space (López et al., 2014). 

Another advantage of QR is that it does not make any prior assumptions regarding the shape of the distribution. Further, since QR 15 
results in conditional quantiles rather than conditional means, QR is less sensitive to the tail behavior of the streamflow dataset, 

and consequently, less sensitive to outliers. Note that although QR is here implemented separately for each lead time, the 

mathematical notation does not reflect this for simplicity. 

The QR model is given by 

𝜀𝜀𝜏𝜏′ = 𝑑𝑑𝜏𝜏 + 𝑒𝑒𝜏𝜏𝑓𝑓̅,                                                                                                      (10) 20 

where 𝜀𝜀𝜏𝜏′  is the error estimate at quantile interval 𝜏𝜏; 𝑓𝑓̅ is the ensemble mean; and 𝑑𝑑𝜏𝜏 and 𝑒𝑒𝜏𝜏 are the linear regression coefficients 

at 𝜏𝜏. The coefficients are determined by minimizing the sum of the residuals based on the training data as follows: 

min∑ 𝑤𝑤𝜏𝜏�𝜀𝜀𝜏𝜏,𝑖𝑖 − 𝜀𝜀𝜏𝜏′�𝑖𝑖, 𝑓𝑓𝑖̅𝑖��𝑁𝑁
𝑖𝑖=1 ,                                                                                                    (11) 

𝜀𝜀𝜏𝜏,𝑖𝑖  and 𝑓𝑓𝑖̅𝑖 are the thi  paired samples from a total of 𝑁𝑁 samples; 𝜀𝜀𝜏𝜏,𝑖𝑖 is computed as the observed flow minus the forecasted one, 

𝑞𝑞𝜏𝜏 − 𝑓𝑓𝜏𝜏; and 𝑤𝑤𝜏𝜏 is the weighting function for the 𝜏𝜏𝑡𝑡ℎ quantile defined as: 25 

𝑤𝑤𝜏𝜏(𝜁𝜁𝑖𝑖) = �
(𝜏𝜏 − 1)𝜁𝜁𝑖𝑖     𝑖𝑖𝑖𝑖 𝜁𝜁𝑖𝑖 ≤ 0

 𝜏𝜏𝜁𝜁𝑖𝑖                𝑖𝑖𝑖𝑖  𝜁𝜁𝑖𝑖 > 0.                                                                                                                   (12) 

𝜁𝜁𝑖𝑖  is the residual term defined as the difference between 𝜀𝜀𝜏𝜏,𝑖𝑖 and 𝜀𝜀𝜏𝜏′�𝑖𝑖, 𝑓𝑓𝑖̅𝑖� for the quantile 𝜏𝜏. The minimization in Eq. (11) is solved 

using linear programming (Koenker, 2005). 

Lastly, to obtain the calibrated forecast, 𝑓𝑓𝜏𝜏, the following equation is used: 

𝑓𝑓𝜏𝜏 = 𝑓𝑓̅ + 𝜀𝜀𝜏𝜏′ .                                                                                                      (13) 30 

In Eq. (13), the estimated error quantiles and the ensemble mean are added to form a calibrated discrete quantile relationship for a 

particular forecast lead time and thus generate an ensemble streamflow forecast. 
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3.6. Forecast experiments and verification 

The verification analysis is carried out using the Ensemble Verification System (Brown et al., 2010). For the verification, the 

following metrics are considered: relative mean error (RME), Brier skill score (BSS), mean continuous ranked probability skill 

score (CRPSS), and the decomposed components of the CRPS (Hersbach, 2000), i.e., the CRPS reliability (CRPSrel) and CRPS 

potential (CRPSpot). The definition of each of these metrics is provided in the appendix. Additional details about the verification 5 
metrics can be found elsewhere (Wilks, 2011; Jolliffe and Stephenson, 2012). Confidence intervals for the verification metrics are 

determined using the stationary block bootstrap technique (Politis and Romano, 1994), as done by Siddique et al. (2015). The 

verification is focused on flood events by choosing flow amounts greater than that implied by a non-exceedance probability, in the 

sampled climatological probability distribution, of ~0.95. Thus, hereafter the term floods is used instead of streamflow to denote 

the forecasts generated by HL-RDHM. All the forecast verifications are done for lead times from 1 to 7 days. 10 
To verify the forecasts for the period 2004-2012, six different forecasting scenarios are considered (Table 2). The first (S1) 

and second (S2) scenarios verify the raw and preprocessed ensemble precipitation forecasts, respectively. Scenarios 3 (S3), 4 (S4) 

and 5 (S5) verify the raw, preprocessed, and postprocessed ensemble flood streamflow forecasts, respectively. The last scenario, 

S6, verifies the combined preprocessed and postprocessed ensemble flood streamflow forecasts. In S1 and S2, the raw and 

preprocessed ensemble precipitation forecasts are verified against the MPEs. For the verification of S1 and S2, each grid cell is 15 
treated as a separate verification unit. Thus, for a particular basin, the average performance is obtained by averaging the verification 

results from different verification units. The Sstreamflow forecast scenarios, S3-S6, are verified against mean daily streamflow 

observations from the USGS. The quality of the floodstreamflow  forecasts is evaluated conditionally upon forecast lead time, 

season (cool and warm), and flow threshold.  

[Insert Table 2 here] 20 

4 Results and discussion 

This section is divided into four subsections. The first subsection demonstrates the performance of the spatially distributed model, 

HL-RDHM. The second subsection describes the performance of the raw and preprocessed GEFSRv2 ensemble precipitation 

forecasts (forecasting scenarios S1 and S2). In the third subsection, the two statistical postprocessing techniques are compared. 

Lastly, the verification of different ensemble flood streamflow forecasting scenarios is shown in the fourth subsection (forecasting 25 
scenarios S3-S6).  

4.1 Performance of the distributed hydrological model 

To assess the performance of HL-RDHM, the model is used to generate streamflow simulations which are verified against daily 

observed flows, covering the entire period of analysis (years 2004-2012).  Note that the simulated flows are obtained by forcing 

HL-RDHM with gridded observed precipitation and near surface temperature dataobservations. The verification is done for the 30 
four basin outlets shown in Fig. 1. To perform the verification and assess the quality of the streamflow simulations, the following 

statistical measures of performance are employed: modified correlation coefficient, Rm; Nash-Sutcliffe efficiency, NSE; and 

percent bias, PB. The mathematical definition of these metrics is provided in the appendix. The verification is done for both 

uncalibrated and calibrated simulation runs for the entire period of analysis. The main results from the verification of the 

streamflow simulations are summarized in Fig. 2. 35 
[Insert Figure 2 here] 
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The performance of the calibrated simulation runs is satisfactory, with Rm values ranging from ~0.75 to 0.85 (Fig. 2a). 

Likewise, the NSE, which is sensitive to both the correlation and bias, ranges from ~0.69 to 0.82 for the calibrated runs (Fig. 2b), 

while the PB ranges from ~5 to -11% (Fig. 2c). Relative to the uncalibrated runs, the Rm, NSE, and PB values improve by ~18, 

29, and 47%, respectively. Further, the performance of the calibrated simulation runs is similar across the four selected basins, 

although the largest size basin, WVYN6 (Fig. 2), shows seems to slightly higher performanceoutperform  the other basins with 5 
Rm, NSE, and PB values of 0.85, 0.82, and -3% (Fig. 2), respectively. The lowest performance is seen in CNON6 with Rm, NSE, 

and PB values of 0.75, 0.7, and -11% (Fig. 2), respectively. Nonetheless, the performance metrics for both the uncalibrated and 

calibrated simulation runs do not deviate widely from each other in the selected basins, with perhaps the only exception being PB 

(Fig. 2c).  

4.2 Verification of the raw and preprocessed ensemble precipitation forecasts 10 

To examine the skill of both the raw and preprocessed GEFSRv2 ensemble precipitation forecasts, we plot in Fig. 3 the CRPSS 

(relative to sampled climatology) as a function of the forecast lead time (day 1 to 7) and season for the selected basins. Two seasons 

are considered: cool (October-March) and warm (April-September). Note that a CRPSS value of zero means no skill (i.e., same 

skill as the reference system) and a value of one indicates maximum skill. The CRPSS is computed using 6 hourly precipitation 

accumulations. and high precipitation events. High precipitation events are here defined by an amount greater than that implied by 15 
a non-exceedance probability, in the sampled climatological probability distribution, of ~0.95. 

[Insert Figure 3 here] 

The skill of both the raw and preprocessed ensemble precipitation forecasts tends to decline with increasing forecast lead time 

(Fig. 3). In the warm season (Figs. 3a-d), the CRPSS values vary overall, across all the basins, in the range from ~0.172 to 0.54 

and from ~-0.02 to 0.43 for the preprocessed and raw forecasts, respectively; while in the cool season (Figs. 3e-h) the CRPSS 20 
values vary overall in the range from ~0.251 to 0.6 and from ~0.1 to 0.65 for the preprocessed and raw forecasts, respectively. The 

skill of the preprocessed ensemble precipitation forecasts tends to be greater than the raw ones across basins, seasons, and forecast 

lead times. Comparing the raw and preprocessed forecasts against each other, the relative skill gains from preprocessing are 

somewhat more apparent in the medium-range lead times (>3 days) and warm season. That is, the differences in skill seem not as 

significant in the short-range lead times (≤3 days). This seems particularly the case in the cool season where the confidence intervals 25 
for the raw and preprocessed forecasts tend to overlap (Figs. 3e-h).   

Indeed, seasonal skill variations are noticeable in all the basins. Even though the relative gain in skill from preprocessing is 

slightly greater in the warm season, the overall skill of both the raw and preprocessed forecasts is better in the cool season than the 

warm one. This may be due, among other potential factors, to the greater uncertainty associated with modeling convective 

precipitation, which is more prevalent in the warm season, by the NWP model used to generate the GEFSRv2 outputs (Hamill et 30 
al., 2013; Baxter et al., 2014). Nonetheless, the warm season preprocessed forecasts show gains in skill across all the lead times 

and basins. For a particular season, the forecast ensembles across the different basins tend to display similar performance; i.e. the 

analysis does not reflect skill sensitivity to the basin size as in other studies (Siddique et al., 2015; Sharma et al., 2017). This is 

expected here since the verification is performed for each GEFSRv2 grid cell, rather than verifying the average for the entire basin. 

That is, the results in Fig. 3 are for the average skill performance obtained from verifying each individual grid cell within the 35 
selected basins.  

Based on the results presented in Fig. 3, we may expect some skill contribution to the flood streamflow ensembles from forcing 

the HL-RDHM with the preprocessed precipitation, as opposed to using the raw forecast forcing. Although the contribution may 

not be as large, since the differences between the preprocessed and raw precipitation forecasts are only mild. It may also be expected 
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that the contributions are greater for the medium-range lead times and warm season. This will be examined in subsection 4.4, prior 

to that we compare next the two postprocessors, namely ARX(1,1) and QR. 

4.3 Selection of the flood streamflow postprocessor 

The ability of the ARX(1,1) and QR postprocessors to improve ensemble streamflowflood forecasts is investigated here. The 

postprocessors are applied to the raw streamflow flood ensembles at each forecast lead time from day 1 to 7. To examine the skill 5 
of the postprocessed flood streamflow forecasts, Fig. 4 displays the CRPSS (relative to the raw ensemble flood streamflow 

forecasts) versus the forecast lead time for all the selected basins, for both warm cool (Figs. 4a-d) and coolwarm (Figs. 4e-h) 

seasons. In the cool season (Figs. 4e-h), Tthe overall tendency is for both postprocessing techniques to demonstrate improved 

forecast skill across all the all the basins, seasons, and most of the lead times. The skill can improve as much as 40% at the later 

lead times (Fig. 4f). The skill improvements, however, from the ARX(1,1) postprocessor are not as consistent for the warm season 10 
(Figs. 4a-d), displaying negative skill values for some of the lead times in all the basins. The latter underscores an inability of the 

ARX(1,1) postprocessor to enhance the raw streamflow ensembles for the warm season. The skill can improve as much as 40% at 

the later lead times (Fig. 4fb). In some cases (Figs. 4b and 4e-f), The general trend in Fig. 4 is for the skill of the postprocessors 

shows an increasing trend with to increase with increasing the lead time. Note that tThis is the case since the skill is here measured 

relative to the raw streamflowflood forecasts, which is done to better isolate the effect of the postprocessors on the flood streamflow 15 
forecasts. This means that the postprocessors are more able to improve the medium-range (>3 days) forecasts than the short-range 

(≤3 days) ones. 

[Insert Figure 4 here] 

The gains in skill from QR vary from ~05% (Fig. 4ba at the day 1 lead time) to ~40% (Fig. 4fb atat the  the day 5 lead time 

lead times > 4 days) depending upon the season and lead time. While tThe gains from ARX(1,1), on the other hand, vary from 20 
~04% (Fig. 4gbe at the day 1 lead time) to a much lower level of ~2852% (Fig. 4fc at the day 4 lead time of 4 days the day 2 lead 

time) during the cool season, while there are little to no gains in the warm season. In the cool season (Figs. 4e-h)most most cases, 

both postprocessors exhibit somewhat similar performance at different lead times at the initial lead times (days 1-2), with the 

exception of Fig. 4h skills varying from nearly 0.1 (e.g., Figs. 4a and 4ce) at lead time of day 1 to 0.34 (Fig. 4df at the day 2 lead 

time) at lead time of day 7, but in the warm season QR tends to consistently perform better than ARX(1,1). The However, At the 25 
later lead times overall trend in Fig. 4 is for shows that,(4-7 days), QR to tends mostlyto oslightly outperform ARX(1,1), with the 

difference in performance being as high as 30% (Fig. 4d at the day 7 lead time). This is noticeable across all the basins basins, 

except WVYN6 in Fig. 4h, most of the lead times and for both and for both seasons, with an exception at the WVYN6 during cool 

season. The skill improvement of QR over ARX(1,1) is significant at later lead times (> day 3), as indicated by the fact that the 

confidence intervals for the curves representing the postprocessors in Fig. 4 often do not overlap. There are also seasonal 30 
differences in the performance of the postprocessors. In particular, the gains in skill from ARX(1,1) in the warm season can be 

quite low (Figs. 4a and 4dc).   

 

As discussed and demonstrated in Fig. 4, QR performs better than ARX(1,1). We also computed reliability diagrams, as 

determined by Sharma et al., (2017), for the two postprocessorsIndeed,  (plots not shown) and found that we also found (plots not 35 
shown) that QR tends to displays better reliability than ARX(1,1) across lead times, basins, and seasons. Therefore, we select QR 

as the statistical flood streamflow postprocessor to examine the interplay between preprocessing and postprocessing in the RHEPS.   
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4.4 Verification of the ensemble flood streamflow forecasts for different statistical processing scenarios 

In this subsection, we examine the effects of different statistical processing scenarios on the ensemble streamflowflood forecasts 

from the RHEPS. Recall that, to consider flood events, the verification is done for flow events with an amount greater than that 

implied by a non-exceedance probability, in the sampled climatological probability distribution, of ~0.95. The forecasting scenarios 

considered here are S3-S6 (Table 12 defines the scenarios). To facilitate presenting the verification results, this subsection is 5 
divided into the following threefour parts: relative mean error, CRPSS, CRPS decomposition, and BSS. 

4.4.1 Relative mean error  

To examine the bias associated with the mean ensemble flood forecasts under scenarios S3-S6, we plot the RME versus the forecast 
lead time for all the basins (Fig. 5), and the warm (Fig. 5a-d) and cool seasons (Fig. 5e-h). Results in Fig. 5 show that, under all 
the considered scenarios, the mean ensemble flood forecasts exhibit underforecasting bias across basins, lead times, and seasons. 10 
The underforecasting bias increases with the lead time, and decreases somewhat with the increase in basin size. For example, the 
bias for the largest basin, WVYN6, is -0.1 at the day 1 lead time and scenario S3 (Fig. 5d), while for the same lead time and 
scenario the bias is -0.35 for the smallest basin (Fig. 5a). In essence, the GEFSRv2-based flood ensembles exhibit a conditional 
bias that is consistent with the conditional bias (i.e., to significantly underforecast large events) for the GEFSRv2 precipitation 
ensembles (Siddique et al., 2015; Sharma et al., 2017). 15 

[Insert Figure 5 here] 

The two most striking features of Fig. 5 are: i) the significant difference in performance between the pair S3-S4 and S5-S6 and, in 
contrast, ii) the similarity in performance between S5 and S6. The former confirms that statistical processing, in particular 
postprocessing, has a significant effect on the flood ensembles. Recall that to generate the ensemble flood forecasts S5 only 
employs postprocessing, while S6 considers both preprocessing and postprocessing (Table 1). Yet, the RME across basins, lead 20 
times, and seasons for both S5 and S6 are quite similar, with differences tending to be not as significant. The similarity between 
S5 and S6 indicates that in this case preprocessing has a mild effect on the flood forecasts.  

As a corollary to the latter comment, it can be argued that by only postprocessing the raw flood ensembles most of 

the benefits from statistical processing can be realized. This seems also supported by the results for S3 and S4 (Fig. 

5). The differences between the RME of the flood forecasts generated by forcing the HL-RDHM with raw, S3, versus 25 

preprocessed precipitation ensembles, S4, are only significant at lead times greater than 4 days. In addition, the 

differences are not as large, with the largest one being ~-0.18 at the day 5 lead time in CNON6 (Fig. 5b). This is not 

entirely surprising as we previously saw (Fig. 3) that differences between the raw and preprocessed precipitation 

ensembles are only significant at the later lead times where the skill of the forecast is, in any case, already somewhat 

low. In terms of the seasonal analysis, both S5 and S6 tend to be less biased in the cool season than in the warm one, 30 

particularly at the short-range lead times (<3 days). This can be seen by comparing Fig. 4c against Fig. 4g at the day 1 

lead time. The role played by preprocessing and postprocessing in ensemble flood forecasting is further evaluated 

next in terms of the forecast skill.  

4.4.12 CRPSS 

The skill of the ensemble flood streamflow forecasts for S3-S6 is assessed using the CRPSS relative to the sampled climatology 35 
(Fig. 56). The CRPSS in Fig. 5 is shown as a function of the forecast lead time for all the basins, and the warm (Fig. 5a-d) and cool 

(Fig. 5e-h) seasonsFig. 6 shows that, across lead times, basin sizes, and seasons, the results for the CRPPS are qualitatively similar 

to those for the RME (Fig. 5). That is, tThe most salient feature of Fig. 56 is that the performance of the  floodstreamflow forecasts 

tends for the most part to progressively improve from S3 to S6. This means that the forecast skill tends to improve across lead 
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times, basin sizes and seasons as additional statistical processing steps are included in the RHEPS’ forecasting chain. Although 

there is some tendency for the larger basins to show better forecast skill than the small ones, the scaling (i.e., the dependence of 

skill on the basin size) scaling is rather mild and not consistent across the four basins. The scaling tends to show significant 

variability so that it is not necessarily evident for the conditions considered (e.g., lead times and seasons).  

In Fig. 5, Tthe skill first increases from the raw scenario (i.e., S3 where no statistical processing is done) to the scenario where 5 
only preprocessing is performed, S4. However, tThe gain in skill between S3 and S4 is generally small at the short lead times (< 3 

days) but increases for the later lead times; this is somewhat more evident for the cool season than the warm one., particularly at 

the short lead times, reinforcing the fact that preprocessing alone may have little effect on the streamflow flood forecasts. This 

skill trend between S3 and S4 is not entirely surprising as we previously saw (Fig. 3) that differences between the raw and 

preprocessed precipitation ensembles are moreonly significant at the later lead times where the skill of the forecast is, in any case, 10 
already somewhat low. The skill in Fig. 5 then then shows further improvements for a more significant improvement for both S5 

and S6, relative to S4.  As was the case with the RME Although S6 Even though S6 tends to outperform both S4 and S5 in most 

of the lead times in Fig. 5, the differences in skill among these three scenarios between S5 and S6 are not as significant, their 

confidence intervals tend to overlap in most cases, with the exception of Fig. 5f where S4 underperforms relative to both S5 and 

S6. Fig. 5 shows that S6 is the preferred scenario in that it tends to more consistently improve the ensemble streamflow forecasts 15 
across basins, lead times and seasons than the other scenarios. It also shows that postprocessing alone, S5, may be slightly more 

effective than preprocessing alone, S4, in correcting the streamflow forecast biases.   ., suggesting that postprocessing alone (i.e., 

without preprocessing) may be sufficient to remove systematic biases in the flood forecasts. 

[Insert Figure 65 here] 

There are also seasonal differences in the forecast skill among the scenarios. The skill of the streamflow forecasts tends to be 20 
slightly greater in the warm season (Figs. 5a-d) than in the cool one (Figs. 5e-h) across all the basins and lead times. In the warm 

season (Figs. 5a-d), all the scenarios tend to show similar skill, except CNON6 (Fig. 5b), with S5 and S6 only slightly 

outperforming S3 and S4. In the cool season (Figs. 5e-h), with the exception of CNON6 (Fig. 5f), the performance is similar among 

the scenarios for the short lead times but S3 tends to consistently underperform for the later lead times relative to S4-S6. There is 

also a skill reversal between the seasons when comparing the ensemble precipitation (Fig. 3) and streamflow (Fig. 5) forecasts. 25 
That is, the skill tends to be higher in the cool season than the warm one in Fig. 3, but this trend reverses in Fig. 5. The reason for 

this reversal is that in the cool season hydrological conditions are strongly influenced by snow dynamics, which can be challenging 

to represent with HL-RDHM, particularly when specific snow information or data are not available. In any case, this could be a 

valuable area for future research since it appears here to have a significant influence on the skill of the ensemble streamflow 

forecasts. 30 
The underperformance of S4 in the CNON6 basin (Fig. 5f), relative to the other scenarios, is in part due to the unusually low 

skill of the raw ensemble streamflow forecasts of S3, so that even after preprocessing the skill improvement attained with S4 is 

not comparable to that associated with S5 and S6. This is also the case for CNON6 in the warm season (Fig. 5b). However, in 

addition, during the cool season it is likely that streamflows in CNON6 are affected by a reservoir just upstream from the main 

outlet of CNON6. The reservoir is operated for flood control purposes. The reservoir affects during the cool season low flows by 35 
maintaining them somewhat higher than in natural conditions. Since we do not account for reservoir operations in our hydrological 

modeling, it is likely that part of the benefits of postprocessing are in this case to correct for this modeling bias. In fact, this is also 

reflected in the The two most striking features of Fig. 5 are: i) the significant difference in performance between the pair S3-S4 

and S5-S6 and, in contrast, ii) the similarity in performance between S5 and S6. The former confirms that statistical processing, in 

particular postprocessing, has a significant effect on the streamflow ensembles. Recall that to generate the ensemble streamflow 40 
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forecasts S5 only employs postprocessing, while S6 considers both preprocessing and postprocessing (Table 1). Yet, the CRPSS 

across basins, lead times, and seasons for both S5 and S6 are quite similar, with differences tending to be not as significant. The 

similarity between S5 and S6 indicates that in this case preprocessing has a mild effect on the streamflow forecasts. 

Further, comparing the ensemble streamflow forecasts of S5 and S6 against each other, it appears that the general tendency is 

for the both scenarios to perform similarly. The S6, however, tends to show slight skill gain over S5 across all the basins and lead 5 
times, particularly in the cool season. While in the warm season, most part of the forecasting scenarios from S4 to S6 behave 

similarly with respect to each other. Indeed, S6 exhibit marginal skill gain at initial lead times (< day 3), but the skill performance 

becomes similar among S4 to S6 at later lead times, with an exception for CINN6 (Fig. 5a). In the case of CINN6 (Fig. 5a), S5 and 

S6 exhibit skill gain over S4 after lead times of 3 days.  

In terms of the warm and cool seasons seasonal analysis, at the initial forecast lead times (≤ 2 days), the skill of the flood 10 
streamflow forecasts tends to be slightly greater in the cool warm season (Figs. 56ae-dh) than in the coolwarm one (Figs. 56ea-hd) 

across all the basins and lead times., with the exception of CNON6. The CNON6 exhibit lowest skill during both warm (Fig. 5b) 

and cool (Fig. 5f) seasons.  This may be partly, among other potential factors, because of the effect of the Whitney Point reservoir 

that is located just upstream of the main outlet of the CNON6.  The reservoir is mainly operated for flood control, thus modify the 

streamflow forecast at the basin outlet.  As was the case in the calibration results (e.g., in Fig. 2c), where the performance of during 15 
the cool season CNON6 is somewhat lower than in the other basins.has a lower performance prior to postprocessing (S3 or S4 in 

Fig. 56f) than the other basins. Interestingly, after postprocessing (S5 in Fig. 56f), the skill of CNON6 is as good as that of CINN6, 

even though at the day 1 lead time the skill for S3 is ~0.13 for CNON6 (Fig. 56f) and ~0.45 for CINN6 (Fig. 56e). Hence, the 

postprocessor seems capable to compensate some for the lesser performance of CNON6 induring both calibration or after 

preprocessing in the cool season. 20 
 

4.4.23 CRPS decomposition 

Fig. 67 displays different components of the mean CRPS against lead times of 1, 3, and 7 days for all the basins according to both 

the warm (Figs. 67a-d) and cool (Figs. 67e-h) seasons. The components presented here are reliability (CRPSrel) and potential CRPS 

(CRPSpot) (Hersbach, 2000). CRPSrel measures the average reliability of the ensemble forecasts across all the possible events, i.e., 25 
it examines whether the fraction of observations that fall below the j-th of n ranked ensemble members is equal to j/n on average. 

CRPSpot represents the lowest possible CRPS that could be obtained if the forecasts were made perfectly reliable (i.e., CRPSrel=0). 

Note that the CRPS, CRPSrel, and CRPSpot are all negatively oriented, with perfect score of zero. Overall, as was the case with the 

RME (Fig. 5) and CRPSS (Fig. 56), the CRPS decomposition reveals that forecasts reliability tends mostly to progressively 

improve increases from S3 to S6. 30 
[Insert Figure 76 here] 

Interestingly, improvements in forecast quality for S5 and S6, relative to the raw streamflowflood forecasts of S3, are mainly 

due to reductions in CRPSrel (i.e., by making the forecasts more reliable), whereas for S4 better forecast quality is achieved, in 

part, by reductions in both CRPSrel and CRPSpot. CRPSpot appears to play a bigger role in S4 than in the other scenarios, since in 

many cases in Fig. 6 the CRPSpot value for S4 is the lowest among all the scenarios. The latter is seen across all the basins, lead 35 
times, and seasons. The explanation for this lies in the implementation of the HCLR preprocessor, which uses the ensemble spread 

as a predictor of the dispersion of the predictive pdf and the CRPSpot is sensitive to the spread (Messner et al., 2014a). This indicates 

that The , CRPS decomposition demonstrates that the ensemble streamflow forecasts for S5 and S6 are more reliable than for S3 

and S4. Although the It also shows that the forecasts from S5 and S6 exhibit similar reliability3 have lower CRPSpot. However, , 
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the ensemble streamflow forecasts including preprocessing and postprocessing,  S5 and S6, ultimately result in lower CRPS.  This 

indicates that, the forecasts for S5 and S6 are more reliable than for S3 and S4.The latter is seen across all the basins, lead times, 

and seasons. In terms of the warm and cool seasons, although ensemble streamflow forecasts from S5 and S6 exhibit similar 

reliability, the warm season tends to show a slightly lower CRPS than the cool one for all the scenarios. There are other, more 

nuanced differences between the two seasons. For example, S5 is more reliable than S4 in several cases in Fig. 6, such as for the 5 
day 1 lead time in the cool season. The CRPS decomposition demonstrates that the ensemble streamflow forecasts for S5 and S6 

tend to be more reliable than for S3 and S4. It also shows that the forecasts from S5 and S6 tend to exhibit comparable reliability. 

However, the ensemble streamflow forecasts generated using both preprocessing and postprocessing, S6, ultimately result in lower 

CRPS than the other scenarios. The latter is seen across all the basins, lead times, and seasons, except in one case (Fig. 6d at the 

day 7 lead time).  10 

4.4.43 BSS 

In our final verification comparison, the BSS of the ensemble flood streamflow forecasts for S5 (Figs. 78a-d) and S6 (Figs. 78e-h) 

are plotted against the non-exceedance probability associated with different flood streamflow thresholds ranging from 0.95 to 0.99. 

The BSS is computed for all the basins, warm season, and lead times of 1, 3 and 7 days. In addition, the BSS is computed relative 

to both observed (solid lines in Fig. 78) and simulated (dashed lines in Fig. 78) flowods. When the BSS is computed relative to 15 
observed floods flows, it considers the effect on forecast skill of both meteorological and hydrological uncertainties. While the 

BSS relative to simulated floods flows is mainly affected by meteorological uncertainties. The difference between the two, i.e., the 

BSS relative to observed flowsods minus the BSS relative to simulated ones, provides an estimate of the effect of hydrological 

uncertainties on the skill of the flood streamflow forecasts. Similar to the CRPSS, the BSS value of zero means no skill (i.e., same 

skill as the reference system) and a value of one indicates perfect skill.  20 
[Insert Figure 87 here] 

In general, the skill of flood streamflow forecasts tends to decrease with lead time across the flow thresholds and basins. In 

contrast to the As was the case with the CRPSS (Fig. 56) where S6 tends for the majority of cases to slightly outperform S5, the 

BSS values for the different flow thresholds appear similar for S5 (Figs. 78a-d) and S6 (Figs. 78e-h). The only exception is CKLN6 

(Figs. 78c and 78g) where, at the higher flood flow thresholds, S6 has better skill than S5 at the day 1 and 3 lead times, particularly 25 
at the highest flow thresholds considered. With respect to the basin size, the skill tends to improve some from the small to the large 

basin. For instance, for non-exceedance probabilities of 0.95 and 0.99 at the day 1 lead time, the BSS values for the smallest basin 

(Fig. 78a), measured relative to the observed flows, are ~0.49 and 0.35, respectively. For the same conditions, both values increase 

to ~0.65 for the largest basin (Fig. 78d). 

Indeed, tThe most notable feature in Fig. 78 is that the effect of hydrological uncertainties on forecast skill is evident at the 30 
day 1 lead time, while meteorological uncertainties clearly dominate at the day 7 lead time. With respect to the latter, notice that 

the solid and dashed green lines for the day 7 lead time tend to be very close to each other in Fig. 78, indicating that hydrological 

uncertainties are relatively small compared to meteorological ones. Hydrological uncertainties are largest at the day 1 lead time, 

particularly for the small basins (Figs. 78a-b and 78e-f). For example, for a non-exceedance probability of 0.95 and at a day 1 lead 

time (Fig. 78b), the BSS value relative to the simulated and observed flowsoods are ~0.79 and 0.38, respectively, suggesting a 35 
reduction of ~50% skill due to hydrological uncertainties.  



16 
 

5 Summary and conclusion 

In this study, we used the RHEPS to investigate the effect of statistical processing on short- to medium-range ensemble streamflow 

flood forecasts. First, we assessed the raw precipitation forecasts from the GEFSRv2 (S1), and compared them with the 

preprocessed precipitation ensembles (S2). Then, streamflowflood ensembles were generated with the RHEPS for four different 

forecasting scenarios involving no statistical processing (S3), preprocessing alone (S4), postprocessing alone (S5), and both 5 
preprocessing and postprocessing (S6). The verification of ensemble precipitation and streamflowflood forecasts was done for the 

years 2004-2012, using four nested, gauge locations in the basinsNBSR basin of in the U.S. MAR. We found that – for the models, 

datasets, and study domain used here - the skill gains from joint preprocessing and postprocessing are similar to those from 

postprocessing alone. the scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios. 

In some cases, however, the differences between the scenario involving preprocessing and postprocessing, and the scenario with 10 
postprocessing alone, are not as significant, suggesting for those cases (e.g., warm season) that postprocessing alone can be 

effective in removing systematic biases. Other specific findings are as follows: 

• The HCLR preprocessed ensemble precipitation forecasts show improved skill relative to the raw forecasts. The improvements 

are more noticeable in the warm season at the longer lead times (>3 days). 

• Both postprocessors, ARX(1,1) and QR, show gains in skill relative to the raw ensemble flood streamflow forecasts in the 15 
cool season. In contrast, in the warm season, ARX(1,1) shows little or no gains in skill. Overall, for the majority of cases 

analyzed,  For the medium-range lead times (>3 days) Across most of the lead times, the gains with QR , however, tend to be 

greater than with ARX(1,1), specially particularly during the warm season. 

• By comparing different statistical processing scenarios for the ensemble flood streamflow forecasts, it was found that the 

scenario with preprocessing alone has little effect on improving the skill and reliability of the streamflowflood forecasts in 20 
contrast with the postprocessing alone scenario.  

• In terms of the forecast skill (i.e., CRPSS), in the warm season Tthe scenarios including only preprocessing and only 

postprocessing have a comparable performance to the s similar, in terms of the relative mean error, CRPSS, and reliability, to 

the more complex scenario consisting of both preprocessing and postprocessing in the warm season.  ItWhile in the cool 

season, the scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios but the 25 
differences may not be are not as significant. thus seems for our conditions, using GEFSRv2 forecasts, that preprocessing may 

be unnecessar 

• The skill of the postprocessing alone scenario and the scenario that combines preprocessing and postprocessing was further 

assessed using the Brier skill score for different flood streamflow thresholds and the warm season. This assessment suggests 

that for high flow thresholds the similarities in skill between further confirmed that both scenarios, S5 and S6, have similar 30 
skill and performance behavior become greater. 

• Decomposing the CRPS into reliability and potential component, we observed that the scenario that combines preprocessing 

and postprocessing results in slightly lower CRPS than the other scenarios. We found that the scenario involving only 

postprocessing tends to demonstrate similar reliability to the scenario consisting of both preprocessing and postprocessing 

across most all of the lead times, basins and seasons. We also found that in several casesHowever the postprocessing alone 35 
scenario displays improved reliability relative to the preprocessing alone scenario., the scenario that combines preprocessing 

and postprocessing results in slightly lower CRPS than other scenario. 

These conclusions are specific to the RHEPS forecasting system, which is mostly relevant to the U.S. research and operational 

communities as it relies on a weather and a hydrological model that are used in this domain. However, the use of a global weather 

forecasting system illustrates the potential of applying the statistical techniques tested here in other regions worldwide.  40 
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The emphasis of this study has been on benchmarking the contributions of statistical processing to the RHEPS. To accomplish 

this, our approach required that the quality of ensemble flood streamflow forecasts be verified over multiple years (i.e., across 

many flood flood cases) to obtain robust verification statistics. Future research, however, could be focused on studying how distinct 

hydrological processes contribute or constrain forecast quality. This effort could be centered around specific flood events rather 

than in the statistical, many-cases approach taken here. To further assess the relative importance of the various components of the 5 
RHEPS, additional tests involving the uncertainty to initial hydrologic conditions and hydrological parameters could be performed. 

For instance, the combined use of data assimilation and postprocessing has been shown to produce more reliable and sharper 

streamflow forecasts (Bourgin et al., 2014). The potential for the interaction of preprocessing and postprocessing with data 

assimilation to significantly enhance streamflow predictions, however, has not been investigated. This could be investigated in the 

future with the RHEPS, as the pairing of data assimilation with preprocessing and postprocessing could facilitate translating the 10 
improvements in the preprocessed meteorological forcing down the hydrological forecasting chain.  

 

Data availability: Daily streamflow observation data for the selected forecast stations can be obtained from the USGS website 

(https://waterdata.usgs.gov/nwis/). Multisensor precipitation estimates are obtained from the NOAA’s Middle Atlantic River 

Forecast Center. Precipitation and temperature forecast datasets can be obtained from the NOAA Earth System Research 15 
Laboratory website (https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html). 

Appendix A: Verification metrics 

Modified correlation coefficient (Rm): The modified version of the correlation coefficient, called as modified correlation 

coefficient 𝑅𝑅𝑚𝑚, compare event specific observed and simulated hydrographs (McCuen and Snyder, 1975). In the modified version, 

an adjustment factor based on the ratio of the observed and simulated flow is introduced to refine the conventional correlation 20 

coefficient 𝑅𝑅. The modified correlation coefficient 𝑅𝑅𝑚𝑚 is defined as: 

𝑅𝑅𝑚𝑚 = R 𝑚𝑚𝑚𝑚𝑚𝑚�𝜎𝜎𝑠𝑠,𝜎𝜎𝑞𝑞�
𝑚𝑚𝑚𝑚𝑚𝑚�𝜎𝜎𝑠𝑠,𝜎𝜎𝑞𝑞�

,                                                                                                                     (A1) 

where 𝜎𝜎𝑠𝑠 and,𝜎𝜎𝑞𝑞 denote the standard deviation of the simulated and observed flows, respectively. 

 

Percent bias (PB): PB measures the average tendency of the simulated flows to be larger or smaller than their observed 25 
counterparts. Its optimal value is 0.0 where positive values indicate model overestimation bias, and negative values indicate model 

underestimation bias. The PB is estimated as follows: 

𝑃𝑃𝑃𝑃 = ∑ (𝑠𝑠𝑖𝑖−𝑞𝑞𝑖𝑖)
𝑁𝑁
𝑖𝑖=1
∑ 𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=1

× 100,                                                                                                                     (A2) 

where 𝑠𝑠𝑖𝑖 and 𝑞𝑞𝑖𝑖 denote the simulated and observed flow, respectively, at time 𝑖𝑖.  

 30 
Nash-Sutcliffe efficiency (NSE): The NSE (Nash and Sutcliffe, 1970) is defined as the ratio of the residual variance to the initial 

variance. It is widely used to indicate how well the simulated flows fit the observations. The range of NSE can vary between 

negative infinity to 1.0, with 1.0 representing the optimal value and values should be larger than 0.0 to indicate minimally 

acceptable performance. The NSE is computed as follows:  

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (𝑠𝑠𝑖𝑖−𝑞𝑞𝑖𝑖)2
𝑁𝑁
𝑖𝑖=1

∑ (𝑞𝑞𝑖𝑖−𝑞𝑞�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

,                                                                                                                     (A3) 35 

https://waterdata.usgs.gov/nwis/
https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html
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where 𝑠𝑠𝑖𝑖, 𝑞𝑞𝑖𝑖 , and 𝑞𝑞�𝑖𝑖 are the simulated, observed, and mean observed flow, respectively, at time 𝑖𝑖 .   

 

Relative mean error (RME): RME quantifies the average error between the ensemble mean forecast and their corresponding 

observation as a fraction of the averaged observed value. RME gives an indication how good the forecast is relative to the 

observation. RME is expressed as follows: 5 

𝑅𝑅𝑀𝑀𝑀𝑀 = ∑ (𝑓𝑓̅𝑖𝑖−𝑞𝑞𝑖𝑖)
𝑛𝑛
𝑖𝑖=1
∑ 𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=1

,                                                                                                                                                       

(A4) 

where 𝑓𝑓𝑖̅𝑖 = 1
𝑚𝑚
∑ 𝑓𝑓𝑖𝑖,𝑘𝑘𝑚𝑚
𝑘𝑘=1 , 𝑚𝑚 is the number of ensemble members, 𝑓𝑓𝑖𝑖,𝑘𝑘 is the forecast for member  𝑘𝑘 and time 𝑖𝑖, 𝑞𝑞𝑖𝑖 denotes the 

corresponding observation at time 𝑖𝑖, and 𝑛𝑛 denotes the total number of pairs of forecasts and observed values. 

 10 
Brier Skill Score (BSS): The Brier score (BS; Brier, 1950) is analogous to the mean squared error, but where the forecast is a 

probability and the observation is either a 0.0 or 1.0. The BS is given by 

𝐵𝐵𝐵𝐵 = 1
𝑛𝑛
∑ �𝐹𝐹𝑓𝑓𝑖𝑖(𝑧𝑧) − 𝐹𝐹𝑞𝑞𝑖𝑖(𝑧𝑧)�2𝑛𝑛
𝑖𝑖=1 ,                                                                                                     

(A45) 

where the probability of 𝑓𝑓𝑖𝑖 to exceed a fixed threshold 𝑧𝑧 is  15 

𝐹𝐹𝑓𝑓𝑖𝑖(𝑧𝑧) = 𝑃𝑃𝑟𝑟[𝑓𝑓𝑖𝑖 > 𝑧𝑧],                                                                                                                     

(A56) 

𝑛𝑛 is again the total number of forecast-observation pairs, and 

𝐹𝐹𝑞𝑞𝑖𝑖(𝑧𝑧) = � 1,           𝑞𝑞𝑖𝑖 > 𝑧𝑧
 0,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.                                                                                                                                  

(A67) 20 

In order to compare the skill score of the main forecast system with respect to the reference forecast, it is convenient to define the 

Brier Skill Score (BSS): 

𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

,                                                                                                                                  

(A78) 

where  𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  are the BS values for the main forecast system (i.e. the system to be evaluated) and reference 25 

forecast system, respectively. Any positive values of the BSS, from 0 to 1, indicate that the main forecast system performs better 

than the reference forecast system. Thus, a BSS of 0 indicates no skill and a BSS of 1 indicates perfect skill. 

   

Mean Continuous Ranked Probability Skill Score (CRPSS): Continuous Ranked Probability Score (CRPS) quantifies the 

integrated square difference between the cumulative distribution function (cdf) of a forecast, 𝐹𝐹𝑓𝑓(𝑧𝑧), and the corresponding cdf of 30 

the observation, 𝐹𝐹𝑞𝑞(𝑧𝑧). The CRPS is given by  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∫ �𝐹𝐹𝑓𝑓(𝑧𝑧) − 𝐹𝐹𝑞𝑞(𝑧𝑧)�2𝑑𝑑𝑑𝑑.∞
−∞                                                                                                                   

(A89) 
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To evaluate the skill of the main forecast system relative to the reference forecast system, the associated skill score, the mean 

Continuous Ranked Probability Skill Score (CRPSS), is defined as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

,                                                                                                                

(A910) 

where the CRPS is averaged across n pairs of forecasts and observations to calculate the mean CRPS of the main forecast system 5 

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and reference forecast system (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). The CRPSS varies from -∞ to 1. Any positive values of the CRPSS, 

from 0 to 1, indicate that the main forecast system performs better than the reference forecast system. 

To further explore the forecast skill, the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is decomposed into the CRPS reliability (𝐶𝐶𝑅𝑅𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟) and potential(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝) 

such that Hersbach (2000) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 .                                                                                                                10 

(A101) 

The 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 measures the average reliability of the precipitation ensembles similarly to the rank histogram, which shows whether 

the frequency that the verifying analysis was found in a given bin is equal for all bins (Hersbach 2000). The  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝  measures 

the CRPS that one would obtain for a perfect reliable system. It is sensitive to the average ensemble spread and outliers.  

 15 
Acknowledgements: We acknowledge the funding support provided by the NOAA/NWS through Award NA14NWS4680012. 
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Table 1. Main characteristics of the four study basins. 

*The number in parenthesis is the historical (based on entire available record, as opposed to the period 2004-2012 used in this 
study) daily minimum, maximum, or mean recorded flow. 
**Pr=0.95 indicates flows with exceedance probability of 0.05.  

Location of outlet Cincinnatus, New 
York 

Chenango Forks, New 
York 

Conklin, New 
York 

Waverly, New York 

NWS id CINN6 CNON6 CKLN6 WVYN6 
USGS id 01510000 01512500 01503000 01515000 

Area [km2] 381 3841 5781 12362 
Latitude 42032’28” 42013’05” 42002’07” 41059’05” 

Longitude 75053’59” 75050’54” 75048’11” 76030’04” 
Minimum daily flow* [m3/s] 0.31 

(0.11) 
4.05 

(2.49) 
6.80 

(5.32) 
13.08 
(6.71) 

Maximum daily flow* [m3/s] 172.73 
(273.54) 

1248.77 
(1401.68) 

2041.64 
(2174.734) 

4417.42 
(4417.42) 

Mean daily flow* [m3/s] 8.89 
(9.17) 

82.36 
(81.66) 

122.93 
(121.99) 

277.35 
(215.01) 

Climatological flow (Pr=0.95)** 
[m3/s] 

29.45 266.18 382.28       843.84 
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Table 2. Summary and description of the verification scenarios. 

Scenario Description 
S1 Verification of the raw ensemble precipitation forecasts from the GEFSRv2 
S2 Verification of the preprocessed ensemble precipitation forecasts from the GEFSRv2: 

GEFSRv2+HCLR 
S3 Verification of the raw ensemble flood forecasts: GEFSRv2+HL-RDHM 
S4 Verification of the preprocessed ensemble flood forecasts: GEFSRv2+HCLR+HL-RDHM 
S5 Verification of the postprocessed ensemble flood forecasts: GEFSRv2+HL-RDHM+QR 
S6 Verification of the preprocessed and postprocessed ensemble flood forecasts: 

GEFSRv2+HCLR+HL-RDHM+QR 
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Figure 1: Map illustrating the location of the four selected river basins in the U.S. middle Atlantic region. 
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Figure 2: Performance statistics for the uncalibrated and calibrated simulation runs for the entire period of analysis (years 2004-2012): 

(a) Rm, (b) NSE, and (c) PB. 
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Figure 3: CRPSS (relative to sampled climatology) of the raw (red curves) and preprocessed (blue curves) ensemble precipitation 

forecasts from the GEFSRv2 vs the forecast lead time during the (a)-(d) warm (April-September) and (e)-(h) cool season (October-

March) for the selected basins.  5 
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Figure 4: CRPSS (relative to the raw forecasts) of the ARX(1,1) (red curves) and QR (blue curves) postprocessed ensemble flood forecasts 

vs the forecast lead time during the (a)-(d) warm (April-September) and (e)-(h) cool season (October-March) for the selected basins.  
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Figure 5: Relative mean error (RME) of the mean ensemble flood forecasts vs the forecast lead time during the (a)-(d) warm (April-

September) and (e)-(h) cool season (October-March) for the selected basins. The curves represent the different forecasting scenarios S3-

S6. Note that S3 consists of GEFSRv2+HL-RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of GEFSRv2+HL-RDHM+QR, and S6 of 5 
GEFSRv2+HCLR+HL-RDHM+QR. 



34 
 



35 
 

 

Figure 56: Continuous ranked probability skill score (CRPSS) of the mean ensemble flood forecasts vs the forecast lead time during the 

(a)-(d) warm (April-September) and (e)-(h) cool season (October-March) for the selected basins. The curves represent the different 

forecasting scenarios S3-S6. Note that S3 consists of GEFSRv2+HL-RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of GEFSRv2+HL-

RDHM+QR, and S6 of GEFSRv2+HCLR+HL-RDHM+QR. 5 
As in Fig. 5, but for the CRPSS (relative to sampled climatology) of the ensemble flood forecasts vs the forecast lead time. 
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Figure 67: Decomposition of the CRPS into CRPS potential (CRPSpot) and CRPS reliability (CRPSrel) for forecasts lead times of 1, 3, 

and 7 days during the warm (a)-(d) (April-September) and cool season (e)-(h) (October-March) for the selected basins. The four columns 

associated with each forecast lead time represent the forecasting scenarios S3-S6 (from left to right). Note that S3 consists of 

GEFSRv2+HL-RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of GEFSRv2+HL-RDHM+QR, and S6 of GEFSRv2+HCLR+HL-5 
RDHM+QR. 
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Figure 78: Brier skill score (BSS) of the mean ensemble flood forecasts for S5 (a-d) and S6 (e-h) vs the flood threshold for forecast lead 

times of 1, 3, and 7 days during the warm (April-September) season for the selected basins. The BSS is shown relative to both observed 

(solid lines) and simulated floods (dashed lines). 
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