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Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble
prediction system
Sanjib Sharma, Ridwan Siddique, Seann Reed, Peter Ahnert, Pablo Mendoza, Alfonso Mejia

Response to the reviewers’ comments

We are thankful to the Editor, Dr. Shraddhanand Shukla, and the reviewers for their thorough review of
manuscript hess-2017-514. We have considered each comment and suggestion made by the reviewers when
revising our manuscript. Below we provide a point-by-point response to each of the comments. The
reviewers’ comments are shown in blue font and our response follows immediately after that.

RESPONSE TO EDITOR’S COMMENTS

Comment from the editor: 1) Please do not exclude the summary/general statements (the first paragraph)
made by the reviewers from your response. Please submit a revised version of your response that includes
summary statements made by each of the reviewers.

Response to the editor: We have now added the summary statement made by each reviewer in the “Response
to Reviewer” section.

Comment from the editor: 2) Reviewer #2, Comment #4: | do not think that dropping climate variability
from this statement is fair. My suggestion would be to say something to the affect that both climate variability
and climate change contribute to increased exposure increased exposure from expanding urbanization, and
sea level rise are increasing.
Response to the editor: As suggested, we have now modified the sentence in P1 L30 to read as follows:
“Both climate variability and climate change, increased exposure from expanding urbanization, and sea level
rise are increasing the frequency of damaging flood events and making their prediction more challenging
across the globe.”

Comment from the editor: 3) Reviewer #2, Comment #10: Please specify here which comment of the
reviewer #1 is similar to this comment, which you have already responded.
Response to the editor: We now indicate that our response to Reviewer #2 Comment #10 is similar to our
response to Reviewer #1 Comment #3.

Comment from the editor: 4) Reviewer #2, Comment #11: It is not clear to me how the revised sentence
add any clarity. My guess is that the reviewer would like you to be more specific about the metric score use
for making this statement and perhaps also mention if the reliability improves for certain category of events.
Response to the editor: We used the reliability diagram to quantify the reliability of the forecasts. The
reliability diagram shows the full joint distribution of forecasts and observations to reveal the reliability of
the probability forecasts. Response to Comment #11 from Reviewer #2 now reads as follows: “We also
computed reliability diagrams, as determined by Sharma et al. (2017), for the two postprocessors (plots not
shown) and found that QR displays better reliability than ARX(1,1) across lead times, basins, and seasons.”
This information is incorporated in P11 L3-5 of the revised manuscript.

Comment from the editor: 5) Reviewer #3, Comment #1: Please provide a reference or example for your
statement "since this is a temporal resolution commonly used in operational forecasting in the U.S."
Response to the editor: As suggested, a link to the website from Advanced Hydrologic Prediction Center is
added. Response to Comment #1 from Reviewer #3 now reads as: “We also note that we use 6-hourly
accumulations since this is the resolution of the GEFSRv2 data after day 4 and since this is a temporal
resolution often used in operational forecasting in the u.S
(http://water.weather.gov/ahps2/hydrograph.php?wfo=bgm&gage=cinn6).” This  information s
incorporated in P7 L3-6 of the revised manuscript.
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Comment from the editor: 6) Reviewer #3, Comment #4: | am not satisfied with this response, my guess
would be that the reviewer may not be either. Why highlight the difference in the model structure if it has no
bearing on your results? Also there are of course other previous studies that have used distributed models.
Response to the editor: We understand the point of the reviewer and value the comment. However, we did
conduct a very exhaustive literature review. We found that most, if not all, studies that use GEFS data as
forcing are with lumped or semi-distributed models. The few studies that use a distributed model tend to use
ECMWEF forcing, not GEFS. Even though we do not emphasize the effect of model structure in the
manuscript, the use of a distributed model affects quite a bit the way the forcing is used for both the
streamflow simulations and forecasts. Hence, we still think that it is worth mentioning that this is point of
distinction with previous studies.

Comment from the editor: 7) Reviewer #3, Comment #8: Please make sure to provide more details
regarding the forcing. For example please briefly mention the method, sources of observations (e.g. station
or satellite or both?), which other studies have used the data before and how it was validated.

Response to the editor: The information requested by the editor is already included in the original
manuscript. The text in the original manuscript reads: “Both the MPEs and gridded near-surface air
temperature data at 4 x 4 km2 resolution were provided by the NOAA’s Middle Atlantic River Forecast
Center (MARFC) (Siddique and Mejia 2017). Similar to the NCEP stage-1V 5 dataset(Moore et al., 2015;
Prat and Nelson, 2015), the MARFC’s MPEs represent a continuous time series of hourly, gridded
precipitation observations at 4 x 4 km? cells, which are produced by combining multiple radar estimates and
rain gauge measurements. The gridded near-surface air temperature data at 4 x 4 km2 resolution were
developed by combining multiple temperature observation networks as described by Siddique and Mejia
(2017).” This information can be found in P4 L8-13 of the revised manuscript.

RESPONSE TO REVIEWER #1

Comment from Reviewer #1: This manuscript studies the relative roles of statistical preprocessing of
meteorological inputs in a hydrological forecast system and statistical postprocessing of the resulting flow
forecasts for four basins in the US middle Atlantic region. The paper is well written, the structure is good,
and the conclusions are interesting and relevant. The methodology is sound with two exceptions detailed
below. These are major in the sense that they are scientifically problematic and may have an impact on the
conclusions, but they can probably be addressed quite easily.

Response to reviewer #1: We thank the reviewer for reviewing the manuscript. We have now addressed the
reviewer’s concern as detailed in the next comments.

Comment from Reviewer #1: 1) p6, 14: pi_i is only a probability when y_i=0, otherwise a likelihood.
Response to reviewer #1: We agree with the reviewer and have accordingly changed the text in the revised
manuscript to read as follows: “For this, the predicted probability or likelihood ; of the i" observed outcome
is determined as...” The suggested change can be found in P6 L12 of the revised manuscript.

Comment from Reviewer #1: 2) P7, 115: *smallest mean CRPS is selected’: | don’t fully understand how
this works. Apparently c_{i+1} changes over time, so what exactly is minimized here? The CRPS over some
training data with a rolling training window? Please add some more explanation.
Response to reviewer #1: The postprocessor is implemented following a leave-one-out approach, which
consists of using 7 years for training (i.e., to estimate ci+1) and the 2 remaining years for verification purposes.
This is done separately at each lead time until the entire 9 years have been verified independently from the
training period. Thus, we determine a different value of ci+1 for each 7-year training period and lead time.
To select the value of ci+1 for each 7-year training period and lead time, we first generate ten equally
spaced values of c;, ;. For each value of c¢;,, the ARX(1,1) model is trained and used to generate ensemble
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streamflow forecasts, which are in turn used to compute the mean continuous ranked probability score
(CRPS) for the 7-year training period under consideration. Thus, the mean CRPS is computed for each value
of c;,4, and the value of c;,; that produces the smallest mean CRPS is then selected for use in the 2-year
verification period under consideration. This is repeated until all the years (2004-2012) have been
postprocessed and verified independently of the training period. To address the reviewer’s comment, we have
now incorporated this explanation in P7 L24-28 of the revised manuscript.

Comment from Reviewer #1: 3) p8, 115-16: "... is focused on flood events ... by choosing flow amounts
greater than ...”: This kind of subsetting is very problematic and can lead to false conclusions about the
relative predictive performance of different methods, see Lerch et al. (2017). Bellier et al (2017) give a
discussion of pitfalls of sample stratification and make suggestions how one can stratify samples in a way
that avoids these pitfalls.

Response to reviewer #1: We are thankful to the reviewer for this constructive comment. We have read the
suggested papers and decided to use the entire flow values, as opposed to using a sample stratification
approach, when computing the different verification metrics, with the exception of the Brier skill score.
Accordingly, we revised Figures 3-7 in the new version of the manuscript. The revised figures are
qualitatively similar to the previous ones. However, the revised figures are more consistent in showing the
scenario involving both preprocessing and postprocessing, S6, as having better performance than the other
scenarios. In addition, there are now clear differences between the warm and cool season, where the warm
season shows the different scenarios, particularly S4-S6, as being more similar to each other, while the cool
season results remained similar to the ones in the original manuscript. We have now modified the original
manuscript in several locations to reflect the differences associated with the revised figures.

Comment from Reviewer #1: 4) Section 4.4.1: I’m not sure if this part of the analysis makes sense. In
addition to the stratification issue (which demonstrably entails a bias), it is also known that the ensemble
mean does not necessarily yield the best/appropriate point forecast when a relative error statistic is considered
(see Gneiting 2011). I suggest either considering the mean error (over the entire verification data), or omitting
this subsection entirely and maybe replace it by a subsection that studies reliability of threshold exceedance.
Response to reviewer #1: We again thank the reviewer for this constructive comment. As suggested by the
reviewer, we have now removed the relative mean error statistic and this sub-section from the revised
manuscript.

Comment from Reviewer #1: 5) P6, 131: hourly
Response to reviewer #1: Thanks for catching this. The typo has been corrected in the revised manuscript
(see P7 L3).

Comment from Reviewer #1: 6) P7, eq (7): xi_{1+1} -> xi_{i+1}
Response to reviewer #1: Thanks for catching this. We incorporated this modification in P7 Eq. (7) of the
revised manuscript.

Comment from Reviewer #1: 7) P9, 115: It sounds weird to say that one basin outperforms the other, please
reformulate

Response to reviewer #1: We have now revised the text following the reviewer’s suggestion. The revised
sentence reads as follows (P9 L23-24): “Further, the performance of the calibrated simulation runs is similar
across the four selected basins, although the largest size basin, WVYNB6, shows slightly higher performance
with Rm, NSE, and PB values of 0.85, 0.82, and -3%, respectively.”

Comment from Reviewer #1: 8) p10, 124: Replace *While’ by The gains ..., on the other hand,’
Response to reviewer #1: Following the reviewer’s suggestion, we incorporated this modification in P10
L36 of the revised manuscript.
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RESPONSE TO REVIEWER #2

Comment from Reviewer #2: This review is for manuscript HESS-2017-514: Relative effects of statistical
preprocessing and postprocessing on a regional hydrological ensemble prediction system, authored by Sanjib
Sharma, Ridwan Siddique, Seann Reed, Peter Ahnert, Pablo Mendoza, and Alfonso Mejia. The manuscript
is easy to follow. It presents some interesting results. In this work, a spatially distributed hydrological model
is included in the study. Two postprocessors: an autoregressive model with a single exogenous variable and
quantile regression, are comparatively evaluated. Below are my general and specific comments.

Response to reviewer #2: Thanks for reviewing the manuscript.

Comment from Reviewer #2: 1) | was intrigued by reading the statement “postprocessing alone performs
similar, in terms of the relative mean error, skill, and reliability, to the more involved scenario that includes
both preprocessing and postprocessing” in the Abstract (page 1, lines 24-25). This is one of the major
conclusions of the work. However, further reading reveals that the results do not fully support this conclusive
statement, for the following reasons:

i) Figures 5 and 6 show appreciable performance gains of S6 over S5 for 5 cases out of 8. One can see that
S6 outperforms S5 in terms of forecast lead times by 12 hours to 3 days.

ii) The closeness of the results for the other cases (i.e., (e) and (f)) between S5 and S6 can be explained by
the closeness of the raw GEFS and preprocessed GEFS precipitation, as shown in Figure 3.

iii) The verification appears to be only conducted for large observed events without considering large forecast
events, which can generate false-alarms. In short, I find this conclusion is inaccurate and can be misleading.
Response to reviewer #2: We agree with the reviewer. We have now modified the revised manuscript to
indicate that the scenario involving both preprocessing and postprocessing, S6, consistently outperforms the
other scenarios. However, we also indicate that in some cases the differences between S5 (only
postprocessing) and S6 are not as significant. We believe, as the reviewer suggested, that this statement and
conclusion is more consistent with the overall results that are presented in the manuscript.

In regards to the reviewer’s point iii), we have now revised Figures 3-7 in the new version of the
manuscript by computing all the verification metrics over the entire verification period (please also see our
response to reviewer # 1 comment #3 regarding this issue). The revised figures show more clearly that S6 is
consistently better than the other scenarios. Qualitatively, the revised and original figures are overall similar.
But some difference do emerge, as indicated in our response to reviewer 1, particularly between the warm
and cool season. We have now revised the manuscript to note and discuss these differences.

Comment from Reviewer #2: 2) How are the GEFS precipitation and temperature downscaled to force the
HR-RDHM? A description should be provided.

Response to _reviewer #2: As suggested by the reviewer, we added the following text in the revised
manuscript (P4 L25): “The GEFSRv2 data are bilinearly interpolated onto the 4 x 4 km? grid cell resolution
of the HL-RDHM model.”

Comment from Reviewer #2: 3) Page 1, Line 12: Do you mean “Is comprised of “by “is comprised by”?
Response to reviewer #2: This modification was incorporated into the revised manuscript (see P1 L12).

Comment from Reviewer #2: 4) Page 1, Line 28: In “The intersection of climate variability and change,
increased exposure from expanding urbanization, and sea level rise are increasing”, what do you mean by
“The intersection of climate variability and change”?

Response to reviewer #2: We meant by this statement that climate variability and climate change, which act
together, alongside expanding urbanization and sea level rise are making flood prediction more challenging.
We now revised the manuscript (see P1 L30) to say “Both climate variability and climate change” as we
think this makes the sentence clearer and easier to read.
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Comment from Reviewer #2: 5) Page 2, Line 6: In “for research purposes, meet specific regional needs,
and/or real-time forecasting applications”, do you mean “to meet . . .”?
Response to reviewer #2: In P2 L9 of the revised manuscript, the suggested change was incorporated.

Comment from Reviewer #2: 6) Page 3, line 21: Shouldn’t it be U.S. Middle Atlantic region?
Response to reviewer #2: We incorporated this modification into the revised manuscript (P3 L25).

Comment from Reviewer #2: 7) Page 5, line 16: “Also, HCLR has been shown to outperform other widely
used preprocessors (Yang et al., 2017)”. Should be more specific here since the paper only compares the
HCLR and BMA.

Response to reviewer #2: Following the reviewer’s comment, we made our statement more specific; it now
reads as follows (P5 L25): “Also, HCLR has been shown to outperform other widely used preprocessors, such as
Bayesian Model Averaging”.

Comment from Reviewer #2: 8) Page 6, line 31: “6-houlry” is a typo.
Response to _reviewer #2: Thanks for catching this. We incorporated this modification into the revised
manuscript (P7 L3).

Comment from Reviewer #2: 9) Page 7, line 23: “QR has similar skill performance in streamflow and
normal space”. This sentence is not clear to me. Do you mean that QR has similar skill performance in the
streamflow space as well as normal space?

Response to reviewer #2: We rephrased this sentence to incorporate the reviewer’s comment. The revised
sentence reads as follows (P8 L1-2): “QR is applied here in streamflow space, since it has been shown that,
in hydrological forecasting applications, QR has similar skill performance in streamflow space as well as
normal space (LOpez et al., 2014).”

Comment from Reviewer #2: 10) Page 8, line 15: How many events result from this threshold? Is the
sampled climatological probability distribution derived from the observed data? If so, will your conclusions
still hold if events corresponding to forecasts with large magnitudes and high probabilities also included in
the verification?
Response to reviewer #2: The reviewer makes a good point. We have now modified the manuscript by
computing the metrics (Figs. 3-7) over the entire verification period. Overall, our conclusions did not change
based on the revised figures. As noted before, we do see now some seasonal differences (mainly, the
performance of scenarios S4-S6 is more similar to each other in the warm season than it was before in the
original manuscript) and the ability of S6 to outperform the other scenarios is more clear now. Below we
show in italic our complete answer to comment # 3 from Reviewer #1 which we think applies here as well.
We have decided to use the entire flow values, as opposed to using a sample stratification approach,
when computing the different verification metrics, with the exception of the Brier skill score. Accordingly,
we revised Figures 3-7 in the new version of the manuscript. The revised figures are qualitatively similar to
the previous ones. However, the revised figures are more consistent in showing the scenario involving both
preprocessing and postprocessing (scenario 6) as having better performance than the other scenarios. In
addition, there are now clear differences between the warm and cool season, where the warm season shows
the different scenarios, particularly S4-S6, as being more similar to each other, while the cool season results
remained similar to the ones in the original manuscript. We have now modified the original manuscript in
several locations to reflect the differences associated with the revised figures.

Comment from Reviewer #2: 11) Page 10, line 33: “QR displays better reliability than ARX (1,1) across
lead times, basins, and seasons”. By what measure(s)?
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Response to reviewer #2: This sentence was slightly modified in the revised manuscript to add clarity and
address the reviewer’s comment. The new sentence reads (P11 L3-5): “We also computed reliability
diagrams, as determined by Sharma et al. (2017), for the two postprocessors (plots not shown) and found that
QR displays better reliability than ARX(1,1) across lead times, basins, and seasons.” The figures are not
shown simply to keep the length of the manuscript and number of figures manageable.

Comment from Reviewer #2: 12) Page 11, line 36: “reinforcing the fact that preprocessing may have little
effect on the flood forecasts”. See the General Comments.

Response to reviewer #2: Following the reviewer’s comment, we removed the sentence from the revised
manuscript.

RESPONSE TO REVIEWER #3

Comment from Reviewer #3: The manuscript describes a comparative analysis of pre and post processing
approaches and their contributions to flood forecasting performance in the Middle Atlantic Region. The
analysis starts by evaluating the hydrology model performance. Then authors evaluate one pre processor and
confirm that it improves the skill of raw precipitation forecasts. Next they evaluate two post processors and
select the most performing one. Finally, authors evaluate multiple cases: raw, with or without pre and post
processors. The analysis focuses on two periods for the evaluations, and 4 basins of different sizes. Authors
conclude that post processing for flood forecasting is necessary and provides the largest skill increase. Pre —
processing appears unnecessary.

The paper is very well written and organized. The approach, application and conclusion are of interest to the
HESS community which has published extensively on ensemble flow forecasting. | have some moderate and
minor comments below that would need to be addressed.

Response to reviewer #3: We are thankful to the reviewer for taking the time to review our manuscript.

Comment from Reviewer #3: 1) the pre-processor is evaluated for 6 hourly 95th percentile events but is not
evaluated for aggregated period events, which ultimately drive to floods. There is therefore a disconnection
between the “value” of the post processor when evaluated independently, and the “value” of the pre —
processor when verifying floods. The pre-processor has not been evaluated for the same “events”.
Response to reviewer #3: The reviewer makes a good point. As we indicated before in our response to
reviewer #1 and #2, we now use in the revised manuscript all the verification values when computing the
verification metrics in Figures 3-7, i.e., we do not use any threshold or stratified sample. This means that all
the preprocessed precipitation values and all the postprocessed flow values are used to compute the
verification metrics.

We also note that we use 6-hourly accumulations since this is the resolution of the GEFSRv2 data
after day 4 and since this is a temporal resolution often used in operational forecasting in the U.S.
(http://water.weather.gov/ahps2/hydrograph.php?wfo=bgm&agage=cinn6 ). In Fig. 3, we want simply to
illustrate the performance of S1 and S2 relative to each other, for this purpose using 6-hourly accumulations
seems reasonable (i.e., the relative comparison between S1 and S2 is similar for 6-houlry or daily
accumulations). Further, we use the 6-hourly precipitation accumulations to force the hydrological model
and generate 6-hourly flows. Since the observed flow data are mean daily, we compute the mean daily flow
forecast from the 6-hourly flows. The postprocessor is applied to the mean daily values since this is the
resolution of the observations. But there is no mismatch between precipitation and flood events. This
information was incorporated in P7 L3-6 of the revised manuscript.

Comment from Reviewer #3: 2) The conclusion that post processing only is needed to improve the skill of
flow forecast seems to be based on statistics only and therefore you might get the right answer for the wrong
reasons. The post processor maybe have the largest “value” but it does not mean that pre-processing steps
should be skipped. I strongly recommend the authors to modify the conclusion to reflect that nuance.
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Response to reviewer #3: We agree with the reviewer. As suggested by the reviewer’s comment, we have
now modified the conclusion to read as follows (P13 L28-31): “The scenario involving both preprocessing
and postprocessing consistently outperforms the other scenarios. In some cases, however, the differences
between the scenario involving preprocessing and postprocessing, and the scenario with postprocessing
alone, are not as significant, suggesting for those cases that postprocessing alone can be effective in removing
systematic biases.”

Comment from Reviewer #3: 3) Literature review and contribution of the paper and conclusion: A HEPEX
blog by Boucher A. M. (2015) provides a summary of the contribution of previous papers. She refers to the
papers also mentioned below. i) The literature and the insight provided by this experiment should be put in
perspective with what has been done and found by others before.

Response to reviewer #3: Thanks for pointing us to this blog. We were indeed aware of the blog by Boucher
A. M. (2015) (https://hepex.irstea.fr/pre-post-processing-or-both/), which summarizes different papers (e.g.,
Kang et al. (2010), Zalachori et al. (2012), Verkade et al. (2013), and Roulin and Vannitsem (2015)) related
to preprocessing and postprocessing in streamflow forecasting. In fact, we have already discussed these
paper/studies and their major findings in the original manuscript. Furthermore, our research questions and
experimental set-up for the manuscript were designed in part to address concerns raised in the blog.

i) The fact that spatially disaggregated modeling is used might not be enough because there is no insight
related to that modeling structure to the results. I would suggest framing the contribution differently.
Response to reviewer #3: We agree with the reviewer. It is not our intention to frame the contribution in
terms of going from lumped to distributed hydrological modeling. However, we do note in the original
manuscript that this is one aspect of the present study that differs from previous one. It was indeed surprising
to us that most previous pre/postprocessing studies that use GEFS forcing have been done with lumped or
semi-distributed models. Beyond the issue of model structure indicated by the reviewer, we think it is useful
to mention this aspect of the study because the use of the forcing for simulating and forecasting streamflow
is different than with a lumped model, and the application of the preprocessor is also different.

Comment from Reviewer #3: 4) Study domain — this corresponds to the Susquehanna Basin — why use
MAR instead of the Susquehanna River Basin?

Response to reviewer #3: We agree with the reviewer and have now incorporated this modification into the
revised manuscript (see P3 L25-37).

Comment from Reviewer #3: 5) Warm and cold seasons: can you describe the type of events expected in
both seasons?

Response to reviewer #3: To address the reviewer’s comment, we added the following information to the
revised manuscript (P3 L28-32): “The climate in the upper MAR, where the NBSR basin is located, can be
classified as warm, humid summers and snowy, cold winters with frozen precipitation (Polsky et al, 2000).
During the cool season, a positive North Atlantic Oscillation phase generally results in increased precipitation
amounts and occurrence of heavy snow (Durkee et al., 2007). Thus, flooding in the cool season is dominated
by heavy precipitation events accompanied by snowmelt runoff. In the summer season, convective
thunderstorms with increased intensity may lead to greater variability in streamflow.”

Comment from Reviewer #3: 6) PG 6 L31: change to “hourly"
Response to reviewer #3: Thanks for catching this. We incorporated this modification into the revised
manuscript (P7 L3).

Comment from Reviewer #3: 7) PG9 L4: add “observed” to “gridded precipitation”
Response to reviewer #3: We incorporated this modification in P9 L13 of the revised manuscript.
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Comment from Reviewer #3: 8) PG9 L4: please specify the source of the gridded observed precipitation
Response to reviewer #3: The information requested by the reviewer is already included in the original
manuscript. The text in the revised manuscript can be found in P4 L8-9 and reads as follows: “Both the MPEs
and gridded near-surface air temperature data at 4 x 4 km? resolution were provided by the NOAA’s Middle
Atlantic River Forecast Center (MARFC) (Siddique and Mejia 2017).”

Comment from Reviewer #3: 9) PG9 L24: confusing; you mean “high precipitation events defined as 6-
hourly accumulated precipitation events with a .95 non exceedance probability”? Also — see comment for the
need to evaluate aggregated events

Response to reviewer #3: We have now modified the original manuscript to reflect the fact that we no longer
use the 0.95 threshold but instead use all the verification data. We believe this change made the sentence
more clear.

Comment from Reviewer #3: 10) PG10 - Line 35: how do you specify flood events? Are those also 6 hourly
discharge event with a .95th non exceedance probability? Please clarify

Response to reviewer #3: We believe that our previous answer to the reviewer helps to address this question
as well.

Comment from Reviewer #3: 11) Basins are not independent, could you add one comment how this might
affect the results? In the result section at PG11 L34 it looks like you could see consistent results. It did not
seem to be the case on the previous section.

Response to reviewer #3: We believe the results will be similar if we had selected basins that are
geographically close to each other and of similar size to the ones we selected. In fact, we initially selected
nested sub-basins in order to investigate the forecast performance with respect to basin size or, in other words,
the scaling of verification metrics with basin size. However, we found that, although there is some tendency
for the larger basins to show better forecast skill than the small ones, the scaling is rather mild and not
consistent. The scaling tends to show significant variability so that it is not necessarily evident for the
conditions considered (e.g., lead times and seasons). This information is now mentioned in the revised
manuscript to read as follows (P11 L16-18): “Although there is some tendency for the large basins to show
better forecast skill than the small ones, the scaling (i.e., the dependence of skill on the basin size) is rather
mild and not consistent across the four basins.




List of major changes made in the manuscript (hess-2017-514)

The major changes that were incorporated into the revised manuscript are as follows:

5 » We now use the entire flow values, as opposed to using a sample stratification approach, when
computing the different verification metrics, with the exception of the Brier skill score. Accordingly,
we revised Figures 3-7 in the revised manuscript.

» We made changes throughout the result section of the manuscript to reflect the results shown in the
revised Figures 3-7. The main difference in the revised figures with respect to the original ones is that
10 seasonal differences become more obvious between the warm and cool season verification results. In
addition, the verification results for the difference scenarios are more clear now than before.
» We removed from the manuscript the relative mean error statistic and the corresponding subsection
since this was suggested by one of the reviewers.
» The conclusions of the paper were adjusted to reflect the result changes associated with using the
15 entire flow values for the verification analysis.
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Abstract. The relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at
short- to medium-range forecast lead times (day 1-7) are investigated. For this purpose, a regional hydrologic ensemble prediction system
(RHEPS) is developed and implemented. The RHEPS is comprised ofby the following components: i) hydrometeorological observations
(multisensor precipitation estimates, gridded surface temperature, and gauged streamflow); ii) weather ensemble forecasts (precipitation
and near-surface temperature) from the National Centers for Environmental Prediction 11-member Global Ensemble Forecast System
Reforecast version 2 (GEFSRv2); iii) NOAA’s Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM); iv)
heteroscedastic censored logistic regression (HCLR) as the statistical preprocessor; v) two statistical postprocessors, an autoregressive
model with a single exogenous variable (ARX(1,1)) and quantile regression (QR); and vi) a comprehensive verification strategy. To
implement the RHEPS, 1 to 7 days weather forecasts from the GEFSRv2 are used to force HL-RDHM and generate raw ensemble
streamflow forecasts. Forecasting experiments are conducted in four nested basins in the U.S. Mmiddle Atlantic region, ranging in size
from 381 to 12,362 km?,

Results show that the HCLR preprocessed ensemble precipitation forecasts have greater skill than the raw forecasts. These
improvements are more noticeable in the warm season at the longer lead times (>3 days). Both postprocessors, ARX(1,1) and QR,

show gains in skill relative to the raw ensemble floed-streamflow forecasts, particularly in the cool season, but QR outperforms

ARX(1,1). The scenarios that implement pRPreprocessing atene-and postprocessing separately tend to perform similarly, although the

postprocessing alone scenario is often more effectiveha

streamflow-forecasts. The scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios. In

some cases, however, the differences between this scenario and the scenario with postprocessing alone are not as significant. We

conclude that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone

can often be a competitive alternative.lnde

1 Introduction

Both the-climate variability and climate changeChanging-cTFhe-intersection-ofclimate-variability-and-change, increased exposure from

expanding urbanization, and sea level rise are increasing the frequency of damaging flood events and making their prediction more
1
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challenging across the globe (Dankers et al., 2014; Wheater and Gober, 2015; Ward et al., 2015). Accordingly, current research and
operational efforts in hydrological forecasting are seeking to develop and implement enhanced forecasting systems, with the goals of
improving the skill and reliability of short- to medium-range floed-streamflow forecasts (0-14 days), and providing more effective
early warning services (Pagano et al., 2014; Thiemig et al., 2015; Emerton et al., 2016; Siddique and Mejia, 2017). Ensemble-based
forecasting systems have become the preferred paradigm, showing substantial improvements over single-valued deterministic ones
(Schaake et al., 2007; Cloke and Pappenberger, 2009; Demirel et al., 2013; Fan et al., 2014; Demargne et al., 2014; Schwanenberg et
al., 2015; Siddique and Mejia, 2017). Ensemble floed-streamflow forecasts can be generated in a number of ways, being the most
common approach the use of meteorological forecast ensembles to force a hydrological model (Cloke and Pappenberger, 2009;
Thiemig et al., 2015). Such meteorological forecasts can be generated by multiple alterations of a numerical weather prediction model,
including perturbed initial conditions and/or multiple model physics and parameterizations.

A number of ensemble prediction systems (EPSs) are being used to generate fleod-streamflow forecasts. In the United States
(U.S.), the NOAA’s National Weather Service River Forecast Centers are implementing and using the Hydrological Ensemble
Forecast Service to incorporate meteorological ensembles into their flood forecasting operations (Demargne et al., 2014; Brown et al.,
2014). Likewise, the European Flood Awareness System from the European Commission (Alfieri et al., 2014) and the Flood
Forecasting and Warming Service from the Australia Bureau of Meteorology (Pagano et al., 2016) have adopted the ensemble
paradigm. Furthermore, different regional EPSs have been designed and implemented for research purposes, to meet specific regional
needs, and/or for real-time forecasting applications. Two examples, among several others (Zappa et al., 2008; Zappa et al., 2011,
Hopson and Webster, 2010; Demuth and Rademacher, 2016; Addor et al., 2011; Golding et al., 2016; Bennett et al., 2014; Schellekens
etal., 2011), are the Stevens Institute of Technology’s Stevens Flood Advisory System for short-range flood forecasting (Saleh et al.,
2016), and the National Center for Atmospheric Research (NCAR)’s System for Hydromet Analysis, Research, and Prediction for
medium-range streamflow forecasting (NCAR, 2017). Further efforts are underway to operationalize global ensemble flood
forecasting and early warning systems, e.g., through the Global Flood Awareness System (Alfieri et al., 2013; Emerton et al., 2016).

EPSs are comprised by several system components. In this study, the Regional Hydrological Ensemble Prediction System

(RHEPS) is used (Siddique and Mejia, 2017). The RHEPS is an ensemble-based research forecasting system, aimed primarily at
bridging the gap between hydrological forecasting research and operations by creating an adaptable and modular forecast emulator.
The goal with the RHEPS is to facilitate the integration and rigorous verification of new system components, enhanced physical
parameterizations, and novel assimilation strategies. For this study, the RHEPS is comprised by the following system components:
i) precipitation and near surface temperature ensemble forecasts from the National Centers for Environmental Prediction 11-
member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2), ii) NOAA’s Hydrology Laboratory-Research
Distributed Hydrologic Model (HL-RDHM) (Reed et al., 2004; Smith et al., 2012a; Smith et al., 2012b), iii) statistical weather
preprocessor (hereafter referred to as preprocessing), iv) statistical streamflow postprocessor (hereafter referred to as
postprocessing), v) hydrometeorological observations, and vi) verification strategy. Recently, Siddique and Mejia (2017) employed
the RHEPS to produce and verify ensemble streamflow forecasts over some of the major river basins in the U.S. Mmiddle Atlantic
region. Here, the RHEPS is specifically implemented to investigate the relative roles played by preprocessing and postprocessing
in enhancing the quality of ensemble streamflowflood forecasts.

The goal with statistical processing is to use statistical tools to quantify the uncertainty of and remove systematic biases in
the weather and streamflow forecasts in order to improve the skill and reliability of forecasts. In weather and hydrological
forecasting, a number of studies have demonstrated the benefits of separately implementing preprocessing (Sloughter et al., 2007;
Verkade et al., 2013; Messner et al., 2014a; Yang et al., 2017) and postprocessing (Shi et al., 2008; Brown and Seo, 2010; Madadgar
etal., 2014; Ye et al., 2014; Wang et al., 2016; Siddique and Mejia, 2017). However, only a very limited number of studies have
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investigated the combined ability of preprocessing and postprocessing to improve the overall quality of ensemble streamflow
forecasts (Kang et al., 2010; Zalachori et al., 2012; Roulin and Vannitsem, 2015; Abaza et al., 2017). At first glance, in the context

of medium-range streamflow forecasting, preprocessing seems necessary and beneficial since meteorological forcing are often
biased and their uncertainty more dominant than the hydrological one (Cloke and Pappenberger, 2009; Bennett et al., 2014;
Siddique and Mejia, 2017). In addition, some streamflow postprocessors assume unbiased forcing (Zhao et al., 2011) and
hydrological models can be sensitive to forcing biases (Renard et al., 2010).

The few studies that have analyzed the joint effects of preprocessing and postprocessing on short- to medium-range
streamflow forecasts have mostly relied on weather ensembles from the European Centre for Medium-range Weather Forecasts
(ECMWF) (Zalachori et al., 2012; Roulin and Vannitsem, 2015; Benninga et al., 2016). Kang et al. (2010) used different forcing
but focused on monthly, as opposed to daily, streamflow. The conclusions from these studies have been mixed (Benninga et al.,
2016). Some have found statistical processing to be useful (Yuan and Wood, 2012), particularly postprocessing, while others have
found that it contributes little to forecast quality. Overall, studies indicate that the relative effects of preprocessing and
postprocessing depend strongly on the forecasting system (e.g., forcing, hydrological model, statistical processing technique, etc.),
and conditions (e.g., lead time, study area, season, etc.), underscoring the research need to rigorously verify and benchmark new
forecasting systems that incorporate statistical processing.

The main objective of this study is to verify and assess the ability of preprocessing and postprocessing to improve ensemble
streamflowfloed forecasts from the RHEPS. This study differs from previous ones in several important respects. The assessment
of statistical processing is done using a spatially distributed hydrological model whereas previous studies have tended to emphasize
spatially lumped models. Much of the previous studies have used ECMWF forecasts, here we rely on GEFSRv2 precipitation and
temperature outputs. Also, we test and implement a preprocessor, namely heteroscedastic censored logistic regression (HCLR),
which has not been used before in streamflow forecasting. We also consider a relatively wider range of nested-basin sizes and
longer study period than in previous studies. In particular, this paper addresses the following questions:

e What are the separate and joint contributions of preprocessing and postprocessing over the raw RHEPS outputs?

e What forecast conditions (e.g., lead time, season, flowfleed threshold, and basin size) benefit potential increases in skill?

e How much skill improvement can be expected from statistical processing under different uncertainty scenarios (i.e., when
skill is measured relative to observed or simulated flow conditions)?

The remainder of the paper is organized as follows. Section 2 presents the study area. Section 3 describes the different
components of the RHEPS. The main results and their implications are examined in section 4. Lastly, section 5 summarizes key

findings.

2 Study area

The North Branch Susquehanna River (NBSR) basin in the U.S. Mmiddle Atlantic region (MAR) is selected as the study area (Fig.
1), with an overall drainage area of 12,362 km?. The NBSR Susguehanna River basinisregion is selected as flooding is an important
regional concern. This regione-MAR-_has a relatively high level of urbanization and high frequency of extreme weather events,

making it particularly vulnerable to damaging flood events (Gitro et al., 2014; MARFC, 2017). The climate in the upper Mid-
Atlantic Region-MAR, where the NBSR basin is located, -can be classified as warm, humid summers and snowy, cold winters with

frozen precipitation_(Polsky et al, 2000). During the cool season, a positive North Atlantic Oscillation phase generally results in

increased precipitation amounts and occurrence of heavy snow (Durkee et al., 2007). Thus, flooding in the cool season is dominated

by heavy precipitation events accompanied by snowmelt runoff. \AWhie-iln the summer season, convective thunderstorms with
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increased intensity may lead to greater variability in streamflow. In the NBSR North-Branch-Susquehanna-River-basin, we select
four different U.S. Geological Survey (USGS) daily gauge stations, representing a system of nested subbasins, are-selected-as the
forecast locations (Fig. 1). The selected locations are the Ostellic River at Cincinnatus (USGS gauge 01510000), Chenango River
at Chenango Forks (USGS gauge 01512500), Susquehanna River at Conklin (USGS gauge 01503000), and Susquehanna River at
Waverly (USGS gauge 01515000) (Fig. 1). The drainage area of the selected basins ranges from 381 to 12,362 km?. Table 1
outlines some key characteristics of the study basins.

[Insert Figure 1 here]

[Insert Table 1 here]

3 Approach

In this section, we describe the different components of the RHEPS, including the hydrometeorological observations, weather

forecasts, preprocessor, postprocessors, hydrological model, and the forecasting experiments and verification strategy.

3.1 Hydrometeorological observations

Three main observation datasets are used: multisensor precipitation estimates (MPEs), gridded near-surface air temperature, and
daily streamflow. MPEs and gridded near-surface air temperature are used to run the hydrological model in simulation mode for
parameter calibration purposes and to initialize the RHEPS. Both the MPEs and gridded near-surface air temperature data at 4 x 4
km? resolution were provided by the NOAA’s Middle Atlantic River Forecast Center (MARFC)_(Siddique and Mejia 2017).
Similar to the NCEP stage-I1V dataset (Moore et al., 2015; Prat and Nelson, 2015), the MARFC’s MPEs represent a continuous

time series of hourly, gridded precipitation observations at 4 x 4 km? cells, which are produced by combining multiple radar
estimates and rain gauge measurements. The gridded near-surface air temperature data at 4 x 4 km? resolution were developed by
the MARFC by combining multiple temperature observation networks as described by Siddique and Mejia (2017). Daily
streamflow observations for the selected basins were obtained from the USGS. The streamflow observations are used to verify the

simulated flows, and the raw and postprocessed ensemble streamflow forecasts.

3.2 Meteorological forecasts

GEFSRv2 data are used for the ensemble precipitation and near-surface air temperature forecasts. The GEFSRv2 uses the same
atmospheric model and initial conditions as the version 9.0.1 of the Global Ensemble Forecast System and runs at T254L.42 (~0.50°
Gaussian grid spacing or ~55 km) and T190L42 (~0.67° Gaussian grid spacing or ~73 km) resolutions for the first and second 8
days, respectively (Hamill et al., 2013). The reforecasts are initiated once daily at 00 Coordinated Universal Time. Each forecast
cycle consists of 3 hourly accumulations for day 1 to day 3 and 6 hourly accumulations for day 4 to day 16. In this study, we use
9 years of GEFSRv2 data, from 2004 to 2012, and forecast lead times from 1 to 7 days. The period 2004 to 2012 is selected to take
advantage of data that were previously available to us (i.e., GEFSRv2 and MPEs for the MAR) from a recent verification study
(Siddique et al., 2015). Forecast lead times of up to 7 days are chosen since we previously found that the GEFSRv2 skill is low
after 7 days (Siddique et al., 2015; Sharma et al., 2017). The GEFSRv2 data are bilinearly interpolated onto the 4 x 4 km? grid cell
resolution of the HL-RDHM model.
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3.3 Distributed hydrological model

NOAA'’s HL-RDHM is used as the spatially distributed hydrological model (Koren et al., 2004). Within HL-RDHM, the
Sacramento Soil Moisture Accounting model with Heat Transfer (SAC-HT) is used to represent hillslope runoff generation, and
the SNOW-17 module is used to represent snow accumulation and melting.

HL-RDHM is a spatially distributed conceptual model, where the basin system is divided into regularly spaced, square grid
cells to account for spatial heterogeneity. Each grid cell acts as a hillslope capable of generating surface, interflow and groundwater
runoff that discharges directly into the streams. The cells are connected to each other through the stream network system. Further,
the SNOW-17 module allows each cell to accumulate snow and generate hillslope snow melt based on the near-surface air
temperature. The hillslope runoff, generated at each grid cell by SAC-HT and SNOW-17, is routed to the stream network using a
nonlinear kinematic wave algorithm (Koren et al., 2004; Smith et al., 2012a). Likewise, flows in the stream network are routed
downstream using a nonlinear kinematic wave algorithm that accounts for parameterized stream cross-section shapes ( Koren et
al., 2004; Smith et al., 2012a). In this study, we run HL-RDHM using a 2-km horizontal resolution. Further information about the
HL-RDHM can be found elsewhere (Koren et al., 2004; Reed et al., 2007; Smith et al., 2012a; Fares et al., 2014; Rafieeinasab et
al., 2015; Thorstensen et al., 2016; Siddique and Mejia 2017).

To calibrate HL-RHDM, we first run the model using a-priori parameter estimates previously derived from available datasets
(Koren et al., 2000; Reed et al., 2004; Anderson et al., 2006). We then select 10 out of the 17 SAC-HT parameters for calibration
based upon prior experience and preliminary sensitivity tests. During the calibration process, each a-priori parameter field is
multiplied by a factor. Therefore, we calibrate these factors instead of the parameter values at all grid cells, assuming that the a-
priori parameter distribution is true (e.g., Mendoza et al., 2012).The multiplying factors are adjusted manually first; once the
manual changes do not yield noticeable improvements in model performance, the factors are tuned-up using stepwise line search
(SLS; Kuzmin et al., 2008; Kuzmin, 2009). This method is readily available within HL-RDHM, and has been shown to provide

reliable parameter estimates (Kuzmin et al., 2008; Kuzmin, 2009). With SLS, the following objective function is optimized:

OF = /37 [q; — s:(D]?, @

where g;and s; denote the daily observed and simulated flows at time i, respectively; ( is the parameter vector being estimated;
and m is the total number of days used for calibration. Three years (2003-2005) of streamflow data are used to calibrate the HL-
RDHM for the selected basins. The first year (year 2003) is used to warm-up HL-RDHM. To assess the model performance during
calibration, we use the percent bias (PB), modified correlation coefficient (Rm), and Nash-Sutcliffe efficiency (NSE) (see appendix
for details). Note that these metrics are used during the manual phase of the calibration process, and to assess the final results from

the implementation of the SLS. However, the actual implementation of the SLS is based on the objective function in Eq. (1).

3.4 Statistical weather preprocessor

Heteroscedastic censored logistic regression (HCLR) (Messner et al., 2014a; Yang et al., 2017) is implemented to preprocess the
ensemble precipitation forecasts from the GEFSRv2. HCLR is selected since it offers the advantage, over other regression-based
preprocessors (Wilks, 2009), of obtaining the full, continuous predictive probability density function (pdf) of precipitation

forecasts (Messner et al., 2014b). Also, HCLR has been shown to outperform other widely used preprocessors, such as Bayesian

Model Averaging -(Yang et al., 2017). In principle, HCLR fits the conditional logistic probability distribution function to the

transformed (here the square root) ensemble mean and bias corrected precipitation ensembles. Note that we tried different

transformations (square root, cube root, and fourth root), and found a similar performance between the square and cube root, both
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outperforming the fourth root. In addition, HCLR uses the ensemble spread as a predictor, which allows the use of uncertainty
information contained in the ensembles.

The development of the HCLR follows the logistic regression model initially proposed by Hamill et al. (2004) as well as the
extended version of that model proposed by Wilks (2009). The extended logistic regression of Wilks (2009) is used to model the

probability of binary responses such that
P(y < z|x) = Alw(z) — §(x)], )

where A(.)_denotes the cumulative distribution function of the standard logistic distribution, y is the transformed precipitation, z
is a specified threshold, x is a predictor variable that depends on the forecast members, §(x) is a linear function of the predictor
variable x , and the transformation w(. ) is a monotone nondecreasing function. Messner et al. (2014a) proposed the heteroscedastic
extended logistic regression (HELR) preprocessor with an additional predictor variable ¢ to control the dispersion of the logistic

predictive distribution,

_ w(z)-8(x)
PO =zlx) = A{exp[n(w)] }' ©)

where n(.) is a linear function of ¢. The functions &(.)and #(.) are defined as:
6(x) =ay+ a;x,and 4
n(@) = by + by, ()

1
where ag, a4, by, and b, are parameters that need to be estimated; x = 1 ’k‘:lsz, i.e., the predictor variable x is the mean of the
K

transformed, via the square root, ensemble forecasts f; K is the total number of ensemble members; and ¢ is the standard deviation
of the square root transformed, precipitation ensemble forecasts.

Maximum likelihood estimation with the log-likelihood function is used to estimate the parameters associated with Eq. (3)
(Messner et al., 2014a; Messner et al., 2014b). & i i

variation of the HELR preprocessor that can easily accommodate nonnegative variables, such as precipitation amounts, is HCLR.

For this, the predicted probability or likelihood ; of the it observed outcome is determined as-—where-r-is-defined-as (Messner
et al., 2014b):
w(0)-8(x) _
— [EXP[H(Q)] Yi= 0 (6)
T = [w(yi)—soc) S0
expl(@)] | Vi ’

where A[.] denotes the likelihood function of the standard logistic function. As indicated by Eq. (6), HCLR fits a logistic error
distribution with point mass at zero to the transformed predictand.

HCLR is applied here to each GEFSRv2 grid cell within the selected basins. At each cell, HCLR is implemented for the
period 2004-2012 using a leave-one-out approach. For this, we select 7 years for training and the two remaining years for
verification purposes. This is repeated until all the 9 years have been preprocessed and verified independently of the training period.
This is done so that no training data is discarded and the entire 9-year period of analysis can be used to generate the precipitation
forecasts. HCLR is employed for 6-hourly precipitation accumulations for lead times from 6 to 168 hours. To train the preprocessor,
we use a stationary training period, as opposed to a moving window, for each season and year to be forecasted, comprised by the
seasonal data from all the 7 training years. Thus, to forecast a given season and specific lead time, we use ~6930 forecasts (i.e., 11
members x 90 days per season x 7 years). We previously tested using a moving window training approach and found that the
results were similar to the stationary window one (Yang et al., 2017). To make the implementation of HCLR as straightforward as

6
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possible, the stationary window is used here. Finally, the Schaake Shuffle method as applied by Clark et al. (2004) is implemented
to maintain the observed space-time variability in the preprocessed GEFSRv2 precipitation forecasts. At each individual forecast
time, the Schaake Shuffle is applied to produce a spatial and temporal rank structure for the ensemble precipitation values that is

consistent with the ranks of the observations.

3.5 Statistical streamflow postprocessors

To statistically postprocess the flow forecasts generated by the RHEPS, two different approaches are tested, namely a first-order
autoregressive model with a single exogenous variable, ARX(1,1), and quantile regression (QR). We select the ARX(1,1)
postprocessor since it has been suggested and implemented for operational applications in the U.S. (Regonda et al., 2013). QR is
chosen because it is of similar complexity as the ARX(1,1) postprocessor but for some forecasting conditions it has been shown to
outperform it (Mendoza et al., 2016). Furthermore, the ARX (1,1) and QR postprocessors have not been compared against each
other for the forecasting conditions specified by the RHEPS. The postprocessors are implemented for the years 2004-2012, using

the same leave-one-out approach used for the preprocessor. Fhe-postprocessers-are-apphied-ateach-individual-lead-time-from-day

1to-7For this, the 6-hourly precipitation accumulations are used to force the HL-RDHM and generate 6-hourly flows. Note that

we use 6-hourly accumulations since this is the resolution of the GEFSRv2 data after day 4 and since-this is a temporal resolution

often commenhy-used in operational forecasting in the U.S. Since the observed flow data are mean daily, we compute the mean

daily flow forecast from the 6-hourly flows. The postprocessor is then applied to the mean daily values from day 1 to 7.Ferthis;

3.5.1 First-order autoregressive model with a single exogenous variable

To implement the ARX(1,1) postprocessor, the observation and forecast data are first transformed into standard normal deviates
using the normal quantile transformation (NQT) (Krzysztofowicz, 1997; Bogner et al., 2012). The transformed observations and
forecasts are then used as predictors in the ARX(1,1) model (Siddique and Mejia, 2017). Specifically, for each forecast lead time,

the ARX (1,1) postprocessor is formulated as follows:

CIiT+1 =1- Ci+1)‘liT + Ci+1fi£1 + &t )

where g7 and q7,,are the NQT transformed observed flows at time steps i and i+1, respectively; c is the regression coefficient;
f7., is the NQT transformed forecast flow at time step i+1; and £ is the residual error term. In Eq. (7), assuming that there is
significant correlation between &;,; and q7, &, can be calculated as:

4

$iv1 = fi: P(iv1, )& + Vigr, (8)

g

where o, and oy, | are the standard deviation of §; and &;.,, respectively; p(§;14, §;) is the serial correlation between &;,; and &;;

and 9;,, is a random Gaussian error generated from N(0, g, ). To estimate N(0, a3 ), the following equation is used:

Thp0n = (1= 0?41, €Y, - )

i+1
Toimplement Eq. (7), ten equally spaced values of c; , are selected from 0.1 to 0.9. For each value of ¢;, {, agmis determined
from Eq. (9). using the training data to determine the other variables in Eq. (9). Then, 9,,, is generated from N(O, ajiﬂ) and &4

is calculated from Eq. (8). The result from Eq. (8) is used with Eq. (7) to generate a trace of g/, which is transformed back to real

space using the inverse NQT. These steps are repeated to generate multiple traces for each value of c;,,. For each value of ¢;,;,
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the ARX(1,1) model is trained and used to generate ensemble streamflow forecasts, which are in turn used to compute the mean

continuous ranked probability score (CRPS) for the 7-year training period under consideration. Thus, the mean CRPS is computed

for each value of c;,, and the value of c;, ; that produces the smallest mean CRPS is then selected for use in the 2-year verification

period under consideration. This is repeated until all the years (2004-2012) have been postprocessed and verified independently of
the training period. Lasthy—the-valueofe
probabiity-skil{CRPS}-is-selected--The ARX (1,1) postprocessor is applied at each individual lead time. For lead times beyond
the initial one (day 1), one day-ahead predictions are used as the observed streamflow. For the cases where g7, falls beyond the

historical maxima, extrapolation is used by modeling the upper tail of the forecast distribution as hyperbolic (Journel and
Huijbregts, 1978).

3.5.2 Quantile regression

Quantile regression (QR; Koenker and Bassett Jr, 1978; Koenker, 2005) is employed to determine the error distribution, conditional
on the ensemble mean, resulting from the difference between observations and forecasts (Dogulu et al., 2015; Lopez et al., 2014;
Weerts et al., 2011; Mendoza et al., 2016). QR is applied here in streamflow space, since it has been shown that, in hydrological
forecasting applications, QR has similar skill performance in streamflow space as well asand normal space (Lopez et al., 2014).
Another advantage of QR is that it does not make any prior assumptions regarding the shape of the distribution. Further, since QR
results in conditional quantiles rather than conditional means, QR is less sensitive to the tail behavior of the streamflow dataset,
and consequently, less sensitive to outliers. Note that although QR is here implemented separately for each lead time, the
mathematical notation does not reflect this for simplicity.

The QR model is given by
el =d; + e.f, (10)
where &/ is the error estimate at quantile interval 7; f is the ensemble mean; and d, and e, are the linear regression coefficients
at 7. The coefficients are determined by minimizing the sum of the residuals based on the training data as follows:

min Zivzl Wy [s‘t,i - 8.{-(1', f_l)]’ (11)

&;; and f; are the i"™ paired samples from a total of N samples; &;; is computed as the observed flow minus the forecasted one,
q. — f»; and w, is the weighting function for the Tt" quantile defined as:

(t-1§ ifG<0

W‘L’((i) = {Tgi lf (i > 0

(12)

¢; is the residual term defined as the difference between &, ; and s;(i,fi) for the quantile 7. The minimization in Eq. (11) is solved
using linear programming (Koenker, 2005).

Lastly, to obtain the calibrated forecast, f;, the following equation is used:

fo=f+er (13)

In Eq. (13), the estimated error quantiles and the ensemble mean are added to form a calibrated discrete quantile relationship for a

particular forecast lead time and thus generate an ensemble streamflow forecast.
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3.6. Forecast experiments and verification

The verification analysis is carried out using the Ensemble Verification System (Brown et al., 2010). For the verification, the
following metrics are considered: relative-mean-error(RME)-Brier skill score (BSS), mean continuous ranked probability skill
score (CRPSS), and the decomposed components of the CRPS (Hersbach, 2000), i.e., the CRPS reliability (CRPS) and CRPS
potential (CRPSyqt). The definition of each of these metrics is provided in the appendix. Additional details about the verification
metrics can be found elsewhere (Wilks, 2011; Jolliffe and Stephenson, 2012). Confidence intervals for the verification metrics are

determined using the stationary block bootstrap technique (Politis and Romano, 1994), as done by Siddique et al. (2015). Fhe

To verify the forecasts for the period 2004-2012, six different forecasting scenarios are considered (Table 2). The first (S1)

and second (S2) scenarios verify the raw and preprocessed ensemble precipitation forecasts, respectively. Scenarios 3 (S3), 4 (S4)
and 5 (S5) verify the raw, preprocessed, and postprocessed ensemble fleed-streamflow forecasts, respectively. The last scenario,
S6, verifies the combined preprocessed and postprocessed ensemble flood-streamflow forecasts. In S1 and S2, the raw and
preprocessed ensemble precipitation forecasts are verified against the MPEs. For the verification of S1 and S2, each grid cell is
treated as a separate verification unit. Thus, for a particular basin, the average performance is obtained by averaging the verification

results from different verification units. The Sstreamflow forecast scenarios, S3-S6, are verified against mean daily streamflow

observations from the USGS. The quality of the floedstreamflow forecasts is evaluated conditionally upon forecast lead time,
season (cool and warm), and flow threshold.
[Insert Table 2 here]

4 Results and discussion

This section is divided into four subsections. The first subsection demonstrates the performance of the spatially distributed model,
HL-RDHM. The second subsection describes the performance of the raw and preprocessed GEFSRv2 ensemble precipitation
forecasts (forecasting scenarios S1 and S2). In the third subsection, the two statistical postprocessing techniques are compared.
Lastly, the verification of different ensemble flood-streamflow forecasting scenarios is shown in the fourth subsection (forecasting

scenarios S3-S6).

4.1 Performance of the distributed hydrological model

To assess the performance of HL-RDHM, the model is used to generate streamflow simulations which are verified against daily
observed flows, covering the entire period of analysis (years 2004-2012). -Note that the simulated flows are obtained by forcing
HL-RDHM with gridded_observed precipitation and near surface temperature dataebservations. The verification is done for the
four basin outlets shown in Fig. 1. To perform the verification and assess the quality of the streamflow simulations, the following
statistical measures of performance are employed: modified correlation coefficient, Rm; Nash-Sutcliffe efficiency, NSE; and
percent bias, PB. The mathematical definition of these metrics is provided in the appendix. The verification is done for both
uncalibrated and calibrated simulation runs for the entire period of analysis. The main results from the verification of the
streamflow simulations are summarized in Fig. 2.

[Insert Figure 2 here]
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The performance of the calibrated simulation runs is satisfactory, with Ry values ranging from ~0.75 to 0.85 (Fig. 2a).
Likewise, the NSE, which is sensitive to both the correlation and bias, ranges from ~0.69 to 0.82 for the calibrated runs (Fig. 2b),
while the PB ranges from ~5 to -11% (Fig. 2c¢). Relative to the uncalibrated runs, the Rm, NSE, and PB values improve by ~18,
29, and 47%, respectively. Further, the performance of the calibrated simulation runs is similar across the four selected basins,
although the largest size basin, WVYNG6 (Fig. 2), shows seems-te-slightly higher performanceeutperform- the-other-basins-with
Rm, NSE, and PB values of 0.85, 0.82, and -3% (Fig. 2), respectively. The lowest performance is seen in CNONG6 with R, NSE,

and PB values of 0.75, 0.7, and -11% (Fig. 2), respectively. Nonetheless, the performance metrics for both the uncalibrated and

calibrated simulation runs do not deviate widely from each other in the selected basins, with perhaps the only exception being PB
(Fig. 2c).

4.2 Verification of the raw and preprocessed ensemble precipitation forecasts

To examine the skill of both the raw and preprocessed GEFSRv2 ensemble precipitation forecasts, we plot in Fig. 3 the CRPSS
(relative to sampled climatology) as a function of the forecast lead time (day 1 to 7) and season for the selected basins. Two seasons

are considered: cool (October-March) and warm (April-September). Note that a CRPSS value of zero means no skill (i.e., same

skill as the reference system) and a value of one indicates maximum skill. The CRPSS is computed using 6 hourly precipitation

[Insert Figure 3 here]

The skill of both the raw and preprocessed ensemble precipitation forecasts tends to decline with increasing forecast lead time
(Fig. 3). In the warm season (Figs. 3a-d), the CRPSS values vary overall, across all the basins, in the range from ~0.172 to 0.54
and from ~-0.02 to 0.43 for the preprocessed and raw forecasts, respectively; while in the cool season (Figs. 3e-h) the CRPSS
values vary overall in the range from ~0.252 to 0.6 and from ~0.1 to 0.65 for the preprocessed and raw forecasts, respectively. The
skill of the preprocessed ensemble precipitation forecasts tends to be greater than the raw ones across basins, seasons, and forecast
lead times. Comparing the raw and preprocessed forecasts against each other, the relative skill gains from preprocessing are
somewhat more apparent in the medium-range lead times (>3 days) and warm season. That is, the differences in skill seem not as
significant in the short-range lead times (<3 days). This seems particularly the case in the cool season where the confidence intervals
for the raw and preprocessed forecasts tend to overlap (Figs. 3e-h).

Indeed, seasonal skill variations are noticeable in all the basins. Even though the relative gain in skill from preprocessing is
slightly greater in the warm season, the overall skill of both the raw and preprocessed forecasts is better in the cool season than the
warm one. This may be due, among other potential factors, to the greater uncertainty associated with modeling convective
precipitation, which is more prevalent in the warm season, by the NWP model used to generate the GEFSRv2 outputs (Hamill et
al., 2013; Baxter et al., 2014). Nonetheless, the warm season preprocessed forecasts show gains in skill across all the lead times
and basins. For a particular season, the forecast ensembles across the different basins tend to display similar performance; i.e. the
analysis does not reflect skill sensitivity to the basin size as in other studies (Siddique et al., 2015; Sharma et al., 2017). This is
expected here since the verification is performed for each GEFSRv2 grid cell, rather than verifying the average for the entire basin.
That is, the results in Fig. 3 are for the average skill performance obtained from verifying each individual grid cell within the
selected basins.

Based on the results presented in Fig. 3, we may expect some skill contribution to the fleed-streamflow ensembles from forcing
the HL-RDHM with the preprocessed precipitation, as opposed to using the raw forecast forcing. Altheugh-the-centribution-may

beaslarge, since the differences between the preprocessed-and raw precipitation forecasts-are- only-mild-- 1t may also be expected
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that the contributions are greater for the medium-range lead times and warm season. This will be examined in subsection 4.4, prior

to that we compare next the two postprocessors, namely ARX(1,1) and QR.

4.3 Selection of the fleed-streamflow postprocessor

The ability of the ARX(1,1) and QR postprocessors to improve ensemble streamflowfleed forecasts is investigated here. The
postprocessors are applied to the raw streamflow fleed-ensembles at each forecast lead time from day 1 to 7. To examine the skill
of the postprocessed fleod-streamflow forecasts, Fig. 4 displays the CRPSS (relative to the raw ensemble floed-streamflow
forecasts) versus the forecast lead time for all the selected basins, for both warm-cee!l (Figs. 4a-d) and coolwarm (Figs. 4e-h)

seasons. In the cool season (Figs. 4e-h), Fthe everat-tendency is for both postprocessing techniques to demonstrate improved

forecast skill across all the all-the-basins; seasens.-and most-of-the-lead times. The skill can improve as much as 40% at the later

lead times (Fig. 4f). The skill improvements, however, from the ARX(1,1) postprocessor are not as consistent for the warm season

(Figs. 4a-d), displaying negative skill values for some of the lead times in all the basins. The latter underscores an inability of the
ARX(1,1) postprocessor to enhance the raw streamflow ensembles for the warm season. Fhe-ski-can-tmprove-as-much-as-40%-at

the-later-lead-times(Fig—4fb)—In some cases (Figs. 4b and 4e-f), Fhe-general-trend-in-Fig—4-isfor-the skill of the postprocessors
shows an increasing trend with-to-inerease-with-inereasing the lead time. Nete-thattThis is the case since the skill is here measured

relative to the raw streamflowfleed forecasts, which is done to better isolate the effect of the postprocessors on the fleed-streamflow

forecasts.

[Insert Figure 4 here]
The gains in skill from QR vary from ~05% (Fig. 4ba at the day 1 lead time) to ~40% (Fig. 4fb atat the—the-day-5-lead-time
lead times > 4 days) depending upon the season and lead time. While-tThe gains from ARX(1,1), on the other hand, vary from

~04% (Fig. 40be at the day 1 lead time) to a much lower level of ~2852% (Fig. 4fe at the day 4 lead time-ef4 days-the-day-2-lead
time) during the cool season, while there are little to no gains in the warm season. In the cool season (Figs. 4e-h)mest-mest-cases,
both postprocessors exhibit somewnhat similar performance at different lead tlmes—a{—the—umﬂal—lead—nmes—(days—]:%) with_the
exception of Fig. 4h-ski
time)-atdead-time-of day-7, but in the warm season QR tends to consistently perform better than ARX(1,1). The However-Atthe
later-lead-times-overall trend in Fig. 4 is for showsthat.{(4-7-days);-QR to tends-mostlyte oshighthy-outperform ARX(1,1), with the
difference in performance being as high as 30% (Fig. 4d at the day 7 lead time). This is noticeable across all the basins-basins,
except WVYNG in Fig. 4h, most of the lead times and for both and-for-both-seasons—with-an-exception-at the WA Y NE-during-cool

As discussed and demonstrated in Fig. 4, QR performs better than ARX(1,1). We also computed reliability diagrams, as

determined by Sharma et al., (2017), for the two postprocessorstadeed- (plots not shown) and found that we-alse-found-(plots-net
shown)-that-QR tends to displays better reliability than ARX(1,1) across lead times, basins, and seasons. Therefore, we select QR

as the statistical fleod-streamflow postprocessor to examine the interplay between preprocessing and postprocessing in the RHEPS.
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4.4 Verification of the ensemble floed-streamflow forecasts for different statistical processing scenarios

In this subsection, we examine the effects of different statistical processing scenarios on the ensemble streamflowfleed forecasts
from the RHEPS. Reea ification-i

)5-The forecasting scenarios

considered here are S3-S6 (Table 12 defines the scenarios). To facilitate presenting the verification results, this subsection is
divided into the following threefour parts: relative-mean-error-CRPSS, CRPS decomposition, and BSS.

4.4.12 CRPSS

The skill of the ensemble floed-streamflow forecasts for S3-S6 is assessed using the CRPSS relative to the sampled climatology

(Fig. 56). The CRPSS in Fig. 5 is shown as a function of the forecast lead time for all the basins, and the warm (Fig. 5a-d) and cool

(Fig. 5e-h) seasonsFig
to-thoseforthe RME(Fig-5). FhatistThe most salient feature of Fig. 56 is that the performance of the -fleedstreamflow forecasts
tends_for the most part to progressively improve from S3 to S6. This means that the forecast skill tends to improve across lead

12
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times, basin sizes and seasons as additional statistical processing steps are included in the RHEPS’ forecasting chain. Although
there is some tendency for the larger basins to show better forecast skill than the small ones, the scaling (i.e., the dependence of
skill on the basin size) sealing-is rather mild and not consistent across the four basins. TFhe-scaling-tends-to-show-significant

In Fig. 5, Fthe skill first increases from the raw scenario (i.e., S3 where no statistical processing is done) to the scenario where

only preprocessing is performed, S4. However-tThe gain in skill between S3 and S4 is generally small at the short lead times (< 3

days) but increases for the later lead times; this is somewhat more evident for the cool season than the warm one.;particularhyat

skill trend between S3 and S4 is not entirely surprising as we previously saw (Fig. 3) that differences between the raw and

preprocessed precipitation ensembles are moreenly significant at the later lead times-where-the-skill-of the forecastisin-any-case;
already-semewhatlow. The skill in Fig. 5 then-then shows further improvements for a-mere-significant-improvement-for-both S5
and S6, relative to S4. -As-was-the-case-with-the RME-Although S6 Even-theugh-S6-tends to outperform both S4 and S5-+n-mest
of-the-lead-times in Fig. 5, the differences in skill among these three scenarios between-S5-and-S6-are not as significant, their

confidence intervals tend to overlap in most cases, with the exception of Fig. 5f where S4 underperforms relative to both S5 and

S6. Fig. 5 shows that S6 is the preferred scenario in that it tends to more consistently improve the ensemble streamflow forecasts

across basins, lead times and seasons than the other scenarios. It also shows that postprocessing alone, S5, may be slightly more

effective than preprocessing alone, S4, in correcting the streamflow forecast biases. -suggesting-that-pestprecessing-alone(i-e

[Insert Figure 65 here]

There are also seasonal differences in the forecast skill among the scenarios. The skill of the streamflow forecasts tends to be

slightly greater in the warm season (Figs. 5a-d) than in the cool one (Figs. 5e-h) across all the basins and lead times. In the warm

season (Figs. 5a-d), all the scenarios tend to show similar skill, except CNON6 (Fig. 5b), with S5 and S6 only slightly

outperforming S3 and S4. In the cool season (Figs. 5e-h), with the exception of CNONG6 (Fig. 5f), the performance is similar among

the scenarios for the short lead times but S3 tends to consistently underperform for the later lead times relative to S4-S6. There is

also a skill reversal between the seasons when comparing the ensemble precipitation (Fig. 3) and streamflow (Fig. 5) forecasts.

That is, the skill tends to be higher in the cool season than the warm one in Fig. 3, but this trend reverses in Fig. 5. The reason for

this reversal is that in the cool season hydrological conditions are strongly influenced by snow dynamics, which can be challenging

to represent with HL-RDHM, particularly when specific snow information or data are not available. In any case, this could be a

valuable area for future research since it appears here to have a significant influence on the skill of the ensemble streamflow

forecasts.

The underperformance of S4 in the CNONG basin (Fig. 5f), relative to the other scenarios, is in part due to the unusually low

skill of the raw ensemble streamflow forecasts of S3, so that even after preprocessing the skill improvement attained with S4 is

not comparable to that associated with S5 and S6. This is also the case for CNONG in the warm season (Fig. 5b). However, in

addition, during the cool season it is likely that streamflows in CNONG6 are affected by a reservoir just upstream from the main

outlet of CNONSG. The reservoir is operated for flood control purposes. The reservoir affects during the cool season low flows by

maintaining them somewhat higher than in natural conditions. Since we do not account for reservoir operations in our hydrological

modeling, it is likely that part of the benefits of postprocessing are in this case to correct for this modeling bias. In fact, this is also

reflected in the
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streamflow forecastatthe basinoutlet —As-was-the-case-in-the-calibration results (e.g., in Fig. 2¢), where the performance of during
the-coel-seasen-CNONG is somewhat lower than in the other basins.has-alewerperfermance-priorto-postprocessing(S3-er-S4-in
Fig-56%)thanthe-otherbasins: Interestingly, after postprocessing (S5 in Fig. 56f), the skill of CNONG is as good as that of CINNG,
even though at the day 1 lead time the skill for S3 is ~0.13 for CNONG6 (Fig. 56f) and ~0.45 for CINNG6 (Fig. 56€). Hence, the

postprocessor seems capable to compensate some for the lesser performance of CNONG6 induring both calibration_or after

preprocessing in the cool season.

4.4.23 CRPS decomposition

Fig. 67 displays different components of the mean CRPS against lead times of 1, 3, and 7 days for all the basins according to both
the warm (Figs. 67a-d) and cool (Figs. 67e-h) seasons. The components presented here are reliability (CRPS) and potential CRPS
(CRPSyot) (Hersbach, 2000). CRPSe measures the average reliability of the ensemble forecasts across all the possible events, i.e.,
it examines whether the fraction of observations that fall below the j-th of n ranked ensemble members is equal to j/n on average.
CRPSpq represents the lowest possible CRPS that could be obtained if the forecasts were made perfectly reliable (i.e., CRPS=0).
Note that the CRPS, CRPS i, and CRPS, are all negatively oriented, with perfect score of zero. Overall, as was the case with the
RME-(Fig—5)-and CRPSS (Fig. 56), the CRPS decomposition reveals that forecasts reliability tends mostly to progressively
improve iereases-from S3 to S6.

[Insert Figure 76 here]
Interestingly, improvements in forecast quality for S5 and S6, relative to the raw streamflowfleed forecasts of S3, are mainly

due to reductions in CRPS (i.e., by making the forecasts more reliable), whereas for S4 better forecast quality is achieved—in

part; by reductions in both CRPSe and CRPSpet. CRPS ot appears to play a bigger role in S4 than in the other scenarios, since in

many cases in Fig. 6 the CRPS,q: value for S4 is the lowest among all the scenarios.

thmes—and-seasens—The explanation for this lies in the implementation of the HCLR preprocessor, which uses the ensemble spread
as a predictor of the dispersion of the predictive pdf and the CRPS is sensitive to the spread (Messner et al., 2014a).Fhis-indicates
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and-seasons—In terms of the warm and cool seasons, a

reliability—the warm season tends to show a slightly lower CRPS than the cool one for all the scenarios. There are other, more

nuanced differences between the two seasons. For example, S5 is more reliable than S4 in several cases in Fig. 6, such as for the

day 1 lead time in the cool season. The CRPS decomposition demonstrates that the ensemble streamflow forecasts for S5 and S6

tend to be more reliable than for S3 and S4. It also shows that the forecasts from S5 and S6 tend to exhibit comparable reliability.

However, the ensemble streamflow forecasts generated using both preprocessing and postprocessing, S6, ultimately result in lower

CRPS than the other scenarios. The latter is seen across all the basins, lead times, and seasons, except in one case (Fig. 6d at the

day 7 lead time).

4.4.43 BSS

In our final verification comparison, the BSS of the ensemble fleed-streamflow forecasts for S5 (Figs. 78a-d) and S6 (Figs. 78e-h)
are plotted against the non-exceedance probability associated with different fleed-streamflow thresholds ranging from 0.95 to 0.99.
The BSS is computed for all the basins, warm season, and lead times of 1, 3 and 7 days. In addition, the BSS is computed relative
to both observed (solid lines in Fig. 78) and simulated (dashed lines in Fig. 78) floweds. When the BSS is computed relative to
observed-floods_flows, it considers the effect on forecast skill of both meteorological and hydrological uncertainties. While the
BSS relative to simulated fleods-flows is mainly affected by meteorological uncertainties. The difference between the two, i.e., the
BSS relative to observed flowseds minus the BSS relative to simulated ones, provides an estimate of the effect of hydrological
uncertainties on the skill of the floed-streamflow forecasts. Similar to the CRPSS, the BSS value of zero means no skill (i.e., same
skill as the reference system) and a value of one indicates perfect skill.
[Insert Figure 87 here]

In general, the skill of fleed-streamflow forecasts tends to decrease with lead time across the flow thresholds and basins. In
contrast to the As-was-the-case-with-the-CRPSS (Fig. 56) where S6 tends for the majority of cases to slightly outperform S5, the
BSS values for the different flow thresholds appear similar for S5 (Figs. 78a-d) and S6 (Figs. 78e-h). The only exception is CKLN6

(Figs. 78c and 78q) where; at-the-higher-floed-flow threshelds-S6 has better skill than S5 at the day 1 and 3 lead times, particularly
at the highest flow thresholds considered. With respect to the basin size, the skill tends to improve some from the small to the large

basin. For instance, for non-exceedance probabilities of 0.95 and 0.99 at the day 1 lead time, the BSS values for the smallest basin
(Fig. 78a), measured relative to the observed flows, are ~0.49 and 0.35, respectively. For the same conditions, both values increase
to ~0.65 for the largest basin (Fig. 78d).

Indeed+The most notable feature in Fig. 78 is that the effect of hydrological uncertainties on forecast skill is evident at the
day 1 lead time, while meteorological uncertainties clearly dominate at the day 7 lead time. With respect to the latter, notice that
the solid and dashed green lines for the day 7 lead time tend to be very close to each other in Fig. 78, indicating that hydrological
uncertainties are relatively small compared to meteorological ones. Hydrological uncertainties are largest at the day 1 lead time,
particularly for the small basins (Figs. 78a-b and 78e-f). For example, for a non-exceedance probability of 0.95 and at a day 1 lead
time (Fig. 78b), the BSS value relative to the simulated and observed flowseeds are ~0.79 and 0.38, respectively, suggesting a

reduction of ~50% skill due to hydrological uncertainties.
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5 Summary and conclusion

In this study, we used the RHEPS to investigate the effect of statistical processing on short- to medium-range ensemble streamflow
floed—forecasts. First, we assessed the raw precipitation forecasts from the GEFSRv2 (S1), and compared them with the
preprocessed precipitation ensembles (S2). Then, streamflowfleed ensembles were generated with the RHEPS for four different
forecasting scenarios involving no statistical processing (S3), preprocessing alone (S4), postprocessing alone (S5), and both
preprocessing and postprocessing (S6). The verification of ensemble precipitation and streamflowfleed forecasts was done for the
years 2004-2012, using four nested, gauge locations in the basinsNBSR basin of-in the U.S. MAR. We found that —fer-the-medels;

postprocessing-alone—the scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios.

In some cases, however, the differences between the scenario involving preprocessing and postprocessing, and the scenario with

postprocessing alone; are not as significant, suggesting for those cases (e.g., warm season) that postprocessing alone can be

effective in removing systematic biases. Other specific findings are as follows:

e The HCLR preprocessed ensemble precipitation forecasts show improved skill relative to the raw forecasts. The improvements
are more noticeable in the warm season at the longer lead times (>3 days).

e Both postprocessors, ARX(1,1) and QR, show gains in skill relative to the raw ensemble fleed-streamflow forecasts_in the
cool season._In contrast, in the warm season, ARX(1,1) shows little or no gains in skill. Overall, for the majority of cases

analyzed
greater than with ARX(1,1), specially partictarhy-during the warm season.

e In terms of the forecast skill (i.e., CRPSS), in the warm season Fthe scenarios including only preprocessing and only

postprocessing have a comparable performance to the ssimiar-interms-of therelative-mean-error-CRPSSandreliabitity,to
the-more complex scenario consisting of both preprocessing and postprocessing-in-the-warm-seasen. —HWhile in the cool

season, the scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios but the

differences may not be are-pet-as significant.
SOHERCECEETE

e The skill of the postprocessing alone scenario and the scenario that combines preprocessing and postprocessing was further

assessed using the Brier skill score for different fleod-streamflow thresholds and_the warm season. This assessment suggests
that for high flow thresholds the similarities in skill between furtherconfirmed-that-both scenarios, S5 and S6,-have-similar

skih-and-performance-behavior become greater.

e Decomposing the CRPS into reliability and potential component, we observed that the scenario that combines preprocessing

and postprocessing results in slightly lower CRPS than the other scenarios. We found that the scenario_involving only

postprocessing tends to demonstrate similar reliability to the scenario consisting of both preprocessing and postprocessing

across most al-of the lead times, basins and seasons. \We also found that in several casesHewever the postprocessing alone
scenario displays improved reliability relative to the preprocessing alone scenario.—the-scenario-that combines-preprocessing

These conclusions are specific to the RHEPS forecasting system, which is mostly relevant to the U.S. research and operational

communities as it relies on a weather and a hydrological model that are used in this domain. However, the use of a global weather

forecasting system illustrates the potential of applying the statistical techniques tested here in other regions worldwide.

16



10

15

20

25

30

35

The emphasis of this study has been on benchmarking the contributions of statistical processing to the RHEPS. To accomplish
this, our approach required that the quality of ensemble floed-streamflow forecasts be verified over multiple years (i.e., across
many fleed-flood cases) to obtain robust verification statistics. Future research, however, could be focused on studying how distinct
hydrological processes contribute or constrain forecast quality. This effort could be centered around specific flood events rather
than in the statistical, many-cases approach taken here. To further assess the relative importance of the various components of the
RHEPS, additional tests involving the uncertainty to initial hydrologic conditions and hydrological parameters could be performed.
For instance, the combined use of data assimilation and postprocessing has been shown to produce more reliable and sharper
streamflow forecasts (Bourgin et al., 2014). The potential for the interaction of preprocessing and postprocessing with data
assimilation to significantly enhance streamflow predictions, however, has not been investigated. This could be investigated in the
future with the RHEPS, as the pairing of data assimilation with preprocessing and postprocessing could facilitate translating the

improvements in the preprocessed meteorological forcing down the hydrological forecasting chain.

Data availability: Daily streamflow observation data for the selected forecast stations can be obtained from the USGS website

(https://waterdata.usgs.gov/nwis/). Multisensor precipitation estimates are obtained from the NOAA’s Middle Atlantic River

Forecast Center. Precipitation and temperature forecast datasets can be obtained from the NOAA Earth System Research

Laboratory website (https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html).

Appendix A: Verification metrics

Modified correlation coefficient (Rm): The modified version of the correlation coefficient, called as modified correlation
coefficient R,,,, compare event specific observed and simulated hydrographs (McCuen and Snyder, 1975). In the modified version,
an adjustment factor based on the ratio of the observed and simulated flow is introduced to refine the conventional correlation

coefficient R. The modified correlation coefficient R,,, is defined as:

min{as,0q}

Ry = (A1)

max{os,oq}'

where g and, g, denote the standard deviation of the simulated and observed flows, respectively.

Percent bias (PB): PB measures the average tendency of the simulated flows to be larger or smaller than their observed
counterparts. Its optimal value is 0.0 where positive values indicate model overestimation bias, and negative values indicate model
underestimation bias. The PB is estimated as follows:

N (s._g:
pB = 2= o 100, (A2)
Zi:1qi

where s; and g; denote the simulated and observed flow, respectively, at time i.

Nash-Sutcliffe efficiency (NSE): The NSE (Nash and Sutcliffe, 1970) is defined as the ratio of the residual variance to the initial
variance. It is widely used to indicate how well the simulated flows fit the observations. The range of NSE can vary between
negative infinity to 1.0, with 1.0 representing the optimal value and values should be larger than 0.0 to indicate minimally
acceptable performance. The NSE is computed as follows:

_ g I (sima)?
NSE =1 >N (@-a)? (A3)
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where s;, q;, and g; are the simulated, observed, and mean observed flow, respectively, at time i .

Brier Skill Score (BSS): The Brier score (BS; Brier, 1950) is analogous to the mean squared error, but where the forecast is a

probability and the observation is either a 0.0 or 1.0. The BS is given by

2
BS = =YL, [F;,(2) - F, ()],
(A45)
where the probability of f; to exceed a fixed threshold z is
Ffi(Z) = Pr[ﬁ. > Z]l
(AS6)
n is again the total number of forecast-observation pairs, and

1, q4; >z
0, otherwise.

Fu®) = |
(A7)

In order to compare the skill score of the main forecast system with respect to the reference forecast, it is convenient to define the
Brier Skill Score (BSS):

BSS = 1 — —2Smain__

Bsreference’
(AT78)
where BS,4in @Nd BS,cference are the BS values for the main forecast system (i.e. the system to be evaluated) and reference

forecast system, respectively. Any positive values of the BSS, from 0 to 1, indicate that the main forecast system performs better

than the reference forecast system. Thus, a BSS of 0 indicates no skill and a BSS of 1 indicates perfect skill.

Mean Continuous Ranked Probability Skill Score (CRPSS): Continuous Ranked Probability Score (CRPS) quantifies the

integrated square difference between the cumulative distribution function (cdf) of a forecast, F¢(z), and the corresponding cdf of

the observation, F,(z). The CRPS is given by

CRPS = [“ [Fs(2) - F,(2)]"dz.
(A89)
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To evaluate the skill of the main forecast system relative to the reference forecast system, the associated skill score, the mean
Continuous Ranked Probability Skill Score (CRPSS), is defined as:

CRPSS = 1 — —X%main

CRPSreference’
(A910)
where the CRPS is averaged across n pairs of forecasts and observations to calculate the mean CRPS of the main forecast system
(CRPSpq;n) and reference forecast system (CRPS,¢ference). The CRPSS varies from -oo to 1. Any positive values of the CRPSS,
from 0 to 1, indicate that the main forecast system performs better than the reference forecast system.
To further explore the forecast skill, the CRPS, 4, is decomposed into the CRPS reliability (CRPS,..;) and potential (CRPS,,.)
such that Hersbach (2000)

CRPSpain = CRPSyq; + CRPS,4.
(A10%)

The CRPS,.,; measures the average reliability of the precipitation ensembles similarly to the rank histogram, which shows whether
the frequency that the verifying analysis was found in a given bin is equal for all bins (Hersbach 2000). The CRPS,,, measures

the CRPS that one would obtain for a perfect reliable system. It is sensitive to the average ensemble spread and outliers.
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Table 1. Main characteristics of the four study basins.

Location of outlet

Cincinnatus, New

Chenango Forks, New

Conklin, New

Waverly, New York

[m?¥/s]

York York York
NWS id CINNG6 CNONG6 CKLN6 WVYNG6
USGS id 01510000 01512500 01503000 01515000
Area [km?] 381 3841 5781 12362
Latitude 42032°28” 42013°05” 42002°07” 41°59°05”
Longitude 75953°59” 75950°54” 75%48°11” 76°30°04”
Minimum daily flow" [m¥/s] 0.31 4.05 6.80 13.08
(0.11) (2.49) (5.32) (6.71)
Maximum daily flow" [m®/s] 172.73 1248.77 2041.64 4417.42
(273.54) (1401.68) (2174.734) (4417.42)
Mean daily flow”™ [m%/s] 8.89 82.36 122.93 277.35
(9.17) (81.66) (121.99) (215.01)
Climatological flow (Pr=0.95)"" 29.45 266.18 382.28 843.84

*The number in parenthesis is the historical (based on entire available record, as opposed to the period 2004-2012 used in this

study) daily minimum, maximum, or mean recorded flow.

“Pr=0.95 indicates flows with exceedance probability of 0.05.
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Table 2. Summary and description of the verification scenarios.

Scenario Description

S1 Verification of the raw ensemble precipitation forecasts from the GEFSRv2

S2 Verification of the preprocessed ensemble precipitation forecasts from the GEFSRv2:
GEFSRv2+HCLR

S3 Verification of the raw ensemble flood forecasts: GEFSRv2+HL-RDHM

S4 Verification of the preprocessed ensemble flood forecasts: GEFSRv2+HCLR+HL-RDHM

S5 Verification of the postprocessed ensemble flood forecasts: GEFSRv2+HL-RDHM+QR

S6 Verification of the preprocessed and postprocessed ensemble flood forecasts:

GEFSRv2+HCLR+HL-RDHM+QR
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Figure 1: Map illustrating the location of the four selected river basins in the U.S. middle Atlantic region.
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(a) Rm, (b) NSE, and (c) PB.
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forecasting scenarios S3-S6. Note that S3 consists of GEFSRv2+HL-RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of GEFSRv2+HL -
RDHM+OR, and S6 of GEFSRv2+HCLR+HL-RDHM+OR.
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Figure 67: Decomposition of the CRPS into CRPS potential (CRPSpot) and CRPS reliability (CRPSre) for forecasts lead times of 1, 3,
and 7 days during the warm (a)-(d) (April-September) and cool season (e)-(h) (October-March) for the selected basins. The four columns
associated with each forecast lead time represent the forecasting scenarios S3-S6 (from left to right). Note that S3 consists of
GEFSRv2+HL-RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of GEFSRv2+HL-RDHM+QR, and S6 of GEFSRv2+HCLR+HL-
RDHM+QR.

37



S5 (Warm season)

CINNE CNONB6 CKLNG WWVYN6
e
o |
[=]
o
[=]
[=]
E I I I I I | I I | I I I | I I I | | ! |
§ 0.95 0.97 099 095 0.97 099 095 0.97 0.99 0.95 0.97 0.99
= S6 (Warm season)
[1]
5 CINNG CNONB CKLNg WVYNG
@ e 4 e _ e
— |le) - |(f) - |{a) = th)
m_--""-""‘-.__“ m—‘-.‘.“\"‘h\ e = h“‘!_-—" -
=] o o a =

0.2
1
I
l.
]
I
]
f !
0.2
1
/‘
7
L
\
!
1
0.2
1
0.2
1
!
!
)
!
!
]

- = e = =

o (=]
N —— ey
I 1 | | 1 | | | I‘h\-\I | | I | | | I I I I
0.95 0.97 0.99 0.95 0.97 0.99 0.95 0.97 0.99 0.95 0.97 0.99

Non-exceedance probability

= Day1 = Day3 — Day7 (obs)
= = Day = = Day3 = = Day7 (sim)

Figure 78: Brier skill score (BSS) of the mean ensemble flood forecasts for S5 (a-d) and S6 (e-h) vs the flood threshold for forecast lead
times of 1, 3, and 7 days during the warm (April-September) season for the selected basins. The BSS is shown relative to both observed

(solid lines) and simulated floods (dashed lines).
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