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Abstract. We undertook a comprehensive evaluation of 23 gridded (quasi-)global (sub-)daily precipitation (P ) datasets for

the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086

gauges worldwide. Another ten gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the con-

ceptual model HBV against streamflow records for each of 9053 small to medium-sized (< 50000 km2) catchments worldwide,

and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the5

datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets gener-

ally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55,

and NCEP-CFSR) and the the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive

microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil mois-

ture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and10

PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than

the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified and

MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-

based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates

directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU),15

which in turn outperformed those indirectly incorporating gauge data through other multi-source datasets (PERSIANN-CDR

V1R1 and PGF). Our results highlight large differences in estimation accuracy, and hence, the importance of P dataset selec-

tion in both research and operational applications. The good performance of MSWEP emphasizes that careful data merging

can exploit the complementary strengths of gauge-, satellite- and reanalysis-based P estimates.
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1 Introduction

Precipitation (P ) is arguably the most important driver of the hydrological cycle, but also one of the most challenging to es-

timate (Daly et al., 2008; Michaelides et al., 2009; Kidd and Levizzani, 2011; Tapiador et al., 2012). Over recent decades,

several gridded P datasets have been developed that are suitable for large-scale hydrological applications (for overviews, see

Table 1, Beck et al., 2017c, http://ipwg.isac.cnr.it, and http://reanalyses.org). The datasets differ in terms of design objective5

(temporal homogeneity, instantaneous accuracy, or both), data sources (radar, gauge, satellite, analysis, or reanalysis, or combi-

nations thereof), spatial resolution (from 0.05◦ to 2.5◦), spatial coverage (from continental to fully global), published temporal

resolution (from 30 minutes to monthly), temporal span (from ∼1 to 115 years), and latency (from ∼3 hours to several years).

A plethora of studies addressed the important task of evaluating these P datasets to understand their respective advantages

and limitations (see reviews by Gebremichael, 2010, and Maggioni et al., 2016). Most studies assessed accuracy using in-10

dependent gauge observations (e.g., Hirpa et al., 2010; Buarque et al., 2011; Bumke et al., 2016; Alijanian et al., 2017) or

gauge-adjusted radar fields (e.g., AghaKouchak et al., 2011; Islam et al., 2012), while others merely compared their spatio-

temporal patterns (e.g., Kidd et al., 2013). Yet others quantified the performance of different P datasets using hydrological

modeling, by comparing simulated and observed values of river discharge (Q; e.g., Collischonn et al., 2008; Behrangi et al.,

2011; Bitew et al., 2012; Falck et al., 2015) or soil moisture (e.g., Pan et al., 2010; Albergel et al., 2013; Martens et al., 2017).15

More recently, Massari et al. (2017) assessed the performance of different P datasets using triple collocation. Marked differ-

ences in spatio-temporal P patterns and accuracy have been found among the datasets, even among those employing the same

data sources. This highlights the critical importance of dataset choice for research and operational applications alike.

Previous evaluation studies used a wide variety of evaluation approaches and performance metrics (Ebert, 2007; Gebremichael,

2010; Loew et al., 2017). However, many studies considered only a single P dataset (e.g., Scheel et al., 2011; Nair and Indu,20

2017) or disregarded (re)analysis-based P datasets (e.g., Moazami et al., 2013; Mei et al., 2014; Zambrano-Bigiarini et al.,

2017), despite their demonstrated superior performance in cold climates (Ebert et al., 2007; Beck et al., 2017c; Massari et al.,

2017). In addition, some studies re-used gauge observations already incorporated in some of the P datasets to determine their

accuracy (e.g., Chen et al., 2013; Ashouri et al., 2016; Zambrano-Bigiarini et al., 2017), precluding independent validation.

Furthermore, to our knowledge, so far no study has accounted for differences in the exact UTC boundary of the 24-hour ac-25

cumulation period of daily gauge reports when evaluating P datasets, potentially confounding the results. Moreover, studies

employing hydrological modeling generally used Q observations from a small number of catchments (e.g., Bitew et al., 2012,

and Tang et al., 2016, both used only one) and did not attempt to recalibrate the hydrological model for each P dataset indi-

vidually (e.g., Su et al., 2008; Li et al., 2013), leading to combined rainfall and model uncertainty that is not easily interpreted.

Finally, many have a regional (sub-continental) focus (Maggioni et al., 2016), and therefore it is not clear to what extent the30

results can be generalized.

Nevertheless, there have also been several (quasi-)global P dataset evaluation studies that produced general insights (e.g.,

Adler et al., 2001; Fekete et al., 2004; Voisin et al., 2008; Bosilovich et al., 2008; Tian and Peters-Lidard, 2010; Lorenz and

Kunstmann, 2012; Yong et al., 2015; Herold et al., 2015; Gehne et al., 2016; Massari et al., 2017). These studies revealed that
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satellites (resp. reanalyses) exhibit superior performance at low (high) latitudes dominated by intense, localized convective

(persistent, large-scale stratiform) P systems. However, none of these studies took advantage of the vast amount of P gauge

observations contained in the freely available GHCN-D (Menne et al., 2012) and GSOD (https://data.noaa.gov) databases.

Among the only two studies employing hydrological modeling, Fekete et al. (2004) performed monthly simulations and did

not compare the results against observed Q, while Voisin et al. (2008) used monthly observed Q data from only nine very large5

catchments (> 290000 km2). Moreover, several promising recently released or revised P datasets, such as CHIRPS V2.0,

MSWEP V2.0, and PERSIANN-CDR V1R1 (see Table 1), have not been thoroughly evaluated yet at a (quasi-)global scale.

Our objective was to undertake the most comprehensive global-scale P dataset evaluation to date. We evaluated thirteen non-

gauge-corrected P datasets using daily P gauge observations from 76 086 gauges worldwide. Another ten gauge-corrected

P datasets were evaluated using hydrological modeling for 9053 catchments (< 50000 km2) worldwide, by calibrating a10

hydrological model. The expectation was that such a large number of P datasets and large number of observations should lead

to more generally valid conclusions, and allows us to explicitly compare the performance among climate types and regions

(Andréassian et al., 2007; Gupta et al., 2014).

2 Data and methods

2.1 P datasets15

Table 1 presents the 23 gridded P datasets included in the evaluation. The datasets were classified as either uncorrected,

meaning that their temporal dynamics depend entirely on satellite and/or reanalysis data, or gauge-corrected, meaning that

their temporal dynamics depend at least partly on gauge data (hence precluding an independent evaluation using P gauge

observations). For clarity and reproducibility, we report dataset version numbers throughout the study for the datasets for

which this information was available. We only included datasets with a temporal span of > 8 years.20

2.2 Performance evaluation using gauge observations

The performance of the thirteen uncorrected P datasets (see Table 1) was evaluated using daily gauge observations from across

the globe. Our collection of gauge observations was compiled from the Global Historical Climatology Network-Daily (GHCN-

D) database (Menne et al., 2012), the Global Summary of the Day (GSOD) database (https://data.noaa.gov), the Latin American

Climate Assessment & Dataset (LACA&D) database (http://lacad.ciifen-int.org), the Chile Climate Data Library (http://www.25

climatedatalibrary.cl), and national databases for Mexico, Brazil, Peru, and Iran. To discard erroneous observations, each gauge

record was subjected to several quality checks as described in Beck et al. (2017a). Only gauges with > 365 days of valid data

(not necessarily consecutive) during 2000–2016 were retained. To minimize temporal mismatches in gauge and gridded P

time series, we used the gauge reporting times from Beck et al. (2017a) to shift the records of gauges with reporting times

>+12 hours UTC backward by one day, and the records of gauges with reporting times <−12 hours UTC forward by one30

day. In total 76 086 gauges had sufficient quality-controlled data for the evaluation.
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We considered the following five performance metrics to evaluate the P datasets in terms of temporal dynamics: (i) Pearson

linear correlation coefficient (R) calculated for 3-day means (R3 day); (ii) R calculated for monthly means (Rmonthly); (iii) R

calculated for 6-month Standardized Precipitation Index values (RSPI-6; Hayes et al., 1999); (iv) Mean Absolute Error (MAE;

mm month−1) for monthly means; and (v) the trend error (the difference between gauge- and dataset-based linear regression

slopes calculated from annual anomalies; % yr−1). We opted for MAE instead of the more widely used Root Mean Square5

Error (RMSE) because the errors are unlikely to follow a normal distribution (Chai and Draxler, 2014; Willmott et al., 2017).

We used 3-day rather than daily means for R3 day to minimize the impact of any residual mismatches in the UTC boundary

of the 24-hour accumulation period between the gauges and datasets. The R3 day metric was only calculated if ≥ 60 3-day

contemporaneous gauge and dataset values were available, while the Rmonthly, RSPI-6, and MAE metrics were only calculated

if ≥ 12 monthly contemporaneous gauge and dataset values were available.10

To evaluate the P datasets in terms of long-term mean climate indices, we considered the following four metrics: (i) long-

term relative bias, defined as [s− o]/ [s+ o], where s and o represent the dataset- and gauge-based long-term means, respec-

tively; (ii) annual number of dry days error (using a 0.5-mm-d−1 threshold to identify dry days, similar to Akinremi et al.,

1999, Haylock et al., 2008, and Driouech et al., 2009); and (iii) 99th and 99.9th percentile daily P error (mm d−1). The bias

and trend error metrics were only calculated if > 5 years of daily contemporaneous gauge and dataset values were available.15

2.3 Performance evaluation using hydrological modeling

The performance of the ten gauge-corrected P datasets (see Table 1) was evaluated using hydrological modeling for 9053

catchments. Our collection of Q observations was compiled from the same three sources as Beck et al. (2015), viz.: (i) the

US Geological Survey (USGS) Geospatial Attributes of Gages for Evaluating Streamflow (GAGES)-II database (Falcone

et al., 2010); (ii) the Global Runoff Data Centre (GRDC; http://www.bafg.de/GRDC/); and (iii) the Australian Peel et al.20

(2000) database. We only used catchments < 50000 km2 with a Q record length > 365 days (not necessarily consecutive)

during 2000–2012 (the common temporal coverage of the P datasets), resulting in 9053 catchments that were suitable for the

evaluation (5th, 50th, and 95th percentile catchment size of 9, 633, and 18468 km2, respectively).

For each catchment, the conceptual hydrological model HBV (Bergström, 1992; Seibert and Vis, 2012) was calibrated in

a lumped fashion against Q observations using daily P time series from each of the datasets to force the model. The model25

was selected because of its agility, computational efficiency, and widespread successful application (e.g., Te Linde et al., 2008;

Deelstra et al., 2010; Plesca et al., 2012; Beck et al., 2013; Valéry et al., 2014; Vetter et al., 2015; Beck et al., 2017b). For the

calibration, we employed the (µ+λ) evolutionary algorithm (Ashlock, 2010; Fortin et al., 2012) with the population size (µ)

set to 20, the recombination pool size (λ) set to 40, and the number of generations set to 12 (amounting to 480 model runs per

catchment per P dataset and approximately 40 million model runs in total). As objective function we used the common Nash30

and Sutcliffe (1970) Efficiency (NSE) computed between 3-day mean simulated and observed Q time series. We used 3-day

rather than daily mean Q time series for the NSE calculation to reduce the impact of temporal mismatches in simulated and

observed Q peaks. A higher calibration NSE generally implies that the P dataset in question is more consistent with the Q

observations and potential evaporation (Ep) estimates and thus that the P dataset is more accurate. See Beck et al. (2016) and

5
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Beck et al. (2017c) for more details on the hydrological model, calibration algorithm, model parameter ranges,Q observations,

Ep forcing, and Ta forcing. We recognize that using data from different sources may bias results as the water balances are

unlikely to be closed.

3 Results and Discussion

3.1 Performance for temporal dynamics5

The temporal dynamics of the thirteen uncorrected P datasets were evaluated using daily P observations from 76 086 gauges

around the globe. Table 2 presents summary statistics separately for the gauges located at latitudes < 40◦ for all datasets, and

for the gauges located at latitudes ≥ 40◦ only for the datasets covering the entire terrestrial surface (i.e., MSWEP-ng V1.2

and V2.0, and the reanalyses). In terms of temporal correlations (R3 day, Rmonthly, and RSPI-6), the satellite- and reanalysis-

based MSWEP-ng datasets performed overall slightly better than the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR)10

and the satellite- and reanalysis-based CHIRP V2.0 dataset, which in turn performed slightly better than the satellite datasets

based primarily on passive microwave retrievals (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) and near-surface soil

moisture (SM2RAIN-ASCAT), which in turn performed slightly better than the satellite datasets based primarily on thermal

infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). The high correlations obtained using both versions of

MSWEP-ng underscore the effectiveness of merging multiple satellite and reanalysis datasets (Beck et al., 2017c, a). In agree-15

ment with our results, Stillman et al. (2016) found reanalyses to outperform infrared- and passive microwave-based satellite

datasets in Arizona. Contrary to expectation, PERSIANN-CCS attained lower median correlations than both GridSat V1.0 and

PERSIANN, despite using a more sophisticated algorithm and higher spatial resolution (Hong et al., 2004). The better perfor-

mance of the microwave-based datasets compared to infrared-based ones is in line with previous evaluations (e.g., Hirpa et al.,

2010; Peña Arancibia et al., 2013; Cattani et al., 2016) and attributed to the indirect relationship between cloud-top infrared20

brightness temperatures and surface rainfall (Stephens and Kummerow, 2007). SM2RAIN-ASCAT was found to perform sim-

ilar to TMPA 3B42RT V7, in agreement with Brocca et al. (2014), suggesting that soil moisture-based approaches provide a

promising additional source of rainfall data.

Figure 1 presents globalR3 day maps for a selection of eight P datasets, permitting a geographical interpretation of the results

(see the Supplementary information for global maps of the other performance metrics). All datasets performed relatively poorly25

(R3 day < 0.5) in arid and tropical regions, due to the often highly localized and shortlived nature of the convective rainfall that

dominates. Sub-cloud evaporation of falling rain potentially constitutes an additional confounding factor in arid regions (Dinku

et al., 2016). Conversely, all datasets performed relatively well (R3 day ≥ 0.5) in moist mid-latitude regions with mild winters

(e.g., the southeastern US, eastern South America, and eastern China). In accordance with several previous global evaluations

(e.g., Barrett et al., 1994; Xie and Arkin, 1997; Adler et al., 2001; Ebert et al., 2007; Massari et al., 2017), the reanalyses30

exhibited lower skill levels than the microwave- and infrared-based satellite datasets in the tropics, whereas the opposite is true

for colder regions (latitudes > 40◦). Africa showed the lowest R3 day values overall, which is concerning because it is also the

most poorly gauged continent (Thiemig et al., 2012; Sylla et al., 2013; Kidd et al., 2017).

6

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-508
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 14 August 2017
c© Author(s) 2017. CC BY 4.0 License.



MSWEP V2.0 obtained substantially lower mean annual P trend errors than the other P datasets (Table 2 and Supplementary

information Figure S5). Two of the three reanalyses (ERA-Interim and JRA-55) provided more reliable trends than the satellite

datasets, contrary to the common assumption that reanalyses tend to contain temporal discontinuities due to changes in the as-

similated observations (Bengtsson et al., 2004; Lorenz and Kunstmann, 2012; Kang and Ahn, 2015). However, our evaluation

covers a relatively short period (2000–2016) during which the assimilated observations may not have changed much. Among5

the satellite datasets, SM2RAIN-ASCAT provided the least accurate P trends, probably due to the use of two ASCAT sensors

after 2013 (on-board MetOp-A and MetOp-B) which artificially increased rainfall amounts obtained using SM2RAIN (sepa-

rate calibrations for 2007–2012 and 2013–2015 are necessary but yet to be performed). Among the reanalyses, NCEP-CFSR

performed worst. Following previous authors (Saha et al., 2010; Wang et al., 2013), we speculate that this may be attributable

to the six parallel-run streams of analysis covering different periods, which have been combined to generate the final dataset.10

The relatively small mean annual P trend errors obtained for the different datasets (ranging from 1.53–3.56 % yr−1) provide

some confidence in the ability to infer significant trends from the various datasets. However, trends for variables measured over

shorter temporal scales (e.g., annual maxima or percentiles) are likely to be subject to much greater uncertainty.

3.2 Performance for climate indices

The performance of the thirteen uncorrected P datasets in terms of several long-term climate indices is summarized in Ta-15

ble 2, listing summary statistics for P gauges at latitudes < 40◦ and ≥ 40◦ (for the five datasets covering the entire terrestrial

surface), respectively. In terms of bias, the reanalyses performed better overall than the satellite datasets (Table 2). Although

CHIRP V2.0, GridSat V1.0, and MSWEP-ng V1.2 and V2.0 obtained the best bias scores, these datasets use the gauge-based

CHPclim (Funk et al., 2015b) or WorldClim (Fick and Hijmans, 2017) datasets to determine their long-term mean. The spread

in the range of bias scores among the datasets was generally greatest over topographically complex regions (notably the Rocky,20

Andes, and Hindu-Kush Mountains), and in arid regions (notably the Sahara, Arabian, and Gobi deserts; Supplementary in-

formation Figure S6), demonstrating the particular difficulty of estimating P in these regions (Fekete et al., 2004; Hirpa et al.,

2010; Xu et al., 2017; Kim et al., 2017). All fully global datasets exhibited positive biases at high northern latitudes, probably

because the P gauge data used for evaluation were not corrected for wind-induced under-catch (Groisman and Legates, 1994;

Rasmussen et al., 2012; Kauffeldt et al., 2013).25

In terms of the annual number of dry days, the datasets exhibited a particularly large spread in performance, with MSWEP-

ng V2.0 outperforming the other datasets by a substantial margin (Table 2 and Supplementary information Figure S7). The

dramatic improvement in MSWEP-ng V2.0 compared to V1.2 is mainly attributable to the cumulative distribution function

corrections introduced in V2, which eliminate the drizzle caused by averaging multiple data sources (Beck et al., 2017a).

The infrared- and microwave-based satellite datasets also performed reasonably well, although the P frequency was generally30

overestimated at low and mid latitudes and underestimated at high latitudes, reflecting the difficulty of detecting P signals

at high latitudes (Ferraro et al., 1998; Ebert et al., 2007; Kidd and Levizzani, 2011; Kidd et al., 2012; Laviola et al., 2013).

Conversely, the reanalyses consistently underestimated the number of dry days across the globe, due to the presence of spurious

drizzle caused by deficiencies in the representation and/or parameterization of the physical processes governing P generation

7
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(Zolina et al., 2004; Lopez, 2007; Sun et al., 2006; Skok et al., 2015). SM2RAIN-ASCAT also consistently underestimated

the number of dry days due to the presence of spurious drizzle, in this case due to the relatively noisy soil moisture retrievals

(Crow et al., 2011; Brocca et al., 2014) and the use of the already fairly wet ERA-Interim dataset for the algorithm calibration.

CHIRP V2.0 also exhibited too few dry days, which is attributed to the use of TMPA 3B42 for establishing the regression

equations linking infrared-based cold-cloud duration values to 5-day mean P (Funk et al., 2015a). Forcing a hydrological5

model with P data overestimating the frequency of low-intensity rainfall events is likely to result in overestimated evaporation

and underestimated runoff, particularly in regions with high soil or canopy water storage capacities.

The 99th and 99.9th percentile daily P errors measure the error in the magnitude of storms with return periods of 100 days

and 2.7 years, respectively (Table 2, and Supplementary information Figures S8 and S9, respectively). MSWEP-ng V2.0

performed best in this respect, whereas CHIRP V2.0, the reanalyses, MSWEP-ng V1.2, and particularly SM2RAIN-ASCAT10

consistently underestimated the 99th and 99.9th percentile storm magnitudes. However, some degree of underestimation would

be expected, given the spatial scale mismatch between gauge observations and grid-cell averages (see, e.g., Maraun, 2013),

particularly for P datasets with a coarse spatial resolution (see Table 1). Nevertheless, for the reanalyses the underestimation

is probably primarily attributable to the aforementioned model uncertainties. For MSWEP-ng V1.2, it is due to the attenuating

effect of merging multiple data sources (Beck et al., 2017c). For SM2RAIN-ASCAT, the strong underestimation of storm15

magnitudes may at least partly be due to signal loss induced by soil saturation (Brocca et al., 2014). Among the microwave-

and infrared-based satellite datasets, PERSIANN-CCS showed the greatest spatial variability in storm magnitude bias. The

generally strong differences in spatial performance patterns among datasets highlight the difficulty of generalizing the findings

of regional (sub-continental) evaluation studies.

3.3 Performance evaluation using hydrological modeling20

The performance of the ten gauge-corrected P datasets (see Table 1) was evaluated using hydrological modeling for 9053

catchments around the globe. Table 3 presents median calibration NSE scores obtained using the different P datasets for

different climate zones. The overall performance ranking of the datasets from best to worst (% of catchments in which the

dataset performed best between parentheses) is MSWEP V2.0 (44.9 %), MSWEP V1.2 (21.3 %), CPC Unified (15.7 %),

WFDEI-CRU (4.9 %), TMPA 3B42 V7 (3.3 %), CMORPH-CRT V1.0 (2.6 %), CHIRPS V2.0 (2.5 %), PERSIANN-CDR25

V1R1 (2.1 %), GPCP-1DD V1.2 (1.6 %), and PGF (1.1 %). Thus, the datasets directly incorporating daily gauge data (CPC

Unified, and MSWEP V1.2 and V2.0) overall outperformed the ones directly incorporating 5-day (CHIRPS V2.0) or monthly

(GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU) gauge data, which in turn outperformed PERSIANN-CDR V1R1

and PGF. Rather than using gauge observations directly for corrections, PERSIANN-CDR V1R1 is adjusted to match the

satellite- and gauge-based GPCP dataset (monthly temporal and 2.5◦ spatial resolution), whereas PGF employs the gauge-30

satellite-based GPCP-1DD dataset only to spatially disaggregate the daily estimates. An additional reason for the relatively poor

performance of GPCP-1DD V1.2 may be its coarse 1◦ spatial resolution. For PGF, additional reasons are the use of a correction

methodology that compromises the daily variability (Sheffield et al., 2004) and the fact that it is based on a first generation

reanalysis (NCEP/NCAR Reanalysis 1; Kistler et al., 2001; Sheffield et al., 2006). It is noted that some of the datasets, such

8
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(a) CHIRP V2.0 (b) CMORPH V1.0

(c) ERA-Interim (d) MSWEP-ng V2

(e) NCEP-CFSR (f) PERSIANN-CCS

(g) SM2RAIN-ASCAT (h) TMPA 3B42RT V7

Figure 1. For a selection of the evaluated uncorrected P datasets, temporal correlations between 3-day mean gauge- and dataset-based P

time series (R3 day). Each data point represents a gauge. See the Supplementary information for global maps of the other performance metrics.
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as CHIRPS V2.0 and PERSIANN-CDR V1R1, have not been specifically designed to provide the best instantaneous accuracy,

but rather to achieve the most temporally homogeneous record possible. Furthermore, the good performance of the exclusively

gauge-based CPC Unified is unlikely to generalize to regions with sparse rain gauge networks.

Figure 2 presents global maps with calibration NSE values obtained for a selection of the best performing P datasets,

while Figure 3 shows which of these P datasets obtained the highest calibration NSE for each catchment. All P datasets5

provided low calibration NSE scores (< 0.3) over the US Great Plains, consistent with several previous studies using different

hydrological models and forcing datasets (e.g., Newman et al., 2015; Bock et al., 2015; Essou et al., 2016). It reflects the

spatio-temporally highly intermittent rainfall regime combined with a strongly non-linear rainfall-runoff response (Pilgrim

et al., 1988). Low calibration scores were also found in northern Alaska, presumably due to P underestimation (Kauffeldt

et al., 2013); in Namibia and Zambia, probably partly due to the importance of convective rainfall and partly due to the Q data10

quality (Li et al., 2013); and in Hawaii, we suspect due to flow overestimations caused by erroneous rating curves, as visual

inspection of the records revealed the presence of drift errors. In North America, Europe, Japan, Australia, New Zealand,

and southern and western Brazil MSWEP V2.0 generally exhibited the best performance, whereas in Central America, and

in central and eastern Brazil CHIRPS V2.0 tended to perform best. No obviously best estimate could be identified for Africa,

emphasizing the challenge of hydrological modeling in Africa (Sylla et al., 2013; Beck et al., 2017b). In summary, there are15

some P datasets that consistently outperform others regionally, but there is not one that performs best everywhere (Barrett

et al., 1994).

The good performance obtained for CPC Unified, CHIRPS V2.0, and MSWEP V1.2 and V2.0 underscores the importance

of using sub-monthly gauge observations to improve Q simulations. Few P datasets currently incorporate sub-monthly gauge

data, possibly because of the better global-scale availability of monthly gauge data, the lack of reliable information on the20

24-hour accumulation time for the large majority of gauges across the globe, and the difficulty of applying daily rather than

monthly gauge corrections (Vila et al., 2009). However, a wealth of daily gauge data is currently freely available (Menne et al.,

2012; Funk et al., 2015a), and sub-daily satellite and reanalysis P estimates provide an efficient and consistent means to infer

the most probable UTC boundary of the 24-hour accumulation period for any gauge with observations during the satellite era

(1979–present; Beck et al., 2017a).25

Most previous studies using hydrological modeling to evaluate the accuracy of P datasets have a regional or sub-continental

focus, used Q observations from a relatively small number of catchments, considered only a few P datasets, did not consider

reanalysis-based P datasets, or did not re-calibrate the hydrological model for each P dataset (e.g., Voisin et al., 2008; Su

et al., 2008; Bitew et al., 2012; Tang et al., 2016). Here, we used 9053 catchments covering all climate zones and latitudes,

considered a diverse range of P datasets, and re-calibrated the model for each P dataset, to maximize the generalizability30

of our findings. Nevertheless, our catchments are predominantly located in regions with dense P gauge networks (i.e., the

conterminous US, Europe, and parts of Australia). Therefore, our results may not unequivocally generalize to regions with

sparse P gauge networks. Use of another calibration objective function, hydrological model, or Ta or Ep forcing may have

led to slightly different results, although we consider it unlikely to change the overall performance ranking of the P datasets.

Finally, a poor score for a particular P dataset may also simply reflect a systematic bias that could be easily corrected.35
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(a) CHIRPS V2.0 (b) CMORPH-CRT V1.0

(c) CPC Unified (d) MSWEP V1.2

(e) MSWEP V2.0 (f) PERSIANN-CDR V1R1

(g) TMPA 3B42 V7 (h) WFDEI-CRU

Figure 2. Calibration NSE scores obtained using P time series from (a) CHIRPS V2.0, (b) CMORPH-CRT V1.0, (c) CPC Unified,

(d) MSWEP V1.2, (e) MSWEP V2.0, (f) PERSIANN-CDR V1R1, (g) TMPA 3B42 V7, and (h) WFDEI-CRU. Each data point represents a

catchment centroid. Only the eight best performing P datasets are shown.
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Table 3. Median calibration NSE scores for the gauge-corrected P datasets obtained using HBV. Only the catchments with calibration NSE

values for all P datasets are considered. Thus, catchments at latitudes > 50◦ have been excluded. Values in bold represent the highest score

on each row.

Köppen-Geiger Number of CHIRPS CMORPH- CPC GPCP-1DD MSWEP MSWEP PERSIANN- PGF TMPA 3B42 WFDEI-

climate zone catchments V2.0 CRT V1.0 Unified V1.2 V1.2 V2.0 CDR V1R1 V7 CRU

All 8220 0.45 0.17 0.54 0.27 0.58 0.62 0.31 0.00 0.41 0.35

Tropical (A) 289 0.40 0.31 0.25 0.22 0.43 0.53 0.26 −0.01 0.31 0.13

Dry (B) 384 0.17 0.12 0.23 0.12 0.25 0.26 0.12 −0.00 0.18 0.17

Temperate (C) 3491 0.48 0.44 0.59 0.27 0.60 0.67 0.30 −0.01 0.45 0.30

Cold (D) 4041 0.44 −0.05 0.53 0.28 0.58 0.61 0.33 0.04 0.39 0.42

Polar (E) 14 0.17 −2.62 −0.14 0.23 0.52 0.42 0.19 0.14 0.17 0.32

Figure 3. For each catchment, the P dataset with the highest calibration NSE. Each data point represents a catchment centroid. Only the seven

best performing P datasets (excluding MSWEP V1.2 due to its similarity with V2.0) are considered. Note that CHIRPS V2.0, CMORPH-

CRT V1.0, PERSIANN-CDR V1R1, and TMPA 3B42 V7 do not provide data beyond 50◦, 60◦, 60◦, and 50◦ latitude, respectively.
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4 Conclusions

This study may represent the most comprehensive global-scale P dataset evaluation to date. We evaluated thirteen uncorrected

P datasets using P observations from 76 086 gauges, and ten gauge-corrected ones using hydrological modeling for 9053

catchments (< 50000 km2). Our results can be summarized as follows:

1. Among the non-gauge-corrected P datasets, MSWEP-ng V1.2 and V2.0, based on optimal merging of multiple satellite5

and reanalysis P datasets, provided the best temporal correlations overall. They were followed, in order, by reanalyses,

estimates based on microwave remote sensing of rainfall and near-surface soil moisture, and estimates based on thermal

remote sensing. MSWEP-ng V2.0 obtained considerably lower mean annual P trend errors than the other datasets.

Contrary to expectations, two of the three reanalyses (ERA-Interim and JRA-55) provided, on average, more reliable

mean annual P trends than the satellite datasets.10

2. Among the uncorrected P datasets, CHIRP V2.0 and MSWEP-ng V1.2 and V2.0 yielded the most accurate long-term

P means, primarily due to the use of high-resolution gauge-based climatic datasets to determine their long-term mean.

The reanalyses also provided reasonably accurate long-term means. The uncertainty in long-term means among the

datasets was generally greatest in topographically complex and arid regions. In terms of the annual number of dry days,

MSWEP-ng V2.0 exhibited markedly better performance than the other datasets, due to the use of a cumulative dis-15

tribution function correction after data merging. The satellite datasets also performed quite well in this respect, while

CHIRP V2.0, the reanalyses, MSWEP-ng V1.2, and the soil moisture remote sensing-based SM2RAIN-ASCAT consis-

tently underestimated the number of dry days. The satellite-based datasets generally exhibited difficulties in detecting P

signals at high latitudes.

3. Among the gauge-corrected P datasets, the datasets directly incorporating daily gauge data (CPC Unified and the20

MSWEP versions) outperformed those directly incorporating temporally coarser gauge data. These in turn outperformed

the datasets that only indirectly incorporated gauge data. This highlights the benefit of explicit and careful incorporation

of daily gauge data. The good performance of the fully gauge-based CPC Unified is unlikely to generalize to sparsely or

ungauged regions. In general, the performance was best in temperate regions, due to the presence of dense monitoring

networks, and worst in arid regions, due to the convective rainfall and the highly non-linear rainfall-runoff response.25
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