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Abstract 16 
Satellite rainfall products are considered important options for acquiring rainfall estimates in 

the absence of ground measurements. However, estimates from these products need to be 18 

validated as their accuracy can be affected by geographical position, topography, and climate, 

as well as by the algorithms used to derive rainfall from satellite measurements. Eight 20 

satellite-based rainfallproducts (TRMM, CHIRPS, RFEv2, ARC2, PERSIANN, GPCP, 

CMAP and CMORPH) were evaluated against ground observations over the complex 22 

topography of the upper Tekeze-Atbara basin in Ethiopia. The performance was evaluated at 

various temporal (daily, monthly, seasonal) and spatial (point, sub-basin, basin) scales over 24 

the period 2002-2015.  

Results show thatCHIRPS, TRMM,and RFEv2 performed well and wereable to capture the 26 

rainfall measured by rain gauges. The BIASand correlation of these products were within 

±25% and >0.5over different time steps.The remaining products poorly performed at daily 28 

time step with higher BIAS (up to ±200%) and lower correlation (<0.5). CMORPH, 

PERSIANN, and ARCv2 were relatively better while CMAP and GPCP performed poorly 30 

(r<0.4) in all conditions. The overall performance of all products was lower in the 

mountainous areas of the basin with station elevation>2500 m.a.s.l. Compared to the 32 

lowlands, the BIAS at highlands increased by 35% whilst the correlation dropped by 28%. 

Underestimation and overestimation of rainfall dominated in the mountainous and lowland 34 

areas, respectively.CMORPH and TRMM overestimated while the remaining products 

underestimated the rainfall at all spatiotemporal scales. CMAP, ARC2, and GPCP estimates 36 

were the most affected by large underestimation. Unlike in temporal scale, the performance of 

the products did not show a uniform pattern with respect to spatial scale.Their performance 38 

improved from point to aerial comparisons in the lowlandswhereas it slightly reduced 

athighland areas. Poor performance in the highlands contributed to a slightly lower 40 

performance at basin scale compared to thepixel-to-pointcomparison. 

Our results showthat rainfall estimates from CHIRPS and TRMM have a consistently good 42 

agreement with ground rainfall at different spatiotemporal scalesin the upper Tekeze-Atbara 

basin. Interpolating the sparse and unevenly distributed rain gauges over the complex terrains 44 

however introduces unknown uncertainties with respect to the actual rainfall. 

 46 
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1. Introduction 
Accurate information on rainfall data is necessary for many operational and research fields of 2 

water management, hydrological applications, and agricultural forecasts (Guo & Liu, 2016; 

Sunilkumar et al., 2015). It is arguably considered as the most important driving force for any 4 

hydrological model. Despite its importance for socioeconomic development, ground-based 

rainfall measurements are sparse and unevenly distributed,especially in developing 6 

countries(Behrangi et al., 2011; Gebremichael et al., 2014). The recommended density of 

ground rainfall measuring network in  tropical regions is one gauge per 600 - 900 km
2
for flat 8 

and 100 - 250km
2
 for mountainous areas, respectively (WMO, 1994). However, such 

densities are not available in most tropical regions (Taye & Willems, 2013; Worqlul et al., 10 

2014). Due to different limiting factors, including climatic conditions and human geography, 

ground rainfall stations are sparse or do not exist at the required temporal and spatial scales 12 

(Meng et al., 2014). Recently, satellite rainfall products are considered as important 

alternative options for acquiring rainfall estimates. These products are advantageous in terms 14 

of temporal and spatial coverage and providing data sources in ungauged basins (Dinku et al., 

2014; Katsanos et al., 2016). 16 

 

Satellite rainfall products are increasingly available with almost global coverage and the 18 

supply of those products are becoming cost effective sources for hydrological applications 

(Menget al., 2014; Thiemig et al., 2012). The spatiotemporal resolutions and measurement 20 

accuracy of these products are continuously improving because of advancement in sensor 

technologies and estimation techniques.  A number of higher resolution rainfall products are 22 

now available at a quasi-global scale (Behrangi et al., 2011; Jiang et al., 2012). The Tropical 

Rainfall Measurement Mission (TRMM), African Rainfall Estimation (RFE), African Rainfall 24 

Climatology (ARC), Global Precipitation Climatology Project (GPCP), Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks 26 

(PERSIANN)Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) and 

CPC Morphic technique (CMORPH) are among the common products that have been widely 28 

applied. 

 30 

However, satellite rainfall products need to be validated as their accuracy can be affected by 

geographical position, topography, and climate, as well as by the algorithms used to derive 32 

rainfall from satellite measurements(Meng et al., 2014; Xue et al., 2013). Several studies on 

the validation and comparisons of these products with ground measurements have been 34 
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conducted at different scales (e.g. Dinku et al., 2007; Feidas, 2010; Guo & Liu, 2016; 

Hessels, 2015; Hu et al., 2014; Jiang et al., 2012; Thiemig et al., 2012; Worqlul et al., 2014). 2 

Nevertheless, the performance varies among the rainfall products because of different data 

sources and retrieving algorithms (Derin & Yilmaz, 2014; Toté et al., 2015). In addition, the 4 

performance also varies for the same data type across different regions and seasons 

(Gebremichael et al., 2014; Hu et al., 2014). This indicates that the performance of satellite 6 

products largely depends on the location, topography, season, and hydro-climatic 

characteristics of the study area. Therefore, the reliability of satellite rainfall needs to be 8 

validated and compared against ground measurements to a specific area and temporal scales 

before it can be used in any subsequent application (Feidas, 2010; Ouma et al., 2012). 10 

 

Validation and inter-comparison of different rainfall products over the complex topography of 12 

the upper Tekeze-Atbara (T-A) basin are essential to determine which product is 

representative. A number of studies have been conducted in Ethiopia to evaluate different 14 

satellite rainfall products (e.g., Dinku et al., 2007; Gebremichael et al., 2014; Haile et al., 

2013; Worqlul  et al., 2014; Beyissa et al., 2017). However, these studies have mainly 16 

focused on the Upper Blue Nile basin and to some extent on central Ethiopia. In the T-A 

basin, where these products can contribute to better understanding of catchment response to 18 

land degradation and environmental rehabilitation programs, there has been no 

comprehensive validation studies. Therefore, this studywas intended to validate eight of the 20 

widely used satellite rainfall products on different spatiotemporal scales. The relationships 

between satellite rainfall products and topography were also carefully explored in order to 22 

understand possible errors produced by the rugged terrains.  

 24 

2. Study area and Data 

2.1. Study area 26 

This study was conducted in the Upper T-A basin, one of the main tributaries to the Nile river 

located in the Northern Ethiopia, with a total catchment area of 45,694 km
2
 at the outlet.  It is 28 

situated between 37.5
o 

– 39.8
o 

E and 11.5
o
 – 14.3

o 
N(Fig.1). The basin is characterized by 

rugged topography with a significant variation ranging from 833 to 4530 m.a.s.l. About 0.2%, 30 

52%, 42% and 0.62% of the land is found below 1000, between 1000-2000, 2000-3000, 3000-

4000 and above 4000 m.a.s.l, respectively. This clearly indicates that topography is a key 32 

factor in influencing  microclimates in the basin.  
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Figure 1: Location map and distribution of rainfall stations in the Upper T-A Basin 2 

The basin is characterized by a semi-arid climate in the east and north and partly semi-humid 

in the south (Belete, 2007). More than 85 % of the total annual rainfall falls in the wet season 4 

(June -September) which varies from 400 mm yr
-1

 in the east to more than 1200 mm yr
-1

 in 

the south (Fig. 2a). The variations are mainly associated with the seasonal migration of the 6 

inter-tropical convergence zone (ITCZ).The beginning and ending of the ITCZ over highlands 

of Ethiopia varies annually, which mostly causes the inter-annual rainfall variability 8 

(Selshi&Zanke, 2004;Nyssen et al., 2005). 

 10 

The general pattern of rainfall over the basin isalso modified by the complex topography 

(Dinku et al., 2007; Viste & Sorteberg, 2013).This implies that the movement ofair moisture is 12 

substantially modified to create contrasting rainfall regimes in the region (Huber et al., 2006). 

The sudden changes in elevation can obstruct the air mass movement to create a microclimate 14 

at the bottom of mountains or can updraft over the mountains to create orographic rainfall 

(Dinku et al., 2007). 16 

 

In most regions, rainfall increases with elevation due to the orographic uplifts (Moreno et al., 18 

2014;worqlul et al., 2014). However, this relationship is not uniform in the T-A Basin 

(Fig.2b). Rainfall in the mountains is higher in some areas and lower in others (Kiroset al., 20 

2015). Figure 2a indicates that the total annual rainfall increases with elevation in the 

southern and southwestern parts of the basin only. In contrast, it reduceswith elevation in 22 

most other parts of the basin.Stations located in the highlands of the eastern and northern parts 

of the basin receiveless rainfall compared to the associated lowlands (Fig. 2a). This is 24 

attributed to the complex local topography, which alters proximity to the sources of moist air 

and seasonal movementsof the ITCZ (Van der Entet al., 2010; Kiros et al., 2016). 26 

 

During the rainy season, the ITCZ moves towards the Northern part of the basin, which brings 28 

moisture from the Atlantic and Indian oceans through westerly (Degefu et al., 2016; 

Mohamed et al., 2005). When the rain-bearing winds reach the basin, their direction is 30 

modified by the local topography forcing the release of moisture in the lower areas before 

they reach the top of mountains. This creates more intense and shorter duration convective 32 

rainfall events in the lowlands where warm and moist airflows encounter the mountain 

foothill. Van der Ent et al. (2010)showed that topography can play an important role in 34 
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moisture cycling either by blocking or capturing moving air masses. Another possible reason 

for the low rainfall over the northern-eastern highlands is that whereas here the eastern rain-2 

bearing winds are stronger, they carry less water vapour (Viste & Sorteberg, 2013). The non-

uniform patterns of rainfall against the topography can strongly influence the performance of 4 

satellite rainfall estimates (Haile et al., 2013). 

 6 

Figure 2: Relationship between rainfall and elevation in the T-A  basin 

 8 

2.2. Datasets 

2.2.1. Rain gauge data 10 

Ground rainfall data used for validation of the satellite products comprised of 34 stations 

located within and surrounding the basin (Fig.1). These data were provided by the Ethiopian 12 

Meteorological Service Agency (NMA). The datasets coverdaily data for the period from 

2002 to 2015. Although the number of stations is relatively good, their distribution over the 14 

basin is not uniform. Most of the gauges are located in easily accessible areas and the 

distribution of gauges in the lowland areas are sparse (Fig. 1). Interestingly, most of the 16 

rainfall stations with a relatively good quality of data are located in the highland areas where 

the spatial variability of rainfall is very high.A summary of these ground measurements with 18 

vertical locationsis given as an electronic supplementary file (Table S1). 

 20 

Quality control of rainfall data from each station was done to identify if there were outliers 

and missing values. All outliers were then compared to neighbouring gauges to cross-check if 22 

observed extreme values resulted from extreme climate events. Stations with large data gaps 

in between the selected validation period were excluded from the analysis. After data 24 

screening, 34 stations out of the 75 in the basin were found to be reliable with a relatively 

consistent record. 26 

2.2.2. Satellite rainfall products 

The validation and inter-comparison of eight satellite rainfall products were performed 28 

atdaily, monthly, and seasonal scales. Table 1 provides the summary of satellite rainfall 

products used for this study. These products were selected based on their public domain and 30 

long-term data available, spatiotemporal resolution, near-real-time availability and their 

common applications in Africa (Dembélé & Zwart, 2016; Dinku et al., 2007; Thiemig et al., 32 

2012). 
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Table 1: Summary of selected satellite rainfall products for this study (in descending order of spatial 

resolution) 2 
 

The CHIRPS datasets, developed by the US Geological Survey (USGS) and the Climate 4 

Hazards Group at the University of California are blended products which combine global 

climatologies, satellite observations and in-situ rainfall observations from Global 6 

Telecomunications system (GTS) (Funk et al., 2014; Knapp et al., 2011). CHIRPS 

incorporates 0.05
o
 resolution satellite rainfall estimates with in-situ station data to produce 8 

daily time series (Katsanos et al., 2016). 

 10 

ARCv2 is produced by the National Oceanographic and Atmospheric Administration Climate 

Prediction Center (NOAA-CPC) and provides daily rainfall data over Africa. It is very similar 12 

to RFEv2 except the 30 minutes is replaced by the 3-hourly IR data (Love et al., 2004). 

 14 

The RFEv2 is also provided by NOAA-CPC for Famine Early Warning Systems Network to 

assist in disaster-monitoring activities over Africa (Herman et al., 1997). RFEv2 has been 16 

operational since 2001 and uses rainfall estimates from PM sensors, IR data from 

METEOSAT and daily rainfall from the GTS reports. Daily rainfall estimates were obtained 18 

at 0.1
o
 spatial resolution by merging these sources. 

 20 

The CMORPH product that produces global rainfall analysis at a very high spatial and 

temporal resolution is also a product from NOAA-CPC. Unlike the other products, the 22 

CMORPH product is not an algorithm for merging of the PM and IR estimates rather it uses 

the IR information for the spatial and temporal evolution of clouds, not the rainfall estimates 24 

(Asadullah et al., 2008; Joyce et al., 2004). It uses rainfall estimates derived from low orbit 

PM observations and propagate these features using a high temporal and spatial resolution IR 26 

data (Joyce et al., 2004). According to Dinku et al. (2007), the CMORPH combines the 

superior retrieval accuracy of the PM and higher resolution of IR data. This method is highly 28 

flexible as it allows incorporation of any rainfall estimate from PM satellites. 

 30 

The PERSIANN precipitation estimates were developed by the Center for Hydrometeorology 

and remote sensing atthe University of California (Ashouri et al., 2015). It uses an artificial 32 

neural network approach to merging the IR and PM data and the rainfall estimates are based 

on the infrared brightness temperature image provided by geostationary satellites (Hsu et al., 34 
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1997). The rainfall estimates in PERSIANN algorithm are available at 0.25
o
 spatial 

resolution. 2 

 

The latest version of TRMM product (3B42V7) was developed by the National Aeronautics 4 

and Space Administration (NASA). This product was obtained from the TRMM Multi-

satellite precipitation analysis (TMPA) algorithm which combines Infrared (IR) and Passive 6 

Microwave (PM) data retrievals (Guo & Liu, 2016; Huffman et al., 2007). TRMM rainfall 

estimates incorporates gauge data for bias correction from several sources including national 8 

and regional meteorological services. (Funk et al., 2014). The TRMM3B43 rainfall products 

were agreggated from the TRMM3B42 3-hourly estimates and merged with station data to 10 

produce daily rainfall (Dinku et al., 2007). 

 12 

The GPCP is a blended product which combines the Global Precipitation Climatology Center 

(GPCC) gauge data with the PM and IR rainfall estimates (Huffman et al., 1997). The PM 14 

estimates in this product are based on the Special Sensor Microwave /Imager (SSM/I) data 

from the Defence Meteorological Satellite program (DMSP, US) while the IR data came 16 

mainly from Geostationary Operational Environmental Satellite (GOES) Precipitation Index 

(PI) (Xie & Arkin, 1995). This technique is advantageous as it combines rainfall estimate 18 

information from many data sources by taking the strength of each data type. 

 20 

CMAP products include monthly and pentad (5-day) mean rainfall estimates at 2.5
o
 spatial 

resolution (Feidas, 2010). These techniques produce rainfall estimates by merging ground 22 

station data with rainfall estimates from several satellite-based algorithms (Xie & Arkin, 

1997). As described in Xie and Arkin (1997), inputs are derived by combining of 24 

geostationary and polar orbiting infrared, PM retrievals and rain gauge observations. First, the 

IR and PM rain estimates are merged using a maximum likelihood approach where the 26 

estimate with weights are derived by comparison to the gauge analysis. Then, the gauge 

analysis is used to obtain an absolute value of the merged product (Feidas, 2010). 28 

 

3. Methodology 30 

3.1. Validation processes 

The spatial patterns of eight satellite products were evaluated and compared with rain gauge 32 

data at daily, monthly, and seasonal scales. Both the satellite and gauge rainfall data were 
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collected at different temporal scale and first, the daily data were aggregated to monthly and 

seasonal scales. As more than 85% of the total annual rainfall occurs during the wet season 2 

(June-September) (Gebremicael et al., 2017), seasonal comparison was considered only for 

this period. The ability to replicate the observed rainfall by the products was done during this 4 

common period between all satellite and station rainfall. Considering the given climatic 

variability, complex topographical characteristics and hydrological working units of the basin, 6 

the performance of these products were evaluated using two approaches, namely point-to-

pixel and aerial averaged rainfall comparison. 8 

 

Rainfall over a complex topography like the T-A basin is largely subjected to small-scale 10 

variability, which implies that evaluation of such satellite products should be at the smallest 

possible spatial and temporal scales (Thiemig et al., 2012). Accordingly, in the first approach 12 

all satellite rainfall products from the corresponding grid cell were compared to the ground 

observed data within the satellite box. The variance of satellite estimate is smoother in space 14 

and time as these products are represented by the spatial averages over the pixels. For this 

analysis, the satellite rainfall products were extracted for the location of each rainfall station 16 

and their performance were evaluated using statistical indices. It was assumed that the amount 

of point rainfall is uniform in the area of the pixel which may not necessarly true.The second 18 

approach was based on the aerial rainfall comparison at different spatial scales. 

Representative sub-basins from lowland and highland areas (Fig.1) with an average elevation 20 

of 1400 and 3000 m.a.s.l.were considered in order to account for the effect of topography. 

Satellite products were validated at sub-basin and basin level by comparing spatially 22 

aggregated pixel values against a corresponding interpolated observed rainfall from gauge 

stationsusing the inverse distance weighting (IDW) method (Ruelland et al., 2008). 24 

 

3.2. Evaluation statistics 26 

The satellite rainfall products were quantitatively evaluated against ground observations using 

four statistical indices:the relative percent of bias (PBIAS), Pearson correlation coefficient (r), 28 

Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) Table 2). A detailed 

description of these indices can be found in Toté et al. (2015) and Thiemig et al. (2012). 30 

Table 2: Statistical indices used for the satellite rainfall products performance evaluation 

 32 
Where xi is observed rainfall from raingauge, yi is satellite rainfall product, N is the number of pairs of products, 

𝑥  and 𝑦 are the average of observed and satellite rainfall data, respectively. 34 
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Agreement between estimates and observation is considered satisfactory for PBIAS and r 2 

values ±25% and > 0.5, respectively (Moriasi et al., 2007). The lower the RMSE and MAE 

values, the closer the satellite estimates are to the ground measurements. The unit of RMSE 4 

and MAE is mm/time period. 

4. Results and discussion 6 

4.1. Comparison at pixel-to-point spatial scale 

The performance of satellite estimates was evaluated by comparing these data for 34 rainfall 8 

stations at grid level covering the location of the station. Comparisons were carried out at 

daily, monthly, and seasonal periods. First, dailyrainfall of eight products was compared with 10 

the observed daily rainfall. Figure 3 shows the PBIAS (%) and correlation (r)of all satellite 

estimates against ground station values. The daily estimates performed poorly in the majority 12 

of stations. However, CHIRPS, RFEv2 and TRMM had a relatively good performance with 

lower PBIAS, RMSE and MAE and higher r compared to other products (Fig.3 andTables S2-14 

and S3). The average value of PBIAS for all stations were -13%, -16% and 17% for CHIRPS, 

RFEv2 and TRMM, repectively. Similarly, r value of these products was≥ 0.5 in the majority 16 

of stations with an average value of  0.52, 0.50 and 0.50, respectively.. The RMSE and 

MAE,which evaluates the average magnitude error between satellite estimates and ground 18 

stations showed the same trend as PBIAS and r (Tables S2 and S3).The remaining products 

failed to capture the observeddaily rainfall with correlationof < 0.5 and higher PBIAS, RMSE 20 

and MAE in most stations (Tables S2 and S3). The ARC2, GPCP and CMAP performed 

poorly. 22 

 

The precision of these products to reproduce the observed rainfall wasfurther investigatedat 24 

monthly time series. Table 3 shows the average value of  accuracy indicators obtained by 

comparing each product with ground stations.The results indicate thatthe performance of all 26 

products improvedwhen daily data are aggregated to monthly data. The correlationfor 

CHIRPS, RFEv2 and TRMM were>0.5 in all stations with an average value of 0.61, 0.59 and 28 

0.56, respectively (Table3). Similarly, the PBIAS value reducedat monthly time scale.The 

RMSE and MAE indices also decreased at monthly scale, which implies the agreement 30 

between satellite and ground rainfall increased (Table 3).Forexample, Fig. 4 compares the 

pattern of statistical indices for all products in four representative (highland, lowland and 32 
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medium) stations. CHIRPS, RFEv2 and TRMM outperformed to the other products. ARCv2, 

CMAP and GPCP again performed poorly with a r < 0.5 and higher PBIAS (Table 3).  2 

 

Figure 3: Comparison of daily satellite rainfall estimate with ground measurements, (a) 4 

PBIAS, (b) Correlation (r) 

 6 

Table 3: Average accuracy indicators obtained from monthly comparison  

 8 

Moreover, comparisons based on average monthly point rainfall (2002-2015) at the given 

locations indicate that rainfall estimates of CHIRPS, RFEv2 and TRMM products agree with 10 

the corresponding ground measurements (Fig.5). Monthly rainfall patterns from these 

products have a consistent and strong agreement with the ground rainfall compared to the 12 

remaining products. 

 14 

To gain further information on the seasonal variations of rainfall estimate skills of the satellite 

products, comparisons were also madefor the entire rainy season (June-September). Figure 6 16 

presents an inter-comparison of wet season rainfall estimates with the observed rainfall of the 

same period. The spatial distribution of correlationcoefficients (Fig. 6) and PBIAS (Fig.S1) 18 

show patterns that are similar to these ofthe daily and monthly results. However, the 

performance of all products was significantly improved during the wet season. Six satellite 20 

products had an excellent agreement with ground rainfall (CHIRPS, TRMM, PERSIANN, 

RFEv2, ARC2, and CMORPH) during the wet season.CHIRPS, RFEv2, and TRMM 22 

correlated best with the observed rainfall compared to the remaining products. With average 

values of 0.84, 0.74, and 0.75 for CHIRPS, RFEv2, and TRMM, respectively, the correlation 24 

coefficient of these products showed a strong agreement. The PBIAS of these productswas 

also within the range of ±25%in most stations. The RMSE and MAE indices were also lower 26 

than the other products (Tables S4 and S5). Next, the PERSIANN, CMORPH and ARCv2 

products showed a good agreement with the gauged rainfall. Improved correlation (r>0.5)and 28 

lower PBIAS, RMSE and MAE were obtained in 80 % of the stations, however the GPCP and 

CMAP products continued to show poor agreement despite some improvements (Fig. 6 and 30 

Tables S4 and S5). 

 32 

Figure 4: Monthly statistical indices at pixel to point rainfall comparison. 
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Fig 5: Comparison of mean monthly rainfall (2002-20015) at four representative 2 

ground stations 

 4 

Point-to-pixel comparison of the different temporal scales showed that all satellite products 

suffer from both over and underestimations, explained by negative and positive values of 6 

PBIAS.Both phenomena were observed in all products at several locations and time 

scales.TRMM and CMORPH systematicaly overestimate the rainfall in more than 20 stations 8 

while they underestimate rainfall in the remaining stations. The RFEv2, GPCP, ARC2 and 

CMAP products consistently underestimate rainfall in the majority of ground stations. Most 10 

overestimations(underestimations) were observed during the dry (October-May) (wet (June-

September)) months (Fig.5). However, the performance of all products to capture the 12 

observed rainfall were better in the dry months. This is due to the reduced probability of 

rainfall during the dry months.  14 

 

Figure 6: Spatial distribution of correlationcoefficients (r) during the wet season comparison. 16 

 

It is also important to remark that inconsistent estimation of rainfall by all products is likely 18 

due to the effect of rugged terrains.The overall performance of the satellite rainfall products is 

lower in the peripheries of the basin where most stations are located in the mountainous area 20 

with an elevation> 2,500 m.a.s.l. (Fig.7). As shown in Fig. 4, lower correlation and higher 

PBIAS is observed in Debark compared to Sekota with an elevation of 3,000 and 1,960 22 

m.a.s.l., respectively.A relatively better performance occurred in central, eastern, and north-

western parts of the basin where stations are located below 2,500 m.a.s.l. As an example, the 24 

long-term annual observed and satellite rainfall from CHIRPS were plotted against elevation 

of stations (Fig.7). The graph clearly shows that the relationship pattern of rainfall with 26 

elevation is not straightforward.The correlation of these products showed a poor agreement at 

higher elevation.A similar study in the neighbouring Upper Blue Nile basin by 28 

Gebremichaelet al.(2014) also showed that satellite products failed to capture the ground 

rainfall in mountainous compared to lowland areas.This result is consistent with other studies 30 

carried out elsewhere(e.g. Asadullah et al., 2008; Derin & Yilmaz, 2014; Guo & Liu, 2016; 

Hu et al., 2014) 32 
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Figure 7: Relation between annual average rainfall (gauged and CHIRPS)and 

elevation 2 

In summary, the combination of daily, monthly, and seasonal point comparisons demonstrate 

that the CHIRPS, RFEv2, TRMM, and PERSIANN products have the best agreement with the 4 

observed rainfall across the basin. The evaluation indices at different time scales and average 

monthly plots comparison show that CHIRPS performs best, followed by RFEv2 and TRMM. 6 

Over- and under-estimation of daily, monthly and seasonal rainfall by CHIRPS was smaller 

compared to the other products.  8 

4.2. Comparison based on aerial averaged rainfall 

Spatiotemporally aggregated aerial rainfall of each product was also compared with the 10 

corresponding interpolated rainfall from the gaugesat daily, monthlyand seasonal time scales. 

Table 4 shows the performance of all products at basin level anddifferent time scale. Similar 12 

to the point-to-pixel comparison, the CHIRPS, RFEv2, TRMM, PERSIANN, and CMORPH 

aerial rainfall estimates had the best accuracy,with PBIAS within ±25% at all temporal scales. 14 

However, all products showed a lower performance in terms of correlation with <0.5 and 

higher RMSE and MAEat daily compared to monthly and seasonal time scales. Lower 16 

performance at daily scale can be explained by erroneous (non-detection) of more localized 

convective rainfall events.The CMAP,ARCv2, and GPCP continued to show lower r and 18 

higher RMSE, MAE and PBIAS consistently atall time scales. The performance improved at 

monthly and seasonal scales (Table4). Higher accuracies at larger time scales are due to the 20 

fact that the errors at smaller time scale are symmetrical and offset each other when 

aggregated. 22 

 

The negative and positive values of PBIAS in Table 4 confirms that most products 24 

underestimated rainfall during the wet season, except TRMM and CMORPH. Figure 8 shows 

the visual comparison of the long-term monthly aerial average of satellite estimates with the 26 

corresponding ground aerial rainfall. It clearly indicates that the TRMM and CMORPH 

products consistently overestimated, whereas CMAP, GPCP and ARC2 underestimated 28 

rainfall in all months. The remaining products showed a varied picture for the different 

months. For example, CHIRPS and RFEv2 slightly underestimatedrainfall during the rainy 30 

months of July and August whilst overestimatingrainfall in the dry months (Fig.8).Duringthe 

wet season CHIRPS satellite estimatesoutperformed the other products.  32 
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Table 4: Comparison of satellite and observed aerial rainfall, at basin scale, at different time scales 

 2 

Figure 8: Monthly average satellite estimates and ground rainfall comparison at basin scale 

Whereas all satellite rainfall estimates showed a consistent improving pattern with increasing 4 

time scale, their performance did not show a uniform pattern with increasing spatial 

scale.Figure9 shows a compares average correlation of the products at different spatial scales 6 

forthe wet season. Most products performed worse at basin scale compared to pixel-to-point 

and lowland sub-basin scales. The likely reason is that the aerial averaged rainfall over the 8 

complex topography suffers from limitations due to the uneven distribution of rain gauges. 

The performance of CHIRPS, TRMM, and CMAP improved at basin level compared to pixel-10 

to-point scale whilst all other products performed worse(Fig.9). The relatively poor 

performance at the basin scale for most products is likely due to the topographical variations 12 

across the basin. Variations of topography can significantly compromise the interpolation of 

observed rainfall (Thiemig et al., 2012). The rainfall stations are also sparsely and unevenly 14 

distributed over the basin, which can be a source of systematic errors when interpolating 

aerial rainfall (Dembélé & Zwart, 2016; Toté et al., 2015). 16 

 

To further understand the effect of complex terrains on the performance of the satellite 18 

products, the seasonal aerial rainfall of representative highland and lowland sub-basins was 

compared (Fig.9). The result ofthe two contrasting topographic featuresdemonstrates that 20 

theoverall correlation of satellite rainfall estimates is better in lowland than in high 

mountainous areas. This suggeststhat the satellite products may not accurately capture the 22 

spatial pattern of seasonal rainfall in complex topographic areas like the T-A basin. Further, 

all products overestimate rainfall in the lowlands and underestimate rainfall of the rain in the 24 

highlands.However, comparing both topographic features, the magnitude of underestimation 

was greater than that of overestimation in most products. For example, CHIRPS, TRMM, and 26 

CMORPH underestimated the wet season rainfall over the highland area by 32, 28, and 52%, 

while it overestimated by 18, 21, and 28% the lowland rainfall, respectively.  28 

 

Fig.9: Comparison of seasonal averaged correlation at a pixel, sub-basin, and basin scales 30 

 

In summary, based on the comprehensive evaluation at different temporal and spatial scales, 32 

the CHIRPS, RFEv2, and TRMM outperformed the other satellite rainfall products at all 
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spatiotemporal scales. The better performance of CHIRPScan be explained by the fact that it 

to considers topographic effects and its high spatial resolution (Katsanos et al., 2016).The 2 

good performance ofTRMM,and RFEv2 is possibly due to the fact that these productshave a 

bias correction that is based rain gauge data (Thiemig et al., 2012). 4 

 

Our findings are in agreement withsimilar studies (e.g. Dembélé & Zwart, 2016; Hessels, 6 

2015; Katsanos et al., 2016; Bayissa et al., 2017; Dinku et al., 2008). Hessels (2015) 

compared 10 satellite products over the Nile basin and CHIRPS and TRMM werefound to be 8 

the best-performing products.Bayissaet al. (2017)revealed that CHIRPS estimates showed 

better performance than PERSSIAN and TARCAT over the Upper Blue Nile basin. Similarly, 10 

Gebremichaelet al. (2014) and Dinkuet al. (2007)showedthat CMORPH and TRMM well 

performed in the rugged terrains of neighbouring basin.Next tothese products, CMORPH, 12 

PERSIANN, and ARCv2 were better in capturing the observed rainfall while CMAP and 

GPCP poorly performed at all spatiotemporal scales.Dinku et al. (2007) also showed that 14 

CMAP and GPCP products poorly performed compared to TRMM and CMORPH in 

Ethiopia. 16 

 

The performance of all products consistently correlated best with ground measurements when 18 

aggregated at larger time scales. Improved performance with increasing time step is obviously 

due to counterbalancing of variabilities when accumulated from smaller to larger time scales. 20 

Many studies (e.g. Dembele&Zewart, 2016; Guo& Liu, 2016; Menget al., 2014)reported that 

the performance of satellite estimates improved as time step increased. In contrast, the 22 

performance of these products wasnot uniform with an increasing spatial scale. The 

performance of all products increased from point rainfall to aerial rainfall in the lowlands, 24 

whereas their performance decreased in thehighlands (Fig.9). Apoorer performance in the 

mountainous area is notable for all products. This result is in agreement with other studies 26 

(e.g. Derin and Yilmaz; 2014; Dinku et al., 2007)whichindicates that satellite rainfall products 

have challenges to estimate orographic precipitation in basins with a complex topography. 28 

5. Conclusions and Recommendations 

This study evaluated the performance of eight-satellite based rainfall products ranging from 30 

high to low resolution over the T-A basin. These products were evaluated and compared 

withground stations during 2002-2015. A comprehensive approach was applied that 32 

includedpoint-to-pixel and aerial averaged comparisons at different spatialand temporal scales 
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(daily, monthly, and seasonal). The relationship between rainfall and elevation wasalso 

analysed to identify the effects of topography on the performance. 2 

 

The results showed that the CHIRPS, RFEv2, and TRMM rainfall estimates outperformed the 4 

other products consistently across all temporaland spatial scales. These products achieved 

acceptable correlation coefficients (>0.5) and PBIAS, RMSE and MAEvalues for both 6 

approaches and at all time scales. The PBIAS of these products were within ±25% atall 

timescales. CMORPH, PERSIANN, and ARC2 achieved lower scores.  The performance of 8 

CMAP and GPCP was poor over the various conditions with PBIAS ranging from -250% to 

118% and correlation <0.5. A relatively lower performance is notable for all products in the 10 

mountainous areas.  

The agreement between the products and rain gauge improved with increase in time scale. 12 

This is due to the fact that errors at smaller time scales offset each other when aggregated. All 

satellite estimates suffered from under- and over-estimation during the different time and 14 

spatial scales. Underestimation dominated in the mountainous areas. TRMM and CMORPH 

overestimated rainfall whilst the remaining products underestimated rainfall consistently at all 16 

spatiotemporal scales.CMAP, ARC2, and GPCP estimates were the most affected by large 

underestimations across all stations. Another key finding of this study isthat unlike in time, 18 

the performance of the products did not show a uniform pattern at different spatial scales. The 

performance improved when increasing the aerial averaged rainfall in the lowlands, whereas it 20 

decreased at larger spatial scale in the highlands.Accuracy indicators at point-to-pixel 

comparison wereslightly better than aerial averaged rainfallin the whole basin.Poor 22 

performance over the mountain areas contributed to lower performance at larger spatial 

scales. Moreover, systematic errors during the interpolation of observed rainfall over the 24 

complex topography of the basin might havecontributed to the overall lower performance at 

the basin scale. 26 

 

The ranking of these products may not be absolute as validation of these products in different 28 

study periods could result in different rankings. Interpolation of the sparse and unevenly 

distributed rain gauges over complex terrainsmay also introduce significant uncertainties and 30 

therefore limits the validity of the result. However, considering the current data availability, 

the result of this study provides a basis for the utilization of satellite rainfall estimates over the 32 

complex topography of the T-A basin. It will be a good reference for future applications of 

satellite rainfall, especially in rain gauge sparse and ungauged basins with rugged terrains.  34 
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Table 1: Summary of selected satellite rainfall products for this study (in descending order of spatial 

resolution) 2 
Product Temporal 

resolution 

Spatial resolution Coverage  Starting date 

CHIRPSv8 Daily 0.05
o
 50

o
N-50

o
S,0

o
-360

o
E 1981 

ARCv2 Daily 0.1
o
 40

o
N-40

o
S,20

o
W-55

o
E 1983 

RFEv2 Daily 0.1
o
 40

o
N-40

o
S,20

o
W-55

o
E 2001 

CMORPH 3 hourly 0.25
o
 Global 2002 

PERSIANN Daily 0.25
o
 Global 1983 

TRMM 3B42v7 Daily 0.25
o
 50

o
N-50

o
S,0

o
-360

o
E 1998 

GPCP Daily 1.0
o
 Global 1979 

CMAP pentad 2.5
o
 Global 1998 
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Table 2: Statistical indices used for the satellite rainfall products performance evaluation 28 
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Statistical measure Equation Ranges Perfect score 

Root Mean Square Error (RMSE)  0 to ∞ 0 

Mean Absolute Error (MAE) 
 

0 to ∞ 0 

Percent of bias (PBIAS) ((∑yi-∑xi) /∑xi) *100 0 to ∞ 0 

Pearson correlation coefficient (r) ∑ 𝑥𝑖 − 𝑥   𝑦𝑖 − 𝑦  

 (𝑥𝑖 − 𝑥 )2 (𝑦𝑖 − 𝑦 )2
 

-1 to 1 1 

Where xi is observed rainfall from rain gauge, yi is satellite rainfall product, N is the number of pairs of 

products, 𝑥  and 𝑦 are the average of observed and satellite rainfall data, respectively. 2 
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1/𝑁∑ 𝑦𝑖 − 𝑥𝑖  

 1/𝑁∑ (𝑦𝑖𝑛
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Table 3: Average accuracy indicators obtained from monthly comparison  

Satellite estimate PBIAS (%) r RMSE (mm/month) MAE (mm/month) 

CHIRPS -8 0.61 17 16 

ARCv2 -50 0.43 112 98 

RFEv2 -10 0.56 23 21 

CMORPH 14 0.48 75 29 

PERSIANN -11 0.52 41 23 

TRMM 7 0.59 32 26 

GPCP -27 0.36 143 103 

CMAP -42 0.32 126 83 

 2 

 

 4 

 

 6 

 

 8 

 

 10 

 

 12 

 

 14 

 

 16 

 

 18 

 

 20 

 

 22 

 

 24 

 

 26 

 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-504
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 29 August 2017
c© Author(s) 2017. CC BY 4.0 License.



22 
 

 

Table 4: Comparison of satellite and observed aerial rainfalls at basin level with different time scale  2 

Indices 

Temporal 

scale CHIRPS ARC2 RFEv2 CMORPH PERSIANN TRMM GPCP CMAP 

PBIAS 

  

  

Daily  -10 -58 -8 18 -13 11 -41 -38 

Monthly -8 -41 -6 15 -11 8 -28 -33 

Wet season -6 -21 -3 11 -8 6 -19 -24 

r 

  

  

Daily  0.49 0.22 0.48 0.19 0.28 0.41 0.15 0.21 

Monthly 0.69 0.39 0.5 0.41 0.54 0.56 0.3 0.28 

Wet season 0.88 0.41 0.72 0.55 0.64 0.7 0.36 0.39 

RMSE 

 (mm) 

  

Daily  36 111 50 42 48 25 89 60 

Monthly 42 178 61 70 49 34 205 80 

Wet season 79 201 67 112 137 142 395 309 

MAE 

(mm) 

Daily 19 102 25 39 48 25 79 54 

Monthly 41 141 36 68 51 31 131 78 

Wet season 71 198 68 102 131 123 171 229 

Values in italics indicate acceptable region of PBIAS (-25% - 25%) and correlation coefficient (r>0.5)  
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 2 

Figure 1: Location map and distribution of rainfall stations in the Upper T-A Basin 
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Figure 2: Relationship between rainfall and elevation in the T-A  basin 
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Figure 3: Comparison of daily Satellite rainfall estimate with ground measurements, (a) 12 

PBIAS, (b) Correlation (r) 
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Figure 4: Monthly statistical indices at pixel to point rainfall comparison. 12 
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Fig 5: Comparison of mean monthly rainfall (2002-20015) at four representative 14 

ground station  
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Figure 6: Spatial distribution of correlationcoefficients (r) during the wet season comparison. 2 
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Figure 7: Comparison of annual average rainfall with elevation 2 
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Figure 8: Monthly average satellite estimates and ground rainfall comparison at basin scale 6 
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Fig.9: Comparison of seasonal averaged correlation at a pixel, sub-basin, and basin scales 
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