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Abstract. Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere —heat-

exchange fluxes— is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering

critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM), a one-dimensional integral lake

model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity

of simulated fluxes to changes in model parameters, i.e. turbulent transport parameters and the light extinction coefficient5

(Kd). A recently developed software package, Problem Solving environment for Uncertainty Analysis and Design Exploration

(PSUADE), was used to perform Sensitivity Analysis (SA) and identify the parameters that dominate model behavior. The Gen-

eralized Likelihood Uncertainty Estimation (GLUE) was applied to quantify the fluxes’ uncertainty, comparing daily-averaged

eddy covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested and the

posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant pa-10

rameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue —different parameter-values

combinations yielding equivalent results— the answer to the question was unequivocal: Kd, a measure of how much light pen-

etrates the lake, dominates sensible and latent heat fluxes and the uncertainty their estimates is strongly related to the accuracy

with which Kd is determined. This is important since Kd is seldom measured and accurate estimates of its value could reduce

modeling uncertainty.15

1 Introduction

While lakes only cover around three percent of the Earth’s land surface (Downing et al., 2006), their impact on the climate

system is disproportionate to their coverage (Williamson et al., 2009). Lakes exert their influence at different time scales. In

the long term, down to the seasonal scale, they interact with the climate system through, e.g., their influence on the global

carbon balance (MacKay et al., 2009; Tranvik et al., 2009). They also provide more immediate feedback through mass and20

energy exchanges with the atmosphere. There exists an array of processes, some of them interacting, that modulate the impact

of lakes, working at different time-scales (Pérez-Fuentetaja et al., 1999; Tanentzap et al., 2008).
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Models of such real-world systems are necessarily simplified conceptualizations, making them tractable (Beven and Ger-

mann, 2013). Inferences drawn from models will be plagued by issues such as epistemic gaps, data uncertainties, or even

computational artifacts (Clark and Kavetski, 2010; Westerberg et al., 2011; Beven and Westerberg, 2011). Taking modeling

uncertainties into account should be of fundamental importance, but they might not be considered due to lack of evaluation

data, computational limitations or a worrying avoidance of the issue, among other things.5

In order to represent the influence of lakes in the climate system, lake models are embedded into land-surface schemes

that can in turn be coupled to regional or global climate models. These cascading systems are linked through their inputs and

outputs, sometimes considering feedbacks (Shrestha et al., 2014). The uncertainties in the couplings, even when propagated

through simple systems, can produce a wide range of potential outputs (Beven and Lamb, 2014). These, and other uncertainties,

make mimicking the hydrological system in coupled land-surface/climate models a practical challenge for current modeling10

systems (Kundzewicz and Stakhiv, 2010). A first step in improving these systems would be to quantify the uncertainty of the

linkages, and if possible reduce it.

In general, hydrological aspects of the climate system were effectively ignored in early modeling efforts (Phillips, 1956) or

summarily represented (Manabe, 1969). This was mostly due to computational limitations but also to limited process under-

standing (Koster and Suarez, 1992; Koster et al., 2000). Up until the 1990’s, most open water surfaces were not resolved in15

climate models (Pitman, 1991): Only large lakes could be represented (Bates et al., 1993). These early conceptualizations are

simplistic, viewing lakes as saturated soils with modified roughness and albedo (Pitman, 1991) or as slabs of water with no

differentiated mixing (Ljungemyr et al., 1996), and ignore the internal thermal structure of lakes, which influences fluxes to

the atmosphere (Tanentzap et al., 2008).

Lakes are not inert masses but living systems. From the point of view of atmospheric feedbacks, ecosystem function is more20

than just ontologically relevant and is a controlling factor for heat exchange. Rinke et al. (2010) illustrate the feedback between

phytoplankton and thermal structure, via light extinction modulation. Thermal stratification modulates oxygen concentrations

and therefore ecosystem function (Elçi, 2008). Palaelogical studies of lake ecosystems show they are highly sensitive to envi-

ronmental change (Eggermont and Martens, 2011). Understanding energy feedbacks between lakes and the atmosphere, or at

least estimating the associated uncertainties, is of central importance to diagnose the potential impacts of change.25

More than half the global lake area consists of small lakes (Downing et al., 2006),which might not be resolved at the typical

scales of global or mesoscale models. Furthermore, the spatial pattern of mass and energy fluxes directly influence the evolution

of the atmospheric boundary layer, thus compounding the issue (Shrestha et al., 2014): There is a distinct difference both in

the timing and the magnitude of fluxes between open water surfaces and the atmosphere compared to solid land (Halldin et al.,

1999).30

The Canadian Small Lake Model (CSLM; MacKay, 2012), a 1D, deterministic, bulk mixed layer model, was developed to

integrate within the Canadian Land Surface Scheme (CLASS; Verseghy et al., 1993; Verseghy, 2007), which can in turned be

coupled to regional climate models as well as large scale hydrological models. CLASS resolves heterogeneity in the landscape

using a mosaic approach (Koster and Suarez, 1992) where the CSLM acts as a tile generating its own flux exchange with

the atmosphere. Previous work with CSLM has demonstrated its ability to reproduce surface temperatures over a range of35
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conditions within different lakes of the Experimental Lake Area (MacKay, 2012). Evaluation of the model in terms of surface

heat fluxes is generally lacking, however. In this paper we use observed micrometeorological flux data from a small lake

(Landing Lake, 62.5◦W, 114.4◦N, Surface Area = 1.12km2) in the North West Territory of Canada (Fig. 1) to explore model

performance, and demonstrate the capacity of alternative methods of sensitivity analysis to identify the relative significance of

model parameters and their impact on uncertainty in the simulation of lake-atmosphere energy exchange.5

Below we briefly introduce the case-study application and the model, and then present and discuss alternative methods for

model sensitivity analysis, drawn from the PSUADE toolbox. The paper presents a comparative analysis of these alternative

approaches, and concludes with a summary of key findings and general discussion of the implications.

2 The Canadian Small Lake Model

CSLM is a 1-D (with depth as the vertical coordinate axis), bulk-mixed layer model that outputs the temperature profile within10

the water column and sensible and latent heat at each time step. The surface boundary is set using atmospheric conditions while

the boundary at the base of the lake is adiabatic. The model is forced at each time step with meteorological data. Using an initial

temperature profile, the surface energy balance is solved at the boundary while the conductive and radiative heat flux is solved

at each depth bin. From this heat flux and using the 1-D heat equation, the temperature profile of the lake is recalculated for the

current time step. At this stage if there are any static instabilities in the temperature profile, mixing occurs using an integrated15

turbulent kinetic energy (TKE) approach. This generates a final temperature profile. The surface temperature from the profile

is then used within the bulk aerodynamic formulas to calculate both sensible and latent heat fluxes. A complete description of

the model can be found in MacKay (2012).

Along with the initial temperature profile and standard meteorological forcing, the light extinction coefficient
(
m−1

)
for a

given lake is also required. The light extinction coefficient, Kd (Table 1), is a measure of how light in the visible spectrum20

attenuates through the water column; a measure of the transparency of the lake. Low values of Kd indicate a clearer lake where

light can penetrate deep into the water column. Higher values of Kd indicate a more turbid lake where light attenuates much

closer to the surface. The value of this parameter has direct implications for the temperature profile within a lake and thus both

the sensible and latent heat fluxes.

The turbulence subroutine within CLSM is used to determine the mixed layer depth; the depth over which active mixing25

occurs homogenizing the temperature profile. This is the final step within the model before the temperature profile and fluxes

are output. The change in mixed layer depth is calculated by assessing the change in TKE. This change is determined through

the competition between energy input terms which act to increase the mixed layer depth and loss terms which act to decrease

the depth of the mixed layer. Energy input terms include wind driven stirring and buoyancy fluxes (Fq), transport of TKE to the

thermocline (Fi) which acts to erode it, and shear production at the base of the mixed layer (Fs). Loss terms include energy30

dissipation (Fd), entrainment of deeper water at the thermocline (Fp) and sinks of TKE within the mixed layer (FL). In this
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scheme the modeled integrated TKE budget is used to determine the turbulence within a mixed layer of uniform properties and

depth h (Imberger, 1985; Spigel et al., 1986). This is expressed as:

d

dt

(
1
2
hEs

)
=

h

2
dEs

dt
+

Es

2
dh

dt
(1)

where Es

2 is the average TKE per unit mass. To solve the energy budget, the terms on the righ-hand-side are re-written as

the sum of relevant turbulent processes:5

h

2
dEs

dt
= Fq −Fd−Fi (2)

Es

2
dh

dt
= Fi + Fs−Fp−FL (3)

This parameterization involves five empirical turbulent coefficients (Table 1). With the exception of the entrainment term,

Fp, the definition of each of the terms contains a constant empirical coefficient; cn for surface mechanical input, ce for TKE10

dissipation, cf for TKE transport to the thermocline, cs for shear production and cL for the sinks of TKE. Experiments detailed

in Spigel et al. (1986) yield a range of values for cn, cf , ce and cs. A set of consistent values was chosen by Rayner (1980)

and have been used subsequently by Spigel et al. (1986) and MacKay (2012); cn = 1.33, cs = 0.2, ce = 1.15, cf = 0.25. As

mentioned above, MacKay (2012) chose cL = 0.235 based on experimental data.

Both turbulent mixing and Kd directly control the output of temperature and heat fluxes. In addition, there is also a consider-15

able amount of uncertainty in both. In the case of the turbulent subroutine, the values of the empirical constants while consistent

have never been investigated. The value of Kd on the other hand carries uncertainty due to limitations in its measurement both

spatially and temporally.

2.1 The Lake

Data from Landing Lake in Baker creek (NWT, Canada; Fig. 1) were used to evaluate temperature profiles and heat fluxes20

produced by CSLM. Landing Lake is a small freshwater lake with a surface area of 1.12km2, mean depth of 3m and maximum

depth of 4m. Concentrations of dissolved organic compounds (DOC) are high, resulting in an expected Kd value of ∼ 2m−1

(Spence et al., 2003). Due to the shallow depth and high value of Kd, the lake does not form a seasonal thermocline, but diurnal

thermoclines were observed in the temperature data.

Meteorological, radiation and turbulent flux measurements were taken from a climate station installed on a bedrock outcrop25

island that was first described in Granger and Hedstrom (2011). This location provided fetch distances that ranged from 150m

to 900m. Data from the station were obtained for the open water periods 2007–2009. Turbulent fluxes of sensible and latent heat

(W ·m−2, positive upward from the surface) were calculated from 10Hz measurements of the vertical wind speed (m·s−1), air

temperature (◦C), and water vapour density (g·m−3). Wind speed was measured using a 3-D ultrasonic anemometer (Campbell
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Scientific CSAT-3), while water vapor density was measured using krypton hygrometer (Campbell Scientific KH20) located

25cm away and at the same height as the sonic anemometer. The statistics (means and covariances) of the high-frequency data

were collected and processed at 30-min intervals using a datalogger (Campbell Scientific CR3000). Corrections to the eddy

covariance measurements include 2-D coordinate rotation (Baldocchi et al., 1988), air density fluctuations (Webb et al., 1980),

sonic path length, high-frequency attenuation, and sensor separation (Massman, 2000; Horst, 1997). Associated 30 minute5

average meteorological observations included horizontal wind speed (m·s−1) measured with a Met-One 14A cup anemometer,

air temperature (◦C) and relative humidity (%) measured with a Vaisala HMP45C thermohygrometer. Incoming and outgoing

short wave radiation (W ·m−2) were measured with paired upward and downward facing Li-Cor LI200S pyranometers. A

Kipp and Zonen NRLite was mounted 1.04m above the water to measure net radiation (W ·m−2). Because of the homogenous

nature of the lake bathymetry one vertical array of Onset pendant thermistors was deployed 300 m northeast of the island10

measuring half hourly water temperature at 4 depths (0m,0.5m,1m,2m) in 2007 and 2008 and at 3 depths (0m,0.5m,1.5m)

in 2009.

3 Sensitivity Analysis — an overview

When considering model-performance analysis, particularly in the case of complex models, it is important to note that one or

more model parameters might exert more or less influence on one or more model outputs. Some of these parameters may be15

observable and/or measured while others may have dubious physical interpretation. How to specify model parameters is not a

trivial issue (Gupta and Sorooshian, 1985; Stefanski, 1985; Wagener et al., 2003). Over-parameterization, parameter interac-

tions, erroneous evaluation data, computational errors, are all causes of equifinality (Beven, 2006): Different parameter-value

combinations yielding nigh-indistinguishable results. Sensitivity Analysis (SA) provides a way to mitigate the equifinality issue

by identifying the parameters that dominate model performance. Unimportant parameters may be used to reduce dimension-20

ality, paliating equifinality with minimal impact on performance (Huang and Liang, 2006; van Werkhoven et al., 2008, 2009).

Better constraints on important parameters, e.g. through improved measurements, may result in uncertainty reduction.

There are many different approaches for SA, see Gan et al. (2014) and Song et al. (2015) for a thorough discussion. In general

terms, SA methods can be classified as global and local. Local measures assess model response by varying one parameter

at a time while global measures vary all parameters simultaneously. Local measures do not account for possible parameter25

interactions, but are computationally lighter since, all other conditions being equal, they require fewer evaluations. The less

demanding method is in fact differential SA, which uses partial derivatives or finite differences at a location —parameter-value

combination— of interest.

If the location of interest within the parameter space is not known a-priori, a common occurrence given the equifinality issue,

then random sampling global SA measures are preferred. However this necessitates more model evaluations since instead of30

varying just one parameter or looking at a specific location they are based on exploring the entirety of the feasible parameter

space. The Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 2014) is a global SA method that

evolved from the work of Hornberger and Spear (1981) and consists of randomly sampling the prior parameter space and
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evaluating the performance of the model at each random parameter-value vector, selecting behavioral (well-performing) vectors

after either subjective thresholding (Li et al., 2010), or using measurement error as a splitting criteria: The limits of acceptability

approach (Coxon et al., 2014).

The projection of the multidimensional parameter-value vector into a plane defined by one of said parameters and the

corresponding performance (“dotty plots”) can then be used to define a one-dimensional frequency distribution that is indicative5

of the parametric sensitivity. Furthermore an estimate of the uncertainty of model simulations can be obtained by weighing

them according to the performance, deriving uncertainty bounds. The GLUE approach, however is computationally inefficient,

especially since strong information about prior parameter distributions is often unavailable and random uniform sampling

required.

Computational performance of global SA can be improved using the Design Of Experiment approach (Tong and Graziani,10

2008), which consists of two steps. First, while still random, sampling is designed to efficiently cover the prior parameter space,

or is tailored specifically for a given global SA method. Second, variation in model performance is attributed to the variation

of different parameters, see Gan et al. (2014). The relative ranking of parameters and quantitative attribution of model-output

variance might change depending on the sampling technique and global SA method (Gan et al., 2014).

Tong (2013) developed the PSUADE (Problem Solving environment for Uncertainty Analysis and Design Exploration) pack-15

age that provides a collection of tools to perform uncertainty quantification and sensitivity analysis. PSUADE has been used

to produce technical reports related to the modeling of explosives (Hsieh, 2006; Wemhoff and Hsieh, 2007), to the modeling

of a two-dimensional soil-foundation structure-interaction (Tong and Graziani, 2008), and to the modeling of an electrostatic

micro-electromechanical-system switch (Snow and Bajaj, 2010). Tong and Graziani (2008) use PSUADE to produce a book

chapter exploring uncertainty quantification for multi-physics applications.20

All the listed applications only focus on a subset of the methods available in PSUADE. Similarly, in hydrological appli-

cations, most SA studies focus on a single method, see Table 3 in Song et al. (2015) for an overview of recent applications,

sometimes disregarding global SA in favor of local SA: e.g. most applications of PEST (Skahill and Doherty, 2006) where the

number of calibration parameters can be reduced using local SA.

Generally speaking, which parameters are deemed sensitive might differ depending on the SA method, on the sampling25

scheme or even on the sampling’s density (Gan et al., 2014).

The present study was based on a combination of three factors that made it novel. Firstly, evaluation of heat fluxes over

cold region lakes remain uncommon and attention has only been given to constrain model performance over very large lakes

(Deacu et al., 2012). Secondly, while the difficulty in finding adequate parameterizations for land-surface schemes has been

recognized (Hogue et al., 2005; Duan et al., 2006; Demarty et al., 2005), and the importance of incorporating observational data30

has been underlined (Liu et al., 2005), little effective attention has been placed on uncertainty analysis in this kind of physical

modeling, in particular regarding lakes, although inroads have been done, but with respect to water quality (Mis, 2013). Thirdly,

PSUADE is a recently available tool that provides the mechanisms to perform the kind of exhaustive SA pioneered by Gan

et al. (2014) that allows easy testing of different methods within a single package and hence provides more robust results.

Furthermore quantifying the uncertainty in the connecting fluxes of the different components of a modular system (in this case35
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a land-surface scheme) should be one of the first steps, often not performed, in an overall uncertainty assessment. This paper

also represents a start in that direction. Our concrete objectives were to find:

a) What were the parameters that dominated model performance, in terms of latent and sensible heat fluxes, evaluated with

two different objective functions, the Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) and the Mean Absolute

Error (MAE)?5

b) What was the uncertainty in the modeled fluxes, which we quantified using the GLUE methodology?

3.1 SA methods

The purpose of this section is to describe without going into mathematical detail the different methods used for sensitivity

analysis, emphasizing the assumptions each one makes. A formal description of the different methods can be found in Gan

et al. (2014).10

It should be kept in mind that there are different ways of categorizing SA methods (Song et al., 2015) and that there is no

consensus regarding terminology (Razavi and Gupta, 2015). The methods used in this paper were all global —the combined

effect of multiple parameters was considered— and the term ’sensitivity’ itself was meant as a ranking of the impact that

model parameters had on model performance, obtained from comparison of observed and modeled data. In broad terms, the

global SA methods applied are classified as qualitative methods that provide a relative ranking of parameter sensitivity and15

quantitative methods that attempt to explain how much of the variance in the model performance is explained by the variance

in each individual parameter or combination of parameters.

3.1.1 Description

Besides their ability to screen the most important parameters, the common thread between qualitative methods is that they

require relatively fewer model runs, compared to quantitative ones. They might however differ in their conceptual approach.20

For instance the Spearman rank correlation (SPEAR; Spearman (1904)) and the Standard regression coefficient (SRC; Galton

(1886) share a conceptual framework: They are regression methods, that simulate performance as a linear combination of

parameter values.

SPEAR bases its sensitivity rankings on the degree of linear correlation between each individual parameter and performance.

SRC stipulates a predictive model as a linear combination of all parameter values. The SRC value for each parameter is obtained25

by normalizing the coefficients of the predictive model. It should be noted that the predictive model needs not be linear, but

often is, a was the case here. A downside of the regression methods is that their robustness is dependent on their predictive

capability (Yang, 2011).

Another conceptual approach is to view the partial derivatives of model performance with respect to model parameters a

an indicator of parameter sensitivity: the steeper the response surface around a given point, the more sensitive the parameter30

in that region. An analytical solution would allow explicit evaluation over the entire parameter space but that is a practical

impossibility for most, if not all, models. Instead numerical approximations are computed at selected points and averaged to
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give an indication of the relative sensitivity of the model parameters. This is the Morris one-at-a-time (MOAT; Morris (1991)

approach. The sensitivity is evaluated by computing both the mean (MOAT-1) and the standard deviation (MOAT-2) of the

partial derivatives at selected sample points. It is a robust method in the sense that no assumptions are made for the relationship

between model parameter values and performance.

The final conceptual approach consists in assuming a functional relationship between performance and parameters. The5

sensitivity is assessed by evaluating whether or not the inclusion of a given parameter in the functional relationship affects

the performance simulation. These methods fall under the denominational umbrella of response surface modeling (RSM).

Examples of such methods are:

Multivariate Adaptive Regression Splines (MARS; Friedman, 1991), Delta-Test (DT; Pi and Peterson, 1994), Sum-of-Trees

(SOT; Breiman et al., 1984; Chipman et al., 2012), and Gaussian Process (GP; Gibbs and MacKay, 1997). They are not robust10

in the sense that they rely on a-priori assumptions about the nature of the response surface, and will produce reliable results

only if those assumptions are met.

MARS is an extension of the concept of linear models to a multidimensional setting and consists of fitting, through linear

regression, (hyper-)planes to the response surface of the model. It is in essence an extension of the recursive partitioning

approach to regression: determining the breaks for the piecewise linear fits from the data. The relative importance of the15

parameters is determined by dropping them in turn from the regression and reevaluating the performance: The bigger the drop

in performance, the more important the parameter.

DT was originally developed for time series modeling, the basic premise being that a chaotic dynamical system can be

reconstructed from sequences of observations of its state (Pi and Peterson, 1994). Eirola et al. (2008) applied the DT method

parameter-screening tool: the subset of parameters that minimize the variance in the noise (difference between observed and20

modeled performance) are seen as the most sensitive ones. Testing all possible parameter subsets is computationally infeasible

and the PSUADE package chooses the best 50 subsets for scoring. Furthermore, the method itself is computationally demanding

since it might require operations on large matrices and can be affected by numerical instabilities.

The premise of SOT is that model parameters can be used to simulate performance based on a binary decision tree: each

parameter can be used to partition the parameter space into two areas with different responses and the sum of all different25

partitions used to predict performance. The number and partition setup is determined through a recursive binary division of the

parameter space. The required number and ordering of the partitions is evaluated by comparing the residuals between the tree-

predicted performance and the computed one, until a convergence criteria is met. The relative importance of each parameter is

proportional to the number of splits in the tree that include that parameter.

GP assumes performance follows a multivariate normal distribution., characterized by the means and the covariance matrix30

of the different parameters. Whereas the means of the parameters are dependent on their relative scalings, the normalized

covariances are not and this allows to compare the degree of change in the response along the different dimensions. The

relative degrees of change along the different dimensions are an indicator of parameter sensitivity.

These qualitative measures do not explain how much of the performance variance is due to a given parameter (or parameter-

interaction). Quantitative measures such as Fourier Amplitude test (FAST; Cukier et al., 1973), McKay main (McKay-1) and35
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two-way (McKay-2) interaction analysis (McKay et al., 1999) and Sobol sensitivity indices’ (Sobol, 1990, 2001) provide

such quantitative assessment. All quantitative methods are variance-based methods that use an ANOVA-like decomposition

(Fisher, 1925) to identify the subset of parameters that dominate performance simulation, but differ on the way performance is

simulated.

In FAST, model performance is expressed as a Fourier series, incorporating different model parameters. Since the model is5

a function of several parameters, a multi-dimensional integral is required to evaluate the Fourier coefficients. This is solved

by making it one-dimensional by applying the ergodic theorem. Of the methods listed here, it is the one that requires the least

amount of model runs.

The McKay method attempts to find the subset of parameters that better approximates the performance variance by com-

puting the ratio between the performance variance for a subset of parameters and the performance variance for all parameters,10

which is a measure of the relative importance of each subset. The performance variance is computed through random sampling

of the parameter space, making the method non-parametric The subset that maximizes the ratio is considered the most sensitive

subset. McKay et al. (1999) extended the concept to account for two-way parameter-interactions (McKay-2) and their effect

on the performance variance, assuming the parameters to be uncorrelated.

In the Sobol method, model performance is decomposed into summands of functions of the parameters, in increasing order15

of dimensionality. Assuming all summands orthogonal permits expressing the performance in terms of a sum of conditional

expected values. Further assuming that said sum is square integrable allows to equate performance variance to a sum of

variances and covariances of model parameters. The effect of model parameters on model output can then be decomposed into

first-order indexes, where the contribution of the variance of each individual parameter on model output be quantified and can

also include the interactions of model parameters (the covariances). The number of interactions to include range from second20

order, where just two-way parameter interactions are included, to total-effect, where all possible interactions are accounted

for. The final result is a ratio that shows how much of the output variance can be explained by any particular parameter or

combination of parameters.

3.2 Uncertainty analysis with GLUE

GLUE (Beven and Binley, 2014) is a widely applied method, particularly in hydrology, used to evaluate parametric sensitivity25

and to quantify parametric uncertainty. This paper focuses on the latter aspect in order to provide an estimate of the impact of

uncertainty on the modeled fluxes.

GLUE starts with a random sampling of the parameter space and subsequent computation of the simulation-performance for

each random parameter. The random runs are then classified into behavioral (well-performing) or non-behavioral according

to either subjective (e.g. threshold value) or objective criteria (limits-of-acceptability; Coxon et al. (2014). The behavioral30

simulations are then weighted according to the performance and uncertainty bounds extracted from weighted simulations: e.g.

at each time step the 0.05 and 0.95 percentiles of the likelihood weighted simulations can be extracted and considered to be the

95% confidence interval.
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4 Methods and performance metrics

The CSLM simulates heat-transfer fluxes —latent and sensible heat— at the boundary between lake surface and the atmo-

sphere. Daily flux data, obtained through integration of hourly eddy-covariance measurements, were available for the period

12/06/2007–18/10/2007 and were compared to simulated fluxes to calculate two performance metrics, MAE and NSE:

MAE =
∑n

i=1 |Oi−Si|
n

(4)5

NSE = 1−
∑n

i=1 (Oi−Si)
2

∑n
i=1

(
Oi− Ō

)2 (5)

where n is the number of time steps at which the model was evaluated, Oi was the observed value at time step i, Si was

the simulated value at time step i, and Ō is the mean of the observed values. The rationale behind the choice was to contrast

the propensity of NSE to prioritize better-fitting high-values (Krause et al., 2005), sometimes to the detriment of other ranges,

by using MAE as a contrasting metric, less dependent on high-value fit. The entire period with available data was used for the10

computation of the performance measures. The metrics were computed after aggregating the hourly data to a daily time step.

MAE and NSE were the basis of all tested SA methods (Table 2). The PSUADE (Tong, 2013) package is a tool that assembles

SA methods under a unified computational framework, thus facilitating exhaustive testing in the vein of Gan et al. (2014), who

tested the impact of sampling, in terms of frequency and technique, and different SA methods in identification of sensitive

parameters for a hydrological model. The general procedure for PSUADE is: a) generate random samples, b) run the model15

and compute the performance for all the samples, and c) compute SA metrics from the obtained performances. The performance

used was the average performance for the simulation of latent and sensible heat.

From a pragmatic point of view, the choice of SA method might depend on the computational requirements of the tested

model. Different methods might require different number of simulations to achieve consistent results, as shown by Gan et al.

(2014). The number of simulations required is primarily a function of the complexity of the response surface, a factor difficult20

to control, but also depends on the sampling scheme and the theoretical basis of the SA method. Different schemes represent

different ways of exploring the parameter space and some are better suited than others depending on the purpose (McKay et al.,

1979).

The CSLM was sufficiently fast to run, less than a second for 128 days of half-hourly data, so that the number of simulations

required by the different methods was not a limitation. Therefore we ran as many simulations as necessary to obtain consistent25

results (Table 3). The choice of sampling method was based on those used by Gan et al. (2014) in their experiment.

Seven qualitative and two quantitative SA methods were tested to identify the sensitive parameters in CSLM. The parameters

chosen for the test are the ones deemed a-priori to have physical significance for the thermodynamic functioning of the lake.

The range of the parameters was based on physically plausible values (Table 1).

Finally, in order to broadly estimate the impact of parametric uncertainty on heat-flux simulation, the GLUE procedure was30

applied to CSLM for the parameters, and ranges, listed in Table 1. A total of one million simulations were performed and
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the top 10% selected as behavioral in order to compute the uncertainty bounds. For MAE the lower the value, the better the

performance and therefore the inverse of the computed MAE was used as the likelihood when performing GLUE. The NSE

values were used unmodified for the weighting.

5 Results

5.1 Qualitative measures5

We first performed SA using qualitative methods (Table 2) and obtained a ranking of the model parameters in terms of sensitiv-

ity. The results were presented as a color map where the darker tones indicate larger sensitivity (Figs. 2 and 3). Near unanimity

was reached, for both MAE and NSE, in identifying Kd, the light attenuation coefficient, as the most sensitive parameter for

the simulation of heat fluxes (Table 4). The sole exceptions were the SPEAR and SRC methods. A strong assumption for

both these methods is that model response varies linearly with input, which is almost never the case for environmental models10

(Beven 2006): Response surfaces tend to be very complicated (Duan et al., 2006). Another method with strong prior assump-

tions about model response is GP, that fits the response surface to a multivariate normal distribution. Global model response

is seldom normal due to the overall complexity of the response surface, but if the response is locally linear in a region of the

parameter space, then the approximation might be adequate (Kuczera, 1990).

A physical explanation of the results obtained here, that pinpoint Kd as the most sensitive parameter in terms of simulating15

heat transfers, can be inferred from the fact that the lake is shallow and therefore it is perhaps not surprising that the turbulent

transfer coefficient exert no major impact on such processes. A similar analysis —not shown here— studying parameter sen-

sitivity with respect to the thermal structure of the lake also highlighted the importance of the Kd parameter for the thermal

balance of the lake.

5.2 Quantitative measures20

It is evident (Figs. 2 and 3) that model response, in terms of simulating heat fluxes, is dependent on the value of the Kd

parameter. None of the qualitative measures, however, do explain how much of the variance in the response can be explained

parameter correlations, the combined effects of two or more parameters with respect to output variance.

McKay-2 (Figs. 4 and 5) ranked two-way correlations, which is the sum of first and second order effects of different pa-

rameters combinations on performance. The importance of Kd was once again incontestable: no other parameter combinations25

besides those containing KD were more important for the simulation of heat transfers. Put in another way, this also meant that

Kd by itself was more important than any other parameter combination. This is especially revealing since even parameters with

low main-effect may have significant effect on performance through their interaction with other parameters, but here all points

to Kd as the main culprit.

In fact, from first order to total-order effects (Figs. 6 and 7), it was Kd that dominated model response both in qualitative30

and quantitative terms. There was however some difference in the first-order effects estimated with either FAST and SOBOL-1
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(Figs. 6 and 7). A conceptual difference between the two is that FAST approximates model output as a Fourier series, which

implies a better fit might be obtained in time series with a degree of seasonality whereas SOBOL only relies on expected values

computed from a random sample of the data. The downside of the SOBOL analysis is that it requires many more simulations

to reach consistent results. There was no reason to expect seasonality for this dataset, as it comprised less than one year. The

model was lightweight enough so that computation time was not a factor for the SOBOL analysis. Therefore the SOBOL5

results, which show a larger importance for Kd, were probably more indicative effective parameter sensitivity.

5.3 GLUE

A major criticism of the GLUE procedure is that it can be subjective in the selection of behavioral parameters. As such, the

uncertainty bounds presented here (Fig. 8) should be taken with a pinch of salt, since the selection criteria was set as the

10% best performing parameters from the Monte Carlo simulations. This was subjective but allows for a common criteria for10

the behavioral threshold for MAE and NSE, which are not directly comparable. Also, given the large number of simulations

performed, the results were a robust indicator of the possible output range: the ability of the model to reproduce observed data.

The importance of Kd is once again highlighted in the dotty plots (Fig. 9): it was the only parameter that performance was

sensitive to. The value of the turbulent transport parameters had little impact on model performance.

Finally, there is a trade-off in the simulation of latent and sensible heat (Figs. 8 and 10) and even considering the generous15

behavioral threshold that was set, the uncertainty bounds did not always encompass measurements (Fig. 8).

6 Conclusions

Most SA methods pinpointed Kd as the most sensitive parameter in terms of simulating latent and sensible heat fluxes. The

exceptions were those which had the strongest assumptions with respect to the nature of model response: SPEAR and SRC

assume linearity between input (model parameter) and response (performance measure), which was not the case for CSLM.20

Somewhat surprisingly GP, which also makes assumptions about the shape of the response surface and considers it Gaus-

sian, also showed Kd to be the most sensitive parameter. This either was a false positive or the response surface might have

been locally linear, thus justifying the normality assumption (Williams, 1998). None of the other methods makes such strong

assumptions about the nature of the response surface, although localized fitting does occur: e.g. stepwise linear for MARS.

The light extinction coefficient is the only parameter considered in this analysis that is directly measurable (Table 1). Being25

able to measure the most sensitive parameter is a definite advantage: it allows to confidently reduce the number of parameters

needing calibration. Furthermore, since Kd is so predominant in terms of model performance, making it a measured instead of

a calibrated quantity should facilitate further model evaluation: Whatever variability in the performance that was not a function

of Kd should become easier to quantify/analyze since it would not be obfuscated by Kd’s predominance.

With respect to large scale applications, such as climate modeling and land-surface schemes, measuring Kd for every lake30

might be a practical impossibility, but its importance should be stressed and further research devoted to assess its temporal and

spatial varibility.
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The model did not perform equally well at different time periods (Fig. 8) and Kd is known to vary over time (Rinke et al.,

2010). A first step into assessing causality between these two factors would be to continually measure Kd, at least at a daily

time step. To the best of our knowledge, this kind of monitoring has never been performed.

There is often a disconnect between experimentalists and a computer modelers (Seibert and McDonnell, 2002, 2013). The

conceptual framework behind the present study is a testament to an improvement of those dialogues: the undertaken modeling5

approach was based on novel data from an observation station that was established explicitly to support testing of hydrome-

torological models over lakes. Such new data facilitated the analysis performed here. In kind, guidance for desirable new

measurements was provided.

Therefore the main conclusion of this paper was that measurements of Kd might be necessary if the linkage between lakes

and the atmosphere is to be improved. Furthermore the extinction coefficient is known to be temporally variable due to,10

amongst other factors, the vegetation cycle in lakes as well as sediment transport (Tanentzap et al., 2008; Rinke et al., 2010),

emphasizing the need for continuous monitoring.

The two main caveats against a generalizing conclusion regarding heat transfer from small lakes to the atmosphere are related

to: a)the geomorphological characteristics of the lake and b) the limitations of SA methods.

On the geomorphological side, the studied lake was shallow, probably minimizing importance of turbulent transfer in the15

modeling of heat fluxes and therefore studies on lakes with different characteristics should be the subject of future work in

order to generalize the results found here. Furthermore, it should be said that it was assumed that quantities such as lake area

and average depth were accurately measured and might have an impact on simulation results, were those assumptions proven

wrong.

The limitations of SA methods are tightly related to the curse of dimensionality (Saltelli and Annoni, 2010). All SA methods20

obviate the issue by randomly sampling the parameter space, implicitly assuming results to be representative of the entire

space. This is especially problematic in high-dimensional spaces, where even the simplest of models might face prohibitive

computational costs and even the most sophisticated sampling schemes are limited in their coverage of the parameter space.

The uncertainty bounds obtained from the GLUE analysis are nothing but subjective since the behavioral threshold was

arbitrarily set the top 10% simulations. Even with this rather lenient criteria, the bounds did not encompass all observations,25

especially for sensible heat (Fig. 8). This might be due to the tradeoffs between latent and sensible heat simulation (Fig. 10)

and the chosen performance measures, but might also stem from inadequate process representation.

PSUADE is a powerful package that facilitates SA by providing a wealth of approaches, and presents an opportunity that

evaluate their appropriateness, a factor of special importance since they are based on different conceptual precepts. Overall the

results might depend on the quality of the sampling, but that was not a factor here since the model was lightweight enough30

for the number of runs not to be a limiting factor. This will definitely not be the case with more complex models. If runtime

is an issue methods like GLUE become nonviable. FAST on the other hand requires relatively fewer simulations to reach

consistent results., but requires assumptions about the nature of the response surface. The later is true for most RSM methods:

the robustness of the results depend on the assumptions about the nature of the response surface.
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As such, non-parametric methods like McKay or MOAT might be preferable, the cost being large computational require-

ments. In any case the shakiest conceptual basis is for the methods assuming linearity in the model response, i.e. SPEAR and

SRC, as that is seldom the case for environmental models. The method that provides the most information about parameter

interaction is the SOBOL method, the cost being numerical instabilities, especially when a large number of parameters is in-

volved. All methods might fail in the presence of singularities or discontinuities in the response surface and if they give the5

right answer it might be for the wrong reasons.

In all, to recommend a preferred method is difficult and very much depends on the nature of the problem it the popularity of

their use is an indicator, then MOAT and the RSM are most used in the literature (Song et al., 2015). It is the authors’ opinion

that the SOBOL method provides the most complete insight, but the method is difficult to apply in high-dimensional spaces

and it is prone to numerical instabilities.10

Despite the shortcomings, the answer to our original question was clear: Kd is undeniably the most sensitive parameter in

the simulation of heat fluxes.
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Figure 1. Aerial picture of Landing lake
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Figure 2. Relative sensitivity of CSLM paramaters using NSE as the performance measure
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Figure 3. Relative sensitivity of CSLM paramaters using MAE as the performance measure
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Figure 4. McKay two-way correlation of the CSLM parameters, using MAE as the performance measure
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Figure 5. Mackay two-way correlation of the CSLM parameters, using NSE as the performance measure
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Figure 6. First order (FAST, Sobol-1) and total-order effects, using MAE as the performance measure
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Figure 7. First order (FAST, Sobol-1) and total order effects, using NSE as the performance measure

Ir
ra

d
ia

n
ce

 (
W

/m
2

)

Figure 8. 5% and 95% uncertainty bounds from GLUE, using NSE as the performance measure
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Figure 9. MAE for sensible and latent heat fluxes, from the GLUE simulations. Y-axis shows irradiance in W
m2 and x-axis is the parameter

value.
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Figure 10. Latent vs sensible heat for behavioral simulations, MAE is the performance measure.
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Table 1. Parameters and Ranges

Parameter Abbreviation Unit Range

Extinction coefficient Kd m−1 ]0,5[

TKEa

Wind cn ]0.2,2[

Transport cf ]0,1[

Dissipation ce ]0,1.7[

Shear cs ]0.2,0.5[

Leakage cL ]0,0.4[

a Turbulent Kinetic Energy Budget

Table 2. SA methods. Qualitative methods in black font. Quantitative methods in bold font.

SA method Abbreviation Source

Correlation Analysis SPEAR Spearman(1904)

Regression Analysis SRC Galton(1886)

Morris-one-at-a-time screening MOAT Morris(1991)

Sum-of-trees screening SOT Breiman et al.(1984)

Gaussian process screening GP Gibbs & Mackay(1997)
Multivariate adaptive regression

splines screening
MARS Friedman(1991)

Delta-test screening DT Pi & Peterson(1994)

Fourier amplitude sensitivity test FAST Cukier et al.(1973)

Sobol sensitivity indices SOBOL Sobol(1990,2001)

24

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-5, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 16 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



Table 3. Setup for SA. Qualitative methods in black font. Quantitative methods in bold font.

SA method Sampling technique Sample Size

SPEAR MC 10000

SRC MC 10000

MOAT MOAT 10000

SOT METIS 3000

GP METIS 3000

MARS METIS 3000

DT METIS 3000

FAST FAST 373

SOBOL SOBOL 3000

Sampling techniques:

a) MC: Uniform Sampling

b) MOAT: Designed specifically for MOAT

c) METIS: Space filling method

d) FAST: Designed specifically for FAST

e) SOBOL: Designed specifically for SOBOL See Gan et al.

(2014) for a description of the sampling methods.

Table 4. Parameter sensitivity rankings of different qualitative sensitivity analysis methods

Parameter
Sensitivity measure

SPEAR SRC MOAT-1 MOAT-2 MARS SOT DT GP

Kd -0.27 0.08 0.10 0.10 100.00 1.00 1.00 100.00

cn -0.04 0.02 0.01 0.01 10.00 0.06 0.27 5.66

cf -0.26 -0.06 0.01 0.03 10.00 0.07 0.23 1.37

ce -0.00 -0.01 0.00 0.02 3.00 0.01 0.24 0.14

cs -0.02 -0.02 0.00 0.01 4.00 0.02 0.21 0.05

cL 0.11 0.03 0.01 0.02 5.00 0.03 0.22 0.46
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