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Abstract. A probability density function f(t) with origin at t = 0 is defined here as being “L-shaped” if f(t) ≤ 0 for t  0.  5 

L-shaped probability density functions, especially exponential distributions, are often assumed as transit time distributions in 

hydrological studies. However, L-shaped transit time distributions are not possible. This is because the transit time of a 

particle must always be with reference to a store, the transit time being some finite duration of time between particle entry 

and exit. Tracer particles cannot transit through any part of a store in zero time so transit time distributions have the property 

f(0) = 0, which is incompatible with L-shaped probability density functions. This is a fundamental constraint on the form of 10 

transit time distributions, which must possess at least one mode at t > 0. Some L-shaped probability density functions may 

well approximate actual transit time distributions, but they are of different form to the true distributions. A call is therefore 

made for L-shaped probability density functions to be no longer employed in transit time modelling.  

 

1 Introduction 15 

This technical note is concerned with constraints on the form of transit time distributions, with application to hydrology. 

Attention is drawn to the fact that transit time distributions in nature cannot be L-shaped, where a probability density 

function f(t) with origin at t = 0 is defined here to be L-shaped if f(t) ≤ 0 for t  0. Thus L-shaped distributions cannot have 

any modes for t > 0. L-shaped transit time distributions which have been assumed in hydrological studies include 

exponential distributions and also gamma distributions with shape parameter values < 1. 20 

 

By way of illustration, we can consider an idealised catchment tracer experiment with a perfect recorder detecting every 

tracer particle departing within the stream discharge at a point at the lower end of the catchment. Also, every tracer particle 

which enters the catchment leaves sooner or later via the recorder. 

  25 

In an instant of time, distribute N tracer particles over the extent of the catchment. In the same instant of time place M tracer 

particles of the same type exactly onto the recorder itself. The N tracer particles eventually all depart the catchment via 

stream discharge at varying times t1, t2 …tN.  
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On the basis of this idealised experiment, does Eq. (1) or Eq. (2), give the correct expression for catchment mean transit time 

 ? 
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It is of course Eq. (1) which is correct because the M tracer particles placed onto the recorder at t = 0 never transited through 

any part of the catchment system and therefore and have no connection to catchment transit times. The physical analogy 

would be a drop of rain containing tracer particles falling onto the recorder at the start of the experiment. 

 

Put another way, it is not possible to have transit times of exactly zero because any tracer particles initially present on the 10 

recorder have never entered the store concerned. That is, they did not transit to the recorder. It follows that any transit time 

distribution f(t) in nature must have the property f(0) = 0, which has the meaning of zero probability of a transit time in the 

small interval 0, 0 + dt.  

 

The above is a purely conceptual argument and not predicated on the feasibility of an actual measurement procedure. In 15 

particular, there is no implication of a need to specify some form of physical exclusion zone around an actual recording site 

in order to define a set of particles “at” the recorder at time zero. 

 

It may seem a conceptual irrelevancy to make the distinction between the unobservable situations of the first tracer particle 

arriving fractionally after time zero as opposed to exactly at time zero.  However, f(0) = 0 has immediate consequence 20 

because it follows that all transit time distributions must have at least one mode for t > 0. Given this knowledge, it is better 

science to model transit time distributions by choosing probability density functions which have f(0) = 0 and hence possess 

one or more modes for t > 0, consistent with the true situation. A call is made therefore to abandon use of L-shaped 

probability density functions for transit time modelling. If necessary, finite mixtures of distributions with f(0) = 0 could be 

employed to give the required degree of fit to data. 25 

 

An argument in support of L-shaped distributions might be made along pragmatic lines that they have served their purpose 

through many transit time studies and this longevity justifies their continued use. However, ability to fit data does not in 

itself equate to theoretical justification and the absence of a mode in L-shaped probability density functions means that there 

must have been some degree of error in their initial descriptive or mathematical justification.  30 
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In this regard the exponential transit time distribution is first considered briefly, followed by revisiting the L-shaped gamma 

model of Kirchner at al. (2001). Some comment is then given on computer simulations which might appear to support L-

shaped transit time distributions.  

 

2 One-parameter exponential distributions 5 

The best known exponential transit time model is the “well-mixed” case where an exponential distribution arises from all 

tracer particles in a store having equal probability of exiting the store in a small time interval. However, any water store in 

the physical environment will still require the passage of some amount of time for a tracer pulse to disperse through the store 

to the observation point, independent of any mixing or partial mixing process. Again, this excludes any tracer particle 

introduced “at” the observation point because such particles have not undergone store transit to reach the observation point. 10 

 

Therefore the condition of f(0) = 0 will apply and there must still exist at least one mode in the true transit time distribution 

for some t > 0. This applies even though an exponential distribution may give good approximation to a set of transit time 

data as a whole. See, for example, Fig.7 of Rodhe and Nyberg (1996). 

 15 

As noted by Leray et al. (2016), theoretical derivations of exponential transit time distributions have also been obtained in a 

non-mixing context for some idealised aquifer situations (Eriksson, 1958; Haitjema, 1995; Leray et al. 2012; Raats, 1977; 

Vogel, 1967). However, regardless of the derivation context for the exponential case, the L-shaped issue for small t still 

remains whereby some tracer particles are required to be present at the observation point at t = 0 without ever having entered 

the store. This leads to awkward descriptors for exponential distributions such as a requirement for “very short” transit times 20 

(McGuire and McDonnell, 2006) or “infinitesimal short” transit times (Amin and Campana, 1996).  

 

Such conceptual problems are easily avoided by rethinking exponential transit time distributions as two-parameter gamma or 

two-parameter Weibull distributions with shape parameters marginally greater than 1 (Fig. 1). This gives the necessary 

condition of f(0) = 0 while still maintaining the exponential form except for t close to zero. However, the situation is not so 25 

easily rectified for L-shaped gamma distributions, discussed in the next section. 
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Figure 1: Exponential distribution comparisons: (a) against a Weibull distribution (b) against a gamma distribution. Exponential 

distribution is shown in blue; both Weibull and gamma distributions have shape parameter values of 1.1; all distributions have a 

mean value of 1.0. 

 5 

3 Two-parameter gamma distributions ( < 1) 

The L-shaped family of gamma distributions ( < 1) was introduced to hydrology by Kirchner at al. (2000) as an empirical 

choice of transit time distribution possessing power spectrum properties similar to those of a recorded time series of chloride 

data. A degree of theoretical support for this gamma model was presented by Kirchner at al. (2001), noting that under certain 

conditions there are similarities between the L-shaped gamma form and an L-shaped transit time distribution obtained from 10 

an advection-dispersion model.  

 

The specific advection-dispersion model was for a pulse of tracer added uniformly along a uniform slope, with tracer 

transported via advection and dispersion to an observation point at the base of the slope at distance x = 0. A standardised 

form of the resulting advection-dispersion transit time distribution h() is given by Eq. (11) of Kirchner at al. (2001). 15 

Unfortunately, a typesetting error omitted a set of brackets and the equation is reproduced here as Eq. (3) with a minor 

change in symbolism: 
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and Pe is Peclet number and  is standardised time. 

It is evident from Eq. (1) that h() →    as  → 0. 

Eq. (3) was obtained by Kirchner at al. (2001) as an integral over x from x = 0 to a ridge crest. However, it is not appropriate 

to start the integration exactly from x = 0 because this would include tracer particles already at the observation point at time 

t = 0. Starting the integration at any x > 0 will yield a different transit time probability density function g(), which will have 10 

the property  g(0) = 0.   

An equivalent argument can be made by noting the two-parameter inverse Gaussian form of Eq. (8) of Kirchner at al. (2001). 

Therefore h() corresponds to an infinite mixture of inverse Gaussian transit time distributions. This infinite mixture 

distribution can be represented to any degree of accuracy as a finite mixture distribution – in this case a finite mixture of a 

sequence of inverse Gaussian distributions with progressively decreasing mean and variance as the tracer input point x* 15 

decreases by increments toward the observation point at x = 0. A sense of this distribution sequence can be seen in Fig. 3 of 

Kirchner at al. (2001). 

However, the end-member in this transit time distribution sequence, corresponding to x* = 0, is a degenerate distribution with 

zero variance and all probability density at   = 0. This is the cause of h() tending toward infinity as  → 0. With the 

degenerate distribution removed, the resulting transit time finite mixture distribution r(t) will have the  property r(0) = 0 and 20 

not r() →    as  → 0. 

The Kirchner et al. (2001) conceptual model can also be viewed as a random walk between a reflecting barrier R (the ridge 

crest) and an absorbing barrier A (the observation point at x = 0), with x* being equally likely anywhere between the barriers. 

However, x* must be restricted to be within the bounds A < x* ≤ R and not A ≤  x* ≤ R. See, for example, Weesakul (1961). 

That is, no random walk is initiated from the absorbing barrier because in that case there can be no random walk. So again 25 

f(0) = 0.  
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Unlike the case of exponential transit times, L-shaped forms of two-parameter gamma transit time distributions are not so 

easily mitigated by a slight change of . This is because best fits to data by gamma distributions, for catchment systems at 

least, are typically achieved by having gamma  values considerably less than the  = 1 exponential distribution special case 

(Kirchner et al., 2000; Kirchner et al. 2010, Hrachowitz et al. 2010, Godsey et al. 2010). The issue therefore remains of  

f(0)> 0,  which in this case is actually f(t) →   as t → 0. 5 

One way around the gamma L-shaped problem might be to introduce three-parameter gamma distributions with positive-

valued location parameters  somewhere near zero. However, this would lead to unnatural transit time distributions with 

first derivative discontinuities at t = . A similar issue would arise if using truncated gamma distributions with truncation 

from below. A better prospect is to seek alternative parametric transit time distributions with f(0) = 0 but which permit a 

mode near zero. Two-parameter inverse Gaussian distributions or two-parameter lognormal distributions may find 10 

application here as alternatives to the gamma distribution. Finite mixtures of such distributions might also be a possibility. 

 

4 Computer simulations 

Similar issues arise with computer simulations of transit time distributions which might appear to give support to L-shaped 

distributions. Simulating the movement of tracer particles by discrete time steps t = 0, 1, 2 …  requires an initial state of 15 

having no tracer particles at the recording node at time t = 0. This is because when t = 0 there has not yet been any particle 

movement simulated anywhere in the store, so the first simulated arrival time can be no earlier than t = 1. However, the zero 

tracer particle frequency at t = 0 is still part of the overall simulated transit time distribution.  

In this regard it is of interest that Fiori and Russo (2008) report an R2 goodness of fit measure of 0.97 from matching a set of 

simulated transit times with a two-parameter gamma distribution with  = 0.77. However, this good match appears to have 20 

been achieved by the fitting process ignoring the zero frequency of simulated tracer particles at t = 0. The fit measure for an 

L-shaped gamma distribution would have been much worse if the mismatch at t = 0 had been taken into account. 

 

5 Discussion and conclusion 

It is important to make the distinction between the true transit time distributions of nature and probability density functions 25 

which are selected by investigators on the basis of yielding good fits to recorded data. Unlike the thought experiment 

described earlier, there are no prefect recorders counting arriving tracer particles at some geometrical point. It is unlikely 

therefore that a null hypothesis of an L-shaped transit time distribution would be rejected with real data, taking into account 

that recorded time series of tracer output concentrations are complicated by mixing processes varying over time. 
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The analogy can be made with respect to making transit time distribution inferences from an L-shaped transit time data 

histogram with declining frequencies u(1) > u(2) > u(3) … > u(n) . In the absence of other information, the obvious 

parametric estimate of the underlying distribution f(t) would be obtained from fitting an L-shaped probability density 

function to the data histogram.  

However, if it is known independently that f(0) = 0 then a unimodal probability density function would be the better choice, 5 

with the mode located somewhere within the first bin interval of the histogram. This choice is made on the basis of prior 

knowledge and not by data-based rejection of a null hypothesis of an L-shaped transit time distribution. Both the unimodal 

and L-shaped distributions might describe the histogram data with equal accuracy and their cumulative distribution functions 

could be indistinguishable for practical purposes. 

This ability of distributions to mimic each other to some degree suggests that re-analysis of past data using probability 10 

density functions other than L-shaped will not necessarily result in different hydrological conclusions.  The argument here 

has been essentially one of appropriateness. That is, because transit time distributions are characterised by f(0) = 0 and one or 

more modes, it is appropriate that they should be modelled by probability density functions of similar form. However, this is 

not simply an abstract academic argument because recognition that transit time distributions are not L-shaped opens the 

possibility that some catchments suffering a pulse of contaminant input may experience later peaks of contaminant 15 

concentrations in stream discharge, as opposed to always declining in concentration over time.  
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