
Editor Decision: Reconsider after major revisions (further review by editor and referees) (08 Jul 2018) 
by Harrie-Jan Hendricks Franssen 
Comments to the Author: 
Dear Dr Davison, 
 
Your manuscript “Parameter-state ensemble data assimilation using Approximate Bayesian Computing 
for short-term hydrological prediction” has been subjected now to re-review by the three original 
reviewers. Two of the three reviews found the manuscript to be improved. One reviewer recommends 
technical corrections only, another reviewer minor revision (but points in a confidential statement to 
the editor that the authors provide now not enough motivation anymore for this research, and if this is 
not solved, the paper should be rejected) and a third reviewer major revision. In summary, the main 
points to be improved are: 
1. Provide a convincing motivation for the research. 

I have re-introduced the previous point that the method ensures consistent parameters and state 
variables. I have also highlighted other unique aspects of this work, such as this is the first application of 
ABC to an H-LSS for hydrological modelling (as opposed to a more traditional rainfall-runoff model), this 
is the first application of ABC for short (3-to-40-day) time-slices of a hydrograph, and that this is also the 
first known application of ABC with an H-EPS (forced with a meteorological EPS). 

 
2. Explain better the methodology, handling all point addressed by reviewer #3. 

I now have a better understanding of the points that reviewer #3 has raised. Hopefully my responses 
address his main concerns. 
 
I suggest major revision to handle these issues. The revised version will again be subjected to review. If 
the issues are not convincingly solved, the paper has to be rejected as the philosophy of the HESS-
journal is not to have repeated major revisions.  
In your answer to the main points and detailed comments, please indicate how comments have been 
handled exactly, indicating also whether text has been deleted and what the position of newly included 
text blocks is. I am looking forward to the new version of the paper. 
 
Best regards, 
 
Harrie-Jan Hendricks Franssen - editor - 
------------------------------------------------ 
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Recommendation to the Editor 

1) Scientific Significance 
Does the manuscript represent a substantial contribution to scientific 
progress within the scope of this journal (substantial new concepts, 
ideas, methods, or data)? 

Excellent Good Fair Poor 
 

2) Scientific Quality 
Are the scientific approach and applied methods valid? Are the results 
discussed in an appropriate and balanced way (consideration of related 
work, including appropriate references)? 

Excellent Good Fair Poor 
 

3) Presentation Quality 
Are the scientific results and conclusions presented in a clear, concise, 
and well structured way (number and quality of figures/tables, 
appropriate use of English language)? 

Excellent Good Fair Poor 
 

 

 
For final publication, the manuscript should be 
accepted as is 
accepted subject to technical corrections 
accepted subject to minor revisions 
reconsidered after major revisions 
       I am willing to review the revised paper. 
       I am not willing to review the revised paper. 
rejected 
 
Suggestions for revision or reasons for rejection (will be published if the paper is accepted for final 
publication) 
The comments I had to the first version of the manuscript have been adequately addressed in the 
revised version. The paper has been significantly improved. It is recommended for publication subject 
to minor changes and technical corrections given below: 
 
1. Numbering of figures. As a general rule, you number the figures according to the order they are 
referred to in the text. 
 
All figures are now numbered according to the order they are referred to in the latest draft of the 
paper. 
 
2. Page 8, line 6. Figure 3 instead of Figure 2. 
 
Thank you for catching this. The Figure numbering has been corrected. 
 
3. Page 17, line 27-30. This ‘fill and spill’ dynamics is an important point that is not just related to the 
discussion of H-EPS. I suggest moving this part to Section 4.1. for discussion in relation to model error 



 

and definition of uncertainty in the filter. 
 
The text has been moved to section 4.1 (section 5.1 in the latest draft) as suggested. 
 
4. Figure 5. Use k_M instead of 10 as in the other figures. 
 
The figure has been changed as suggested. 
 
 
  

 
 
Report #2 

  

Submitted on 13 Jun 2018 
Anonymous Referee #1 

Anonymous during peer-review: Yes No 
Anonymous in acknowledgements of published article: Yes No 

 

  
Recommendation to the Editor 

1) Scientific Significance 
Does the manuscript represent a substantial contribution to scientific 
progress within the scope of this journal (substantial new concepts, 
ideas, methods, or data)? 

Excellent Good Fair Poor 
 

2) Scientific Quality 
Are the scientific approach and applied methods valid? Are the results 
discussed in an appropriate and balanced way (consideration of related 
work, including appropriate references)? 

Excellent Good Fair Poor 
 

3) Presentation Quality 
Are the scientific results and conclusions presented in a clear, concise, 
and well structured way (number and quality of figures/tables, 
appropriate use of English language)? 

Excellent Good Fair Poor 
 

 

 
For final publication, the manuscript should be 
accepted as is 
accepted subject to technical corrections 
accepted subject to minor revisions 
reconsidered after major revisions 
       I am willing to review the revised paper. 
       I am not willing to review the revised paper. 
rejected 
 
Suggestions for revision or reasons for rejection (will be published if the paper is accepted for final 



 

publication) 
The revised manuscript is clearer than the previous version. Figures 1-5 are really helpful in explaining 
the methodology. The authors added a sensitivity test for the number of days used in the preceding 
streamflow filter and also a sensitivity test to the parameters used. These exercises address the major 
revisions requested in the previous review. My primary concern at this point is that by removing the 
previously given justification that P-SEDA ensures internally consistent parameter-state time series, 
the authors removed most of their justification for the methodology. The remaining justification is the 
development of a simple and flexible method for easier operational implementation; however, the 
most effective method presented—the preceding streamflow filter with parameter constraints—
cannot be readily applied in an operational setting. More motivation/justification is needed for 
development of P-SEDA. Also, given that the 20-day preceding streamflow filter performs much better 
than the 3-day, some justification should be given for continuing to focus on the 3-day filter. 
 
Removing the previous given justification that P-SEDA ensures internally consistent parameter-state 
time series does not change the fact that the approach ensures internally consistent parameter-state 
time series. The justification that was removed has been re-introduced. 
 
Regarding the continued focus on the 3-day filter, the justification that I had provided in the paper 
was that these were the “only filters that showed any skill in the rain-influenced periods” and that I 
am using them for illustrative purposes. This argument remains true when comparing the 20 day filter 
with the 3-day filter with parameter constraints (see Table 5). Using this “unforecastable” approach 
assumes that the limitations with the “forecastable” approaches can be resolved through some of the 
ideas presented in the discussion of the paper. In addition, a more informative analysis of a full H-EPS 
that does include precipitation (and other forcing) uncertainty in the analysis can be performed when 
using the 3-day filter with parameter constraints. The resulting lack of skill in the H-EPS results can 
then be more fully attributed to model structural and forcing errors. The following sentence has been 
added at the end of the first paragraph of section 3.5 “H-EPS” of the results section: “Although these 
two ensembles are “unforecastable,” performing this analysis provides a more meaningful mechanism 
to examine model structural and forcing errors.” 
 
It is also worth noting that this is, to the authors’ best knowledge, the first application of ABC to an H-
LSS for hydrological modelling, as opposed to a more traditional rainfall-runoff model. As well, this is 
the first application of ABC for short (3-to-40-day) time-slices of a hydrograph. Finally, this is also the 
first known application of ABC with an H-EPS. A new (2nd) paragraph has been added to the 
conclusions to this effect. 
 
p. 15, lines 26-27: Even if soil moisture is used as a constraint, a variety of parameter sets could 
produce similar results. It is a useful constraint, but it does not remove equifinality. 

 

Yes. I agree. The following text has been added at the end of the paragraph: “Of course, including soil 
moisture observations to further constrain the selection of simulations would not remove equifinality. It 
would simply make it more likely that the model is more accurately predicting both streamflow and soil 
moisture.” 
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Recommendation to the Editor 

1) Scientific Significance 
Does the manuscript represent a substantial contribution to scientific 
progress within the scope of this journal (substantial new concepts, 
ideas, methods, or data)? 

Excellent Good Fair Poor 
 

2) Scientific Quality 
Are the scientific approach and applied methods valid? Are the results 
discussed in an appropriate and balanced way (consideration of related 
work, including appropriate references)? 

Excellent Good Fair Poor 
 

3) Presentation Quality 
Are the scientific results and conclusions presented in a clear, concise, 
and well structured way (number and quality of figures/tables, 
appropriate use of English language)? 

Excellent Good Fair Poor 
 

 

 
For final publication, the manuscript should be 
accepted as is 
accepted subject to technical corrections 
accepted subject to minor revisions 
reconsidered after major revisions 
       I am willing to review the revised paper. 
       I am not willing to review the revised paper. 
rejected 
 
Suggestions for revision or reasons for rejection (will be published if the paper is accepted for final 
publication) 
I was asked to look again at a revision of this paper. To be honest, at this point, I am not sure whether 
I commented on an earlier draft of this paper. I think I did. In short, I looked at the revision and have 
substantial concerns about the presented work. I did confirm with the Editor that I am reviewing the 
"right" version of the manuscript as I was surprised seeing relatively few changes to earlier comments 
on the methodology. 
 
I feel that a brief note about the background for how this paper came about is important.  
 
It’s entirely possible that I’m using terminology that means something very specific, while I have 
implemented an approach that is actually different. The reason that I did not adequately address your 
earlier comments was due to the fact that I do not have a strong background in traditional data 
assimilation methods. I simply noticed that if I ran thousands of simulations of MESH (a physically-



based, deterministic model), it was generally very easy to find simulations that fit each part of the 
hydrograph. This paper is my first attempt to try and formalize this finding… and in doing so, it 
appeared that the method had something in common with particle filtering and ABC. There are 
certainly similarities to GLUE and the Limits of Acceptability (LOA) approach. It could be that this 
approach has another formal name of which I am unaware. To this end, I have approached a number 
of people with a stronger background in statistics and have been reading to gain a better 
understanding of the formal mathematics (and all of the variants) of particle filtering and ABC, along 
with other potential candidates for what I am doing might be called. Pointing me to BaRE, PIMLI, and 
DYNIA is very helpful in this regard. 
 
1. The authors use the word "filtering" - this suggests a state estimation exercise. In practice, no effort 
is made to discuss/describe the filtering methodology. Likelihood, incremental likelihood, and 
normalized likelihood. Which state variables are being included in the analysis The responses of the 
authors' to previous comments on this matter were not helpful as they did not lead to changes in the 
paper. What is the model error that is used - the stochastic perturbation of the state/output forecast? 
What is the measurement error of the discharge data that is being used - all this determines the 
likelihood, incremental likelihood and normalized likelihood of the particles - and so their time 
evolution. This is all crucial information to understand the implementation and evaluate the results. As 
I guess the authors pick at each time from a predefined ensemble those parameter vectors that 
perform "best" for a short past time period - and use those with state estimation to generate a 
forecast. I am not sure about my interpretation.  
 
My reading to date leads me to believe that what I am proposing is more aligned with a plain English 
use of the word “filter,” which is to remove unwanted model runs for an analysis of the predictive 
ability of such an approach. I now better understand the use of the word “filtering” in the traditional 
use of particle filters and agree that this is not what I am doing in this paper. I am really “screening” 
candidate model runs based on a comparison of measured and simulated streamflows, and using the 
“screened-in” model runs to make predictions. I have updated the text to remove the word “filter” 
and replace it with something more appropriately descriptive, which will hopefully avoid confusing 
terminology with traditional particle filters. 
 
2. If filtering is not used re: state estimation then the authors should make this clear. In their 
algorithmic recipe nothing is mentioned about state estimation - nor details given. So, if filtering refers 
to picking out the "best" parameters at each time step then this should be made clear. If this is true, 
then the authors are missing other important work on this topic such as the DYNIA approach - and the 
PIMLI methodology that have elements in common with what the authors are doing in present paper. 
What is also relevant is the BARE approach of Thiemann et al. (2000) - Bayesian recursive estimation - 
also many elements in common with present approach if authors did indeed not do state estimation.  
 
Filtering is not used re: state estimation and I trust this is now clear in the refined paper. I have also 
added additional references to DYNIA, PIMLI and BaRE. 
 
3. The authors implement an ABC methodology. They use the model as likelihood - but no likelihood is 
presented - OK - if the model output is the likelihood then this does not suffice - the likelihood 
(simulated discharge) requires perturbation to make the model stochastic rather than deterministic. 
ABC method cannot work with a deterministic likelihood - otherwise the posterior would converge to 
a point in the limit of "epsilon" going to zero. So, what is the stochastic perturbation that the authors 



are using to compute/define the likelihood? One cannot simply use the present model as likelihood. 
Instead, assumptions are required about the expected probabilistic properties of the model error - 
and one needs to sample from this distribution to corrupt the deterministic forecasts - this will then 
converge to the exact target - if the assumptions about the residual errors are honored by the data. 
See Vrugt and Beven (2018) for more detailed comments on this matter - and our earlier papers 
published in 2013, 2014 and 2015 in WRR, HESS, etc..  
 
In my opinion, the argument that a stochastic model is necessary for ABC is a distraction. It is entirely 
possible that the method does not represent ABC in a pure form, but that does not detract from the 
idea that there is a deterministic equivalent to ABC that may be useful. I have tried to gain some 
insight (through reading and conversation with others) into whether-or-not ABC can be used with a 
deterministic model. I have to admit that I have not come to a satisfactory conclusion in definitively 
answering this question. As a result, I have changed the title of the paper to indicate that I am 
implementing a deterministic equivalent to ABC (as you also do in your publications and have 
indicated as such). I have also added a section to the discussion asking if a stochastic model is really 
necessary for real-world applications of ABCDE. Although I risk coming across as confrontational in the 
text, I am genuinely interested in seeing your response and gaining a better understanding of why the 
approach I am using may be considered invalid… or perhaps what it should be called if not ABCDE. 
 
I think it’s also important that my approach is a different implementation of ABC, where the top X are 
selected rather than using an epsilon. (Now shown as algorithm 1 and 2 in the paper.) I believe this 
makes a difference. I don’t believe that any model will be sufficiently adequate for the posterior 
parameter distribution “to shrink in the limit of epsilon going to zero and eventually converge to a 
Dirac delta function” (p 4836, 2013 paper) Therefore the 2nd algorithm in Biau (2013) is perhaps more 
appropriate to use than the 1st algorithm.  
 
4. The authors use Latin Hyper Cube Sampling to sample 10,000 parameter vectors - and at each time 
they simple use for their forecasts the best "M" parameter vectors from the past few days. Is this what 
the authors are doing? This involves no filtering as per state estimation. If state estimation is used on 
top then I am worried about the initial states of the members that are not used. Lets say that at time 1 
one uses members 1-10 to generate a forecast for time 2 - those members were found to produce the 
best forecasts for time 0. Then state estimation is used for those members 1-10. Then I would expect 
the initial states at time 2 of these members to be better than those remaining members (11-10000) 
of the ensemble s their states have not been estimated - so then at time 2 I would expect the first 10 
members to do better for time 3 - as their states were estimated - and not those of the other 
members. So, again, I have simple but important questions about the methodology.  
 
I agree that what I am doing involves no filtering as per state estimation as indicated in my response 
to your first comment. I am really making use of the fact that, as a deterministic model operator for 
the likelihood, the parameters and states are tied to one-another. 
 
I cannot evaluate the results without understanding in detail the methodology.  
I hope these comments are useful to further enhance the manuscript. It may very well be possible that 
I completely misread/misunderstand the authors intentions. Even then, it may benefit the authors 
from addressing some of these comments/concerns as other readers may experience similar issues 
with the presented material.  
 



 

Agreed. Your insistence on accuracy in the language I use in the paper is appreciated. I hope that my 
edits and responses clarify the methodology to your satisfaction, and by extension to  
the satisfaction of others who may have similar concerns. 
 
Jasper Vrugta 
Irvine, July 2, 2018 
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Abstract. The main sources of uncertainty in hydrological modelling can be summarized as structural errors, parameter er-

rors, and data errors. Operational modellers are generally more concerned with predictive ability than model errors, and Data

Assimilation (DA) methods are commonly employed to merge models with observations to improve predictive ability. This

paper presents an example of Approximate Bayesian Computing (ABC) , or a hybrid of a (simplified) Particle Filter (PF)

and variational DA, -
::::::::::::
Deterministic

:::::::::
Equivalent

:::::::::
(ABCDE) to simultaneously assimilate model states and parameters, calling5

the method Parameter-State Ensemble DA (P-SEDA). The case study is from June to October, 2014 for a small (1 324 km2)

watershed just north of Lake Superior in Ontario, Canada using the Canadian semi-distributed hydrologic land-surface scheme

MESH. The study examines how well the approach works given various levels of certainty in the data; beginning with cer-

tainty in the streamflow and precipitation, followed by uncertainty in the streamflow and certainty in the precipitation, and

finally uncertainty in both the streamflow and precipitation. The approach is found to work in this case when streamflow and10

precipitation is fairly certain, while being more challenging to implement in a forecasting scenario where future streamflow

and precipitation is much less certain. The main challenge is determined to be related to parametric uncertainty and ideas for

overcoming this challenge are discussed.
:::
The

::::::::
approach

::::
also

::::::::
highlights

::::::
model

::::::::
structural

::::::
errors,

:::::
which

:::
are

::::
also

::::::::
discussed.

:

1 Introduction

A fundamental problem making good streamflow predictions in process-based models rests with the various sources of un-15

certainty in modelling the flow. These sources of uncertainty have been described in a number of papers (e.g. Beck, 1987;

Krzysztofowicz, 2001; Vrugt et al., 2005; Liu and Gupta, 2007; Velázquez et al., 2009). In particular, Liu and Gupta (2007)

consider a general framework of seven model components which include the system boundary (B), inputs (u), initial states

(x0), parameters (Θ), structure (M ), states (x), and outputs (y). Five of these model components (B, u, x0, Θ, and M ) must be

predefined and their uncertainties cascade to x and y. Since the inputs, initial states, and observations used to verify the model20

outputs can often be considered as data errors, and the system boundary can be considered a source of structural uncertainty,

the main sources of errors in hydrologic modelling can be summarized as structural errors, parameter errors, and data errors.

1



Operational hydrological models are generally more concerned with predictive ability than correctness of the model structure

(Gupta et al., 2008, p 3804). As such, parameter and data errors are often the focus for operational hydrological predictions.

Within this context of managing parameter and data uncertainty, it is the purpose of this paper to propose a novel approach

to short-term hydrological prediction in a relatively small, data-sparse watershed (1,324 km2). The approach involves using a

hydrologic land-surface-scheme (H-LSS) and simultaneous estimation of parameters and state variables through Data Assimi-5

lation (DA) using
::
an

::::::::
approach

::::
akin

::
to Approximate Bayesian Computation (ABC, Biau et al., 2015), or a hybrid of a simplified

version of the Particle Filter (PF, Arulampalam et al., 2002) and vatiational DA (Asch et al., 2016).
:::::
Since

:::::
ABC

::
is

:::::::::
inherently

::::::::
statistical

::
in

:::::
nature,

::::
and

:::
the

:::::::
approach

:::::
used

::
in

:::
this

:::::
study

::::::
applies

:
a
:::::::::::
deterministic

:::::
model

:::::::
without

:::
any

:::::::::
stochastic

::::::::::
perturbation

::
of

:::
the

:::::
model

::::::::
outputs,

:::
the

::::::::
approach

:
is
:::::::
referred

::
to
::::::::::
throughout

:::
this

:::::
paper

::
as

:::::
either

:::::
ABC

::
or

:::::
ABC

:
-
:::::::::::
Deterministic

:::::::::
Equivalent

:::::::::
(ABCDE).

DA is one way to improve hydrological predictions by merging models with observations, and DA methods can categorized10

in a number of different ways (Liu and Gupta, 2007; Rakovec et al., 2015; Sun et al., 2016; Asch et al., 2016). One way of

categorizing DA methods is by variational or sequential (statistical) methods. Variational approaches minimize the differences

between observations and model output over a period of time, while sequential approaches assimilate observations as they are

obtained. Another way of categorizing DA methods is by their time dependence. Usually, smoothing problems attempt to make

predictions for the past, filtering problems attempt make predictions for the present, and forecasting problems attempt to make15

predictions for the future.

DA can include methods that help resolve problems related to estimating states, assessing parameters and identifying the

appropriate model structure (Liu and Gupta, 2007). Most applications of DA focus on merging state variables in a model

with corresponding observations, while a few methods combine state and parameter estimation to improve predictions (e.g.

Vrugt et al., 2005; Moradkhani et al., 2005a, b; Drécourt et al., 2006; Labarre et al., 2006; Qin et al., 2009; Nie et al., 2011;20

Xie and Zhang, 2013; Bi et al., 2014). The strategies for combined state and parameter assimilation generally fall into three

main categories (Liu and Gupta, 2007). One strategy, such as that used by Vrugt et al. (2005), is to use standard techniques

to simultaneously optimize parameters and assimilate states. In this strategy, an outer loop is used to optimize parameter sets

while an inner loop is used to assimilate the state variables for each calibration parameter set at each time-step. Another

strategy is to use dual filters (e.g. the dual Ensemble Kalman Filter or dual Particle Filter) to update states and parameters25

independently (e.g. Moradkhani et al., 2005a, b; Qin et al., 2009). In these cases, the parameters and states are continuously

updated as new observations become available. The third strategy is most often called “state augmentation” and uses regular

data assimilation methods where parameters are considered state variables and added to the state vector (e.g. Drécourt et al.,

2006; Nie et al., 2011; Bi et al., 2014). A single filter is then used to update the parameters and states simultaneously.
::::
One

::::::::
drawback

::
of

:::::::::
traditional

:::
DA

:::
(of

:::::
states

:::::
only)

:::
and

:::
of

:::
the

:::::::::::::
aforementioned

::::::::
parameter

::::
and

::::
state

::::
DA

:::::::
methods,

::::::::
however,

::
is

::::
that

:::
the30

:::::::
resulting

:::::::::
parameters

::::
and

:::::
states

:::
are

:::
not

:::::::::
necessarily

:::::::::
compatible

::::
with

::::
one

:::::::
another.

In this paper, a new and very simple method of simultaneous state and parameter DA
:
,
:::
that

:::::::
ensures

:::::::::
parameter

:::
and

:::::
state

:::::::::::
compatibility,

:
is presented for short-term hydrological ensemble prediction (up to 3 days). We call this DA-approach the

Parameter-State Ensemble Data Assimilation (P-SEDA) filter and make use of ABC, which is also a hybrid approach of

a (simplified) PF and variational DA. The approach is described with the intention of making clear how to implement the35

2



filter
:
it
:

with a wide variety of models in data-rich or data-sparse watersheds, and examined here using a parameter-intensive
:
,

::::::::::
deterministic

:
hydrologic land-surface scheme in a data sparse watershed. The case studies include model structural and param-

eter errors, which are inevitable regardless of the model being used or the basin being modelled, to evaluate the ability of the

P-SEDA approach.

The intial case studies are hindcasting exercises that reduce data and model structural uncertainty as much as possible,5

followed by a more realistic forecasting example (albeit in hindcasting mode) that incorporates data input uncertainty using

Environment and Climate Change Canada’s (ECCC’s) meteorological Regional Ensemble Prediction System (REPS) to drive

the model.

2 Methodology

1.1 The Parameter-State Ensemble Data Assimilation (P-SEDA) Filter10

The
::::
Prior

::
to

::::::::
describing

:::
the

:
P-SEDA filter works in the following manner, as illustrated in Figure 1. First, a number of parameter

sets (M ) are pre-defined to be used for continuous simulation with a model. Filtering criteria are used to determine which of

the parameter sets and their associated state variables will be used to generate an ensemble of streamflows for analysis in

a projection period. The analysis is completed for the projection period and the process repeated for the next appropriate

time-step in the continuous simulations. Note that the M model simulations continue through the projection period in the15

continuous simulations. The filter simply chooses which of the M continuous simulations to select for the projection analysis.

In this manner, both the parameters and states are drawn from the entire M simulations for the projection period.

Compared to the traditional DA approaches described in the introduction, the P-SEDA approach can be considered a hybrid

approach to DA (Asch et al., 2016). It is a hybrid in the sense that it has characteristics of both a particle filter and variational

DA. A traditional particle filter has the following four steps: 1) generate an initial set of particles (or parameter sets) and run20

the model for a short time (e.g. one timestep) to produce model output for the variable of interest, 2) assign a weight between

zero and one to each particle such that higher weights are given to parameter sets that produce model outputs more closely

matching the observed variable, 3) resample the parameter space with respect to the weights (i.e. produce a new set of particles

with parameters that are closer to the parameter sets that produced higher weights), and 4) propogate the new particles using

the model, thus repeating the cycle. The approach presented here is the same, but without resampling and always returning to25

the original particles as updated by the model and assigning a weight of zero or one to each particle based on the filter. The

similarity to variational DA comes from the fact that a cost function is minimized based on a moving window of time from the

past to the present.This is consistent with the statement in Liu and Gupta (2007) that ’theoretically, variational DA methods

can be used for filtering problems if a new smoothing problem is defined sequentially at each observation time point.’ This is

exactly what is being proposed for the P-SEDA approach, but with a moving window of time for observational input to the DA30

process rather than an ever-expanding window of time.
::
in

:::::
detail,

:::::
some

::::::::::
background

::
is

:::::::
required

:::
on

:::::
ABC.

For a single filter-projection period, this approach is also described by ABC.

3



2
:::::::::::
Approximate

::::::::
Bayesian

::::::::::::
Computation

::::::
(ABC)

As described by Vrugt and Sadegh (2013), for scenarios focused on parameter uncertainty (as is the case in this paper) the

posterior parameter distribution p(θ|y) given the streamflow y is estimated using Bayes theorem:

p(θ|y) =
p(θ)p(y|θ)
p(y)

where p(θ) is the prior distribution of parameters, p(y) is the normalization constant, and p(y|θ)≡ L(θ|y) is the likelihood5

function. In situations where the likelihood function cannot be computed (again, as is the case in this paper) the likelihood is

approximated using a model.

Biau et al. (2015, Algorithm 2) provides a
::::::::::::::
Biau et al. (2015)

:::::::
provides

::::
two

:
widely-used algorithm

:::::::::
algorithms

:
for the ap-

proach, shown below as Algorithm 1. The
:
.

Algorithm 1
::::::::::
Pseudo-code

::
1

::
of

:
a
:::::::
generic

::::
ABC

::::::::
algorithm

:::::::
Require:

:
A

::::::
positive

:::::
integer

:::
M

:::
and

:
a
:::::::
tolerance

::::
level

::
ε.

: ::
for i

::
=
:
1
::
to

::
M

:::
do

::::::
generate

::
θi ::::

from
::
the

::::
prior

:::::
p(θ);

:: ::::::
generate

::
yi::::

from
:::
the

::::::::::
approximate

:::::::
likelihood

::::::
p(y|θ).

:: :::
end

::
for

:: :::::
return

:::
The

:::
θi’s :::

such
::::
that

:::::::::::::
||s(yi)− s0|| ≤ ε.:

:::
The

:
symbols not yet described in Algorithm 1 include a

::::
small

::::::::
tolerance

::::
level

:::
(ε),

::
a statistic representing the observations ,10

:
(s0), and the statistic representing the simulations

:
(s(yi):).

Algorithm 2 Pseudo-code
:
2 of a generic ABC algorithm

Require: A positive integer M and an integer kM between 1 and M .

for i = 1 to M do

generate θi from the prior p(θ);

generate yi from the approximate likelihood p(y|θ)
:
.

end for

return The θi’s such that s(yi) is among the kM -nearest neighbors of s0.

In the
::::::::::::::::::
Biau et al. (2015, p4)

:::::::
describes

:::
the

:::
two

:::::::::
algorithms

:::
as

:::::
"dual,

::
in

:::
the

:::::
sense

:::
that

:::
the

::::::
number

:::
of

:::::::
accepted

:::::
points

::
is
:::::
fixed

::
in

::
the

::::::
second

::::
and

::::::
random

:::
in

::
the

:::::
first,

:::::
while

::::
their

:::::
range

:
is
:::::::
random

::
in

:::
the

::::::
second

::::
and

::::
fixed

::
in

:::
the

:::::
first."

:
A
:::::::
number

::
of

::::::::::
publications

::::::
discuss

:::
the

:::
use

::
of

:::::
ABC

::
for

:::::::::::
hydrological

::::::::
modelling

::::::::
purposes

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Nott et al., 2012; Sadegh and Vrugt, 2013; Vrugt and Sadegh, 2013; Sadegh and Vrugt, 2014; Sadegh et al., 2015; Vrugt and Beven, 2018)

:::
and

:::
all

::
of

:::::
them

:::::::
present

::::
ABC

:::
as

::
it

:::::::
appears

::
in

:::::::::
Algorithm

:::
1,

::
or

:::::
some

:::::
more

:::::::
efficient

::::::::::::::
implementation

::
of

:::::
ABC.

::::::
None

:::::
make15

:::
use

::
of

:::::::::
Algorithm

::
2

::
in

::::
their

::::::
work.

:::::::::::::::
Nott et al. (2012)

::::::
explores

:::
the

::::::::::
connection

:::::::
between

:::
the

::::::::::
generalized

:::::::::
likelihood

::::::::::
uncertainty
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::::::::
estimation

::::::::
(GLUE)

:::::::::::
methodology

::::::::::::::::::::::
(Beven and Binley, 1992)

:::
and

:::::
ABC.

:::::
Their

:::::
paper

:::::::::
highlights

:::
the

:::::::::
advantages

:::
of

:::::
using

:::::
ABC

:::::::::
techniques

::
to

:::::::
improve

::::::
GLUE.

:::::::::::::::::::::
Sadegh and Vrugt (2013)

::::::
further

:::::::::::
demonstrates

::::
that

::::::
“GLUE

::
is
::
a
::::::
special

::::::
variant

::
of

:::::
ABC

::
if

::::
each

::::::::
discharge

:::::::::
observation

::
of

:::
the

:::::::::
calibration

::::
data

:::
set

:
is
:::::
used

::
as

:
a
::::::::
summary

::::::::::
diagnostic.”

:::
The

:::::
paper

:::::::
revolves

::::::
around

:::
the

::::
idea

:::
that

:::::
ABC

::::::
bridges

:::
the

:::
gap

:::::::
between

::::::
formal

::::::::
statistical

::::::::::
approaches

:::
and

::::::
GLUE,

:::::
while

::::::
noting

:::
that

:::::
ABC

:::::::
requires

:
a
:::::::::
stochastic

:::::
model

::::::::
operator.

:::
The

:::::::::::
hydrological

:::::::::
modelling

::::::::
example

:::::::
provided

:::
in

:::
the

:::::
paper

:::::
uses

:::
the

:::::::::::
deterministic

::::::::::
Sacramento

:::::
Soil

::::::::
Moisture

::::::::::
Accounting5

::::::::::
(SAC-SMA)

::::::
model

:::::::::::::::::::
(Burnash et al., 1973)

::
and

:::::
both

::::::
GLUE

::::
and

::::
ABC

::::::::::
approaches

::
to
:::::::::

determine
:::

the
::::::::

posterior
::::::::::

distribution
:::

of

:::::::::
behavioural

::::::::::
parameters.

::::
The

::::::
authors

::::
note

::::
that

:::
the

:::::::::::
deterministic

::::::::
approach

:::::::
violates

:
a
:::::::::::
requirement

::
of

::::
ABC

:::
by

:::
not

:::::::::
generating

::
a

::::::
random

::::::
sample

:::
of

:::::
model

:::::::
outputs

::
at

::::
each

::::
time

:::::
step.

::::::::::::::::::::::
(Vrugt and Sadegh, 2013)

:::::::
illustrates

::::
the

::::::
relative

::::
ease

:::
of

:::::::::::::
implementation

::
of

::::
ABC

:::
as

:::
well

:::
as

:::
the

:::::
ability

::
of
:::

the
::::::::
approach

::
to
:::::
make

:::
use

:::
of

:::::::
signature

::::::
based

::::::
indicies

::::::::::::::::::::
(e.g. Gupta et al., 2008)

::
to

:::::
detect

::::::
model

::::::::
structural

::::::
errors.

:::::::::::::::::::::
Sadegh and Vrugt (2014)

::::
takes

:::::
their

::::::::
previous

::::
work

:::::::
further

:::
by

:::::::::
examining

:::::
more

:::::::
efficient

::::::::::::::
implementation10

:::::::
methods

::
of

:::::
ABC

:::
for

::::::::::
hydrological

::::::::::
modelling.

:::::::::::::::::
Sadegh et al. (2015)

::::::
presents

:::
an

:::::::::::::
implementation

::
of

:::::
ABC

:::
for

:::::::::
hypothesis

::::::
testing

:::
and

:::::::
anlysing

:::
the

:::::::::
stationarity

::
of

::::::::::
watersheds.

::::::::::::::::::::
Vrugt and Beven (2018)

::::::::
continues

:::
the

::::::::::
comparison

:::::::
between

::::::
GLUE

:::
and

:::::
ABC,

:::::
while

:::::::
focusing

::
on

:::::::::
improving

:::
the

::::::::
efficiency

:::
of

:::::::
sampling

:::
the

:::::::::
parameter

:::::
space

:::::
within

:::
the

::::::
GLUE

::::::::::
framework.

3
:::::::::::
Methodology

3.1
:::
The

::::::::::::::
Parameter-State

:::::::::
Ensemble

:::::
Data

:::::::::::
Assimilation

:::::::::
(P-SEDA)

:::::::::
Approach15

:::::::
P-SEDA

:::::
works

:::::
using

::
a
:::::::::::
deterministic

:::::
model

:::
in

:::
the

::::::::
following

:::::::
manner,

::
as

:::::::::
illustrated

::
in

::::::
Figure

::
1.

:::::
First,

:
a
:::::::
number

::
of

:::::::::
parameter

:::
sets

::::
(M )

:::
are

::::::::::
pre-defined

::
to

::
be

::::
used

:::
for

::::::::::
continuous

:::::::::
simulation

::::
with

:::
the

::::::
model.

::::::::
Screening

::::::
criteria

:::
are

:::::
used

::
to

::::::::
determine

::::::
which

::
of

:::
the

::::::::
parameter

::::
sets

:::
and

::::
their

:::::::::
associated

::::
state

::::::::
variables

::::
will

::
be

::::
used

::
to

::::::::
generate

::
an

::::::::
ensemble

::
of

::::::::::
streamflows

:::
for

:::::::
analysis

::
in

::
a

::::::::
projection

::::::
period.

::::
The

::::::
analysis

::
is
:::::::::
completed

:::
for

::
the

:::::::::
projection

:::::
period

::::
and

:::
the

::::::
process

:::::::
repeated

:::
for

:::
the

:::
next

::::::::::
appropriate

::::::::
time-step

::
in

:::
the

:::::::::
continuous

::::::::::
simulations.

:::::
Note

::::
that

:::
the

:::
M

:::::
model

::::::::::
simulations

::::::::
continue

::::::
through

::::
the

::::::::
projection

::::::
period

::
in

:::
the

::::::::::
continuous20

::::::::::
simulations.

:::
The

:::::::
method

::::::
simply

:::::::
chooses

:::::
which

:::
of

:::
the

::
M

::::::::::
continuous

::::::::::
simulations

::
to

:::::
select

:::
for

:::
the

::::::::
projection

::::::::
analysis.

::
In

::::
this

::::::
manner,

::::
due

::
to

:::
the

::::
fact

::::
that

:
a
:::::::::::

deterministic
::::::

model
::
is
:::::
used

:::
and

:::
the

::::::::::
parameters

:::
and

::::::
states

:::
are

:::
tied

:::
to

::::::::::
one-another

::::::
(given

:::
the

::::
same

:::::
initial

:::::::::
conditions

::::
and

:::::
model

:::::::::
structure),

::::
both

:::
the

::::::::::
parameters

:::
and

:::::
states

:::
are

::::::
drawn

::::
from

:::
the

:::::
entire

:::
M

::::::::::
simulations

:::
for

:::
the

::::::::
projection

::::::
period.

:

:::
For

:
a
:::::
single

::::::::::::::::
hindcast-projection

::::::
period,

:::
this

::::::::
approach

::
is

:::
also

::::::::
described

:::
by

::::
ABC

::
as

:::::::
defined

::
in

::::::::
Algorithm

::
2,
::::
with

::::
one

::::::::
important25

::::::
caveat.

::::::::
According

::
to
:::::::::::::::::::::
Sadegh and Vrugt (2013)

:
,
::::
ABC

:::
can

::::
only

:::
be

::::
used

::::
with

:
a
::::::::
stochastic

::::::::
operator.

::
As

::
a

:::::
result,

:::
the

::::::::
approach

::::
used

::
in

:::
this

:::::
paper

::
is

:::::
more

:::::::::
accurately

::::::::
described

::
as

:::::
ABC

:
-
::::::::::::
Deterministic

:::::::::
Equivalent

:::::::::
(ABCDE).

::::
This

::
is
:::

the
:::::

same
::::::::
approach

::
as

:::::
used

::
by

:::::::::::::::::::::
Sadegh and Vrugt (2013),

::::
but

:::
for

::::::
shorter

::::
and

:::::::::
successive

::::
time

:::::::
periods,

::::
with

::
a
:::::::
different

::::
type

:::
of

:::::::::::
deterministic

::::::
model,

::::
and

::::
with

::::
more

:::
of

:
a
:::::
focus

:::
on

::::::::::
forecasting,

::::::::
including

:::::::::::::
meteorological

:::::::::
forecasting

::::::::::
uncertainty.

::::
The

::::::::
approach

::::
also

:::
has

::::::::::
similarities

::
to

:::::::
Bayesian

:::::::::
Recursive

:::::::::
Estimation

::::::::::
(BaRE, ?)

::
and

::::
the

::::::::
parameter

::::::::::::
identification

::::::
method

:::::
based

:::
on

:::
the

::::::::::
localization

:::
of

::::::::::
information30

:::::::::
(PIMLI, ?).

::::::::
However,

::::::::
P-SEDA

::::
does

:::
not

:::
use

::::
any

::::::::
stochastic

:::::::::::
perturbation.

::
In

:::
the context of the P-SEDA filter

:::::::
approach for hydrological prediction, θi is the ith parameter set. The prior p(θ) represents

the infinite possible parameter sets based on ranges selected by the user and the likelihood is approximated by the model used
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to generate the yi simulated streamflow values (giving rise to the “Approximate” in ABC). In Biau et al. (2015), only the

kM -nearest neighbors between the statistic representing the observations, s0, and simulations, s(yi), for the filter
::::::::
screening

period are kept for analysis. The case study presented below alters the selection criteria slightly by using a distance function

(Root Mean Squared Error) to determine the discrepancy between the observations and the simulations, rather than independent

statistical properties (such as mean and standard deviation) of the two.5

In the P-SEDA approach, we can disregard the notion of finding a distribution of parameter sets that fits the entire streamflow

record of interest. Instead, we look for a set of plausible parameter sets, locate a certain number of these that generate the “best”

results for the filter
:::::::
screening

:
period under consideration, and then evaluate how well these parameters and states perform

for the projection period. The process is then repeated to find new parameter sets and states for consideration in successive

projection periods. There are a number of ways in which filter
:::::
screen

:
and projection periods can be formulated. A number10

of such formulations are described in section 3.7, which should clarify the generic process described in this paragraph.
:
It

::
is

::::::::
important

::
to

::::
note

::::
that

::
if

:::
the

::::::
screen

:::::
period

::
is
::

a
::::::::
hindcast,

:::
the

:::::::::
projection

::::::
period

:::
can

:::
be

:::::::
analysed

:::
for

:::
its

::::::::::
forecasting

::::::::
potential.

:::::::::
Otherwise,

:::
the

::::::::
projection

::::::
period

:::
can

:::
be

:::::::
analysed

::
to

::::
help

:::::::
identify

:::::
model

::::::::
structural

::::::
errors.

3.2 Case Study Basin Description

The study watershed is 1,324 km2 and is drained by the Little Pic River near Coldwell, Ontario, Canada, just north of Lake15

Superior
::::::
(Figure

::
2). The streamflow gauge (02BA003) is between the communities of Terrace Bay and Marathon and has been

operated by the Water Survey of Canada from 1972 to the present. There are no precipitation measurements in the basin, but

the surrounding region’s annual precipitation ranges from 654 to 879 mm, with the mean summer rainfall ranging from 231 to

298 mm (Crins et al., 2009). The mean annual temperature ranges from −1.7 to 2.1 °C (Mackey et al., 1996). The sub-surface

sits on Precambrian Shield with significant amounts of volcanic rock, greenstone, siltstone and shale (Sutcliffe, 1991). The20

dominant landcover in the basin is mixed forest, followed by coniferous forest, water, sparse forest and deciduous forest (Crins

et al., 2009). The streamflow regime is characterized by frozen conditions through the winter months (November to April),

but has been known to produce a spring freshet as early as March. Summer and autumn peaks can be on the same order of

magnitude as the spring freshet, but are more often smaller. The peak flow is usually in May and the highest daily discharge

recorded is 269 m3/s on June 30, 2008.25

3.3 The Semi-Distributed Hydrologic Land-Surface Scheme

The model used to simulate the streamflow is the semi-distributed hydrological land-surface scheme MESH (Pietroniro et al.,

2007), configured with the Canadian Land-Surface Scheme (CLASS, Verseghy, 1991; Verseghy et al., 1993), the hydrologic

routing from WATFLOOD (Kouwen et al., 2002), and additional hydrological processes to better simulate surface and sub-

surface lateral flow across the landscape to the river (Soulis et al., 2000, 2011).30

The basin geophysical characteristics needed for MESH include a digital elevation model (DEM), landcover classification,

and soil information. The DEM comes from the Canadian Digital Elevation Data (CDED) at a scale of 1:50,000 and based

on the NAD83 horizontal reference datum (Natural Resources Canada, 2015). The landcover classification comes from the
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LCC2000-V product originating from classified Landsat 5 and Landsat 7 satellite images and the soils information comes from

the ecodistricts classification of the national ecological framework for Canada (Agriculture and Agri-Food Canada, 2015). The

basin fits within ecodistrict 389 - Long Lake.

Table 1 shows the estimated percentages of each landcover present in the basin as defined by the LCC2000-V product.

Based on this classification, the two dominant landcovers are coniferous and broadleaf forest, which are often mixed. Without5

knowing more specific information about the landcover, the mixed forests are assumed to be fifty percent coniferous and fifty

percent broadleaf, resulting in an estimate of forty-eight percent coniferous and thirty-nine percent broadleaf. These values are

then arbitrarily rounded up to fifty percent coniferous and forty percent broadleaf in the model representation of landcover. The

remaining ten percent of landcover inevitably includes parametric uncertainty due to the model’s inability to properly represent

the eight percent of the basin that is covered by small lakes.10

Figure 2 illustrates a) the location of the basin, b) ecodistrict boundary and model grid, c) river network and gauge location,

and d) landcover. Sub-grid variability of each grid is handled via the CLASS tile with each grid being represented by a single

ecodistrict GRU.

3.4 Forcing Data

The meteorological inputs for MESH include incoming shortwave radiation, incoming longwave radiation, precipitation, tem-15

perature, barometric pressure, specific humidity and wind speed. The timestep of the model is set to 30 minutes. For the first

two case studies minimizing input data uncertainty, most of these meteorological inputs were derived from ECCC’s Global En-

vironmental Multi-scale (GEM) Numerical Weather Prediction (NWP) model (Côté et al., 1998a), stitching together the 6–17

hour UTC forecasts from twice-daily runs beginning in January, 2002 and linearly interpolating between hours to obtain half-

hourly values. Precipitation is obtained from the Canadian Precipitation Analysis (CaPA, Mahfouf et al., 2007; Lespinas et al.,20

2015), which is an assimilation of ground-based observations and GEM precipitation forecasts. For the third case study includ-

ing forcing input data uncertainty, an ensemble of meteorological inputs is obtained from ECCC’s Meteorological Regional

Ensemble Prediction System (REPS). The REPS provides 72 hour forecasts twice daily.

3.5 Parameter Selection

H-LSS’s contain many parameters and there is a large body of scientific literature examining various techniques for effectively25

estimating parameters (for a brief review, see Matott et al., 2009). The method that was used in this study is Latin Hypercube

Sampling (LHS, McKay et al., 1979). Twenty-eight parameters were perturbed based on the results of a simple study (not

shown) comparing the perturbation of 6, 15 and 28 parameters. Table 2 shows the parameter values that were fixed during the

simulations while Table 3 shows the ranges for parameters that were perturbed. The parameters that were perturbed were based

on the lead author’s experience with the model. Parameter intervals were set based on the ranges found in sources identified30

under the source column of Table 3. In the case of user specified parameters, these were set by the lead author.

It is worth noting up-front that this approach to parameter perturbation is very inefficient. Sampling via LHS is a variation

of uniform random sampling that is traditionally used in the generalized likelihood uncertainty estimation (GLUE )
::::::
GLUE
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methodology (Beven and Binley, 1992). Tolson and Shoemaker (2008) provide a very thorough explanation of the limitations

of LHS and other methods of combatting the inefficiency of the tradtional GLUE uniform random sampling. The purpose of this

study, however, is to examine the P-SEDA methodology. Implications of the parameter sampling methodology are examined

in the discussion after the results are presented.

3.6 Projection Periods for Short-term Hydrological Prediction5

This paper is focused on short-term hydrological ensemble prediction (up to 3 days), with an interest in using the ECCC

meteorological REPS to force a more comprehensive Hydrological-Ensemble Prediction System (H-EPS). As such, projection

periods are defined as the three-day windows of time from the beginning of each ECCC-REPS run at 0 UTC and 12 UTC. The

red and pink bars in Figure 3 illustrate tweleve projection periods beginning on 0 UTC, July 20 to 12 UTC, July 25, 2014. The

remainder of Figure 3 is described in section 3.7.2.10

3.7 Ensemble Selection Methodologies

The total population of model runs is generated by settingM to 10,000 in Algorithm 1
:
2
:
and using LHS to generate the 10,000

parameter sets from a uniform prior distribution of 28 parameters based on the ranges shown in Table 3. To approximate the

likelihood
::::
using

:::::::
ABCDE, MESH is run with each of the 10,000 parameter sets in a continuous simulation mode to generate

streamflow values (y) for the period of June 2002 to November 2014.15

The Data Assimilation is performed by filtering
::::::::
screening the total population of 10,000 model runs to generate an ensemble

of the "best" model runs to be used in the subsequent projection period. Algorithm 2
:
3
:
represents the specific implementation

of Algorithm 1
::
2
:

used in this paper.

Algorithm 3 Pseudo-code of the ABC algorithm implementation in this paper

Require: A positive integer 10,000 (M) and an integer (kM ) between 1 and M (In this study, a sensitivity analysis of kM is performed by

setting kM = 5,10,20,30,40, and 50).

for i = 1 to 10,000 do

generate parameter set i (θi) from all possible parameter sets (p(θ)) using LHS;

generate streamflow i (yi) using the model (MESH)

end for

return The parameter sets with the lowest kM RMSE values between observed and simulated streamflow values from the 10,000 model

runs for the filter period. (This is the filter.)
:::::::
screening

:::::
period.

:

The following P-SEDA configurations are examined in this study and will be described shortly:

1. Optimal hind-cast
:::::::
hindcast of 3-day projections20

2. Preceding streamflow filter
:::::
screen

:

3. Hindsight parameter constraint and preceding 3-day streamflow filter
:::::
screen
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4. Hydrologic-Ensemble Prediction System (H-EPS)

An initial evaluation of the P-SEDA filters
::::::
screens

:
requires some sources of uncertainty to be minimized. In particular,

streamflow observations and precipitation uncertainty are considered; and questions around the model’s ability to manage

snow processes are simply avoided.

The quality of a streamflow observation is commonly known to be affected by ice, the occurrence of which is noted in5

the Water Survey of Canada database of streamflow. For the Little Pic River watershed, ice on the river can occur as early

as November and as late as April. In addition, prior to the spring freshet, the streamflow contains almost no information that

could assist in predicting future streamflow. The future flow primarily depends on other land-surface characteristics such as

snow water equivalent and frozen ground. Because the immediate interest is in evaluating the P-SEDA filters
::::::
screens when

snow or ice on the ground is not present, the analysis is only performed from June 1 to October 31 for 2014, with some10

qualitative analysis beginning on May 1, 2014.

Each of the four P-SEDA configurations is described below.

3.7.1 Optimal Hind-cast
::::::::
Hindcast

:
of 3-day Projections

Since there are no precipitation observations in the basin, but there are some precipitation gauges nearby which are used in the

generation of CaPA, the filters are
:::::::
approach

::
is initially tested with reduced precipitation uncertainty by forcing the model with15

CaPA.

In addition, streamflow uncertainty is minimized by filtering
::::::::
screening

:
with known streamflow in a hind-casting

:::::::::
hindcasting

excercise. In other words, the resulting ensemble is used to determine if the parameter selection methodology (LHS) allows

the model to produce streamflow values that match observations given advanced knowledge of precipitation and streamflow.

This process is illustrated in Figure 4. In this case, 10,000 simulations are run continuously through the MESH model, of20

which the filter
::::::
ABCDE

::::::::
approach

:
chooses a number (kM ) for the hind-cast

::::::
hindcast

:
analysis. The process is then repeated for

subsequent filter
:::::::
screening

:
periods. Note that in this hind-casting

:::::::::
hindcasting exercise, the filter

::::::::
screening periods correspond

to the projection periods.

3.7.2 Preceding Streamflow Filter
::::::
Screen

Figure 4
:
5
:
illustrates the preceding streamflow filter

:::::
screen. In this study, 10,000 simulations are run continuously through the25

MESH model, of which the filter
:::::
screen

::::::::
(ABCDE)

:
chooses a number (kM ) from which to analyze for a projection period. The

process is then repeated for subsequent filter
::::::::
screening periods, noting that the M simulations run continuously through the

previous projection periods even though they are not all selected for the previous projection period analysis.

To give more detail to the sequencing within the filter-projection
:::::::::::::::
hindcast-projection cycle, Figure 3 illustrates the preceding

streamflow filter
:::::
screen considered for a 3-day filter

:::::::
screening

:
period (other filter

::::::::
screening period lengths are examined in the30

results). In this Figure, twelve filter
:::::
screen

:
periods are shown in orange and green for July 17 to July 25, 2014. The first filter

:::::
screen

:
period is represented by the orange bar near the top of the Figure beside the ABC1 label. This filter

:::::
screen

:
period runs
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from 0 UTC on July 17 to 0 UTC on July 20, 2014. During this three-day period, the “best”
:::::
“best” parameter sets are selected

based on how the model simulates the observed streamflow. The simulations for these top performing parameter sets are then

extended for three more days, which is considered to be the projection period.

This process is then repeated 12 hours later. The second filter
::::::::
screening

:
period is represented by the orange bar illustrated

just below the first filter
::::::::
screening

:
period, and labeled ABC2 in the Figure. This filter

::::::::
screening

:
period runs from 12 UTC5

on July 17 to 12 UTC on July 20, 2014. During this three-day period, the “best”
:::::
“best” parameter sets are selected based on

how the model simulates the observed streamflow. Although there is considerable overlap between the first and second filter

::::::::
screening periods, the second filter

::::::::
screening

:
period begins and ends 12 hours after the first filter

::::::::
screening period, producing

a new ensemble of “best”
:::::
“best” parameter sets. The simulations for these new parameter sets are then extended for three days,

which is considered to be a new projection period that also begins and ends 12 hours after the previous projection period.10

The process is then continually repeated every 12 hours as shown by the remainder of the bars shown in the rows labeled

ABC3 to ABC12. Each instance of the filter
:::::
screen

:
and projection periods represents a single application of ABC

:::::::
ABCDE,

which is why each row is labeled as such. We call this filter
::::::::
approach the preceding streamflow filter

:::::
screen

:
because the

projection periods shown in red and pink occur immediately after the filter
::::::::
screening periods.

One important consideration, that becomes relevant in the analysis, is the six hours of precipitation that occurred on July15

22 from 14 UTC to 20 UTC. This is illustrated by the small blue bar at the top and near the middle of Figure 3. Some of the

projection periods “see”
::::
“see”

:
this precipitation event (illustrated by the green bars) and some do not (illustrated by the orange

bars). As will be explained more fully in section 3.8.2, the analysis is split according to the sub-periods of the filter
:::::
screen

:
and

projection periods that a) occur during and just after the precipitation event (the light green and pink bars); and b) that occur

when it is otherwise rain-free (orange, dark green and red bars).20

To properly examine the effectiveness of the P-SEDA approach, a sensitivity analysis is performed for the length of the filter

:::::
screen

:
period as well as for kM in Algorithms 1 and 2

:
2
:::
and

::
3. The length of the filter

:::::
screen period is tested for 3, 10, 20, 30

and 40 days while kM is tested for values of 5, 10, 20, 30, 40 and 50.

3.7.3 Hindsight Parameter Constraint and Preceding 3-Day Streamflow Filter
:::::
Screen

The third ensemble considered is very similar to the preceding streamflow filter with a filter
:::::
screen

::::
with

::
a
::::::::
screening period of25

3 days. However, to constrain the parameter space further than determined by LHS, the population of parameter sets is reduced

by selecting a sub-set from the initial population of 10,000 parameter sets. The sub-set is selected by confining the parameter

values based on model simulations that respond well during precipitation events in 2014. Figure 6 illustrates this filter
:::::
screen

and more details are provided in section 4.3 of the results. This ensemble represents an approach that cannot be used in a

forecasting context, but does represent a proxy for other parameter-constraining methods that are explored in the discussion30

:::
and

:::::
helps

::
to

:::::::
examine

:::::
model

::::::::
structural

::::::
errors.
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3.7.4 Hydrologic-Ensemble Prediction System (H-EPS)

Of course it is not often known for sure if precipitation will occur in the future, and certainly not the amount of precipitation

that will occur. As a result, ECCC’s Meteorological REPS is also used with the June 1 to October 31, 2014 data in a hindcasting

mode to examine how the PSEDA approach can be used in a true forecasting context. At 00 UTC and 12 UTC every 12 hours

from May 1 to October 31, 2014, the top 10 parameter-state pairs from the filter
:::::
screen

:
period and different projection periods5

are run for 3-days using the forcing data from the 20 members of the REPS, for a total of 200 H-EPS members. This analysis is

performed for a hind-sight parameter constraint and preceding 3-day streamflow filter
:::::
screen

:
and kM value of 10 for illustrative

purposes.

The only other use of ECCC’s REPS as a part of an H-EPS is found in Abaza et al. (2013), in which the Canadian operational

meteorological Global Ensemble Prediction System (GEPS) was compared with the REPS and the deterministic 15 km GEM10

NWP forcing of the province of Quebec’s operational streamflow forecasting system. The study found that both the GEPS and

REPS outperformed a deterministic run for eight watersheds ranging in size from 355 to 5820 km2. The REPS was also found

to be superior to the GEPS in terms of its ability to predict forecast uncertainty.

One issue highlighted in the conclusion of Abaza et al. (2013) is that the REPS was found to produce unusually high pre-

cipitation spikes. This issue of excessive precipitation was, in many cases, determined to be caused by the physics perturbation15

scheme that was used to generate the ensemble (Erfani et al., 2014) and was fixed in the version of the REPS that was officially

released on December 4, 2013. The update to the REPS is one of the main reasons for focusing on 2014 as a period of interest.

3.8 Verification

Demargne et al. (2010) differentiates diagnostic verification for evaluating the performance of a system from real-time veri-

fication for helping end-users make decisions about the future. The verification performed here is done for the first of these20

objectives; evaluating the performance of a system.

3.8.1 Verification of the Ensemble Selection Methodologies

First, a qualitative analysis is undertaken to take advantage of the human brain’s ability to synthesize information. The results

are then quantitatively verified using the Ensemble Verification System (EVS, Brown et al., 2010). To examine the quality of

the ensemble mean when compared with the corresponding observation, the mean error (ME) is calculated. Then the quality of25

the ensemble distribution is calculated using rank histograms. Finally, the skill relative to using the current streamflow as the

forecast is calculated using the mean Continuous Ranked Probability Skill Score (CRPSS). The reference forecast in this study

is taken to be the measured streamflow at 00 UTC and 12 UTC each day as the forecast for the next 72 hours. This reference

forecast is a persistence forecast, which assumes the streamflow is persistent for the forecast period.

The ME measures the average difference between a set of forecasts and corresponding observations. In this case, it measures30

the average difference between the mean average of the ensemble forecast (Y ) and the observation (x) as follows:
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ME =
1

n

n∑
i=1

(Y i−xi)

The ME may be positive, zero, or negative. A positive value represents an ensemble mean that is positively biased while

a negative error represents an ensemble mean that is negatively biased. A value of zero represents an absence of bias in the

ensemble mean.

The rank histogram measures the reliability of an ensemble forecasting system. It involves counting the fraction of obser-5

vations that fall between any two ranked ensemble members in the forecast distribution. For an ensemble forecast containing

m ensemble members ranked in ascending order, there are m− 1 spaces between any two ranked ensemble members and two

spaces at the ends (above and below the ensemble forecast range) for a total ofm+1 spaces (s1, ... ,sm+1). The corresponding

observation h for each ensemble forecast will fall within one of the spaces.

hi =
1

n

n∑
j=1

1{xj ∈ sij}10

where hi is the fraction in the ith bin, xj is the jth observed value, sij is the ith gap associated with the jth forecast, and

1{·} is a step function that gives a value of 1 if the condition is met and 0 otherwise.

The mean Continuous Ranked Probability Skill Score (CRPSS) measures the performance of one forecasting system com-

pared to another forecasting system in terms of the mean Continuous Ranked Probability Score (CRPS). The CRPS measures

the average square eror of a probability forecast across all possible event thresholds. The CRPSS comprises a ratio of the CRPS15

for the forecasting system to be evaluated CRPSEVAL, and the CRPS for a reference forecasting system, CRPSREF.

CRPSS =
CRPSREF−CRPSEVAL

CRPSREF

As a measure of the average square error in probability, values for the CRPS approaching zero are better. As a result, values

for the CRPSS closer to one are better as this illustrates that CRPSEVAL < CRPSREF.

3.8.2 Splitting the Analysis Based on Rainfall20

The qualitative analysis shown in the following Results section illustrates that there is a significant difference in the abilities of

the filters
:::::::
P-SEDA

::::::::::::
configurations to effectively project streamflow when it is raining and when it is not raining. As a result, the

quantitative analysis is split into two parts: 1) for periods in which it is raining and just afterwards (for the remainder of each

respective filter
:::::
screen or projection period), and 2) for periods in which it is otherwise not raining.

Note that these periods do not necessarily correspond to the rising-limb and recession periods of the hydrograph since the25

river does not always respond strongly to the precipitation for the time period of study in this basin. As a result, for lack

of better terminology, these periods are hereafter referred to as “
:
“rain-influenced” and “

:
”
::::
and

:
“rain-free”

:
”. It would be more

12



correct to say “
:
“periods during and immediately after the rainfall within the 3-day period” and “

:
”
::::
and

:
“otherwise rain-free,”

:
” but this terminology would be cumbersome throughout the remainder of the paper. Furthermore, it is also important to note

that the terms “
:
“rain-influenced” and “

:
”
:::
and

::
“rain-free”

:
” only refer to a time period rather than the discharge of the river. The

time periods that these terms refer to are the stretch of time under consideration in the analysis.

Recall the description for Figure 3 in Section 3.7.2. for illustrating the difference between “rainfall” and “
:::::::
“rainfall”

::::
and5

:
“rain-free”. The filter

::
”.

:::
The

::::::
screen periods are rain-free for the July 22 rain event in ABC1 through to ABC12 as shown by the

orange and dark green bars, while the filter
:::::
screen

:
periods are rain-influenced in ABC7 through to ABC12 as shown in the light

green bars. Similarly, the projection periods are rain-influenced in ABC1 to ABC6 as shown by the pink bars and rain-free in

ABC1 to ABC12 as shown in the red bars. In both cases (filter
:::::
screen

:
and projection), the rain-influenced period is considered

to be from the beginning of the rainfall (July 22, 9 EST in Figure 3) to the end of the corresponding filter
:::::
screen or projection10

period that “sees”
:::::
“sees” the precipitation.

Recall that MESH is run in a continuous simulation mode for the period of June 2002 to November 2014, with a detailed

analysis of the ensemble selection methodologies from June 1 to October 31, 2014. Within this time period, there are five

significant precipitation events. The beginning and ending of the precipitation events are considered as follows:

– July 22, 14 UTC (9 EST) to 20 UTC (15 EST)15

– August 11, 14 UTC (9 EST) to 20 UTC (15 EST)

– September 10, 08 UTC (3 EST) to September 11, 02 UTC (September 10, 21 EST)

– September 19, 20 UTC (15 EST) to September 20, 20 UTC (15 EST)

– October 3, 08 UTC (3 EST) to 20 UTC (15 EST)

For the rain-influenced and rain-free periods, the quality of the ensemble mean, distribution and skill are compared. The20

June 3 rain-influenced period is not assessed due to the fact that it was not a projection period in the preceding streamflow

filter
:::::
screen.

3.8.3 Verification of the H-EPS

As with the earlier analysis when precipitation uncertainty is minimized, the mean error and CRPSS are calculated for stream-

flow for both rain-influenced and rain-free periods as determined by precipitation events in the basin. The overall mean error25

and CRPSS is also calculated.

The mean error, rank histograms and CRPS of the REPS precipitation ensemble mean are calculated using CaPA as the

observation. The CRPSS is also calculated using the June to October CaPA “climatology” as the reference forecast. The mean

error, CRPS and CRPSS are calculated above and below the ninetieth percentile of CaPA precipitation (0.42 mm/hr).
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4 Results

The results are ordered according to the ensemble selection methodologies. In all cases, the projection time period of interest

is short-term, which is defined here as 3 days.

4.1 Optimal Hind-cast
::::::::
Hindcast of 3-day Projections

In determining the effectiveness of the P-SEDA approach, it is necessary to see if the method has the possibility of succeeding5

with prior knowledge of streamflow and precipitation data. For this purpose, the method is applied for June 1 to October

31, 2014 and compared with hourly streamflow observations. Figure 7a shows precipitation from CaPA. Figure 7b shows the

observed streamflow (black) and corresponding optimal model runs (red). Figure 7c shows the corresponding basin-average

water storage state variables for each of the parameter-state pairs chosen by the optimal hind-casts
:::::::
hindcasts. These storage

results will be discussed later.10

For this study, the qualitative results in Figure 7b) illustrates that CaPA precipitation cascades to reasonable streamflow val-

ues for the time period examined. A quantitative analysis compares these results to the other ensemble selection methodologies,

but a qualitative analysis is first performed for each of the remaining approaches.

4.2 Preceding Streamflow Filter
:::::
Screen

One manner in which to filter
:::::
screen

:
the parameter sets (and associated states) is to consider only the preceding streamflow. In15

this study, the best RMSE values from the preceding days of streamflow are used to determine the parameter sets to use for the

prediction of the subsequent 3 days of streamflow. This process is repeated twice daily at 0 UTC and 12 UTC (19 and 5 local

time for the basin in question) for June 1 to October 31, 2014.

Figure
::::::
Figures

:
7d, e and f show the overall results. Qualitatively, the filter

:::::
screen

:
produces good results when there is

negligible precipitation. However, the results degrade when it rains, particularly for the 3-day filter
:::::
screen. To illustrate this20

aspect of the filter
:::::
screen

:
in more detail, Figures 8a and 8b show how the 3-day filter

:::::
screen reacts for a single rain event on

July 22, 2014. In Figure 8a, which is the equivalent of ABC6 in Figure 3, the filter
:::::::
screening

:
period does not “see” the rain and

the projected streamflows resulting from the filtered
:::::::
screened

:
parameter sets overestimate the actual streamflow. In Figure 8b

(equivalent to ABC7 in Figure 3), the rain event occurs during the filter
:::::
screen period and the subsequent projected streamflows

are much more closely aligned with the observations. This result is consistent with all significant precipitation events, with the25

filter
:::::
screen

:
choosing parameter sets that overestimate streamflow when the precipitation event is not “seen” by the filter

:::::
screen.

However, Figure 7e and f show that the impact of not seeing the precipitation event is reduced with a longer filter
:::::
screen period.

4.3 Hindsight Parameter Constraint and Preceding 3-Day Streamflow Filter
::::::
Screen

The third filter
::::::
screen explored here is one in which the top simulations are selected based on the preceding streamflow and

parameter ranges that are proven to be important during the 2014 precipitation events. Figure 9 shows parameters that are30

particularly sensitive during six precipitation events. Each parameter is normalized between 0 and 1. Based on a subjective
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visual analysis of these box-plots, the 10,000 parameter sets are reduced to 91 parameter sets by confining the values of the

normalized parameters as follows: KS1 < 0.1, WF_R2 > 0.6, CLAY11 > 0.5, CLAY12 > 0.5, SDEP1 > 0.2. Using the

preceding streamflow filter
:::::
screen with these 91 parameter sets to obtain the top 10 runs for each 3-day period yields Figure 10.

::::
This

:::::::
approach

::
of
::::::::::
identifying

::::::::
parameter

::::::
ranges

:::::
based

::
on

:::::::
periods

::
of

::::::::::
hydrological

::::::::::
significance

::
is
::::::
similar

::
to

:::
the

:::::::
DYNIA

::::::::
approach

::::::::
described

::
by

::::::::::::::::::
Wagener et al. (2003),

:::::
albiet

:::::
much

:::
less

::::::::
rigorous. With the exception of the June 3 precipitation event, these results5

are clearly much better than those found in unconstrained 3-day filter
:::::
screen shown in Figure 7c. Although this method clearly

cannot be used in a forecasting context, the significance of these findings are examined in the discussion.

4.4 A Quantitative Comparison of Filters
:::::::
Screens

Table 4 shows the mean error of the ensemble mean for the previously defined rain-free and rain-influenced periods for the

reference forecast, the optimal hind-cast
::::::
hindcast, the preceding streamflow filter

:::::
screen (with various lengths of time for the10

filter
:::::
screen period), and the 3-day filter

:::::
screen

:
with constrained parameters. All of the methods, including the reference

forecast, provide reasonable results for the rain-free periods. For the rain-influenced periods, which are the real periods of

concern for this study, the optimal hind-cast
:::::::
hindcast is capable of finding parameter sets that have a low mean error. The 3-day

filter
:::::
screen

:
performs the worst in terms of overpredicting streamflow in rain-influenced periods, with results improving as the

length of the filter
:::::
screen

:
period increases. The 3-day filter

:::::
screen

:
with constrained parameters performs close to the optimal15

hind-cast
::::::
hindcast

:
with only a slight over-prediction of the observed flows.

The number of "top"
:::::
“top” runs selected (kM ) does not appear to have much influence over these mean error results. As a

consequence the remainder of the analysis if performed with a value of kM = 10.

Using the current streamflow as the reference forecast. Table 5 shows the skill of the optimal hind-cast
:::::::
hindcast, 20-day filter

:::::
screen

:
and 3-day filter

:::::
screen with constrained parameters. The optimal hind-cast

::::::
hindcast

:
exhibits a relatively high skill for20

rain-free and rain-influenced periods. For the rain-free periods, the 20-day filter
:::::
screen shows some skill for the 48 and 72 hour

forecast, while the 3-day projection
:::::
screen with constrained parameters shows no skill. For the rain-influenced periods, the

only filter
:::::
screen

:
that shows any skill is the 3-day projection with constrained parameters. These results quantify the qualitative

analysis shown in Figures 7 and 10.

4.5 H-EPS25

To address the question of how this data assimilation approach could be used in a forecasting context, a full H-EPS is used to

force selected parameter-state ensemble members with ECCC’s Meteorological Regional Ensemble Prediction System (REPS),

as described in the methodology section. Two sets of parameter-state ensembles are selected to see how the REPS performs.

The ensembles are based on 1) the optimal hind-cast
:::::::
hindcast

:
of 3-day projections and 2) the hindsight parameter constraint

and preceding 3-day streamflow filter
:::::
screen. These ensembles were selected because they were the only filters

:::::::
methods

:
that30

showed any skill in the rain-influenced periods. Of course, neither of these ensembles can be used in operational forecasting, so

they are used as a proxy for illustrative purposes assuming that the limitations of the preceding streamflow filter
:::::
screen

:
can be
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addressed as explored in the discussion.
::::::::
Although

::::
these

::::
two

:::::::::
ensembles

::
are

:::::::::::::::
“unforecastable,”

:::::::::
performing

:::
this

:::::::
analysis

::::::::
provides

:
a
::::
more

::::::::::
meaningful

::::::::::
mechanism

::
to

:::::::
examine

::::::
model

::::::::
structural

:::
and

::::::
forcing

::::::
errors.

Figure 11a) shows CaPA (reddish brown) and the 20 REPS precipitation members (blue). The resulting 200 streamflow

ensembles (recall that kM = 10) are shown in Figure 11b, with the black line representing the observed streamflow, the orange

lines coming from the hindsight constrained parameter and preceding 3-day streamflow filter
::::::
screen, and the green lines coming5

from the optimized hind-cast
::::::
hindcast. Even for the optimal hind-cast

:::::::
hindcast, which shows near-perfect alignment with the

observed streamflow when forced with GEM and CaPA, the REPS members that overestimate the precipitation have an impact

on the resulting ensemble of streamflows.

Table 6 shows the mean error for streamflow and Table 7 shows the CRPSS, for both rain-free and rain-influenced periods.

The overall mean error and CRPSS are also calculated.10

The mean error results show that the H-EPS ensemble mean overestimates streamflow in all cases. The CRPSS scores show

that the H-EPS fails to show skill during key time periods for many of the ensembles when compared to using the current

streamflow as the forecasted streamflow. This lack of skill will be considered in the discussion. To examine these findings

with respect to the precipitation; the mean error, rank histograms and CRPS of the REPS precipitation ensemble mean are

calculated using CaPA as the observation. The CRPSS is also calculated using the June to October CaPA “climatology” as the15

reference forecast. The mean error, CRPS and CRPSS shown in Table 8 are calculated above and below the ninetieth percentile

of CaPA precipitation (0.42 mm/hr). Below this threshold, the REPS mean precipitation over-estimates the CaPA precipitation.

In the top 10 percent of CaPA precipitation values, however, the REPS mean under-estimates the CaPA precipitation. The

rank histograms (not shown) indicate that the ensemble members tend to underestimate precipitation, although some REPS

members do over-estimate the higher CaPA precipitation values. The CRPS shows the highest (worst) values, and the CRPSS20

shows the least skill, for the highest precipitation rates.

5 Discussion

The discussion is organized around three
:::
four

:
questions. The first question looks at whether-or-not the P-SEDA approach is

capable of reproducing observed streamflow, which corresponds to the optimized hind-cast
::::::
hindcast. The second question con-

siders the effectiveness of the remaining filtering
:::::::
screening

:
approaches. The third question revolves around the more realistic25

example of using the approach in a full H-EPS.
:::
The

::::::
fourth

:::::::
question

:::::
looks

::
at

:::::::
whether

:
a
::::::::
stochastic

::::::
model

::
is

:::::
really

::::::::
necessary

:::
for

:::::::
practical

::::::::::::::
implementations

::
of

::::::::
ABCDE. Finally, advantages and limitations of the approach are discussed.

5.1 Given maximum data certainty, can the P-SEDA approach reproduce observed streamflow?

Although the P-SEDA filter
::::::::
approach could be applied to a hydrological model with few parameters, the Canadian MESH

model is used with many parameters perturbed. This increases the dimensionality of the problem and is, to our knowledge,30

the first hydrological application of ABC
:::::::
ABCDE in a short-term DA application with such a parameter-intensive model.

Although much simpler models tend to dominate the operational hydrological modelling community, part of the motivation
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behind using a hydrologically-enhanced land-surface scheme in the case study is to begin laying some foundation for using

such parameter-intensive models for operational ensemble hydrological forecasting.

One major limitation to the way in which MESH is applied in this study is the use of the relatively inefficient Latin Hyper-

cube Sampling to determine the prior distribution of parameter sets to be used with the ABC
:::::::
ABCDE

:
approach. Despite this

limitation, however, the results clearly show that the approach can, with confidence in the precipitation forcing and stream-5

flow, find parameter-state sets that match the observed hydrograph over successive periods of a few days. One possible way of

dealing with the uncertainty in precipitation is to perturb the CaPA precipitation field as is examined by Carrera et al. (2015).

The widely varying nature of the simulated basin storage for the selected runs for each 3-day period also highlights a

limitation with the study. This limitation is in only using streamflow as the state variable to determine the top parameters

each time. Consider the following water balance equation for the basin: P −E =R+ dS/dt, where P is precipitation, E is10

evapotranspiration, R is runoff and dS/dt is the change in basin storage over time. Over the short time-periods of a few days

in short-term hydrological prediction, E can generally be ignored, leaving only P =R+ dS/dt. In the hindcasting exercise

presented in this part of the study, P and R are considered to be known and the only remaining term is dS/dt. So why does the

analysis show such a wide range of basin storage terms for the best matching assimilated streamflow? The answer lies in the

fact that it is not the basin storage that balances the equation, but rather the change in storage over the time period of interest.15

The model is capable of releasing or storing the appropriate amount of water in both rain-influenced and rain-free scenarios,

and the model determines dS/dt based on the interaction of existing storage, model physics and parameters.

The issue of widely-varying simulated basin storage (Figure 7c) also highlights the issue of equifinality, which is defined

here as the idea that many different model simulations can produce acceptable results (Beven, 1993). The model is able to

find many parameter-state sets that fit the streamflow for short periods of time. If only streamflow observations are available,20

the selected simulations are equifinal. However, including the state of basin storage clearly shows that the parameter-state sets

are not equal. If soil moisture observations are also available and used, then these simulations are not
::
the

::::::::::
simulations

::::::
shown

::
in

:::
this

:::::
study

::::::
would

:::
not

::
be

:
equifinal and the selected simulations can

::::
could

:
be further constrained.

::
Of

::::::
course,

::::::::
including

::::
soil

:::::::
moisture

:::::::::::
observations

::
to

::::::
further

:::::::
constrain

:::
the

::::::::
selection

::
of

::::::::::
simulations

::::::
would

:::
not

::::::
remove

::::::::::
equifinality.

::
It

:::::
would

::::::
simply

:::::
make

::
it

::::
more

:::::
likely

::::
that

:::
the

:::::
model

::
is

:::::
more

::::::::
accurately

:::::::::
predicting

::::
both

:::::::::
streamflow

::::
and

:::
soil

::::::::
moisture.

:
25

One assumption in most environmental modelling exercises is that the parameters do not vary with time, or at least they

vary slowly or if the system is disturbed in some way such as land-use change (Bard, 1974; Wagener et al., 2003; Liu and

Gupta, 2007). Wagener et al. (2003) indicate that the inability of a single parameter set to simulate an entire streamflow record

provides evidence of model structural error. It is incorrect to assume that MESH has a perfect model structure, so the results

indicate that any model structural errors can be compensated for by the parameter sets. One can also presume that data errors30

can also be hidden by the selection of certain parameter sets. Clearly the model needs further constraints to give the results a

more solid foundation. One of these constraints could be the assimilation of some aspects of storage in the model. One such

possibility would be to examine the usefulness of the soil moisture and ocean salinity (SMOS) satellite (Mecklenburg et al.,

2012; Jackson et al., 2012; Ridler et al., 2014).
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5.2 How well do different filters work?

::::::
Related

::
to

:::::
model

::::::::
structural

:::::
error,

:::
the

:::::::::::
unresponsive

:::::::::
streamflow

::
in

:::
this

:::::
study

::
is

::::
likely

::::
due

::
to

::::::::::::
“fill-and-spill”

::::::::
dynamics

::::::::::::
(Spence, 2010)

:
.
:::::
Being

::
on

:::
the

:::::::::::
Precambrian

::::::
Shield,

:::
and

:::
the

:::::::
starting

:::::
point

::
of

:::::
many

::::::
streams

::
in

:::
the

:::::
basin

:::::
being

:::::
small

:::::
lakes,

::::
there

:::
are

:::::
many

:::::
parts

::
of

:::
the

::::
basin

::::
that

::::
need

::
to

:::
be

:::::::
filled-up

:::::
before

::::
they

:::::::::
contribute

::
to

::::::::::
streamflow.

::::
This

:::::::
physical

:::::::
process,

::::::::
especially

:::::
with

::::::
respect

::
to

:::
the

::::::::
headwater

:::::
lakes,

::
is
:::
not

::::::::::
represented

::
in

:::
the

:::::::
version

::
of

::::::
MESH

::::
used

::
in
::::

this
:::::
study.

::::::
Future

:::::
work

::::::
should

::::
focus

:::
on

:::
this

::::::
aspect

:::::
more5

::::::
closely.

:

5.2
:::
How

::::
well

:::
do

::::::::
different

::::::::
P-SEDA

::::::::::::
configurations

::::::
work?

The issues of parameter time-invariance and the most appropriate model structures are generally secondary considerations in

DA. The focus in DA shifts from the exercise of improving the model and its parameterization to the exercise of making a more

accurate prediction. The results presented from the various filters
::::::::::::
configurations tested, however, indicate that some thought is10

required to determine the appropriate parameter sets at the appropriate times.

The only filter
:::::::::::
configurations

:
in this study that shows

:::::
show any skill in predicting streamflow when it rains is the

:::
are

::
a)

:::
the

::::::
optimal

:::::::
hindcast

:::
of

:::::
3-day

::::::::::
projections,

:::
and

::
b)

:::
the

:
hindsight parameter constraint and preceding 3-day streamflow filter

:::::
screen.

The manner in which this filter
::
the

::::::
second

:::
of

::::
these

::::::::::
approaches

:
is applied in this study reveals that 91 of the original 10,000

LHS parameter sets can be used effectively with the P-SEDA filter approach to perform short-term predictions in the basin15

for the months of July to October, 2014. Techniques other than LHS must be explored to obtain more appropriate parameter

sets for the P-SEDA method to work in this type of situation
:::
The

::::::::
reduction

::
of

::::::
10,000

:::::::::
parameter

::::
sets

::
to

:::
91

::::::::
parameter

::::
sets

::
is

:::::::
noteable.

The fact that constraining the parameter sets allows for the approach to produce reasonable results throughout the period

provides some assurance that the method has the possibility of being able to predict streamflow with some skill
::
in

:
a
::::::::::
forecasting20

::::::
context. The key, at least in part, is expected to be in using a method other than LHS to determine the prior distribution of

parameter sets. Alternative approaches could use algorithms such as Dynamically Dimensioned Search - Approximation of

Uncertainty (DDS-AU) which have been shown to be more efficient than GLUE (Tolson and Shoemaker, 2008). The prior

can also be obtained by looking for parameter sets that perform well for different hydrological signatures (e.g. Zhang et al.,

2014; Shafii and Tolson, 2015) or different hydrological scenarios which might include streamflow responses to snow-melt,25

runoff over frozen ground, rain during wet conditions, rain during dry conditions, or whatever else can be considered a relevant

hydrological event affecting streamflow.

As shown in this study, increasing the length of the filter
::::::::
screening period has a positive impact on the scores. The gains in

mean error values do not improve after 20 day filter
::::::::
screening periods, indicating that there is a limit to the value of longer

filter
:::::
screen

:
periods. In this study, the 20 day filter

::::::::
screening period allows the method to see the previous precipitation event in30

all cases examined. As such, the ability of the filter
:::::
screen

:
to capture important hydrological responses is critical to improving

results. The downside to having a longer filter
:::::
screen

:
period, however, is that the forecaster must wait longer to apply the

approach. This filter-period
:::::::::::
screen-period time limitation for the forecaster may not be true for basins where snow, ice and
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frozen ground are not dominant processes. We expect that different basins will have different optimal filter
:::::
screen

:
period

lengths depending on the important hydrological processes in the basin.

If given more information about the state of the basin (other than streamflow), different hydrological scenarios could also be

used in determining the appropriate parameter-state sets to filter
:::::
screen. For example, if the SMOS satellite indicates that the

basin is dry, the streamflow observation is relatively low and a certain amount of precipitation is expected in the near future,5

then past scenarios that fit this description could be used to filter
::::::
screen the parameter sets. As a result, parameter sets that fit

both the current state of the basin as well as the expected forcing could be filtered
:::::::
screened, if both the current basin state and

expected precipitation has been previously experienced and observations are available.

Such an approach is very similar to the well-established k-nearest neighbor (k-nn) bootstrap method as described by Lall

and Sharma (1996). In its simplest form, the k-nn approach finds k similar patterns in the past data and uses this information10

to make a prediction about the next data point. The P-SEDA preceding streamflow filter
:::::
screen

:
essentially does the same thing,

except that it looks for similar patterns in an ensemble of model runs rather than in a time series of data points. By including

criteria beyond streamflow as suggested in the previous paragraph, one could (for example) look for past parameter sets that

successfully simulated the streamflow when the basin exhibited a certain threshold of upper-layer soil moisture from SMOS, a

given streamflow, and a specified amount of precipitation. This approach requires a relatively long time series of observational15

data with model simulations and could provide an interesting comparison between the model-centric P-SEDA filter
::::::::
approach

and purely data-driven analogue methods.

5.3 How can this approach be used in a forecasting context (including precipitation uncertainty)?

The mean error results for the H-EPS ensemble mean streamflow, forced with the REPS (Table 6), are similar in nature to the

mean ensemble streamflow forced with GEM and CaPA (Table 4). However, an important finding is drawn from the CRPSS20

scores in Table 7. Overall, the 3-day filter
:::::
screen with constrained parameters does not show skill, with the exception being

hour 72 for the rain-influenced periods.

These findings illustrate that the H-EPS contains too much uncertainty to be used with any skill for this particular study. It is

important to note that the same lack of skill may not be true for other time periods or different basins. For this particular study,

it is not surprising that the REPS does not show any skill when compared to using the current streamflow as the forecast. For25

this basin and the time period considered, the streamflow is not very responsive to the precipitation input for much of the time.

Situations when the river is not responsive to precipitation favor the approach of using the current streamflow as the forecast.

A resulting question is whether or not the lack of skill in the H-EPS is due to the uncertainty in the REPS precipitation, or the

unresponsive behaviour of the streamflow to precipitation during this period. Looking more closely at the REPS precipitation

mean error compared to CaPA (Table 8) indicates that the REPS tends to overestimate the bottom 90 percent, and underestimate30

the top 10 percent, of CaPA values, which are taken to be as close to observed as is possible in the basin. The only noticeable

trend in time is that the underestimation in the top 10 percent of precipitation becomes more pronounced with time.

The unresponsive streamflow in this study is likely due to “fill-and-spill” dynamics (Spence, 2010). Being on the Precambrian

Shield, and the starting point of many streams in the basin being small lakes, there are many parts of the basin that need to
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be filled-up before they contribute to streamflow. This physical process, especially with respect to the headwater lakes, is not

represented in the version of MESH used in this study. Future work should focus on this aspect more closely.

Returning to the question of whether-or-not the lack of skill in the H-EPS is due to the uncertainty in the REPS precipitation,

or the unresponsive behaviour of the streamflow to precipitation during this period, it seems that both factors contribute to

the overall lack of skill. As Figure 11, shows, however, relatively small differences in precipitation result in large changes5

to streamflow, indicating that the land-surface physical processes (e.g. fill-and-spill) that determine the responsiveness of the

streamflow to precipitation, are probably the more important of the two for this particular study.

5.4
:

Is
::
a

::::::::
stochastic

::::::
model

:::::
really

:::::::::
necessary

:::
for

::::::::::
real-world

::::::::::
applications

:::
of

::::::::
ABCDE?

:::::::::::::::::::::
Sadegh and Vrugt (2013)

::::
states

::::
that

:::::
“ABC

::::
can

::::
only

:::
be

::::
used

::::
with

::
a

::::::::
stochastic

::::::
model

::::::::
operator.”

::::
The

:::::::::
reasoning

::
is

::::
that,

:::::
using

::::::::
Algorithm

::
1,
::::

the
:::::::
posterior

:::::::::
parameter

::::::::::
distribution

:::
will

::::::::
dwindle

::
as

::::::
ε→ 0

::::
and

::::::::
converge

::
to

:
a
:::::
Dirac

:::::
delta

:::::::
function

::
if

:::
the

::::::
model10

:
is
:::::::::

adequate.
::
In

:::::
other

::::::
words,

::
a
:::::
single

:::::::::
parameter

:::
set

::::
will

::
be

::::::
found

::
to

::::::
match

:::
the

::::::::::
hydrograph

::
in

:::
the

:::::
limit

::
of

::
ε
:::::
going

:::
to

::::
zero

::::
given

:::
the

::::::::::
impossible

:::::::
scenario

::
of

::
a

:::::::::
sufficiently

:::::::
accurate

::::::
model.

:::::
This

:::::::::
assertation

::
is

:::
also

:::::
made

:::
in

::::::::::::::::::::
Vrugt and Beven (2018).

::
It

::
is

:::
true

::::
that

::::::::::
applications

::
of

:::::
ABC

::
in

:::
the

::::::::
literature

::::::::
generally

:::
use

:::::
either

::
a

::::::::
stochastic

::::::
model

::
or

::::::
perturb

:::
the

::::::
output

::
of

::
a
:::::::::::
deterministic

::::::
model,

::::
but

::::
given

::::
that

:::::::::
streamflow

::
is

::
an

:::::::::
integrated

:::::::
response

::
of
::
a
::::::
number

:::
of

:::::::::
basin-wide

:::::::
physical

:::::::::
processes,

:
it
::
is

:::::::
entirely

:::::::
possible

:::
that

:::::::
different

:::::::::
parameter

::::
sets

:::::
would

:::::::
provide

::::::::
identical

:::::::::
streamflow

:::::::::
simulation

::::::
results

::::::
which

:::::
could

::::::
exactly

::::::
match

:::
the

::::::::
observed15

:::::::::
streamflow.

::::
This

::
of
::::::

course
:::::::
ignores

:::
the

::::
issue

::
of

::::::::::::
measurement

::::
error

:::
and

::::::::::::
computational

::::::::
precision

:::::::::
limitations

::::
and

:::::
points

:::::::
directly

::
to

::::::::::
equifinality,

::
or

:::
the

:::
idea

::::
that

:::::
many

:::::::
different

::::::
model

:::::::::
simulations

::::
can

::::::
produce

:::::::::
acceptable

:::::::
results.

::
In

:::
the

::::
case

::
of

:::::
ε→ 0,

::::::::
identical

:::::
results

::
to

:::
the

:::::::::
erroneous

:::
and

:::::::::
imprecise

:::::::::::
observations.

::
As

::
a
:::::
result,

:::::::::::
constraining

:::
the

:::
use

::
of

::::
such

:::
an

::::::::
approach

:::
due

::
to

:::
an

::::::::
argument

:::
akin

:::
to

:::::
“how

:::::
many

::::::
angels

:::
can

:::::
dance

:::
on

:::
the

:::::
head

::
of

::
a
::::
pin”

:::::
limits

:::
the

::::::::
scientific

::::::::::
community

:::::
from

::::::::
exploring

::::
how

::::::
useful

:::
the

:::::::
approach

::::
can

:::::::
actually

::
be

::
in

:::::::
practice.

:::::
Real

:::
life

::::::::::
applications

::
of

:::::
ABC

::::
with

:
a
:::::::::::
deterministic

::::::
model

::::
will

::::
never

::::::::
converge

::
to

::
a
:::::
Dirac20

::::
delta

::::::::
function.

:::
The

:::
use

::
of
:::::::::
Algorithm

::
2
::
in

:::
the

:::::::::
application

::
of

:::::
ABC

:::::::
removes

:::
the

::::
need

::
to
:::::::::
explicitly

::::::
identify

::
ε.

:

5.5 Advantages and Challenges of the Approach

One key benefit of the P-SEDA filter
::::::::
approach is that it is conceptually straight-forward. In plain language, the idea is to setup a

series of continuous simulations and draw the most appropriate runs from these simulations for making a projection or forecast.

This concept is very easy to understand and implement. In an operational forecasting environment, in which DA approaches25

are fundamentally designed to support, this simplicity is desirable.

:::::::
Another

::::::::
advantage

::
is

:::
that

:::
the

::::::::::
parameters

:::
and

::::
state

::::::::
variables

:::
are

::::::
always

::::::::
consistent

:::::
with

:::
one

:::::::
another.

::::
This

::::::
cannot

::
be

::::
said

:::
for

::::
other

::::::::::
approaches

::::
such

::
as

:::
the

::::
dual

::::::
Particle

:::::
Filter

::
or

::::
dual

:::::::::
Ensemble

:::::::
Kalman

:::::
Filter.

As the examples provided in this study have shown, the approach is also flexible. It can be used in the more traditional

manner of hydrologic model calibration by selecting multi-year filter periods , which hs
:::::
screen

:::::::
periods

::
(?)

:
,
:::::
which

:::
has

:
not been30

shown here, or in other unique ways that have been examined and discussed throughout the paper. It can be seen as a more

general approach to model calibrationand represents a hybrid approach to DA that blends the particle filter and variational DA

methods.
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Two challenges with the approach are 1) how to determine the prior parameter sets to run in continuous simulations, and 2)

how to select the most appropriate runs for making a projection or forecast. This study uses a parameter-intensive H-LSS and

deals with the first challenge by using LHS to determine the prior, and deals with the second challenge by comparing different

filter
:::::
screen

:
period lengths to select the appropriate runs. There are likely better ways of dealing with these challenges than have

been explored here, and one proxy method (the hindsight parameter constrined and preceding 3-day streamflow filter
:::::
screen)5

has been explored in lieu of these other potential methods.

Fortunately, there is an exhaustive body of research and a number of existing tools that can be used to overcome these chal-

lenges. Possible solutions to determine a better prior include: 1) selecting parameter sets based on more than just streamflow,

2) selecting parameter sets based on different hydrological signatures or aspects of the streamflow 3) using k-nn type approach

of looking for parameter sets that worked in similar circumstances in the past, 4) using more efficient algorithms than LHS to10

determine the prior. Any or all of these methods can be used together to improve the determination of the prior. In terms of

selecting the most effective particles once the prior has been established, one method that can be explored is to use more than

streamflow to select the top particles with the ABC method. The length of the filter
:::::::
screening

:
period is also a consideration

that needs further exploration.

For both determining a better prior and selecting the most effective particles once the prior has been established, remote15

sensing offers such opportunities to gather information on the watershed state (e.g. soil moisture, snow) that can comple-

ment the limited information that streamflow provides. This approach would better constrain the model in the parameter and

state estimation process. Using different hydrological signatures, or segmenting the hydrographs for different parameters (e.g.

groundwater parameters during low flows), are also ideas worth exploring.

The effectiveness of these methods requires further study.20

6 Conclusions

The main contribution of this work is the introduction of a new DA method (P-SEDA). The DA method is a hybrid of the

traditional particle filter and variational DA. The method
::::::
method always returns to the initial particles and removs

:::::::
removes the

need to resample the parameter space between each model run. The weighting of each particle from the original set of particles

is then determined by assigning each particle a value of zero or one. This approach is the same as applying the ABC algorithm.25

:
It
::
is

:::::
worth

::::::
noting

:::
that

:::
this

:::
is,

:
to
:::
the

:::::::
authors’

::::
best

::::::::::
knowledge,

::
the

::::
first

:::::::::
application

::
of

:::::
ABC

:::
for

::::::::::
hydrological

:::::::::
modelling

::::
using

:::
an

::::::
H-LSS

:::::
rather

::::
than

:
a
::::
more

:::::::::
traditional

::::::::::::
rainfall-runoff

:::::
model

::::
(e.g.

:::
the

::::::::::
Sacramento

::::
Soil

:::::::
Moisture

::::::::::
Accounting,

::::::::::
SAC-SMA,

:::::::
model).

::
As

:::::
well,

:::
this

::
is

:::
the

::::
first

:::::::::
application

::
of

:::::
ABC

:::
for

:::::
short

:::::::::::
(3-to-40-day)

:::::::::
time-slices

::
of

::
a
::::::::::
hydrograph.

::
In

::::::::
addition,

:::
the

:::::::::::
development

::
of

:
a
::::::
H-EPS

:::
for

:::
the

:::::
study

::
is

:::::
unique

::::::
within

:::
the

:::::::::::
hydrological

:::::::
literature

::::::
related

::
to
:::::
ABC.

:

In this study, one filter
:::::::
approach is to use ABC for the preceding days of streamflow every 12 hours (preceding streamflow30

filter
:::::
screen). It is shown that increasing the length of time for the filter

::::::::
screening period generally improves the results, up

to a point (in this study example, 20 days). A second filter
:::::::
approach

:
is the same as the first filter

:::::::
approach

:
with a parameter-
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constrained subset of the original 10,000 runs (preceding 3-day streamflow filter
:::::
screen

:
with parameter constraints). The

parameter constraints are determined from an analysis of the filter-period results during rain-influenced periods.

The optimal hind-cast
::::::
hindcast

:
results clearly show that the model and LHS method of sampling 10,000 prior parameter

sets is capable of simulating the streamflow for any three-day period where the precipitation input is reasonable. The methods

tested to select the most appropriate runs, however, show that making a projection is more complicated. The only method that5

consistently shows reasonable projections in this work is the preceding streamflow filter
:::::
screen

:
with parameter constraints. The

problem with this filter
:::::::
approach is that it is not immediately clear how such a filter

::::::
screen can be used in a forecasting context.

Something more is needed to provide better parameter estimates if the P-SEDA filter
::::::
method is to be useful in an operational

forecasting setting. Fortunately, there are a number of approaches that can be explored to provide superior guidance on the

parameters, either in pre-determining the prior or in selecting the most appropriate runs from the prior.10

In addition to introducing P-SEDA, a fuller H-EPS is presented that includes forcing uncertainty from ECCC’s REPS. For

this particular basin and time-period, the resulting H-EPS is shown overall to be less skillful than using the current streamflow

as the forecast for the future streamflow, likely due to model structural errors in MESH. This result is not generally applicable

as one should expect the current streamflow to be a fairly good indicator of future streamflow when the stream is relatively

unresponsive to precipitation inputs, as is the case in this study. It is expected that the REPS precipitation in an H-EPS would15

exhibit more skill in more responsive basins without the same fill-and-spill physical processes or for more responsive time

periods in this basin.
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Figure 1. Schematic of the P-SEDA filter
:::::::
approach. M simulations are run continuously from a model, of which the filter

::::
screen

:
chooses a

number from which to analyze a projection. The process is then repeated for subsequent filter
:::::::
screening periods, noting that theM simulations

run continuously through the previous projection periods even though they are not all selected for the previous projection period analysis.
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Figure 2.
::::
Little

:::
Pic

::::
River

:::::
basin

::::
near

:::::::
Coldwell,

:::::::
Ontario,

:::::::
Canada.

::
a)

:::::::
Location

::
of

:::
the

::::
basin

::::
and

::::::
legend,

::
b)

::::
basin

::::::
outline

::::
with

::::::
respect

::
to

::::::::
ecodistrict,

::
c)

:::
river

:::::::
network

:::
and

::::
gauge

:::::::
location

:::::::::
(02BA003),

:::
and

::
d)

:::::::
landcover

::::
(MW

::
is

:::::
Mixed

:::::
Wood,

:::
CF

:
is
:::::::::
Coniferous

:::::
Forest,

:::
BL

:
is
::::::::
Broadleaf

:::::
Forest,

::
W

::
is

:::::
Water,

:::
and

::
O

:
is
:::::
other).
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Figure 3.
::::::::
Preceding

::::::::
Streamflow

::::::
Screen

:::
and

::::::::
Projection

::::::
Periods

:::
for

:::
July

::
17

::
to
::::

July
:::
28,

::::
2014

::::
using

::::::
Hourly

:::::::::
Streamflow.

::::
This

:::::
Figure

::
is

::::
fully

:::::::
explained

::
in

::::::
sections

::::
3.7.2

:::
and

:::::
3.8.2.
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Figure 4. Schematic of the P-SEDA filter for the optimal hind-cast
::::::
hindcast

:
of 3-day projections used in this study. 10,000 simulations are

run continuously through the MESH model, of which the filter
::::
screen

:
chooses a number (kM ) for the hind-cast

::::::
hindcast

:
analysis. The process

is then repeated for subsequent filter
::::::
screening

:
periods.
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Figure 5. Schematic of the P-SEDA filter for the preceding streamflow filter
::::
screen. 10,000 simulations are run continuously through the

MESH model, of which the filter
::::

screen
:
chooses a number (kM ) from which to analyze a projection. The process is then repeated for

subsequent filter
:::::::
screening

:
periods, noting that theM simulations run continuously through the previous projection periods even though they

are not all selected for the previous projection period analysis.
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Figure 6. Schematic of the P-SEDA filter for the hindsight parameter constraint and preceding 3-day streamflow filter
:::::
screen used in this

study. 10,000 simulations are run continuously through the MESH model. The original 10,000 parameter sets are reduced to 91 parameter

sets based on a hindsight analysis of parameters that are shown to be important during precipitation events between June 1 and October 31,

2014. These remaining 91 parameter sets are then selected for analysis in the preceding streamflow filter
:::::
screen as if M = 91 in Algorithm

2.

Preceding Streamflow Filter and Projection Periods for July 17 to July 28, 2014 using Hourly Streamflow. This Figure is

fully explained in sections 3.7.2 and 3.8.2.
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Figure 7. CaPA precipitation (a) for all simulations shown in this Figure. (b) Observed streamflow (black) and top 10 streamflow values

(red) for the optimal hind-cast
::::::
hindcast

:
of 3-day projections. (c) Corresponding basin-wide storage values for the optimal hind-cast

::::::
hindcast

of 3-day projections. (d) Top 10 preceding streamflow filter projections for each of the 3-day filter
::::
screen

:
periods. (e) Top 10 preceding

streamflow filter projections for each of the 10-day filter
::::
screen

:
periods. (f) Top 10 preceding streamflow filter projections for each of the

20-day filter
:::::
screen periods. The black lines in (d), (e) and (f) show observed streamflow with different y-axis scaling than in (b).

Little Pic River basin near Coldwell, Ontario, Canada. a) Location of the basin and legend, b) basin outline with respect to

ecodistrict, c) river network and gauge location (02BA003), and d) landcover (MW is Mixed Wood, CF is Coniferous Forest,

BL is Broadleaf Forest, W is Water, and O is other).
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Figure 8. A single filter-projection
:::::::::::::
screen-projection period for two neighboring time periods. For the two sub-plots in a) the projection

begins at 7:00 local time, July 22, 2014 (12 UTC). For the two sub-plots in b) the projection begins at 19:00 local time, July 22, 2014

(0 UTC, July 23). The upper plot of each sub-figure shows CaPA precipitation and instantaneous storage. The lower plot shows observed

streamflow (black), the top 10 runs for the filter
:::::::
screening period (blue), and the corresponding streamflow projections (red).
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Figure 9. Importance of (normalized) parameters that see precipitation. The top set of box-plots shows that none of the top parameter sets

have identifiable parameter values prior to the June 3, 2014 precipitation event. This result is similar to all parameter sets immediately prior

to precipitation events that do not see the events. The remainder sets of box-plots show the parameter ranges for the top simulations during

precipitation events.
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Figure 10. Projection period results after filtering
:::::::
screening

:
based on parameter values and preceding streamflow.
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Figure 11. Results of the H-EPS for the 3-day period beginning at 6 Eastern Standard Time (EST) on July 21, 2014. The reddish brown line

in sub-figure a) is the Canadian Precipitation Analysis (CaPA) while the blue lines represent the 20 Regional Ensemble Prediction System

(REPS) precipitation traces. The single black line in sub-figures b) is the observed streamflow. The orange and green lines show the 200

H-EPS streamflow traces for the projection periods of the constrained parameter with a preceding 3-day streamflow filter
::::
screen, and the

optimized hind-cast
::::::
hindcast.
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Table 1. Landcover percentages based on LCC2000-V Landsat product.

Landcover Percentage

Water 8

Coniferous Dense Forest 23

Broadleaf Dense Forest 13

Mixed Wood 53

Other 3

38



Table 2. Fixed landcover parameters.

Parameter Name Description Units Value Source

QA50 - NL Reference value of incoming shortwave ra-
diation used in stomatal resistance formula
(Needleleaf)

[W m−2] 30 Verseghy (2011)

QA50 - BL Reference value of incoming shortwave ra-
diation used in stomatal resistance formula
(Broadleaf)

[W m−2] 40 Verseghy (2011)

VPDA - NL Vapour pressure deficit coefficient used in stom-
atal resistance formula (Needleleaf)

[ ] 0.65 Verseghy (2011)

VPDA - BL Vapour pressure deficit coefficient used in stom-
atal resistance formula (Broadleaf)

[ ] 0.5 Verseghy (2011)

VPDB - NL Vapour pressure deficit coefficient used in stom-
atal resistance formula (Needleleaf)

[ ] 1.05 Verseghy (2011)

VPDB - BL Vapour pressure deficit coefficient used in stom-
atal resistance formula (Broadleaf)

[ ] 0.6 Verseghy (2011)

PSGA - NL Soil moisture suction coefficient used in stom-
atal resistance formula (Needleleaf)

[ ] 100 Verseghy (2011)

PSGA - BL Soil moisture suction coefficient used in stom-
atal resistance formula (Broadleaf)

[ ] 100 Verseghy (2011)

PSGB - NL Soil moisture suction coefficient used in stom-
atal resistance formula (Needleleaf)

[ ] 5 Verseghy (2011)

PSGB - BL Soil moisture suction coefficient used in stom-
atal resistance formula (Broadleaf)

[ ] 5 Verseghy (2011)

ROOT - NL Root depth (Needleleaf) [m] 0.05 User Selected

ROOT - BL Root depth (Broadleaf) [m] 0.05 User Selected

DDEN Drainage density, equal to the length of the
stream divided by area drained by the stream
(Basin wide)

[km km−2] 50 Dingman (2002)

XSLP Average overland slope. [rise/run] grid-based Calculated from Digital Elevation Model

GRKF Ratio of saturated horizontal hydraulic conduc-
tivity at a depth of 1 metre to the saturated
horizontal hydraulic conductivity at the surface
(Basin wide)

[ ] 0.01 User defined
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Table 3. Ranges for the perturbed parameters.

Parameter Name Description Units Lower Limit Upper Limit Source

MANN Manning’s n for overland flow. [m s−1/3] 0.02 0.16 Dingman (2002)

KS Saturated surface horizontal soil conductivity. [m s−1] 0.00001 0.1 User specified

ZSNL Limiting snow depth below which coverage is
less than one-hundred percent.

[m] 0.1 1 User specified

SDEP Soil permeable depth, set to greater than model
soil depth to simulate fully permeable soil.

[m] 0.1 4.2 User specified

WF-R2 River roughness factor that incorporates a chan-
nel shape and width to depth ratio as well as
Manning’s n.

[m0.5 s−1] 0.3 1 User specified

RSMN-NL Minimum stomatal resistance (Needleleaf) [s m−1] 175 225 Verseghy (2011)

RSMN-BL Minimum stomatal resistance (Broadleaf) [s m−1] 100 150 Verseghy (2011)

SAND-L1 Sand in soil layer 1. [%] 35 58 Ecodistrict based

SAND-L2 Sand in soil layer 2. [%] 35 58 Ecodistrict based

SAND-L3 Sand in soil layer 3. [%] 35 58 Ecodistrict based

CLAY-L1 Clay in soil layer 1. [%] 0 37 Ecodistrict based

CLAY-L2 Clay in soil layer 2. [%] 0 37 Ecodistrict based

CLAY-L3 Clay in soil layer 3. [%] 0 37 Ecodistrict based

LANZ0-NL Natural log of roughness length (Needleleaf). [ln(m)] -0.7 1.1 Verseghy (2011)

LANZ0-BL Natural log of roughness length (Broadleaf). [ln(m)] -0.7 1.1 Verseghy (2011)

ALVC-NL Visible albedo (Needleleaf). [ ] 0.02 0.09 Verseghy (2011)

ALVC-BL Visible albedo (Broadleaf). [ ] 0.02 0.09 Verseghy (2011)

ALIC-NL Near infrared albedo (Needleleaf). [ ] 0.1 0.5 Verseghy (2011)

ALIC-BL Near infrared albedo (Broadleaf). [ ] 0.1 0.5 Verseghy (2011)

LAMAX-NL Maximum leaf area index (Needleleaf). [ ] 1.8 2.2 Verseghy (2011)

LAMAX-BL Maximum leaf area index (Broadleaf). [ ] 4 10 Verseghy (2011)

LAMIN-NL Minimum leaf area index (Needleleaf). [ ] 1.4 1.8 Verseghy (2011)

LAMIN-BL Minimum leaf area index (Broadleaf). [ ] 0.2 4 Verseghy (2011)

MAXMASS-NL Standing biomass density (Needleleaf). [kg m−2] 5 40 Verseghy (2011)

MAXMASS-BL Standing biomass density (Broadleaf). [kg m−2] 5 40 Verseghy (2011)

ZPLS Maximum water ponding depth for snow-
covered areas.

[m] 0.1 0.5 User specified

ZPLG Maximum water ponding depth for snow-free
areas.

[m] 0.1 0.5 User specified

DRN Drainage index, set to 1.0 to allow the soil
physics to model drainage or to a value between
0.0 and 1.0 to impede drainage.

[m] 0 1 User specified
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Table 4. Mean error ( m3 s−1) as an assessment of the ensemble mean streamflow for the reference forecast, the optimal hind-cast
::::::
hindcast,

and various configurations of the P-SEDAfilter. The value of kM from Algorithms 1 and 2 varies from 5 to 50 as shown. Rain-influenced

and rain-free periods from June to October, 2014 as described in the text.

Rain Free Rain Influenced

kM kM

5 10 20 30 40 50 5 10 20 30 40 50

Reference Forecast 2 2 2 2 2 2 -8 -8 -8 -8 -8 -8

Optimal hind-cast
::::::
hindcast 0 0 0 0 0 0 3 3 3 4 4 4

3-day filter
::::
screen

:
1 2 2 2 2 2 41 42 45 46 46 46

10-day filter
:::::
screen 1 1 2 2 2 2 11 10 12 12 12 13

20-day filter
:::::
screen 1 1 1 2 2 2 4 5 7 8 9 9

30-day filter
:::::
screen 2 1 2 2 3 3 4 6 8 9 9 9

40-day filter
:::::
screen 2 2 3 3 3 4 6 7 8 9 9 9

3-day filter
::::
screen

:
with constrained parameters 3 4 4 4 5 5 2 4 4 5 5 6
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Table 5. Mean continuous ranked probability skill score (CRPSS) as an assessment of the ensemble skill from the P-SEDA filter for rain-

influenced and rain-free periods from June to October, 2014. The configurations considered here are the optimal hind-cast
::::::
hindcast, the 3-day

projection for the 20-day filter
::::
screen, and the 3-day projection for the 3-day filter

::::
screen

:
with constrained parameters. The reference forecast

is the measured streamflow at 00 UTC and 12 UTC each day as the forecast for the next 72 hours. The value of km = 10 from Algorithms 1

and 2 in all cases.

Rain Free Rain Influenced

Forecast Hour Forecast Hour

24 48 72 24 48 72

Optimal hind-cast
::::::
hindcast 0.85 0.92 0.90 0.76 0.83 0.70

20-day filter
:::::
screen -0.09 0.27 0.42 -0.37 -0.15 -0.08

3-day filter
::::
screen

:
with constrained parameters -0.74 -0.22 -0.02 0.41 0.45 0.42
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Table 6. Mean error (mean H-EPS streamflow - observed) ( m3 s−1) as an assessment of the ensemble mean streamflow from the H-EPS

(200 members) for rain-influenced, rain-free and overall periods from June to October, 2014.

Rain Free Rain Influenced Overall

Forecast Hour Forecast Hour Forecast Hour

24 48 72 24 48 72 24 48 72

optimized hind-cast
::::::
hindcast

:
1 2 3 1 2 7 1 2 3

3-day filter
::::
screen

:
with constrained parameters 2 3 3 1 2 4 2 3 3
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Table 7. Mean continuous ranked probability skill score (CRPSS) as an assessment of the ensemble skill from the H-EPS for rain-influenced,

rain-free and overall periods from June to October, 2014. The reference low-skill forecast is the measured streamflow at 00 UTC and 12 UTC

each day as the forecast for the next 72 hours.

Rain Free Rain Influenced Overall

Forecast Hour Forecast Hour Forecast Hour

24 48 72 24 48 72 24 48 72

optimized hind-cast
::::::
hindcast

:
0.77 0.76 0.67 -0.33 0.12 0.01 0.71 0.70 0.60

3-day filter
::::
screen

:
with constrained parameters -0.77 -0.31 -0.14 -1.2 -0.15 0.11 -0.80 -0.29 -0.11
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Table 8. Mean error (mean REPS precipitation - CaPA), CRPS and CRPSS (with JJASO, 2014 “climatology” as reference forecast) for June

1 to October 31, 2014.

Mean Error CRPS CRPSS

Threshold Forecast Hour Forecast Hour Forecast Hour

24 48 72 24 48 72 24 48 72

Pr ≤ 0.9(0.42 mm h−1) 0.05 0.06 0.09 0.03 0.03 0.04 0.30 0.19 0.08

Pr > 0.9(0.42 mm h−1) -0.14 -0.21 -0.19 0.45 0.49 0.56 0.38 0.32 0.22

all 0.03 0.03 0.06 0.08 0.08 0.10 0.36 0.28 0.18
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