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Abstract 13 

The hydro-stochastic interpolation method based on the traditional block-kriging 14 

has often been used to predict mean annual runoff in river basins. A caveat in such 15 

method is that the statistic technique provides little physical insight on relationships 16 

between the runoff and its external forcing, such as the climate and land-cover. In this 17 

study, the spatial runoff is decomposed into a deterministic trend and deviations from it 18 

caused by stochastic fluctuations. The former is described by the Budyko method (Fu’s 19 

equation) and the latter by stochastic interpolation. This coupled method is applied to 20 

spatially interpolate runoff in the Huaihe River Basin of China. Results show that the 21 

coupled method significantly improves the prediction accuracy of the mean annual 22 

runoff. The error of the predicted runoff by the coupled method is much smaller than 23 

that from the Budyko method and the hydro-stochastic interpolation method alone. The 24 

determination coefficient for cross-validation, 𝑅𝑐𝑣
2 , from the coupled method is 0.87, 25 

larger than 0.81 from the Budyko method and 0.71 from the hydro-stochastic 26 

interpolation. Further comparisons indicate that the coupled method also has reduced the 27 

error in overestimating low runoff and underestimating high runoff suffered by the other 28 

two methods. These results support that the coupled method offers an effective and more 29 

accurate way to predict the mean annual runoff in river basins. 30 

 31 
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1. Introduction 36 

The runoff observed at the outlet of a basin is a crucial element for investigating the 37 

hydrological cycle of the basin. Because runoff is influenced by both deterministic and 38 

stochastic processes, estimating the spatial patterns of runoff and associated distribution 39 

of water resources in ungauged basins has been one of the key problems in hydrology 40 

(Sivapalan et al., 2003), and a thorny issue in water management and planning (Imbach, 41 

2010; Greenwood et al., 2011).  42 

In estimating and predicting runoff and regional water resources availability, we 43 

have often used regional or global runoff mapping and geostatistical interpolation 44 

methods. In these methods, the value of a regional variable at a given location is often 45 

estimated as the weighted average of observed values at neighboring locations. This 46 

interpolation of runoff, which is assumed as an auto-correlated generalized stochastic 47 

field (Jones, 2009), uses secondary information from more than one variable (Li and 48 

Heap, 2008). Spatial autocorrelations of the runoff values are measured by the 49 

covariance or semi-variance between the runoffs at pairs of locations as a function of 50 

their Euclidian distance (such as in the ordinary kriging). The values obtained by the 51 

interpolation methods are the best linear unbiased estimate in the sense that the expected 52 

bias is zero and the mean squared error is minimized (Skøien et al., 2006). The ordinary 53 

kriging (OK) estimates the local mean as a constant; corresponding residuals are 54 

considered as random. Because the spatial mean could also be used as a trend or 55 

nonstationary variation in space, OK has been developed into various geostatistical 56 

interpolation methods, such as kriging with a trend by incorporating local trend within a 57 
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confined neighborhood as a smoothly varying function of the coordinates. Block kriging 58 

(BK) is another extension of OK for estimating a block value instead of a point value by 59 

replacing the point-to-point covariance with point-to-block covariance (Wackernagel, 60 

1995).  61 

Unlike precipitation or evaporation which we often interpolate to find its values at 62 

specific locations, runoff is an integrated spatially continuous process in river basins 63 

(Lenton and RodriguezIturbe, 1977; Creutin and Obled, 1982; Tabios and Salas, 1985; 64 

Dingman et al., 1988; Barancourt et al., 1992; Blöschl, 2005). Streamflows are naturally 65 

organized in basins (Dooge, 1986; Sivapalan, 2005), e.g., rivers flow through sub-basins. 66 

The river network constrains the water paths from upstream to downstream in a basin. 67 

The hierarchically organized river network requires that the sum of the interpolated 68 

discharge from sub-basins equals to the observed runoff at the outlet of the entire basin. 69 

Previous studies have indicated that runoff interpolation may overestimate the actual 70 

runoff without adequate information of the spatial variation of the runoff (Arnell, 1995), 71 

e.g., neglecting the river network in connecting sub-basins or processing basin runoff at 72 

collective points in space (Villeneuve et al, 1979; Hisdal and Tveito, 1993). In nested 73 

basins, Gottschalk (1993a and b) developed a hydro-stochastic method to interpolate 74 

runoff. It uses the concept that runoff is an integrated process in the hierarchical structure 75 

of river network. Distance between a pair of basins is measured by geostatistical distance 76 

instead of the Euclidian distance. The covariogram among points in the conventional 77 

spatial interpolation is replaced by the covariogram between basins. In this concept, 78 

runoff is assumed spatially homogeneous in basins, i.e., the expected value of the runoff 79 
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is constant in space (Sauquet, 2006). The observed patterns of runoff reveal systematic 80 

deviations from the homogeneity assumption, however, because of the influences from 81 

the heterogeneous climate and underlying surface factors. 82 

An alternate method is to describe the hydrological variables of interest in 83 

deterministic forms of functions, curves or distributions, and construct conceptual and 84 

mathematical models to predict hydro-climate variability (Wagener et al, 2007). Qiao 85 

(1982), Arnell (1992), and Gao et al. (2017) have used such an approach and derived 86 

empirical relationships between runoff and its controlling factors of the climate, land-87 

cover, and topography in various basins. However, the deterministic method for 88 

describing complex runoff patterns suffers from an inevitable loss of information 89 

(Wagener et al, 2007) because of existence of uncertainty in many hydrological 90 

processes and especially in observations. Thus, hydrological variables also contain the 91 

information of stochastic nature and should be treated as outcomes from deterministic 92 

and stochastic processes. A method that combines both deterministic patterns and 93 

stochastic variability is the kriging with an external drift (KED) (Goovaerts, 1997; Li 94 

and Heap, 2008; Laaha et al., 2013). It takes the deterministic patterns of spatial variables 95 

into account and incorporates them as a local trend of a smoothly varying secondary 96 

variable, instead of a function of the spatial coordinates.  97 

The inclusion of deterministic terms in the geostatistical methods has been shown 98 

to increase the interpolation accuracy of basin variables, such as mean annual runoff 99 

(Sauquet, 2006), stream temperature (Laaha et al., 2013), and groundwater table 100 

(Holman et al., 2009). Those deterministic terms are often described by empirical 101 
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formulae linking spatial features, e.g., variability of the mean annual runoff in elevation 102 

(Sauquet, 2006), and relationship between the mean annual stream temperature and the 103 

altitude of gauges (Laaha et al., 2013). As a semi-empirical approach to model the 104 

deterministic process of the runoff, the Budyko framework has been popularly used to 105 

analyze the relationship between mean annual runoff and the climatic factors, e.g., 106 

aridity index (Milly, 1994; Koster and Suarez, 1999; Zhang et al., 2001; Donohue et al., 107 

2007; Li et al., 2013; Greve et al., 2014). Many efforts have been devoted to improving 108 

the Budyko method by, for example, including the effects of other external forcing 109 

factors, such as land-cover (Donohue et al., 2007; Li et al., 2013; Han et al., 2011; Yang 110 

et al., 2007), soil properties (Porporato et al., 2004; Donohue et al., 2012), topography 111 

(Shao et al., 2012; Xu et al., 2013; Gao et al., 2017), hydro-climatic variations of 112 

seasonality (Milly, 1994; Gentine et al., 2012; Berghuijs et al., 2014), and groundwater 113 

(Istanbulluoglu et al., 2012). However, it has been found that the use of the deterministic 114 

equation in the Budyko method alone still comes with large errors in the prediction of 115 

runoff in many basins (e.g., Potter and Zhang, 2009; Jiang et al., 2015).  116 

The aim of this study is to combine the stochastic interpolation with the semi-117 

empirical Budyko method to further improve the spatial interpolation/prediction of the 118 

mean annual runoff in the Huaihe River Basin (HRB), China. In this study, the spatial 119 

runoff from sub-basins in the HRB is separated into a deterministic trend and its residuals, 120 

which are estimated by the Budyko method and the interpolation method, respectively. 121 

The residuals are calculated as the difference between the observed and the estimated 122 

runoff from the Budyko method, and are used in the stochastic interpolation as described 123 
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in Gottschalk (1993a, 1993b, and 2000). After that, the runoff of any sub-basin is 124 

predicted as the sum of the interpolated residuals and the Budyko estimated value. The 125 

improved method is tested in the HRB. In addition, the leave-one-out cross-validation 126 

approach is applied to evaluate and compare the performances of the three interpolation 127 

methods: the Budyko method, hydro-stochastic interpolation, and our coupled Budyko 128 

and stochastic interpolation method. 129 

  130 

2. Methodologies 131 

2.1 Spatial estimation of mean annual runoff by Budyko method 132 

 The Budyko method explains the variability of mean annual water balance on a 133 

regional or global scale. It describes the dependence of actual evapotranspiration (E) on 134 

precipitation (P) and potential evapotranspiration (E0) (Williams et al., 2012). Their 135 

original relationship (E/P~E0/P) derived by Budyko (1974) is deterministic and 136 

nonparametric. It was later developed into parametric forms (Fu, 1981; Choudhury, 1999; 137 

Yang et al., 2008; Gerrits et al., 2009; Wang and Tang, 2014). Among them, the one-138 

parameter equation derived by Fu (Fu, 1981, Zhang et al. 2004) has been used frequently. 139 

This relationship is written 140 

                    
𝐸

𝑃
= 1 +

𝐸0

𝑃
− (1 + (

𝐸0

𝑃
)

𝜔

)

1

𝜔
                        (1) 141 

or 142 

                   𝑅 = 𝑃 ∙ (1 + (
𝐸0

𝑃
)

𝜔

)

1

𝜔
− 𝐸0                          (2) 143 

where, 𝑃 ,  𝐸 , 𝐸0 , and 𝑅  are mean annual precipitation, actual 144 

evapotranspiration,  potential evapotranspiration, and runoff (units: mm), respectively, 145 
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and 𝜔 is a dimensionless model parameter in the range of (1, ∞). In these formulae, 146 

the larger the 𝜔 is, the smaller the partition of precipitation into the runoff.  147 

The parameter 𝜔 in (1) is determined using observed 𝑃, 𝐸0, and 𝑅 in gauged sub-148 

basins. The mean value of  of a basin can be obtained by averaging 𝜔 of the sub-149 

basins, or by minimizing the mean absolute error (MAE) in fitting the curve in Eq. (1) 150 

with E/P~E0/P (E =P-R) (Legates and McCabe, 1999). Using the mean value of , Eq. 151 

(2) can be used to predict ungauged basin runoff or to interpolate the spatial variation of 152 

the runoff, using meteorological data in targeted sub-basins (Parajka and Szolgay, 1998). 153 

 154 

2.2 Hydro-stochastic interpolation method 155 

Gottschalk (1993a) described the hydro-stochastic interpolation method based on 156 

the kriging method to predict spatial runoff. Gottschalk’s method redefines a relevant 157 

distance between basins, and identifies the river network and supplemental water balance 158 

constraints as follows.  159 

As a spatially integrated continuous process, the predicted runoff of a specific unit 160 

of an area 𝐴0 in a basin, 𝑟∗(𝐴0), can be expressed as 161 

                     𝑟∗(𝐴0) = ∑ 𝜆𝑖𝑟(𝐴𝑖)
𝑛
𝑖=1                            (3) 162 

where, 𝑟(𝐴𝑖) is the observed runoff in a gauged basin 𝑖 with area 𝐴𝑖 (𝑖 = 1, … 𝑛, 𝑛 163 

is the total number of gauged basins), and 𝜆𝑖 is the weight of basin 𝑖. 164 

The weights are obtained by solving the following set of equations under the second 165 

order stationary assumption for hydrologic variables (Ripley, 1976), 166 

        {
∑ 𝜆𝑖𝐶𝑜𝑣(𝑢𝑖 , 𝑢𝑗) + 𝜇 = 𝐶𝑜𝑣(𝑢𝑖 , 𝑢0),      𝑖, 𝑗 = 1,2, . . . , 𝑛𝑛

𝑗=1

∑ 𝜆𝑖 = 1𝑛
𝑖=1 .

            (4) 167 
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In (4), 𝐶𝑜𝑣(𝑢𝑖 , 𝑢𝑗) is the theoretical covariance function between each pair of gauged 168 

stations (i=1,…, n, j=1,2…, n), 𝐶𝑜𝑣(𝑢𝑖, 𝑢0)  is the theoretical covariance of runoff 169 

between the location of interest 𝑢0 and each of the gauged stations 𝑢𝑖, and 𝜇 is the 170 

Lagrange multiplier.  171 

    The sum of the interpolated runoff for each non-overlapping sub-basin should be 172 

equal to the observed runoff at the river outlet. This constraint can be written as  173 

𝑅𝑇 = ∑ Δ𝐴𝑖
𝑀
𝑖=1 𝑟(Δ𝐴𝑖)                                (5) 174 

where,  𝑅𝑇  is the streamflow observed at the outlet of the basin, Δ𝐴𝑖  is the non-175 

overlapping area of sub-basin 𝑖, and 𝑟(Δ𝐴𝑖) is the runoff depth for sub-basin 𝑖 (𝑖 =176 

1, … , 𝑀). The predicted runoff for each Δ𝐴𝑖 is a linear combination of the weights and 177 

the runoff observed in the n sub-basins, i.e., 𝑟(Δ𝐴𝑖) = ∑ 𝜆𝑗
𝑖𝑟(𝐴𝑗)𝑛

𝑗=1 . Substituting it in 178 

(5) we get 179 

 𝑅𝑇 = ∑ Δ𝐴𝑖(∑ 𝜆𝑗
𝑖𝑟(𝐴𝑗)𝑛

𝑗=1 )𝑀
𝑖=1 .                             (6) 180 

In (6),  𝑟(𝐴𝑗) is the runoff depth for sub-basin j (j = 1, ..., n) with discharge observations, 181 

and 𝜆𝑗
𝑖 is the weight (i= 1, ..., M; j= 1, ..., n). Further considering the basin area in the 182 

river network, Sauquet et al. (2000) derived the weight matrices and described a hydro-183 

stochastic method to optimize the weights 𝜆𝑗
𝑖 (i= 1, ..., M; j= 1, ..., n) in Eq. (6).  184 

The theoretical covariogram, 𝐶𝑜𝑣(𝐴, 𝐵), is derived by averaging the point process 185 

covariance function Covp  186 

             𝐶𝑜𝑣(𝐴, 𝐵) =
1

𝐴𝐵
∫ ∫

𝐴𝐵
𝐶𝑜𝑣𝑝(||𝑢1 − 𝑢2||)𝑑𝑢1𝑑𝑢2                (7) 187 

where, 𝐶𝑜𝑣𝑝(||𝑢1 − 𝑢2||) is the theoretical covariance function value of pairs of points 188 

in basins A and B with distance d=||𝑢1 − 𝑢2||.  189 
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The distance 𝑑(𝐴, 𝐵) is calculated based on grid division in each of the sub-basins 190 

(Sauquet et al., 2000). The trial-and-error fitting method is used to calibrate 𝐶𝑜𝑣𝑝(d) in 191 

Eq. (7) to best fit  𝐶𝑜𝑣𝑒 (d). Only independent sub-basins are used to calculate the 192 

covariance function to avoid spatial correlation of nested sub-basins. 193 

 194 

2.3 Coupling the stochastic interpolation with the Budyko method 195 

The above stochastic interpolation procedure assumes a stationary stochastic 196 

variation of the runoff among sub-basins or spatial homogeneity in runoff (Sauquet, 197 

2006), despite variations in river networks. For nonstationary variations in the runoff 198 

resulting from spatial heterogeneity in a river network, the spatial runoff can be 199 

decomposed into a nonstationary deterministic component and a stochastic component: 200 

                         𝑅(𝑥) = 𝑅𝑑(𝑥) + 𝑅𝑠(𝑥).                        (8) 201 

In (8), 𝑅(𝑥) is the runoff at a location x, 𝑅𝑑(𝑥) is the deterministic component of the 202 

spatial trend or the external drift (Wackernagel, 1995) that results in nonstationary 203 

variability in space. 𝑅𝑠(𝑥) is the stochastic component considered to be stationary.  204 

In this study, R in Eq. (2) is used as an external drift function in estimating the Rd(x) 205 

in all sub-basins, i.e., Rd(x) in Eq. (8) is substituted in Eq. (2) by setting Rd(x) = R. The 206 

residuals between Rd(x) and the observed runoff are calculated for all gauged sub-basins. 207 

Furthermore, these residuals are interpolated for all ungauged sub-basins and set as the 208 

stochastic component Rs(x) in Eq. (8) using the "residual kriging" method (Sauquet, 209 

2006). In particular, Rs(x) in Eq. (8) is replaced by  𝑟∗(𝐴0)  in Eq. (3) after setting 210 

𝑟∗(𝐴0) = 𝑅𝑠(𝑥) for the stochastic interpolation scheme described in section 2.2. The 211 
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superposition of these estimates of both components on the right-hand side in Eq. (8) 212 

yields the prediction of R(x).  213 

 214 

2.4 Cross validation  215 

To validate this prediction procedure, we use the leave-one-out cross-validation 216 

method (Kearns, 1999). In addition to quantifying the performance of our coupled 217 

Budyko and the hydro-stochastic interpolation method, we compare and contrast its 218 

performance with the Budyko and the hydro-stochastic interpolation method alone. 219 

Their performances are evaluated by the following metrics (Laaha and Bloschl, 2006): 220 

                 𝑀𝐴𝐸 =
1

𝑛
∑ [𝑅(𝑥𝑖) − 𝑅∗(𝑥𝑖) ] 𝑛

𝑗=1                      (9) 221 

                𝑀𝑆𝐸 =
1

𝑛
∑ [𝑅(𝑥𝑖) − 𝑅∗(𝑥𝑖) ]2 𝑛

𝑗=1                      (10) 222 

                𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [𝑅(𝑥𝑖) − 𝑅∗(𝑥𝑖) ]2 𝑛

𝑗=1                    (11) 223 

where, 𝑅∗(𝑥) and 𝑅(𝑥) are the predicted and the observed runoff, respectively, MAE 224 

is the mean absolute error, MSE is the mean square error, and RMSE is the root-mean-225 

square error. The determination coefficient for cross-validation is 226 

                      R𝑐𝑣
2 = 1 −

𝑉𝑐𝑣

𝑉𝑁𝐾
                            (12) 227 

where, 𝑉𝑐𝑣 is the mean square error (MSE), and 𝑉𝑁𝐾 is the spatial variance (𝑉𝑁𝐾 =228 

∑ [𝑅(𝑥𝑖)−�̅� ]2 𝑛
𝑗=1

𝑛−1
, in which �̅� is the mean 𝑅(𝑥)) of the runoff over all the tested sub-basins. 229 

In addition to these evaluation metrics, the prediction result is evaluated by regression 230 

analysis of the observation vs. the prediction. 231 

 232 

 233 
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3. Study catchment and data  234 

The Huaihe River Basin (HRB) – the sixth largest river basin in China, is used in 235 

evaluation of our coupled model and in its comparison to the other two methods. The 236 

HRB has a strong precipitation gradient from the humid climate in the east and the semi-237 

humid in the west (Hu, 2008). It is one of the major agricultural areas in China with the 238 

highest human population density in the country. About 18 billion m3 of water was 239 

consumed in 1998 to meet the basin’s domestic and agriculture needs. Water resources 240 

per capita and per unit area is less than one-fifth of the national average. Moreover, more 241 

than 50% of the water resources is exploited, much higher than the recommended 30% 242 

for inland river basins (Yan et al., 2011). Moreover, the concentrated annual precipitation 243 

in a few very rainy months makes the region highly vulnerable to severe floods or 244 

droughts (Zhang et al., 2015). Thus, having the knowledge of the spatial distribution of 245 

the runoff is vital for water resources planning and management in the region. 246 

Our study area is in the upstream of the Bengbu Sluice in the HRB and is 121,000 247 

km2 (Fig. 1). The river network in the area is derived from data packages of the National 248 

Fundamental Geographic Information System, developed by the National Geomatics 249 

Center of China. The HRB is divided into 40 sub-basins, according to available 250 

hydrological stations with records from 1961-2000 (Fig. 2). The sub-basins vary in their 251 

size from the smallest of 17.9 km2 to the largest of 30630 km2. Among the 40 sub-basins, 252 

27 are independent sub-basins and 13 are nested sub-basins.  253 

Annual precipitation data used in this study are from 1961-2000 and are obtained 254 

from a monthly mean climatological dataset at 0.5-degree spatial resolution. The dataset 255 
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was developed at China Meteorological Administration, and is accessible at: 256 

http://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_PRE_MON_GRID_0.5.htm257 

l. The dataset was derived from the observations at 2472 stations in China, using the 258 

Thin Plate Spline (TPS) interpolation method and the ANUSPLIN software. Pan 259 

evaporation data at 21 meteorological stations in the HRB are used to interpolate E0 by 260 

the ordinary kriging method and the ArcGIS. The interpolated E0 are used to derive the 261 

annual potential evapotranspiration in the sub-basins. The statistical features of the mean 262 

annual precipitation (P), E0, and the runoff depth (R) from 1961-2000 are summarized 263 

in Table 1. They show that P varied between 638-1629 mm, annual temperature was 264 

between 11°-16°C, and the mean annual E0 between 900-1200 mm. The sub-basins in 265 

the north, e.g., ZM, ZQ, XY, and ZK in Fig. 2, are relatively dry with the dryness index 266 

(E0/P) above 1.3. The sub-basins in the south, e.g., MS, HBT, and HC, are wetter with 267 

dryness index below 0.8. The average mean annual R is about 400 mm, fluctuating from 268 

90 mm in the north to 1000 mm in the south. The temporal and spatial variations in the 269 

runoff are relatively small in the south and large in the north. 270 

 271 

4 Results  272 

4.1 Prediction of runoff by the Budyko method 273 

Actual evapotranspiration E is estimated using long-term mean annual water 274 

balance (E=P-R) from 1961–2000 at the 40 sub-basins, and the results are shown in 275 

Table 1. Also shown in Table 1 are the calculated  values for the sub-basins. They vary 276 

from 1.43 in the sub-basin HWH to 3.16 in JJJ. The average  is 2.32 for the 40 sub-277 

basins. The comparison E/P vs. E0/P is shown in Fig. 3. The best fit (curve) for E/P vs. 278 
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E0/P, or R vs. E0/P, is also shown in Fig, 3; it gives an alternative for average  of the 279 

sub-basins. The fitted value of  for the 40 sub-basins determined from this process is 280 

2.213, very close to that calculated directly from the 40 individual sub-basins. 281 

Using =2.213 in the HRB, Fu’s equation in Eq. (2) can be written as 282 

                   𝑅 = 𝑃 ∙ (1 + (
𝐸0

𝑃
)

2.213

)

1

2.213

− 𝐸0.                   (13) 283 

Eq. (13) and Fig. 3 clearly show the deterministic trend of the runoff in the HRB. 284 

According to the water limit criterion, E = P, and the energy limit criterion, E = E0, in 285 

Fig. 3a, the smaller the index 
𝐸0

𝑃
 is the smaller the 

𝐸

𝑃
 will be (Fig. 3a) or the larger the 286 

runoff will be (Fig. 3b) from the sub-basins in the HRB. In Figs. 3b and 3c, the lower R 287 

in the northern sub-basins indicates drier conditions (E0/P>1.4), whereas the higher R in 288 

the southern sub-basins assures wetter conditions (E0/P<0.8).  289 

Using P and E0 given in Table 1 for the 40 sub-basins, we predict the runoff R by 290 

Eq. (13), the Budyko method, and the deviations of their predictions from the 291 

observation. The results are summarized in Tables 1 and 2. The MAE of predicted R is 292 

94 mm, and RMSE is 112 mm. The largest absolute error is in the sub-basin HWH (328 293 

mm), and the smallest in XX (24 mm). The largest relative error is 81.6% of the observed 294 

runoff in the sub-basin XZ, and the smallest is 5.0% of the observed runoff in XHD. 295 

They represent absolute errors of 91 and 37 mm in those two sub-basins, respectively. 296 

 297 

4.2 Runoff by the hydro-stochastic interpolation method  298 

For comparison, the observed runoff is used in the hydro-stochastic interpolation 299 

following the procedure detailed in section 2.2. In order to obtain the distance 𝑑 300 
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between pairs of the sub-basins, the study area is divided into 40 row×50 column. The 301 

geostatistical distance between any two sub-basins, A and B, is calculated by averaging 302 

the distances between all pairs of grid points in A and B (all the possible pairs of the sub-303 

basins are 40×41/2 for the 40 sub-basins in this study). According to the estimated 304 

distance for the pairs of sub-basins and the observed runoff at the 40 sub-basins (Table 305 

1), the empirical covariance 𝐶𝑜𝑣𝑒(𝑑) is estimated for each pair of the sub-basins. From 306 

the plots of the mean 𝐶𝑜𝑣𝑒(𝑑)  of all the independent sub-basin pairs vs. the 307 

corresponding distance d with an interval of 20 km, we fit the function of empirical 308 

covariogram shown in Fig. 4. The fitting theoretical covariance function 𝐶𝑜𝑣𝑝(𝑑) to the 309 

empirical covariogram is 310 

                    𝐶𝑜𝑣𝑝(𝑑) = 6 × 105 exp(−𝑑 28.62⁄ ).                  (14) 311 

This function is used to calculate the average theoretical covariance Cov(A,B) in Eq. (7). 312 

Finally, the weight matrices are determined using our programs in MatLab.  313 

The interpolated runoff depth (R) over the 40 sub-basins along with the deviations 314 

from the observation are shown in Table 1. The MAE and RMSE of R are 103 and 140 315 

mm, respectively. The largest absolute and relative error is in the sub-basin JZ (401 mm 316 

and 68.8%), and the smallest is in DPL (1 mm and 0.3%) (Table 2). These results indicate 317 

that the errors from this interpolation method are in general larger than those from the 318 

Budyko method, suggesting that the observed runoff is more influenced by the 319 

deterministic trend in the basin.  320 

 321 

4.3 Hydro-stochastic interpolation with Fu’s equation (our coupled method) 322 
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We use Fu’s equation, Eq. (2), to evaluate the deterministic trend or the external drift 323 

function, 𝑅𝑑
∗(𝑥), and deviation of the trend from the observation, 𝑅𝑠

∗(𝑥), assuming a 324 

spatially auto-correlated process. The 𝑅𝑠
∗(𝑥) is then used in the stochastic interpolation.  325 

The empirical residual covariogram of 𝑅𝑠
∗(𝑥) for each pair of sub-basins vs. sub-326 

basin distance is shown in Fig. 5. From the result in Fig. 5a, we obtain the exponential 327 

function for 𝐶𝑜𝑣𝑝(𝑑)  328 

                  𝐶𝑜𝑣𝑝(𝑑) = 13030 exp(−𝑑 23.9⁄ ).                    (15) 329 

From (15), the weight matrices of runoff deviation are determined by Eq. (4) using our 330 

program in MatLab. They are then used to predict the runoff deviation. The scatterplot 331 

of the predicted residuals vs. the observed residuals shown in Fig. 5b delineates a 332 

positive correlation between the predicted and the observed residuals. However, the large 333 

scatter indicates limited performance by the residual model alone. Because this 334 

interpolation scheme represents the spatial runoff deviation, the sum of the interpolated 335 

runoff deviation and the simulated runoff by Fu’s equation is the total interpolated runoff 336 

in the sub-basins.  337 

The predicted runoff using this procedure is given in Table 1, with the MAE at 71 338 

mm and RMSE at 93 mm over the 40 sub-basins. The largest absolute error is in the sub-339 

basin QL (220 mm), and the smallest in ZM (4 mm) (Table 2). The largest relative error 340 

is 47.2% of the observed runoff in XZ, and the smallest is 1% of the observed runoff in 341 

BLY. They represent the absolute error of 52 and 8 mm, respectively. 342 

 343 

4.4 Comparisons of the predicted runoff by the three methods 344 
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Comparing the results in Table 2, we find that our coupled method of the 345 

deterministic and stochastic processes substantially reduces the runoff prediction error 346 

in the HRB. The MAE and RMSE of the runoff from our coupled method are much 347 

smaller than those from the Budyko or the hydro-stochastic interpolation method. In 348 

cross-validation (Table 2), our coupled method has 𝑅𝑐𝑣
2 =0.87, which is larger than 0.81 349 

and 0.71 from the Budyko method and the hydro-stochastic interpolation, respectively. 350 

The errors in runoff at the sub-basins are significantly reduced as well. The error in the 351 

sub-basin HWH is 216 mm from the coupled method, compared to 328 mm from the 352 

Budyko method and 300 mm from the hydro-stochastic interpolation. The error in JZ is 353 

120 mm from the coupled method, smaller than 179 mm from the Budyko method and 354 

401 mm from the hydro-stochastic interpolation.  355 

Our correlation analysis between the predicted and the observed R is shown in Fig. 356 

6. The predicted runoff from our coupled method shows higher correlation with the 357 

observed (R2=0.87), in comparison to the Budyko method (R2=0.82) and the hydro-358 

stochastic interpolation (R2=0.79). Our analysis indicates that the latter two methods 359 

overestimate low runoff and underestimate high runoff, as indicated by large departures 360 

from the 1:1 line in Fig. 6. Similarly, large deviations of the runoff predicted by the 361 

hydro-stochastic interpolation have also been reported by Sauquet et al. (2000), Laaha 362 

and Bloschl (2006), and Yan et al. (2011).  363 

The spatial distributions of the runoff in the HRB calculated from the three methods 364 

are shown in Fig. 7. They again show significant differences. Compared to the result 365 

from our coupled method (Fig. 7c), the Budyko method overestimates the runoff in most 366 
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of the northern sub-basins (Fig. 7a), where the climate is relatively dry and runoff is 367 

small (ranging from 140-280 mm). The hydro-stochastic interpolation method 368 

underestimates the runoff in some southern sub-basins (Fig. 7b), where the wet climate 369 

has fostered extremely high runoff (800~1100mm), such as in the sub-basins HWH, BLY, 370 

and ZC (Table 1). The results from our coupled method are closest to the observed 371 

distribution of the runoff among the three methods (Fig. 7d). Compared to the errors in 372 

the predicted runoff by the Budyko method and the hydro-stochastic interpolation (Fig. 373 

7 and Table 1), our coupled method reduces the error in 70% of all the sub-basins (28 of 374 

the 40 sub-basins). 375 

 376 

5. Discussions and conclusions  377 

In this study, we use the Budyko’s deterministic method to describe the mean annual 378 

runoff, which is an integrated spatially continuous process and determined by both the 379 

hydro-climatic elements and the hierarchical river network. A deviation from the Budyko 380 

estimated runoff is used by the stochastic interpolation that assumes spatially auto-381 

correlated error. The deterministic aspects of the runoff described in Budyko method are 382 

reflected in the trends at locations (sub-basins), and deviations from the trends caused 383 

by the stochastic processes are described by the weights as a function of the 384 

autocorrelation and distance. Information from both the Budyko method and the 385 

stochastic interpolation are integrated in our coupled method to predict the runoff. 386 

Different from the universal kriging method, in which the trend is represented as a 387 

linear function of coordinate variables and determined solely through spatial data 388 
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calibration (i.e., semi-variogram analysis), the Budyko method couples water and energy 389 

balance and could directly predict streamflow in ungauged basins. This physically based 390 

method relies on using the spatial trend of runoff and, in our study, it yields the 391 

deterministic coefficient of cross-validation, 𝑅𝑐𝑣
2 , to be 0.81, better than that from the 392 

hydro-stochastic interpolation method.  393 

Incorporating secondary information into the geostatistical methods improves the 394 

estimate of a predictive variable, e.g., the estimate of groundwater level by incorporating 395 

topography into the collocated co-kriging (Boezio et al., 2006), or the estimate of mean 396 

annual stream temperature by incorporating a nonlinear relationship between the mean 397 

annual stream temperature and altitude of the stream gauge into the Top-Kriging (Laaha 398 

et al., 2013). By incorporating such secondary information and the relationship between 399 

the mean runoff and the climate conditions (the aridity index) in the Budyko method 400 

through coupling with the hydro-stochastic interpolation, we develop our new coupled 401 

Budyko-hydro-stochastic interpolation method. It can substantially improve the 402 

prediction of streamflow in ungauged basins. This improvement is shown by the higher 403 

𝑅𝑐𝑣
2  of 0.87 in the HRB, compared to 0.81 and 0.71 by the Budyko and the hydro-404 

stochastic interpolation method, respectively. Moreover, for high and low runoffs in the 405 

sub-basins of the HRB our coupled method gives more accurate predictions.  406 

While substantial progress has been made by our coupled method, its results show 407 

rooms for improvement to further increase the accuracy of runoff prediction. For 408 

example, runoff prediction errors remain large from our coupled method in some sub-409 

basins in the HRB. In the sub-basins MS, QL, HWH, and HNZ, the absolute error of 410 
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predicted runoff is larger than 150mm and the relative error of predicted runoff is larger 411 

than 20% of the observed runoff. In the sub-basins BGS and XZ, the relative error of the 412 

predicted runoff is larger than 40% of the observed runoff. These errors are largely 413 

attributable to large prediction errors intrinsic to the Budyko method (e.g., MS, QL, 414 

HWH, and XZ in Table 1). Possible causes to the errors could be from additional external 415 

factors influencing the runoff, such as land-cover, soil properties, hydro-climatic 416 

variations, and the groundwater. Including some or all these effects to improve the 417 

Budyko method or incorporating these effects as secondary information (e.g., multi-418 

collocated co-kriging) in our coupled model would help aid our understanding of the 419 

deterministic processes and increase the runoff prediction accuracy.  420 
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Captions of figures: 624 

 625 

Figure 1: The topography and river network of the study area.  626 

Figure 2: The sub-basins and hydrological stations in the study area. 627 

Figure 3: (a) E/P~E0/P and (b) R~E0/P for the 40 sub-basins (the solid line is the best 628 

fit function). (c) The sub-basins in the north and south of the study basin. Note: 629 

in (b) and (c), blue color indicates wetter climate in the south and yellow color 630 

indicates drier climate in the north. 631 

Figure 4: Empirical covariogram (Cove (d)) from the sub-basin runoff data and 632 

theoretical covariogram by fitted covariance function Covp (d) of the study area. 633 

Figure 5: (a) Empirical covariogram (Cove(d)) from the residual 𝑅𝑠(𝑥) and theoretical 634 

covariogram by fitted covariance function Covp(d) of the study area. (b) The 635 

scatterplot of the predicted vs. the observed residuals.  636 

Figure 6: Cross validation of the predicted runoff vs. the observation by (a) Budyko 637 

method, (b) hydro-stochastic interpolation, (c) our coupled method, and (d) the 638 

scatterplot of the predicted vs. the observed residuals for (c). The dashed-line is 639 

1:1. 640 

Figure 7: Spatial distribution of the mean annul runoff estimated from (a) Budyko 641 

method, (b) hydro-stochastic interpolation, (c) our coupled method, and (d) the 642 

observation. 643 

  644 
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Table 1: Summary of hydro-meteorological data and predicted runoff of the sub-basins in the HRB. 645 

No.   
Station

s     

Basin 

area 

(km2)     

P 

(mm)   
R (mm)    

E0 

(mm)     
E0/P    

E 

(mm)    

Budyko method 
Hydro-stochastic 

interpolation       
Coupled method     

ω

                 

Predicted 

R (mm)     

Error 

(mm)      

Predicted 

R (mm)      

Error 

(mm)      

Predicted 

R (mm)      

Error 

(mm)      

1     CTG     3090        1012     366    932         0.92   646      2.41    399      32.85       357 8.29 442 75.89 

2     XHD        1431     1517         740            974            0.64   776          2.41     777      36.94      819 78.85 785 44.21 

3      SQ     3094       822    168      1024        1.25   653    2.83   248      79.29      154 14.34 189 20.40 

4        MS      1970          1517                672             957               0.63   845                3.06   786        114.28    705 33.18 833 161.55 

5         BGS     2730          877     225             1029     1.17    651      2.57    279      53.93    331 105.51 321 95.80 

6         XC      4110          945     225            997                 1.06   720     3.02    332     106.82    197 27.83 261 35.87 

7          BT      11280       910     223                993     1.09    687            2.85    310       86.94     205 18.10 220 3.73 

8        ZK      25800            678     123    1061                 1.56   555     2.54    163            39.96     101 21.54 101 21.60 

9        JJJ      5930          1347     513     969     0.72     834     3.16    640       127.27      369 143.29 555 42.76 

10         HB      16005        1092     335     937              0.86   757             3.15    455      120.48      197 137.61 383 48.20 

11    ZQ      3410          739    118     1083    1.47     621     2.83   190        71.71       101 17.02 125 7.56 

12     HPT     4370             1629      764     984    0.60   865     2.92    868       103.53    729 34.69 896 131.58 

13      XX     10190       987     367     1053    1.07     620           2.10    343       23.77     297 70.54 325 41.95 

14      BB             121330       850        215    1024    1.20    635    2.54    264          49.48    71 143.43 175 39.74 

15     WJB          30630      1003      294    957    0.95   709               2.85      384          90.29     225 68.43 280 14.17 

16     LZ             390       963              345     1078    1.12   618     2.09    320     24.96    335 10.87 337 8.57 

17     NLD          1500       1019        439    1101    1.08    581    1.86    351      88.30    350 88.75 388 50.60 

18     ZMD               109             690      212    1093   1.58   478      1.94   163         48.65      265 52.90 157 54.73 

19     BLY          737             1504         868    1126    0.75   635     1.69   695      173.27    783 85.32 861 7.54 

20     HWH          292      1560       1068    1127   0.72   492      1.43      740         328.03   768 299.97 852 216.14 

21     ZC           493           1512        838    1112   0.74   674     1.79   708            130.23    700 137.94 790 48.34 

22     BQY        284     1268      693     1094     0.86   575         1.68    527      166.21    543 150.04 568 125.47 

23     QL          178                  1559     970     1090              0.70   589    1.60    756               214.17    749 221.28 749 220.34 

24     HNZ           805       1480    640    1114    0.75   840            2.41    681        41.37    576 63.94 816 175.57 

25     TJH            152               1305     699    1090    0.84   605    1.74    556     143.66    309 390.52 556 143.05 

26     LX            77.8       1025    484    1079     1.05   540     1.75   361      123.77     302 182.46 368 116.82 

27      ZLS          1880       755                 253    1104      1.46    502       1.91    194          58.45      197 55.37 223 29.21 

28     ZT          501       1021       437     1101     1.08   583            1.87    351      85.87    212 225.14 452 14.74 
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 647 

  648 

29     XGS      375          830    302     1088     1.31  528    1.91    238       63.74      99 202.58 317 15.33 

30     JZ             46           1103      583      1107   1.00   520    1.63   404         178.81     182 401.32 463 120.48 

31      GC              620               638          111    1055   1.65   528    2.51   145          34.18    53 57.92 125 14.85 

32      ZM              2106         645         97                 1039   1.61   548    2.72    150           53.48     72 24.71 100 3.62 

33     YZ              814       979              235        1083    1.11    743     2.85    329       94.07           271 35.66 321 85.76 

34     XZ          1120             746         111        1040    1.39   636    3.06    202      90.66    84 27.12 163 52.32 

35     GZ          1030           855    342    1098    1.28   513       1.81    250      92.10    230 111.80 260 81.82 

36     DPL         1770                          1067   331     1066    1.00   736    2.57   393                       61.62    330 1.02 437 105.29 

37      XX2         256        1301   606     1092    0.84   695    2.00   552     53.68    708 101.78 732 126.63 

38      PH         17.9         1248   708     1094    0.88   540    1.61   512               196.04    605 102.78 564 144.41 

39     HC         2050     1255    454       1095    0.87   802    2.54   517     63.36     328 125.79 537 83.61 

40     HK             2141                                871                  227    1077    1.24   644    2.44    264             37.28     273 46.15 243 16.02 
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Table 2: Interpolation cross-validation errors between the predicted and the observed runoff in the 650 

40 sub-basins in the HRB from the three methods. 651 

Evaluation indicators      Budyko 

method       

Hydro-stochastic interpolation        Coupling 

method      

MAE (mm)           94              103                   71              

MSE (mm2)                  12561      19828                       8557      

RMSE (mm)           112              140                   93         

Max absolute error (mm)             328          401                      220          

Min absolute error (mm)             24                        1                        4               

Max relative error (%)          82         69                 47                   

Min relative error (%)               5         0.3                1              

Rcv
2              0.81                 0.71                         0.87             

 652 

  653 
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 655 

 656 

Figure 1: The topography and river network of the study area.  657 

 658 

  659 
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 661 

Figure 2: The sub-basins and hydrological stations in the study area. 662 

 663 

  664 
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 669 

 670 

Figure 3: (a) E/P~E0/P and (b) R~E0/P for the 40 sub-basins (the solid line is the best fit 671 

function). (c) The sub-basins in the north and south of the study basin. Note: in (b) 672 

and (c), blue color indicates wetter climate in the south and yellow color indicates 673 

drier climate in the north.  674 

 675 

 676 

  677 

(a)    

 

(b)    

 

y=2996exp(-2.01x)    

R2=0.79 

 

(c)    
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 678 

 679 

 680 

Figure 4: Empirical covariogram (Cove (d)) from the sub-basin runoff data and 681 

theoretical covariogram by fitted covariance function Covp (d) of the study area. 682 

 683 

  684 
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 687 

(a)                                     (b)     688 

Figure 5: (a) Empirical covariogram (Cove(d)) from the residual 𝑅𝑠(𝑥) and theoretical 689 

covariogram by fitted covariance function Covp(d) of the study area. (b) The 690 

scatterplot of the predicted vs. the observed residuals.  691 

  692 
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 701 

 702 

 703 

Figure 6: Cross validation of the predicted runoff vs. the observation by (a) Budyko 704 

method, (b) hydro-stochastic interpolation, (c) our coupled method, and (d) the 705 

scatterplot of the predicted vs. the observed residuals for (c). The dashed-line is 1:1. 706 

  707 

(a)    (b)    (c)    
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 724 

 725 

Figure 7: Spatial distribution of the mean annul runoff estimated from (a) Budyko 726 

method, (b) hydro-stochastic interpolation, (c) our coupled method, and (d) the 727 

observation. 728 
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