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Dear Editor, 

 
 
 
 
 
 
Date: 

04 January 2018 

 

 

 

Thank you for the evaluation report and for giving us the opportunity to revise the 

manuscript. We would like to thank the referees for taking time to review the 

manuscript. Their comments delivered insightful and enriching recommendations 

on how to improve the manuscript’s content, scientific quality and readability. We 

also appreciated the comments made by a reader who was not a referee. A 

revised manuscript was prepared based on the comments we have received. 

In this response letter we present the response, as follows: Section 1 contains 

the explanation and responses to all points raised by reviewers; Section 2 

contains a list of all relevant changes made in the manuscript; Section 3 contains 

the revised manuscript with track changes; and Section 4 contains the revised 

manuscript text without track changes, for easy reading. 

We hope the comments and requirements for publication are met in the revised 

manuscript. In case there are more concerns, please let us know for further 

corrections and improvements. 

We are looking forward to your decision. 

 

 

Yours sincerely, 

Thaine Herman Assumpção and co-authors  

 

 



1. Authors’ responses to reviewer’s comments 

The response to all comments raised by the referees, reflected in the interactive discussion section, 

are presented here in detail. The page and line numbers in the authors’ response refer to the revised 

version of the manuscript, the one that contains the marked-up changes (see Section 2 of this 

document). 

Note: Modifications and additions to the response, as compared with the one in the interactive 

discussion, are highlighted in the authors’ response, as underlined text. 

 

Anonymous Referee #1 – RC1 

We thank the reviewer for taking the time to review this paper and for providing useful feedback. Your 

input is valuable in improving the scientific quality of the paper and its readability. Please find below 

our answer addressing your comments.  

Comment #1: Dear editor, I went through the paper entitled “Citizen observations contributing to flood 

modelling: opportunities and challenges” by Assumpcao et al. Bringing people’s idea and their 

involvement in science (citizen science) is becoming significant globally. This paper is exactly what lies 

behind the role of citizen science in combating the flooding by modelling. However, I find the paper is 

quite difficult to follow in its current form. This also has no such in-depth assessment of the role of 

science in mitigating climate-induced flood events/hazards.  

Authors’ response: We acknowledge that the assessment of the role of citizen science in mitigating 

climate-induced flood events/hazards is not addressed in the present article and that is because the 

focus of the paper is different, particularly it is to review the existing scientific literature regarding the 

actual and potential crowdsourced data for flood modelling. From that perspective, climate-induced 

flood events/hazards do not bring different challenges for citizens’ data collection compared to 

“regular” flood events. Of course citizen science is much broader than only crowdsourcing of data, but 

such broad perspective is outside of the scope of this article. Regarding mitigation, in the article’s 

Introduction (page 2), we are mentioning the review of Horita et al. (2013); and the studies of Dashti 

et al. (2014) and Oxendine et al. (2014). They are addressing disaster management and damage data 

collection, including the role of citizen science for mitigation of floods in general. In the present article 

the analysis is made for model improvement, but the model may have multiple purposes (e.g. flood 

risk or ecosystem conservation). The paper determines what are the benchmarking difficulties and 

benefits of collecting flood-related data by citizens and of integrating them into models, for the 

purposes of model set up, calibration, validation, simulation and forecasting.  

The improved explanation emphasizing the aim of the review is added in the Introduction section on 

page 3, lines 1-5. 

Comment #2: The synthesis/review would have been much useful and interesting if this were focused 

on one or two key objectives. For example, how citizen science would link to model building process 

based on crowdsourced data and how citizens themselves would be benefitted provided the feedbacks 

for the model improvement.  

Authors’ response: The approach taken was to group and analyse the studies in which crowdsourced 

data was integrated into each part of the flood modelling process. We could not take a different 

approach because unfortunately the literature on specific parts is scarce (e.g. in Table 5, Page 19, we 



found just 6 studies on the model building process). Hence, the review could not be limited to few 

particular aspects. Similarly, although a paper on citizen’s benefits from model improvement would be 

useful and interesting, this is a recent topic that has not been explored enough and there are not 

enough publications to date so that a review is required or can be made.  

Some specific comments: 

Page 2 Line 10-15:  

Comment #3: what are the valuable contributions? elaborate  

Authors’ response: As suggested we further elaborated, on page 2, lines 15-19, of the revised 

manuscript. For example, the CITI-SENSE project managed to simultaneously collect perception data 

and acoustic measurements in an approach that can be used to develop citizen empowerment 

initiatives in case of noise management (Aspuru et al., 2016).  

Page 2 Line 22-26:  

Comment #4: what are three projects? provide the summary  

Authors’ response: The manuscript was changed to include such a summary, on page 2, lines 31-32.  

Page 4 Line 19:  

Comment #5: please define ‘CAPTCHA plug in framework’, not all readers would necessarily know 

about it  

Authors’ response: A footnote was added to the manuscript in order to clarify the concept of a 

CAPTCHA plugin (page 6, footnote 2): 

“CAPTCHA stands for ‘Completely Automated Public Turing test to tell Computers and Humans Apart’. 

It is a test evaluating if the subject is human, which is used in websites to provide security. After the 

test is done the user can be asked to perform extra tasks, for example, tag images.” 

Page 10 Line 12-17  

Comment #6: what level of citizens will get involved to generate data globally as many citizens are 

devoid of IT technology?  

Authors’ response: Iwao et al. (2006) did not provide any information on the profile of citizens, nor on 

engagement strategies, although the lack of data in certain regions was shortly addressed. However, 

as stated in the Citizen Science section of the manuscript (page 3), the review did not discuss the 

mechanisms of citizen engagement and participation, as this is a research topic on its own and we 

focus on data integration. To address this issue, also raised by a comment of a reader in the HESSD 

interactive discussion, explanations were added on page 4, lines 20-22.  

Page 15, Fig. 6:  

Comment #7: perhaps Fig. 6 holds the core concept of the paper, where the citizen science link to 

modelling and its application  

Authors’ response: Though the figure is a core concept of the paper, the paper structure is such that 

first the wider scope of the paper is defined, laying all the literature that has the potential to contribute 

to flood modelling in terms of flood-related data. This literature is characterized and analysed for 

advantages and disadvantages. Then, it is presented an in-depth analysis of the scientific contributions 

to each part of the modelling cycle. The existing literature is evaluated in terms of its information 



content and analysed to check how much it matches model requirements. Finally, opportunities and 

challenges are identified. Following this structure, Figure 6 is presented in a later section.  

Page 18 Line 23:  

Comment #8: please provide what consequences of uncertainty in data mining and how this is 

improved?  

Authors’ response: The consequence of uncertainties, including the ones of data mining, is low model 

performance. We consider that the higher the uncertainty, the lesser the quality of the data. Hence, 

because data obtained through data mining has, in general, more sources of uncertainty (from value, 

geotagging and timestamping), they can potentially be of lesser quality and result in models with low 

performance. As suggested by a reader, this was further extended in the new version of the manuscript 

on page 21, lines 7-8; and on page 22 lines 15-16.  

To date, in modelling studies, there are only few studies that quantify the uncertainty from 

crowdsourced data, the impact on model performance or that consider methods for its reduction. To 

remain neutral, we did not include in the manuscript anything beyond what is in the literature, thus 

we do not include a discussion on how to improve the situation in modelling. 

 

Anonymous Referee #2 – RC2 

We would like to thank the reviewer for the revision. We appreciate the comments provided, that 

deliver insightful and enriching recommendations on how to improve the content of the paper. We 

have addressed your comments individually in the text below.  

Comment #1: This paper present an interesting and fairly complete review on the use of crowdsourcing 

for flood modelling purposes. The effort to try and characterise the reliability and uncertainty 

associated to different types of data and different methods of involving citizens in collected them is 

worth highlighting. I would limit my review to three general comments: (1) There is no mention in the 

paper of the diversity of models that are used for flood modelling, and whether they are more or less 

suited for integrating the different types of citizen observations. Arguably, one of the challenges for 

hydrologists could be to design models specifically for that purpose. At least, it would have been 

interesting to have some information of the kind of models used in the studies analysed in the paper.  

Authors’ response: The manuscript was modified to include an explanation on types of flood models 

(fluvial, pluvial, coastal and drainage) on page 17, lines 8-14. The matter of suitability is not addressed, 

mainly because the considered papers are not addressing the suitability. However, we found this 

comment very valuable and we added more information on the kind of models used in the reviewed 

studies (page 19, table 5).  

Comment #2: (2) the question of time is only very briefly discussed, while in flood modelling, and 

particularly for real time flood forecasting, this is an critical issue: models not only require the highest 

water level or the maximal flooded area extension (which are, I guess, when most of the observations 

are done), but high resolution data during the rising part of the hydrograph. What have been done to 

collect this information, and/or what type of participatory approach should be organised to do so? 

Authors’ response: In the section ‘Crowdsourced data information content’ on pages 21-22, we discuss 

the question of time within each part of the flood modelling cycle. Flood forecasting is not included 

because citizens cannot provided forecasting data. We acknowledge that we do not consider 



calibration and validation for specific purposes and thus do not consider them done specifically for 

obtaining an operational model for flood forecasting. With that in mind and in view of the reviewer’s 

comment, we changed on page 21, Table 6, in the column ‘Calibration Validation’, the temporal 

coverage to ‘Discrete/Continuous’ and the spatial coverage to ‘Discrete/Distributed’. A remark was 

added to the table mentioning that the data properties for calibration and validation depend on the 

purpose of the model.  

Moreover, the discussion was extended to accommodate such view and answer the question on what 

has been done to collect this time sensitive information (page 21, lines 23-26; page 22, lines 1-3). 

Organisation of participatory approaches are not discussed as they are outside the scope of the 

proposed article.  

Comment #3: (3) In the same line, rainfall is almost absent in the discussion. As far as I know, 

crowdsourcing have also been used to obtain spatially distributed rainfall, and many extreme storm 

events are characterised by a high spatial variability of rainfall, so I suspect that this type of citizen 

observation could be useful. 

Authors’ response: We agree that contextualization of the rainfall component is lacking and this was 

added to the manuscript (page 7, lines 7-11). We mentioned its importance for certain types of 

flooding and provided pointers to articles on crowdsourced data for rainfall. We acknowledge that 

citizen contributions could be useful for observation of this variable, however, we did not include 

rainfall in the flood-related crowdsourced data section because it was partially covered by the review 

of Buytaert et al. (2014) and totally covered by the review of Muller et al. (2015). Rainfall is a variable 

of greater importance for hydrological models, whilst the review focusses on a hydrodynamic 

representation of floods. 

 

Anonymous Referee #3 – RC3 

We thank the reviewer for providing feedback on the quality of the paper. The review is valuable for 

making the paper clearer and more structured and the comments are highly appreciated. Please find 

below our response to the provided comments.  

Comment #1: This paper addresses a very timely and interesting topic: citizen science and its use in 

flood modelling. It will provide some guidance to researchers struggling with the lack of traditional data 

and at the same time resistant to adhere to alternative data sources. Overall, the text is rather fluid 

and well written, but in topic 3, ”crowded source data in flooding modeling”, the explanation of some 

uses of citizen data in modeling is confusedly described and could benefit from a restructuring of 

description of uses.  

Authors’ response: Following the reviewer’s suggestion, the description of uses in Section 3 was 

restructured (page 19, lines 6-7; page 20, lines 1-32; page 21, lines 1-4). 

Comment #2: Also, despite the relatively large number of papers gathered, the revision process and 

papers selection is not fully described. Thus, for a synthesis paper, it will be worth proving a perspective 

on how exhaustive were the efforts undertaken in the collection and selection of relevant studies, and 

the data sources consulted.  

Authors’ response: The manuscript was extended to inform that the papers’ collection was done 

through multiple platforms (e.g. Scopus and Google Scholar), exemplifying used keywords (page 3, 

lines 7-14). Additionally, explanation on the selection criterion for consideration was given, which is 



the generation/use of flood-related crowdsourced data, as well as explanation on why certain articles 

were not selected. 

A few minor points include:  

Comment #3: In Figure 1, only level one is termed crowdsourcing, not level 2, as stated in the text (page 

3, lines 30-31).  

Authors’ response: The sentence was rephrased (page 4, lines 22-24).  

Comment #4: It is not clear how the CAPTCHA plug in works as a volunteered contribution; please 

provide a better explanation.  

Authors’ response: Clarification regarding the CAPTCHA plug-in was done by means of a footnote, as 

also requested by another reviewer (page 6, footnote 2).  

Comment #5: Figure 2 does not seem relevant, I suggest excluding it; while Figure 6, in its present form, 

does not seem very informative.  

Authors’ response: Figure 2 was included as an introductory example of framework for analysing 

crowdsourced data. We acknowledge that it does not attend other purposes in the previous version 

of the manuscript. As per suggestion of a reader that commented on HESSD interactive discussion, we 

included a modified version of Figure 2 further in the text, changed to include the reviewed literature 

(page 14, figure 3). The motivation behind increasing the relevance of such a figure is two-fold: 

exposition to the interested reader of classification systems of citizen science approaches; connect at 

a superficial level with social studies that evaluate these classifications, to increase the integration 

among disciplines.  

Figure 6 presents visually two types of information: the components of the flood modelling process 

and the data necessary for each component; citizen contributions within the process. We consider that 

the first type of information is essential for scientists in the field of citizen science that do not have a 

background in modelling (but that can, for example, research data collection methods to address 

modelling needs). The second type of information is an essential component of the manuscript and, 

although described via text, making it explicit visually fulfils the objective of highlighting it in the paper. 

We are open to suggestions on how this image could be enhanced.  

Comment #6: I suggest merging Section 1.2 - Article outline with the end of the Introduction (page 2, 

line 30).  

Authors’ response:  In HESS interactive discussion we said we would consider this suggestion. The 

outline has been merged with the end of the Introduction (page 3, lines 16-22). 

Comment #7: There are some unnecessary wording throughout the paper, for example: “We have seen 

in the previous section that” and “In this section we intend to” (page 14, lines 4-5).  

Authors’ response: Thank you for the suggestion, the paper was thoroughly scanned for unnecessary 

wording and changed accordingly (page 17, lines 4-7, page 18, lines 7-8). 

 

Anonymous Referee #3 – RC4 

Thank you for the follow-up feedback. Please find below the answers to your comments.  



Comment #1: The issue concerning the CAPTCHA plug in is not really about its definition, but about 

HOW it will be used as a ”volunteered contribution”. How, for example, random images of a deforested 

area chosen for security reasons will contribute to the monitoring of land use? 

Authors’ response: We clarified the manuscript’s text by saying that the process of tagging images for 

land use is uncorrelated to the CAPTCHA, to the test of distinguishing computers from humans. Tagging 

is a task performed after the test, on the same platform (page 6, lines 2-3).  

Comment #2: Additionally, despite the content of the outline, it makes more sense that it comes at the 

end of the introduction, providing readers with an initial and general idea of what will follow. The 

current topic 1.1 could come together with the description of data sources used and papers selection 

(to be included), as part of a methodology section. 

Authors’ response: In HESS online discussion, we proposed to keep section 1.1 and to create a section 

“1.2 Review approach”. Upon revision of the manuscript, we realize that the review approach could 

be summarized in a paragraph and that there was no need for a separate section. Thus, as mentioned 

in the response to the previous comment, we have added to the end of the introduction the review 

approach and the article outline (page 3, lines 7-22). We would like to reiterate here, and strengthened 

this in the text of the manuscript (page 3, lines 1-3), that the intention is not that citizen science is the 

focus of the manuscript, but the data obtained from it, thus maintaining its discussion within the 

introduction section. 

 

Interactive comment – SC1 

Thank you for finding the paper timely and for the appreciation of the review paper. Authors would 

like to thank M. Moy de Vitry for taking time to review the paper and add to the ongoing discussion. 

The comments and suggestions received are of high value, and based on them we made improvements 

to the manuscript. Please see below the answers to the comments. 

Comment #1: The review of how citizen observations have been used in flood modelling research is 

useful and very timely. The main value of the review is in mapping out the different case studies, 

identifying trends, and pointing out research gaps. Minor revisions are recommended:  

Page 1 line 27: 

Comment #2: Do the authors refer to the general need for data in modelling, or specifically to 

monitoring data used for calibrating the models?  

Authors’ response: Authors are referring to general data needs for modelling floods, no special 

distinction for calibration is made. Thank you for pointing out the confusion. In order to clarify this 

issue to the reader an additional statement was added to the manuscript (page 1, lines 28-29).  

Comment #3: The example in the second sentence "This is especially true.." requires some explanation. 

Authors’ response: More explanation was added, by rephrasing the sentence (page 1, line 29; page 2, 

line 1). 

Page 3 line 26:  

Comment #4: Effort is made to present two classification systems. However, these classifications are 

not used in sections 2 and 3.  



Authors’ response: These classifications are not introduced for the purpose of further classifying other 

papers, but for opening the discussion and debate on the existing reviewed literature. The first 

classification system (i.e. level of engagement), aims to explicitly say that discussion on 

advantages/disadvantages of collection/analysis methods, as well as their purposes, is strictly 

addressing contributions in terms of quantitative data (i.e. contributions towards flood modelling); and 

it does not address the advantages/disadvantages of contributions from other types of involvement. 

For example, it is out of the scope of the article to discuss tacit knowledge or social media mining 

having the (possible) disadvantage of not fostering awareness. For further clarification, the new 

version of the manuscript was amended (page 4, lines 20-22). 

The second classification system was made to provide a reflection of such components 

(implicitly/explicitly geographic and implicitly/explicitly volunteered) when data is obtained from 

citizens. Based on this and a follow-up comment, we added a Figure where we place on the framework 

the studies cited in this paper; and we provided an analysis of such result (page 13, lines 12-16; page 

14, figure 3).  

Page 4 line 10 

Comment #5: It is unclear why geo-tagged information is not explicitly geographic.  

Authors’ response: For clarity, in the beginning of such paragraph an explanation was added (page 5, 

lines 5-6). 

Page 4 lines 15-20:  

Comment #6: It does not seem appropriate that SCENT is given a prominent position in this review 

paper, which should review published literature and not ongoing projects.  

Authors’ response: As mentioned in the acknowledgements, this review and research related to it are 

supported by the H2020 project, SCENT. Therefore, it is natural that the ideas generated within the 

project, which aims at covering scientific gaps, are properly acknowledged in the paper text as well. 

The inclusion of SCENT has as objective to illustrate the classification system, taking advantage of the 

fact that in the project the four classes are being covered. For clarity, it was not chosen to include 

published literature in this part of the article without analysing it first. As per suggestion of the 

reviewer, we presented the same scheme later on, where such literature was included (page 14, figure 

3).  

Page 5 Figure 2: 

Comment #7: Fig 2 illustrates nicely how specific examples are classified within Craglia et al.’s 

definition, and therefore more examples would be beneficial. It would be even better if the examples 

were taken from literature.  

Authors’ response: Thank you for this suggestion, we took it into account and expanded in the second 

version of the manuscript (page 14, figure 3).  

Comment #8: SCENT should be removed from the figure.  

Authors’ response: The justification of SCENT’s inclusion in the figure has been provided in a previous 

comment. This figure sets the scene for the second one that was added based on the reviewer’s 

suggestion.  

Comment #9: it is unclear why the CAPTCHAs are neither implicit nor explicit.  



Authors’ response: In the image CAPTCHA plugin is both implicit and explicit. The text was modified 

for clarification (page 6, lines 1-2). 

Page 6, lines 1-2: 

Comment #10: Have studies such as Merkuryeva et al. (2015) been included in the review? please 

specify.  

Authors’ response: No, they have not been included. The text was modified for clarification (page 3, 

lines 11-14). 

Comment #11: The citation is not necessary.  

Authors’ response: We acknowledge that the citations do not serve a purpose other than being 

examples. However, as a review paper, we consider that different aspects of the literature should at 

least be exemplified, in a way that the interested reader may wish to explore topics not covered in the 

review.  

Page 6, line 18-20:  

Comment #12: It is unclear why the text example is provided in the same paragraph as the 

images/videos and not in the previous paragraph.  

Authors’ response: Thank you for bringing up this misunderstanding. The text examples are related to 

non-quantitative text that is converted to quantitative measures. As the section’s first paragraph is 

about quantitative crowdsourced data and the second is about qualitative ones, this information fits 

better in the second paragraph. For clarity, the second paragraph was modified (page 7, line 26-31; 

page 8, line 1). 

Page 7, Table 1: 

Comment #13: It would be good to split the column ’case study’ into two columns ’location’ and 

’flooding type’  

Authors’ response: The columns were split in all tables into ‘Flood Type’ and ‘Location’ and studies 

with flood-related crowdsourced but without floods will be classified as ‘No flooding’. 

Comment #14: What ordering is used in the table? publication year might make sense.  

Authors’ response: The ordering used in the table was done by grouping papers with similar 

measurement/analysis methods, followed by the order monitoring, mapping and modelling. This is 

similar to the way the analysis is done.  

Page 12, Figure 3:  

Comment #15: The review extends to April 2017 - has the publication count for the year 2017 been 

normalized?  

Authors’ response: No, it has not been normalized. We understand your reasoning, but our focus is on 

the content and interpretation, not on a precise, numerical analysis of the contributions. Thus, because 

of the small numbers of contributions per type of publications, for simplicity, we decide not to 

normalize.  

Page 13, line 7:  

Comment #16: Flickr and Picasa are products, it is better to refer to photo sharing services.  



Authors’ response: We changed to the proposed terminology.  

Comment #17: what is exactly meant with ’mining’, and how does that entail low-quality data?  

Authors’ response: Mining refers to the extraction of specific data from a dataset. For example, tweets 

can be mined from Twitter for a certain period of time and for tweets that contain the word ‘flood’. 

We expanded the first appearance of this term to include such qualification and make it clearer (page 

8, lines 3-4). Crowdsourced mined information has the possibility of not having a precise time-stamp 

or geotag. Thus, there is uncertainty related to it. We consider that the higher the uncertainty, the 

lesser the quality of the data.  

Page 18, lines 19-25:  

Comment #18: The discussion on reliability and volume of data is interesting and necessary, but the 

statements do not seem to make good of the review that was conducted. Do none of the papers 

attempt to quantify uncertainty? 

 Authors’ response: Yes, some of the papers do. We expanded this discussion to include more 

information (page 22, lines 15-22).  

Comment #19: Is the volume of data per type (water level, velocity, etc.) available comparable to the 

number of case studies?  

Authors’ response: We have not computed the volume of data for each data type. At the moment we 

estimate that they are directly proportional to the number of case studies. Unfortunately, it is not 

possible to get the exact number as in some cases more than one variable is collected and no 

distinction in the overall count is provided.  

Page 19, lines 20-26:  

Comment #20: The language used is imprecise.  

Authors’ response: The language was rephrased. See below.  

Comment #21: "interactions between citizen science and water resources"  

Authors’ response: It was rephrased (page 23, lines 20-21). 

Comment #22: "Deal with uncertainty"  

Authors’ response: It was rephrased (page 23, line 26). 

 

 

 

 

 

 

 

 



2. List of relevant changes made in the manuscript 

The relevant changes made in the manuscript are described per article section. 

1. Introduction 

In this section we emphasized the article’s aim, included an explanatory paragraph on the review 

approach and removed section 1.2 by putting the article’s outline at the end of the introductory text. 

Changes were also made to improve the clarity of some concepts. 

2. Flood-related crowdsourced data 

The beginning of this section was changed to discuss precipitation. The tables on the sub-sections were 

changed: the column ‘Case Study’ was split into ‘Flood Type’ and ‘Location’. In the last sub-section, on 

Summary Analysis, a figure similar to Figure 2 was added, displaying the discussed studies in the 

framework presented in Figure 2 and analyzing the results. 

3. Crowdsourced data in flood modelling 

In this section, explanation on types of flood models was added, as well as information on the types of 

flood models used in the discussed papers. The text description of uses of crowdsourced data in the 

reviewed studies was restructured for clarity. Lastly, in the sub-section on crowdsourced information 

content, temporal dimension considerations in calibration and validation were introduced and the 

discussion on uncertainty and volume of crowdsourced data was expanded. 

4. Opportunities and challenges 

No relevant changes were made. 

5. Conclusions and recommendations 

No changes were made. 

 

 

 

 

 

 

 

 

 

 

 

 



3. Marked-up version of the manuscript 

This section provides the marked-up version of the manuscript. The following notation was used: 

 Text that was inserted appears in red; 

 Text that was deleted appear in strikethrough red; 

 Black vertical track lines in the left margin indicate a change on the adjacent line. 
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Citizen observations contributing to flood modelling: opportunities 

and challenges 

Thaine Herman Assumpção1, Ioana Popescu1, Andreja Jonoski1, Dimitri P. Solomatine1, 2 

1Integrated Water Systems and Governance, IHE Delft, Delft, The Netherlands 
2Water Resources Section, Delft University of Technology, Delft, The Netherlands 5 

Correspondence to: Thaine Herman Assumpção (t.hermanassumpcao@un-ihe.org) 

Abstract. Citizen contributions to science have been successfully implemented in many fields – and water resources is one 

of them. Through citizens, it is possible to collect data and obtain a more integrated decision-making process. Specifically, 

data scarcity has always been an issue in flood modelling, which has been addressed in the last decades by remote sensing 

and is already being discussed in a citizen science scenario. In this context, this article aims to review the literature on the 10 

topic and analyse the opportunities and challenges that lie ahead. The literature on monitoring, mapping and modelling, was 

evaluated according to the flood-related variable citizens contributed to. Pros and cons of the collection/analysis methods 

were summarised. Then, pertinent publications were mapped into the flood modelling cycle, considering how citizen data 

properties (spatial and temporal coverage, uncertainty and volume) are related to its integration into modelling. It was clear 

that the number of studies in the area is rising. There are positive experiences reported in collection and analysis methods, 15 

for instance with velocity and land cover, and also when modelling is concerned, for example by using social media mining. 

However, matching the data properties necessary for each part of the modelling cycle with citizen generated data is still 

challenging. Nevertheless, the concept that citizen contributions can be used for simulation and forecasting is proved and 

further work lies in continuing developing and improving not only methods for collection and analysis but certainly for 

integration into models as well. Finally, in view of recent automated sensors and satellite technologies, it is through studies 20 

as the ones analysed in this article that the value of citizen contributions is demonstrated. 

1 Introduction 

The necessity to understand and predict the behaviour of floods has been present in societies around the world. This comes 

from the fact that floods impact their surroundings - in negative or in positive ways. The most common way used nowadays 

to better understand and often predict flood behaviour is through modelling and, depending on the system at hand, a variety 25 

of models can be used (Teng et al., 2017).  

 

In order to have adequate representation of floods, most models require large amounts of data, both for model building and 

model usage. This is especially true for pluvial flood modelling, where flooding may not occur in gauged rivers and hence, 



2 

  

flow gauging stations outside of flooded zones may be of little useflow gauging stations may end up being of little use. 

Remote sensing technologies are a part of the solution, as they offer spatially distributed information. However, their 

availability may be limited, also in terms of space and time, and their uncertainties often are not quantifiable (Di Baldassarre 

et al., 2011; Grimaldi et al., 2016; Jiang et al., 2014; Li et al., 2017). Thus, acquiring the necessary data for simulations and 

predictions can still be expensive, particularly for rapidly changing systems that require frequent model updates.  5 

 

In this context, sources of data coming in abundance and at low-costs are needed, together with modified modelling 

approaches that can use these data and can adapt to changes as fast as they occur. Citizen Observatory (CO) is an emerging 

concept in which citizens monitor the environment around them. It is often considered under the umbrella of Citizen Science 

(including citizen participation up to the scientist level) and it is also related to the concept of crowdsourcing (distributing a 10 

task among many agents). With technology at hand, it is possible to empower citizens to not only participate in the 

acquisition of data but also in the process of scientific analysis and even in the consequent decision-making process (Evers et 

al., 2016). Citizen Observatories have been researched in several EU-funded projects. Finished projects (CITI-SENSE, 

Citclops, COBWEB, OMNISCIENTIS and WeSenseIt) already resulted in valuable contributions to the field (Alfonso et al., 

2015; Aspuru et al., 2016; Friedrichs et al., 2014; Higgins et al., 2016; Uhrner et al., 2013). For example, the CITI-SENSE 15 

project managed to simultaneously collect perception data and acoustic measurements in an approach that can be used to 

develop citizen empowerment initiatives in case of noise management (Aspuru et al. 2016); while in COBWEB project 

processes of quality assurance, data conflation and data fusion were studied and recommendations were made (Friedrichs et 

al., 2014). The currently running CO projects (Ground Truth 2.0, LANDSENSE, SCENT and GROW Observatory) propose 

to investigate this concept further. 20 

 

Citizen science concepts have been researched and applied in various fields such as ecology and galaxy inspection (Lintott et 

al., 2008; Miller-Rushing et al., 2012). Volunteer Geographic Information (VGI), as one of the most active citizen science 

areas, has developed over the past decade and several researchers reviewed the state of the art of citizen science in the field 

of geosciences (Heipke, 2010; Klonner et al., 2016). There is also a part of the scientific community dedicated to 25 

investigating damage data crowdsourced after flood emergencies (Dashti et al., 2014; Oxendine et al., 2014) and evaluating 

the cycle of disaster management (Horita et al., 2013). In the context of water resources, Buytaert et al. (2014) reviewed and 

discussed the contribution of citizen science to hydrology and water resources, addressing the level of engagement, the type 

of data collected (e.g. precipitation, water level) and case studies where more participatory approaches are being 

implemented. Le Coz et al. (2016) provided examples and reflections from three projects related to flood hydrology and 30 

crowdsourcing, which involve the derivation of hydraulic information from pictures and videos in Argentina, France and 

New Zealand.  
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The present review aims to look at studies that had citizen science connected to floods. Specifically, it focusses on the data 

collected by citizens that are relevant in a flood modelling context, benchmarking difficulties and benefits of their collection 

and integration into models. Integration is considered for the purposes of model set up, calibration, validation, simulation 

and forecasting.  and analyse in detail how the contributions were made so far in a modelling context. Moreover, we aim to 

detect the opportunities and challenges related to exploring citizen science for modelling the hydrodynamics of floods. 5 

 

The review process involved defining web platforms, keywords and criteria for searching and selecting publications. The 

main platforms used were Scopus and Google Scholar. The keywords are a combination of words related to citizen science 

(e.g. “citizen science” and crowdsourcing) and to flood-related variables (e.g. “water level” and “flood extent”). The 

obtained articles were scanned for their content. Articles were selected mainly if crowdsourced data was obtained for 10 

quantitative use in monitoring, mapping or modelling. There were studies that were not selected because they just mention 

the use of crowdsourced data and do not provide more relevant information on collection, analysis, use and quantity of data, 

such as Merkuryeva et al. (2015). The same is the case of studies that evaluate variables qualitatively, in ways that cannot be 

directly associated with modelling (Kim et al., 2011). This review included articles published up to April 2017. 

 15 

Further in this section, we introduce the citizen science concept and related classification systems. In Sect. 2 of the article, 

we overview studies on citizen contributions for flood modelling, classifying them according to the flood-related variable the 

contributions were made, followed by a summary of the pros and cons of measurement and analysis methods. Section 3 

aggregates the studies that involve flood modelling and analyses the contributions considering the component of the 

modelling process where they were used, also including a discussion of the factors that affect flood modelling. Section 4 20 

describes the challenges and opportunities of using data contributed by citizens in flood modelling, and finally, Sect. 5 

presents the conclusions and recommendations.  

 

1.1 Citizen Science 

Buytaert et al. (2014) defined citizen science as "the participation of the general public (i.e. non-scientists) in the generation 25 

of new knowledge". In the same manner that the involvement of citizens can be diverse, such is the way their participation is 

found in the scientific literature: 

 

 Citizen Science (Buytaert et al., 2014) 

 Citizen Observatory (Degrossi et al., 2014) 30 

 Citizen Sensing (Foody et al., 2013) 

 Trained volunteers (Gallart et al., 2016) 
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 Participatory data collection methods (Michelsen et al., 2016) 

 Crowdsourcing (Leibovici et al., 2015) 

 Participatory sensing (Kotovirta et al., 2014) 

 Community-based monitoring (Conrad and Hilchey, 2011) 

 Volunteered Geographic Information (Klonner et al., 2016) 5 

 Eye witnesses (Poser and Dransch, 2010) 

 Non-authoritative sources (Schnebele et al., 2014) 

 Human Sensor Network (Aulov et al., 2014) 

 Crowdsourced Geographic Information (See et al., 2016) 

 10 

 Some of the terms used by the above-mentioned articles have specific definitions that are used to delineate debates on the 

social mechanisms of citizen participation. Others are just the best form the researcher found to characterise the contribution 

or the citizen (e.g. eye witnesses). Citizen Science and adjacent areas have become fields of research in themselves that, for 

instance, focus on understanding the motivation of citizens or its interaction with public institutions (Gharesifard and Wehn, 

2016).  15 

 

In this field, one of the classifications of citizen science is by level of engagement. Haklay (2013) built a model that has four 

levels (Fig. 1), in which the first one refers to the participation of citizens only as data collectors, passing through a second 

level in which citizens are asked to act as interpreters of data, going towards the participation in definition of the problem in 

the third level and finally, being fully involved in the scientific enterprise at hand.  The aim of the review presented in this 20 

current article is focused on the contribution towards flood modelling only, coming most prominently from the two lowest 

levels of engagement. We do not discuss topics related to engagement for the generation of (quantitative) data. Further in 

this article, for readability, only the term crowdsourced data is used to refer to data from these two levels of engagement will 

be termed as crowdsourced data. 

 25 
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Figure 1: Levels of participation and engagement in citizen science projects. Adapted from Haklay (2013). 

 

Another way to classify citizen science initiatives (within the context of VGI) is by setting them as implicitly/explicitly 

volunteered and implicitly/explicitly geographic (Craglia et al., 2012). In this classification system, geographic refers to the 5 

main information conveyed through the contributed data, therefore, geo-tagged data is not necessarily geographic. For 

example, in the Degree Confluence Project (Iwao et al., 2006), citizens were oriented to go to certain locations, take pictures, 

make notes and deliberately make available their material on the project's website. In this case, the information is explicitly 

volunteered and explicitly geographic. Most land use/cover projects related to citizen science are explicitly geographic. 

Differently, in the study conducted by Lowry and Fienen (2013) citizens would also willingly send text messages to the 10 

researchers, in this case providing water level readings from installed water level gauges. Although explicitly volunteered, 

the message was non-geographic (just geo-tagged). Another type of implicitly geographic information was derived from 

Twitter by Smith et al. (2015) to obtain water level, velocity and flood extent estimates. As the citizens did not make the 

information public with the specific purpose to provide estimates, it is implicitly volunteered.  

 15 

The concepts defined by Craglia et al. (2012) can be graphically represented as in Fig. 2. The SCENT project1 (Smart 

Toolbox for Engaging Citizens in a People-Centric Observation Web) is one of the four Horizon 2020-funded projects 

focussing on citizen observatories. It lies in the middle of this quadrant as it encourages citizens to participate in gaming to 

collect land cover/use data, in field campaigns to collect other implicitly geographic information (e.g. water level), and also 

                                                           
1 https://scent-project.eu/ 

https://scent-project.eu/
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aims to obtain implicitly volunteered contributions through a CAPTCHA2 plugin, in which citizens tag images, relatede.g. of 

to land cover/use or water level, in order to access online content. Tagging images is uncorrelated to the CAPTCHA, it is a 

task performed after the test, on the same platform. 

 

 5 

Figure 2: SCENT project represented in the typology of VGI (Volunteered Geographic Information)  

1.2 Article outline 

After this introduction, in Sect. 2 of the article, we overview studies on citizen contributions for flood modelling, classifying 

them according to the flood-related variable the contributions were made, followed by a summary of the pros and cons of 

measurement and analysis methods. Section 3 aggregates the studies that involve flood modelling and analyses the 10 

contributions considering the component of the modelling process where they were used, also including a discussion on the 

                                                           
2 CAPTCHA stands for ‘Completely Automated Public Turing test to tell Computers and Humans Apart’. It is a test 

evaluating if the subject is human, which is used in websites to provide security. After the test is done the user can be asked 

to perform extra tasks, for example, tag images. 
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factors that affect flood modelling. Section 4 describes the challenges and opportunities of using data contributed by citizens 

in flood modelling, and finally, Sect. 5 presents the conclusions and recommendations.  

2 Flood-related crowdsourced data 

There are many types of data which relate to floods that can be collected by citizens. Likewise, there are many ways to 

collect, analyse and use them (for monitoring, mapping and modelling). In the next sub-sections we address how these 5 

aspects were explored in the scientific literature. Each sub-section discusses a data type corresponding to a flood modelling 

variable: water level, velocity, flood extent, land cover and topography. Depending on the type of flooding, other variables 

are relevant, such as precipitation. The scientific literature already shows that citizens’ contributions could be useful for 

observation this variable (Muller et al., 2015; De Vos et al., 2017). However, rainfall is not included in this section because it 

was already covered by the review of Muller et al. (2015). Moreover, in general it is a variable of greater importance for 10 

hydrological models, whilst the present review is focussed on a hydrodynamic representation of floods. It needs to be noted 

that there are studies that just mention the use of crowdsourced data and do not provide more relevant information on 

collection, analysis and quantity of data, such as Merkuryeva et al. (2015). Some of the studies evaluate variables 

qualitatively, in ways that cannot be directly associated with modelling, therefore such studies are not included (Kim et al., 

2011). Finally, tThere are articles mentioned and reviewed in more than one section because they evaluated more than one 15 

variable, as it is, for example, the case of Smith et al. (2015). It is worth mentioning that this review includes articles 

published up to April 2017. 

2.1 Water level 

Table 1 gives an overview of the articles about collection of water level data. The studies presented started to involve 

citizens in the collection of water level data with the explicit goal of improving flood management. This is due to the ease of 20 

collecting such data, which mostly consists of comparing the water level with a clearly defined reference. In some cases, the 

reference is a water level gauge, the comparison is made by the citizen, and readings are being submitted to the researchers 

(Alfonso et al., 2010; Degrossi et al., 2014; Fava et al., 2014; Lowry and Fienen, 2013; Walker et al., 2016). Such kind of 

reading practically do not require further analysis, although they entail the installation of water level gauges. 

 25 

In other cases, the citizen provides qualitative data that will be compared to references by researchers. mMostly during 

flooding situations, citizens provide pictures (Fohringer et al., 2015; Kutija et al., 2014; Li et al., 2017; McDougall, 2011; 

McDougall and Temple-Watts, 2012; Smith et al., 2015; Starkey et al., 2017) or videos (Le Boursicaud et al., 2016; Le Coz 

et al., 2016; Michelsen et al., 2016). In the case of pictures/images, the water level is compared with objects in the images 

that have known or approximately known dimensions. For videos, although water level was estimated, the main goal was to 30 

obtain discharge values, via estimates of flow velocity. In two cases, texts from citizens were used (e.g. water over the knee), 
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to calculateprovide directly quantitative water level values or to assumeing a certain value when no value was provided (Li 

et al., 2017; Smith et al., 2015). This sort of data (text, pictures and videos) was mostly collected through social media and 

public image repositories,. Gathering data from such sources requiresing mining of the relevant material (i.e. extraction of 

specific data from a dataset) and dealing with uncertainties in the spatio-temporal characterization of the data of interest. 

 5 

One aspect that varies across the studies is the level of detail in the comparison method used for determining the water level 

measurement. For example, McDougall (2011) and McDougall and Temple-Watts (2012) explicitly state that field visits to 

the selected photo locations are required in order to properly analyse the image and extract water level values. On the other 

hand, Fohringer et al. (2015), Smith et al. (2015) and Starkey et al. (2017) do not mention any method. 

In most cases, crowdsourcing has been used to monitor water level, followed by the use of such data for modelling and lastly 10 

for mapping. In the case of Starkey et al. (2017), although hydrological modelling was done and water levels were converted 

into discharge to allow for comparisons, only qualitative comparisons were made. 

 

Table 1: Scientific literature on citizen contributions to measurement and analysis of water level 

Study Measurement/analysis methods Type Purpose 
Flood type LocationCase 

Study 

Alfonso et al. 

(2010) 

Citizen’s reading of water level gauges sent 

by text message 

1D Monitoring No flooding Polders in The 

Netherlands 

Lowry and Fienen 

(2013) 

Citizen’s reading of water level gauges sent 

by text message 

1D Monitoring No flooding Watersheds in 

the USA 

DegGrossi et al. 

(2014) 

Citizen’s reading of water level gauge sent 

through app/webpage 

1D Monitoring No flooding Flood Citizen 

Observatory in 

Brazil 

Walker et al. 

(2016) 

Citizen’s reading of water level gauge 

collected and provided by the community 

1D Monitoring No flooding Dangila woreda 

region in 

Ethiopia 

Fava et al. (2014) Citizen’s reading of water level gauge sent 

through app/webpage 

1D Modelling Flood 

forecasting 

Flood 

forecasting in 

Brazil 

Le Boursicaud et 

al. (2016) 

LSPIV analysis of video collected from 

social media (YouTube) 

1D Monitoring Flash flood Flash flood in 

France 

Le Coz et al. 

(2016) 

LISPIV analysis of video sent through 

webpage 

2D Modelling Fluvial flood Flash flood in 

Argentina 

Michelsen et al. 

(2016) 

Analysis of images extracted from videos 

collected from social media (YouTube) and 

own photographs 

Neither Monitoring No flooding Cave in Saudi 

Arabia 

Li et al. (2017) Analysis of texts and pictures collected 

from social media (Twitter) 

2D Monitoring Flood map Flood map in the 

USA 

Starkey et al. 

(2017) 

Citizen’s reading of water level gauge and 

analysis of pictures and videos collected 

from social media (Twitter) and 

2D Monitoring Flood Flood in the UK 



9 

  

crowdsourced (email, webpage and mobile 

app)  

McDougall 

(2011), 

McDougall and 

Temple-Watts 

(2012) 

Analysis of texts and pictures collected 

from social media (Twitter, Facebook) and 

crowdsourced (email, text message, 

Ushahidi, Flickr and Picasa) 

2D Mapping Flood map Flood map in 

Australia 

Kutija et al. 

(2014) 

Analysis of pictures collected by the 

University and City Council 

2D Modelling Pluvial and 

drainage 

flood 

Pluvial flood in 

the UK 

Aulov et al. 

(2014) 

Visual analysis of texts and pictures 

collected from social media (Twitter and 

Instagram) 

2D Modelling Coastal flood Storm surge 

forecasting in 

the USA 

Fohringer et al. 

(2015) 

Visual analysis of pictures collected from 

social media (Twitter) and crowdsourced 

(Flickr) 

2D Mapping Flood Flood in 

Germany 

Smith et al. 

(2015) 

Analysis of texts and pictures collected 

from social media (Twitter) 

2D Modelling Pluvial and 

drainage 

flood 

Pluvial flood in 

the UK 

2.2 Velocity 

As velocities and discharges traditionally require more complex measuring methods, the collection of this type of data by 

citizens has not been explored on a scientific basis. However, it is common to include direct measurements of velocity in 

protocols to monitor the environment and water quality, as it is the case of Hoosier Riverwatch (IDEM, 2015). In these 

cases, the citizens perform measurements that involve more processing (e.g. definition of transects to measure flow, use of 5 

formulas).  

 

To the best of the authors’ knowledge, only three studies were found that make use of velocity data collected by citizens, all 

for the study of floods, as presented in Table 2. Le Boursicaud et al. (2016) evaluated the surface velocity field in a channel 

from a YouTube video, using the LSPIV methodology (Large Scale Particle Image Velocimetry), an established method to 10 

obtain velocity from a sequence of images. For enabling this analysis, information about the camera (model and lens type) is 

needed, visible, fixed elements are needed to be used as reference points and it is also required that both river banks are 

visible. Although the method calculates the velocity in two dimensions, in Table 2 we referred to it as 1D because it was 

carried out in a channel, which in a context of flood modelling is considered as a 1D domain. A complementary project was 

discussed by Le Coz et al. (2016), in which the same technique is applied to a video crowdsourced by a citizen, this time 15 

using the result to estimate discharge and the latter to calibrate a 1D hydraulic model. For this, a visit to the location was 

needed to extract cross-sectional data. In this context, Yang and Kang (2017) developed a method for crowd-based 

velocimetry of surface flows, based on Particle Image Velocimetry, in which citizens mark features in the picture. The 

method has not been tested with citizen collected data yet. 
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The third study, conducted by Smith et al. (2015), selected Twitter messages that include terms of semantic value related to 

the citizen location, water depth (e.g. knee-deep) and velocity. The terms were then associated with quantitative 

values/ranges. The authors did not go into detail on discussing the reliability and uncertainty in such data, even though the 

issue is recognised.  5 

 

Table 2: Scientific literature on citizen contributions to measurement and analysis of velocity 

Study Measurement/analysis methods Type Purpose Flood type LocationCase 

Study 

Le Boursicaud et 

al. (2016) 

LSPIV analysis of video collected from 

social media (YouTube) 

1D Monitoring Flash flood Flash flood in 

France 

Le Coz et al. 

(2016) 

LISPIV analysis of video sent through 

webpage 

2D Modelling Fluvial flood Flash flood in 

Argentina 

Smith et al. 

(2015) 

Analysis of texts and pictures collected 

from social media (Twitter) 

2D Modelling Pluvial and 

drainage flood 

Pluvial flood in 

the UK 

 

2.3 Flood extent 

Flood extent, similarly to water level, is a variable that is simple to measure as it consists of binary values: flooded or non-10 

flooded area. As a 2D variable, it needs a lot of spatial information and it is the main reason related studies gather flood 

extent estimates in data rich environments, through social media/photo sharing servicesFlickr/Picasa mining, as shown in 

Table 3. In some cases, the citizens act only as sensors, providing pictures to be analysed by the research team, while in other 

cases they also act as interpreters by providing the flooded/non-flooded information. As can be expected, all studies found 

were carried out in urban areas. 15 

 

In some of the studies the text and images are indicating the location of their origin as being flooded (georeferenced or 

inferred) (Aulov et al., 2014; Smith et al., 2015; Yu et al., 2016), whilst in others (Cervone et al., 2016; Li et al., 2017; 

Rosser et al., 2017; Schnebele et al., 2014; Schnebele and Cervone, 2013) there is processing of the information to infer the 

surrounding inundated areas. Additionally, the last group of studies mentioned fused flood extent data from citizens with 20 

satellite data or with gauge data. 

 

Table 3: Scientific literature on citizen contributions to measurement and analysis of flood extent 

Study Measurement/analysis methods Purpose Flood type LocationCase 
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Study 

Cervone et al. (2016),  

Schnebele et al. (2014),; 

Schnebele and Cervone 

(2013) 

Analysis of pictures and videos collected 

from social media (Facebook and YouTube) 

and crowdsourced (Flickr) 

Mapping Flood map Flood maps in 

USA and 

Canada 

Li et al. (2017) Analysis of texts and pictures collected from 

social media (Twitter) 

Mapping Flood map Flood map in the 

USA 

Rosser et al. (2017) Analysis of crowdsourced pictures (Flickr) Mapping* Flood map Flood map in the 

UK 

Aulov et al. (2014) Visual analysis of texts and pictures 

collected from social media (Twitter and 

Instagram) 

Modelling Coastal flood Storm surge 

forecasting in 

the USA 

Smith et al. (2015) Analysis of texts and pictures collected from 

social media (Twitter) 

Modelling Pluvial and 

drainage 

flood 

Pluvial flood in 

the UK 

Yu et al. (2016) Citizen’s visual identification of 

flooded/non-flooded location collected by 

governmental Chinese website 

Modelling Pluvial and 

drainage 

flood 

Flood in China 

Padawangi et al. (2016) Citizen information Monitoring Flood Flood in 

Indonesia 

* A statistical model is created, but in this study we consider only physical models in the modelling category 

2.4 Land cover/Land use 

Land cover is not a variable in flood-related models but we include it in this review for its importance in inferring roughness. 

Other valuable aspects of land use data are the information on roads and structures that can be obstacles to floods, which can 

be incorporated in the model structure; and the information on vulnerability (e.g. hospitals, dense residential areas, industrial 5 

zones), which can be used to obtain flood risk maps. According to Klonner et al. (2016), when reviewing the literature on 

VGI for natural hazard analysis, there are few studies for vulnerability analysis. The aspects of land use related to 

vulnerability and risk are complex and study topics on themselves, so these aspects are not discussed further in this article. 

Table 4 presents the articles considered for this review. Compared to previously discussed variables, the contribution of 

citizens to land cover maps generation has been already proved as a concept (Albrecht et al., 2014; Fritz et al., 2012), 10 

nowadays being researched further for quality of data (Salk et al., 2016) and fusion of maps (Lesiv et al., 2016). 
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One of the first publications on the subject was from Iwao et al. (2006), in which they describe the Degree Confluence 

Project. The objective was to generate a global land cover map, which implies obtaining ground truth data from around the 

globe. For obvious reasons, it was unfeasible to make field campaign or analyse low-resolution images with sufficient 

resolution. Thus, they launched a webpage that invited citizens to visit integer coordinates (e.g. 25° W, 25°) locations, take 

photos from the four cardinal directions and provide comments on the region. They discovered that citizen-generated data 5 

was having quality similar to that provided by specialists.  

 

Another significant project in the area is GeoWiki. It started in 2009 as a platform for people to validate global land cover 

maps, by comparing their classification to high-resolution images (Fritz et al., 2009). The project has grown since and has 

recently achieved its main goal: to generate a hybrid global land cover map by fusing existing maps and performing 10 

calibration and validation using the analyses made by citizens (See et al., 2015). Current initiatives in the GeoWiki project 

include gamification and analysis of pictures uploaded onto the platform (See et al., 2015). Many studies stemmed from the 

data collected, generally focused on specific land cover types. A similar approach is taken by  Dong et al. (2012),  that 

analyses pictures uploaded by citizens using a different web application. The research conducted by Dorn et al. (2014) goes 

one step further, as it attributes roughness values to multiple land cover maps, including Open Street Maps ( a website where 15 

citizens can modify the current street and land cover map).  

 

Table 4: Scientific literature on citizen contributions to measurement and analysis of land cover/land use 

Study Measurement/analysis methods Purpose Flood 

type 

LocationCase 

Study 

Iwao et al. 

(2006) 

Visual interpretation of crowdsourced tagged pictures sent 

through app/webpage (Degree Confluence Project website) 

Mapping No 

flooding 

Global land cover 

map 

See et al. 

(2015b)* 

Visual interpretation of Google Earth and pictures sent 

through app/webpage (GeoWiki) 

Mapping No 

flooding 

Global land cover 

map 

Dong et al. 

(2012) 

Analysis of tagged pictures from Global Geo-Referenced 

Field Photo Library (DCP citizen pictures + field trip 

pictures) 

Mapping No 

flooding 

Forest cover map 

in Asia 

Dorn et al. 

(2014) 

Use of Open Street Maps Modelling Fluvial 

flood 

Flood in Austria 

* Many other articles related to crowdsourcing through GeoWiki 
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2.5 Topography 

The Digital Elevation Model (DEM) is one of the most important components in flood modelling, as it generally heavily 

influences flood propagation. It is particularly important in urban settings, where spatial variability in refined scales has a 

considerable effect on the direction of water flows. Unfortunately, this is a complex variable to measure that so far relies 

either on fully trained professionals to go to the field, or on expensive airborne technologies. Recently, Shaad et al. (2016) 5 

studied a terrain capturing low-cost alternative to LiDAR remote sensing images and other expensive methods. The low-cost 

technique is the ground- based close-range photogrammetry (CRP) that consists of collecting images/videos from the 

ground, post-processing them and obtaining terrain information. Volunteers made the videos in a designated location, where 

even Unmanned Aerial Vehicles (UAVs) would not be able to collect data. After comparing the results to other methods, 

they concluded that the result has an acceptable quality. 10 

2.6 Summary analysis 

By classifying the discussed studies according to Craglia et al. (2012), there is an overall similarity in the number of studies 

that crowdsource data implicitly and explicitly (Fig. 3). It is visible though that this aspect does not translate into 

homogeneous distribution per flood-related variables, with most implicitly volunteered contributions being related to flood 

extent and most explicit being related to water level. There is a slightly higher concentration of modelling studies that are 15 

explicitly volunteered, but not enough to be able to draw any conclusions. 
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Figure 3: Selected studies represented in the typology of VGI (Volunteered Geographic Information) 

 

 

Considering the temporal distribution of studies evaluated in this review, it is evident that there is a trend: the rise in a 5 

number of studies from 2014 onwards (Fig. 43). This relates to the initial barrier in acknowledging citizen data as having 

quality that is high enough for scientific studies (Buytaert et al., 2014). This resistance is reducing over time as such data is 

being provedhas been proven useful, protocols are being designed and the data uncertainty is being better understood and 

quantified.  

 10 
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Figure 4: Number of studies analysed per year 

 

If the analysed studies are aggregated into categories (Fig. 54), it can be seen that modelling studies amount to 

approximately the same quantity as monitoring ones, but they are only about a third of all studies reviewed. This is expected 5 

because to use data in models it is necessary to monitor them first. Also, monitoring and mapping applications attend to more 

general end uses. Specifically for land cover, there is an unexplored field in modelling (there are more mapping studies than 

the ones in the graph, see Sect. 2.4). The reason behind may be that modellers do not tend to validate their own land cover 

maps and thus will not do it with citizen science data. What can be noted though, is the lack of exploration of velocity and 

topography variables, which, as mentioned, can be due to the complexity in analysing and setting up the experiment. 10 
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Figure 5: Number of studies analysed per flood-related variable per category: mapping, monitoring and modelling 

 

Related to that, previous sub-sections discussed in detail the methods for collection and analysis of flood-related data 

obtained through crowdsourcing. For example, water level data obtained from reading a water level gauge is easy to collect 5 

and easy to analyse. On the other hand, it requires the installation of gauges (Fig. 65). In summary, whenever data is 

collected from the Internet, there is the disadvantage of needing social media/photo sharing servicesFlickr/Picasa mining, 

entailing computational efforts and dealing with a high percentage of data that is not georeferenced or time stamped. Further, 

in the case of water level and velocity, some studies suggest that also field visits are necessary and the methods to analyse 

data are complex. Considering crowdsourced data on flood extent, land cover and topography, it is straightforward to 10 

measure and analyse them, although their delivery to the interested parties may requires a smartphone app or a web site to be 

set up and maintained (with the exception of Open Street Maps). 
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Figure 6: Pros and cons of collection and analysis methods used to collect flood-related data by citizens 

3 Crowdsourced data in flood modelling 

We have seen in the previous section that data related to flood modelling can be collected for many reasons, mainly 

monitoring, mapping and modelling. In this section we intend to explore in detail how the data was integrated into models.  5 

By concentrating on the studies in which modelling was performed, we explore in detail how crowdsourced data was 

integrated into each component of flood models.  

There is a variety of flood models developed to deal with different types of flood, including: fluvial, pluvial, coastal and 

drainage floods. The main driver of fluvial floods is upstream river discharge, of pluvial floods it is precipitation and of 

coastal floods it is storm surges. In urban drainage floods, the flows inside, through and outside of drainage systems are 10 

pivotal for flood representation. Moreover, there are complex cases where more than one flood process needs to be 

represented. Although in physically-based flood models water flow is computed by the same principles, different sets of data 

are needed for different types of flood models. We focus on a general hydrodynamic model definition and its common inputs 

but present what was the flood type evaluated in the scientific literature (Table 5). 

The flood modelling process typically, typically involving hydrodynamic models, has two parts: model building, and model 15 

usage. (Fig. 67). Model building starts by defining the model setup (boundary conditions, parameters, schematization, input 

data), followed by calibration and validation of the water level and velocity fields (dependent variables) with observed 

values. Calibration and validation can be performed for both simulation and forecasting models. Once the model is ready, 

simulations can be run by using different boundary conditions or introducing designed measures for better flood 

management; or forecasts can be made by using forecasted water levels or discharges as boundaries. In a simulation setting, 20 
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model parameters are assumed to be constant in time, while in a forecasting setting the parameters, inputs or states (water 

levels) can be updated while the model is in use, using data assimilation. 

 

 

Figure 7: Flood models data requirements. Orange coloured tiles correspond to data that citizens have contributed to in a flood 5 
modelling context and gridded tiles correspond to data citizens cannot contribute to (forecasted water levels and discharges). 

In view of this process, we analyse how the studies that were carried out in a modelling context included crowdsourced data 

into the model (Table 5). From the studies analysed (Table 5), three consider 1D channels and the others worked in a 2D 

setting. Most of them analyse only one variable, except Smith et al. (2015) that evaluate water level and velocity. Moreover, 

most of them model urban floods, some in a pluvial and others in a fluvial context. 10 

 

 

 

 

 15 
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Table 5: Scientific literature on crowdsourced data used in flood modelling 

Use in 

modelling 
Study Measurement method 

Typ

e 
Variable Flood type 

LocationCase 

study 

Model 

setup 

Dorn et al. 

(2014) 

Use of Open Street Maps 2D Land cover Fluvial flood Flood in 

Austria 

Shaad et al. 

(2016) 

Analysis of pictures captured 

by volunteers at selected 

location 

2D Topography Fluvial flood Flood in 

Indonesia 

Calibratio

n 

Smith et al. 

(2015)* 

Analysis of pictures and tweets 

collected from social media 

(Twitter) 

2D Water level 

and velocity 

Pluvial and 

drainage flood 

Pluvial flood in 

the UK 

Le Coz et al. 

(2016) 

LISPIV analysis of videos sent 

through webpage 

1D Velocity Fluvial flood Flash flood in 

Argentina 

Yu et al. (2016) Citizen’s visual identification 

of flooded/non-flooded 

location provided through 

Chinese website 

2D Flood extent Pluvial and 

drainage flood 

Flood in China 

Validation Kutija et al. 

(2014) 

Analysis of pictures collected 

from the University and City 

Council 

2D Water level Pluvial and 

drainage flood 

Pluvial flood in 

the UK 

Yu et al. (2016) Citizen’s visual identification 

of flooded/non-flooded 

location provided through 

Chinese website 

2D Flood extent Pluvial and 

drainage flood 

Flood in China 

Data 

assimilatio

n 

Aulov et al. 

(2014) 

Visual analysis of texts and 

pictures collected from social 

media (Twitter and Instagram) 

2D Water level 

and flood 

extent 

Coastal flood Storm surge 

forecasting in 

the USA 

 Mazzoleni et 

al. (2015, 

2017) 

Simulated citizen reading of 

water level gauge sent through 

app 

1D Water level Flood 

forecasting 

without flood 

model 

Flood 

forecasting in 

Italy and USA 

 Fava et al. 

(2014) 

Citizen’s reading of a water 

level gauge sent through app 

or webpage 

1D Water level Flood 

forecasting 

without flood 

model 

Flood 

forecasting in 

Brazil 

* It is classified as calibration because, in the classical sense, it improves the model according to observations. However, 

what actually is done is the fine-tuning selection of the precipitation field that fits the observations better. 

 5 

Considering model building, specifically the model setup, citizens contributed to improving/updating land cover (and 

consequently roughness) and topography information the datasets that are used in the model, both for Land Cover (Dorn et 
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al., 2014) and the Digital Elevation Model (Shaad et al., 2016). Dorn et al. (2014) used the land cover information contained 

in The first case uses Open Street Maps3, for modelling a fluvial flood.an online platform that provides maps, including land 

cover, which can be changed by citizens at any time. TheyDorn et al. (2014) do not analyse how much contribution was 

made by the citizens and data processing is restricted to attributing land cover classes to the features displayed in the maps. 

In the study of Shaad et al. (2016), which addresses topography, there is only one citizen contribution (low-cost alternative) 5 

in one selected location that is merged with an existing DEM and then used in the model. In both cases, Tthe objective was 

to compare the performance of this low-cost alternative against the performance of consolidated technologies’ performance 

when used for hydrodynamic simulations. 

 

Crowdsourced data has also been used to calibrate and validate flood models in four studies. We have found four studies that 10 

gather and use this information, oOne study gathered such data through social media and public image repositories mining 

and the others through data uploaded by citizens on specific platforms. Smith et al. (2015) aimed to do real-time urban 

modelling to identify possible flooded areas due to rainfall. Storm events were identified storm events through social media, 

triggering shock-capturing hydrodynamic model runs with various rainfall intensities. The results were compared with social 

media data on water level/velocity. The comparison consisted of definingThey defined a buffer zone around the 15 

crowdsourced observation location, built a histogram of simulated cell values within it and evaluatinged the overlap of the 

crowdsourced value/range and the histogram 70-95th percentile range. As most citizen contributions did not have a water 

level.velocity value, they received a minimum water level value. Because of that, Tthe selected simulation was the one with 

less rainfall, with more ‘overlaps’ and that would not perform better than a simulation with rainfall slightly higher. This was 

done because most contributions were considered as a minimum water level criterion. 20 

 

Yu et al. (2016) collected flooded/non-flooded data through a Chinese website and divided it into calibration and validation 

data sets for a pluvial flood model verification. There is no mentioning on how this data is provided (e.g. text or image). Le 

Coz et al. (2016) obtained a discharge value for calibration of a hydraulic model based on the surface velocity data obtained 

by a video uploaded to a specific website. Kutija et al. (2014) collected pictures uploaded by citizens and extract from them 25 

water levels by comparison with reference objects, such as cars (no further detailing on the method of extraction is made). 

Water level data is then used to validate a pluvial flood model. 

 

TAll the described approaches so far consider citizen data for model building and its possible extension for recalibration and 

revalidation. Four The studies  of Mazzoleni et al. (2015, 2017) went one step further, integrating crowdsourced data in 30 

model usage. Mazzoleni et al. (2015, 2017) used synthetically generated data to represent citizen observations, which wereas 

they incorporate crowdsourced data while the model is being used. incorporated in the model  This is done through data 

                                                           
3 Open Street Maps (OSM) is an online platform that provides street maps and other information. The maps provided can be 

edited by the users at any time 
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assimilation algorithms, adapted to deal with the intermittent nature of crowdsourced data. Aulov et al. (2014) and Fava et al. 

(2014) also used the data for simulation/data assimilation instead of setup, but the methods used are not detailed in the 

studies. However, the studies of Mazzoleni et al. (2015, 2017) and Fava et al. (2014) were made for flood forecasting 

through hydrological models and not using hydrodynamic models. 

3.1 Crowdsourced data information content 5 

If we aim at integrating data into model, data accuracy, volume and temporal and spatial coverage should be at a certain 

level. When these data properties are inadequate, data integration would not provide useful results (i.e. the model 

performance can be low). Although most modelling variables vary in time and space, the data does not need to cover all 

dimensions in all parts of the modelling process. For instance, in model setup, topographic data is not needed every 15 

minutes, hourly or daily; it can be provided in a discrete time coverage, from months to years. We analyse four data 10 

properties: temporal coverage, spatial coverage, volume and uncertainty (Table 6). Although same for all parts, the last two 

properties vary significantly when analysing the information content of crowdsourced data and that is why these properties 

are included (Table 6).  

 

Table 6: Data properties currently required in the modelling process 15 

 Setup Calibration & Validation1 Simulation Data assimilation Data assimilation 

 Topography 

Land Cover 

Water Level 

Velocity 

Flood Extent 

Water Level 

Velocity 

Water Level 

Velocity 

Flood Extent 

Temporal coverage Discrete Discrete/Continuous Continuous Variable Variable 

Spatial coverage Distributed Discrete/Distributed Discrete Discrete Unknown 

Uncertainty The lower the better 

Volume The higher the better 
1 Dependent on purpose of the model 

 

Analysing crowdsourcing studies by their information content, it is possible to draw the following conclusions:  

 

 Model setup: for integration of topographic and land cover data, it is necessary to have spatially distributed data. 20 

While this has been achieved within land cover studies, there is only one study involving topography and the data 

obtained so far have discrete spatial coverage.  

 Calibration and validation: through mining and crowdsourcing of water level and flood extent estimates from social 

media and open image repositories, spatially distributed crowdsourced data have already been obtained for 

calibration/validation of simulation modelsacquired and integrated and that is why there are more studies related to 25 

this modelling stage.. The accuracy of the time stamp was considered vital (Kutija et al., 2015) and results in time 
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have a preliminary good level of agreement with citizen observations (Yu et al., 2016). However, even though these 

studies compare the results with citizen observations in time, this is done qualitatively and there is no focus on 

reporting and evaluating the temporal coverage.    

 Simulation: traditional modelling efforts require time series of data at specific frequencies, which has only been 

achieved through crowdsourcing in the realm of community-based approaches, in which water levels are measured 5 

at 6 a.m. and 6 p.m. in agreement with the community (Walker et al., 2016). However, this type of data has been 

only monitored and not used in a modelling context so far.  

 Data assimilation: it generally assimilates data provided with a fixed time frequency, but there are a few studies that 

consider intermittent data to be assimilated (Mazzoleni et al., 2015, 2017). However, similarly to simulation, the 

temporal coverage of crowdsourced data is insufficient for data assimilation efforts.  10 

 

Considering uncertainty, this is highly dependent on the collection/analysis method. For example, obtaining water level 

values from pictures of in flooded areas (2D) is uncertain, as it mostly involves the selection of what constitutes a good 

reference point to be made by the citizen. Flood extent, on the other hand, tends to be less uncertain to measure, due to its 

binary nature. The collection through data mining (and sometimes crowdsourcing) has, in general, more sources of 15 

uncertainty: from geotagging, timestamping and the observed value. To deal with the first two, Aulov et al. (2014) used only 

data that contained proper geotag and time stamp. Kutija et al. (2014) classified non-timestamped data as during or after the 

event, based on picture visual inspection, defining an observation time range. Smith et al. (2015) dealt with uncertainty in 

location by generating a histogram of simulated values around the observed point. Yu et al. (2016) acknowledged these 

sources of uncertainty. Regarding uncertainty in value, existent in all sources of crowdsourced data, most studies used the 20 

(processed) observations as were, without indication of uncertainty. Smith et al. (2015) defined ranges, although these are 

not discussed. Mazzoleni et al. (2015, 2017), used uncertain synthetic crowdsourced data with variable uncertainty. 

 

Regarding volume of data collected, this is an issue for all modelling processes, although data mining has again been able to 

provide a better coverage. Besides the challenge of uncertainty, The challenge of data mining has also the challenge , 25 

however, lies in providing less uncertain data, in terms of value, geo-referencing and time stamp, and also in providing data 

in conditions that are not extreme, as most of the contributions are done in floods situations and . Data miningit is also 

limited to certain variables (water level, flood extent and velocity). Some of the studies were proof of concepts and 

integrated up to 3 crowdsourced observations each (Le Coz et al., 2016; Fava et al.; 2014; Shaad et al., 2016). Others ranged 

from 12 to 298 observations (Kutija et al., 2014; Smith et al., 2015; Yu et al., 2016) and in some cases it was not possible to 30 

define the exact number (Aulov et al., 2014; Dorn et al., 2014). 
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4 Opportunities and challenges 

In the last years, the interest in citizen science and the number of citizen science studies in the water resources context has 

risen considerably. The main factors affecting its use in flood modelling are the degree of how difficult it is to acquire and 

evaluate these data and their integration into the models. Our analysis of the existing literature allows for pointing out a 

number of positive experiences from which we can derive opportunities to: 5 

 

▪ Explore and improve the existing methods to obtain water velocity and topography from videos 

▪ Explore calibration and validation employing data collected through social media in urban environments 

▪ Explore the possibilities of setting up the models with the use of land cover maps validated with citizen science 

▪ Make use of apps/websites already developed for citizen science 10 

 

The first one is based on small scale but successful studies related to using well-developed techniques in a citizen science 

scenario. The relevant experience in data gathering and analysis can be updated to fit the needs of flood modelling. Also, 

social media and public image repositories mining has proved to be successful in calibration and validation in modelling 

studies, proving the concept and opening the opportunity to investigate how large this contribution is. As mentioned 15 

previously, in the field of land cover map generation citizen data has been used to validate maps and this successful example 

could be used to obtain new roughness maps in a modelling context. Lastly, technological development of apps, websites 

and techniques could be shared and put to public use, to be tested further and to avoid duplicated work. 

 

There are aspects of the integration of crowdsourced data into flood modellinginteractions between citizen science and water 20 

resources that are still challenging. These are: 

 

▪ Explore the use of citizens as data interpreters 

▪ Improve methods to estimate water level from pictures 

▪ Harmonise the time frequency and spatial distribution of models with the ones of crowdsourced data 25 

▪ Quantification ofDeal with the uncertainty 

▪ Increase the volume of data gathered, mainly in non-urban environments   

 

Most of the analysed studies regard the citizen as a sensor, with the exception of studies about land cover related data, in 

which the citizen also acts as an interpreter. For other variables, some studies have already started evaluating the ability of 30 

citizens to provide interpreted information (Degrossi et al., 2014), but these are few. Regarding water levels, readings from 

rulers and extraction from pictures are described differently in the literature, with varying degrees of thoroughness, 

indicating a need for development and testing of water level measurement methodologies in the context of citizens’ 
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contributions. The third point brings up a challenge that concerns not only citizen science but also modelling: what is the 

necessary temporal and spatial distribution? Is the traditional modelling approach definitive in terms of data requirements 

and citizen science approaches should adapt to it, or, the modelling process can be adapted to receive citizen science data? 

The fourth challenge relates to the quality of data and, again, in the area of global land cover maps some articles have 

already discussed the subject (Foody et al., 2013), but still, when modelling is concerned, the crowdsourced data are treated 5 

as traditional data and the issue of quality is hardly addressed (albeit recognized as an issue). To which extent does this 

assumption hold? What is the uncertainty in citizen science data? Lastly, there is a challenge mentioned by many studies but 

not really addressed in itself and it is the volume of data. Although the volume of data necessary depends on the objective of 

the modelling effort, the volume of crowdsourced data tends to be low, lacking temporal/spatial coverage for integration into 

models. This leads to the question: How to increase the volume of data? Considering this limitation, it is also natural to move 10 

towards the question: How much data is needed to improve the model significantly?  

 

Application of citizen science in modelling brings an extra challenge of interdisciplinary. Among similar technical fields 

(e.g. geosciences and hydrodynamic modelling) there is an issue of technology transfer to be addressed, and there are 

discussions on underlying assumptions and uncertainties that need to be considered. Additionally, hard and soft sciences are 15 

also very linked, as the quality and value of the citizens’ observations and their temporal/spatial coverage are intrinsically 

related to social drivers such as why citizens engage, for how long, with which frequency and what is the role of various 

stakeholders. 

5 Conclusions and recommendations 

Citizen science has successfully made its way in many scientific domains and it is only fair that the contribution of citizens 20 

to modelling floods is also investigated, due to the related intensive data needs. Analysis of literature clearly shows an 

increasing number of scientific studies in this area. Successful examples of using existing measurement and analysis 

methods (e.g. velocity and land cover) and of modelling floods with citizen science data (e.g. social media mining) have 

been published and are seen as a good basis for further exploration. There is a clear need to standardise and consolidate 

methodologies and there are challenges involving temporal and spatial distribution of data, uncertainty and volume.  25 

 

It can be observed that the role of citizen contributions is not only in providing information about the current state of the 

environment, in monitoring and mapping studies, but also in providing data that can be used in its modelling and forecasting. 

Studies reviewed in this article showed that crowdsourced data can be integrated: in model building, to improve their overall 

performance; and directly into models (by data assimilation), to improve immediate forecasts. These are promising studies, 30 

however still too few, and they highlight the need for further work in this direction. The integration of crowdsourced data 
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into flood models is a viable way to help solve issues of data scarcity in both ungauged catchments and systems subject to 

change.  

One of the challenges worth mentioning is the integration of citizen data with other more traditional data sources like 

gauging and remote sensing. It is also necessary to analyse cases in which citizens are involved at higher levels of 

engagement (e.g. participating in the problem definition, analysis of results and even in the decision-making process) and to 5 

evaluate the trade-off between model data needs and levels of engagement.   

 

Finally, there is the challenge to make citizen contributions valuable in a time where automation in gaining increasing space. 

One may say that citizens are not needed because of automated sensors. At the same time, there are situations where 

crowdsourced data are very valuable. One of the non-technical challenges that we see here is to demonstrate such situations 10 

and increase acceptance of crowdsourced data by water managers. 
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Abstract. Citizen contributions to science have been successfully implemented in many fields – and water resources is one 

of them. Through citizens, it is possible to collect data and obtain a more integrated decision-making process. Specifically, 

data scarcity has always been an issue in flood modelling, which has been addressed in the last decades by remote sensing 

and is already being discussed in a citizen science scenario. In this context, this article aims to review the literature on the 10 

topic and analyse the opportunities and challenges that lie ahead. The literature on monitoring, mapping and modelling, was 

evaluated according to the flood-related variable citizens contributed to. Pros and cons of the collection/analysis methods 

were summarised. Then, pertinent publications were mapped into the flood modelling cycle, considering how citizen data 

properties (spatial and temporal coverage, uncertainty and volume) are related to its integration into modelling. It was clear 

that the number of studies in the area is rising. There are positive experiences reported in collection and analysis methods, 15 

for instance with velocity and land cover, and also when modelling is concerned, for example by using social media mining. 

However, matching the data properties necessary for each part of the modelling cycle with citizen generated data is still 

challenging. Nevertheless, the concept that citizen contributions can be used for simulation and forecasting is proved and 

further work lies in continuing developing and improving not only methods for collection and analysis but certainly for 

integration into models as well. Finally, in view of recent automated sensors and satellite technologies, it is through studies 20 

as the ones analysed in this article that the value of citizen contributions is demonstrated. 

1 Introduction 

The necessity to understand and predict the behaviour of floods has been present in societies around the world. This comes 

from the fact that floods impact their surroundings - in negative or in positive ways. The most common way used nowadays 

to better understand and often predict flood behaviour is through modelling and, depending on the system at hand, a variety 25 

of models can be used (Teng et al., 2017).  

 

In order to have adequate representation of floods, most models require large amounts of data, both for model building and 

model usage. This is especially true for pluvial flood modelling, where flooding may not occur in gauged rivers and hence, 
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flow gauging stations outside of flooded zones may be of little use. Remote sensing technologies are a part of the solution, as 

they offer spatially distributed information. However, their availability may be limited, also in terms of space and time, and 

their uncertainties often are not quantifiable (Di Baldassarre et al., 2011; Grimaldi et al., 2016; Jiang et al., 2014; Li et al., 

2017). Thus, acquiring the necessary data for simulations and predictions can still be expensive, particularly for rapidly 

changing systems that require frequent model updates.  5 

 

In this context, sources of data coming in abundance and at low-costs are needed, together with modified modelling 

approaches that can use these data and can adapt to changes as fast as they occur. Citizen Observatory (CO) is an emerging 

concept in which citizens monitor the environment around them. It is often considered under the umbrella of Citizen Science 

(including citizen participation up to the scientist level) and it is also related to the concept of crowdsourcing (distributing a 10 

task among many agents). With technology at hand, it is possible to empower citizens to not only participate in the 

acquisition of data but also in the process of scientific analysis and even in the consequent decision-making process (Evers et 

al., 2016). Citizen Observatories have been researched in several EU-funded projects. Finished projects (CITI-SENSE, 

Citclops, COBWEB, OMNISCIENTIS and WeSenseIt) already resulted in valuable contributions to the field (Alfonso et al., 

2015; Aspuru et al., 2016; Friedrichs et al., 2014; Higgins et al., 2016; Uhrner et al., 2013). For example, the CITI-SENSE 15 

project managed to simultaneously collect perception data and acoustic measurements in an approach that can be used to 

develop citizen empowerment initiatives in case of noise management (Aspuru et al. 2016); while in COBWEB project 

processes of quality assurance, data conflation and data fusion were studied and recommendations were made (Friedrichs et 

al., 2014). The currently running CO projects (Ground Truth 2.0, LANDSENSE, SCENT and GROW Observatory) propose 

to investigate this concept further. 20 

 

Citizen science concepts have been researched and applied in various fields such as ecology and galaxy inspection (Lintott et 

al., 2008; Miller-Rushing et al., 2012). Volunteer Geographic Information (VGI), as one of the most active citizen science 

areas, has developed over the past decade and several researchers reviewed the state of the art of citizen science in the field 

of geosciences (Heipke, 2010; Klonner et al., 2016). There is also a part of the scientific community dedicated to 25 

investigating damage data crowdsourced after flood emergencies (Dashti et al., 2014; Oxendine et al., 2014) and evaluating 

the cycle of disaster management (Horita et al., 2013). In the context of water resources, Buytaert et al. (2014) reviewed and 

discussed the contribution of citizen science to hydrology and water resources, addressing the level of engagement, the type 

of data collected (e.g. precipitation, water level) and case studies where more participatory approaches are being 

implemented. Le Coz et al. (2016) provided examples and reflections from three projects related to flood hydrology and 30 

crowdsourcing, which involve the derivation of hydraulic information from pictures and videos in Argentina, France and 

New Zealand.  
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The present review aims to look at studies that had citizen science connected to floods. Specifically, it focusses on the data 

collected by citizens that are relevant in a flood modelling context, benchmarking difficulties and benefits of their collection 

and integration into models. Integration is considered for the purposes of model set up, calibration, validation, simulation 

and forecasting.  

 5 

The review process involved defining web platforms, keywords and criteria for searching and selecting publications. The 

main platforms used were Scopus and Google Scholar. The keywords are a combination of words related to citizen science 

(e.g. “citizen science” and crowdsourcing) and to flood-related variables (e.g. “water level” and “flood extent”). The 

obtained articles were scanned for their content. Articles were selected mainly if crowdsourced data was obtained for 

quantitative use in monitoring, mapping or modelling. There were studies that were not selected because they just mention 10 

the use of crowdsourced data and do not provide more relevant information on collection, analysis, use and quantity of data, 

such as Merkuryeva et al. (2015). The same is the case of studies that evaluate variables qualitatively, in ways that cannot be 

directly associated with modelling (Kim et al., 2011). This review included articles published up to April 2017. 

 

Further in this section, we introduce the citizen science concept and related classification systems. In Sect. 2 of the article, 15 

we overview studies on citizen contributions for flood modelling, classifying them according to the flood-related variable the 

contributions were made, followed by a summary of the pros and cons of measurement and analysis methods. Section 3 

aggregates the studies that involve flood modelling and analyses the contributions considering the component of the 

modelling process where they were used, also including a discussion of the factors that affect flood modelling. Section 4 

describes the challenges and opportunities of using data contributed by citizens in flood modelling, and finally, Sect. 5 20 

presents the conclusions and recommendations.  

 

1.1 Citizen Science 

Buytaert et al. (2014) defined citizen science as "the participation of the general public (i.e. non-scientists) in the generation 

of new knowledge". In the same manner that the involvement of citizens can be diverse, such is the way their participation is 25 

found in the scientific literature: 

 

 Citizen Science (Buytaert et al., 2014) 

 Citizen Observatory (Degrossi et al., 2014) 

 Citizen Sensing (Foody et al., 2013) 30 

 Trained volunteers (Gallart et al., 2016) 

 Participatory data collection methods (Michelsen et al., 2016) 
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 Crowdsourcing (Leibovici et al., 2015) 

 Participatory sensing (Kotovirta et al., 2014) 

 Community-based monitoring (Conrad and Hilchey, 2011) 

 Volunteered Geographic Information (Klonner et al., 2016) 

 Eye witnesses (Poser and Dransch, 2010) 5 

 Non-authoritative sources (Schnebele et al., 2014) 

 Human Sensor Network (Aulov et al., 2014) 

 Crowdsourced Geographic Information (See et al., 2016) 

 

 Some of the terms used by the above-mentioned articles have specific definitions that are used to delineate debates on the 10 

social mechanisms of citizen participation. Others are just the best form the researcher found to characterise the contribution 

or the citizen (e.g. eye witnesses). Citizen Science and adjacent areas have become fields of research in themselves that, for 

instance, focus on understanding the motivation of citizens or its interaction with public institutions (Gharesifard and Wehn, 

2016).  

 15 

In this field, one of the classifications of citizen science is by level of engagement. Haklay (2013) built a model that has four 

levels (Fig. 1), in which the first one refers to the participation of citizens only as data collectors, passing through a second 

level in which citizens are asked to act as interpreters of data, going towards the participation in definition of the problem in 

the third level and finally, being fully involved in the scientific enterprise at hand. The review presented in this current article 

is focused on the contribution towards flood modelling only, coming most prominently from the two lowest levels of 20 

engagement. We do not discuss topics related to engagement for the generation of (quantitative) data. Further in this article, 

for readability, only the term crowdsourced data is used to refer to data from these two levels of engagement. 
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Figure 1: Levels of participation and engagement in citizen science projects. Adapted from Haklay (2013). 

 

Another way to classify citizen science initiatives (within the context of VGI) is by setting them as implicitly/explicitly 

volunteered and implicitly/explicitly geographic (Craglia et al., 2012). In this classification system, geographic refers to the 5 

main information conveyed through the contributed data, therefore, geo-tagged data is not necessarily geographic. For 

example, in the Degree Confluence Project (Iwao et al., 2006), citizens were oriented to go to certain locations, take pictures, 

make notes and deliberately make available their material on the project's website. In this case, the information is explicitly 

volunteered and explicitly geographic. Most land use/cover projects related to citizen science are explicitly geographic. 

Differently, in the study conducted by Lowry and Fienen (2013) citizens would also willingly send text messages to the 10 

researchers, in this case providing water level readings from installed water level gauges. Although explicitly volunteered, 

the message was non-geographic (just geo-tagged). Another type of implicitly geographic information was derived from 

Twitter by Smith et al. (2015) to obtain water level, velocity and flood extent estimates. As the citizens did not make the 

information public with the specific purpose to provide estimates, it is implicitly volunteered.  

 15 

The concepts defined by Craglia et al. (2012) can be graphically represented as in Fig. 2. The SCENT project1 (Smart 

Toolbox for Engaging Citizens in a People-Centric Observation Web) is one of the four Horizon 2020-funded projects 

focussing on citizen observatories. It lies in the middle of this quadrant as it encourages citizens to participate in gaming to 

collect land cover/use data, in field campaigns to collect other implicitly geographic information (e.g. water level), and also 

                                                           
1 https://scent-project.eu/ 

https://scent-project.eu/
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aims to obtain implicitly volunteered contributions through a CAPTCHA2 plugin, in which citizens tag images, e.g. of land 

cover/use or water level, in order to access online content. Tagging images is uncorrelated to the CAPTCHA, it is a task 

performed after the test, on the same platform. 

 

 5 

Figure 2: SCENT project represented in the typology of VGI (Volunteered Geographic Information)  

2 Flood-related crowdsourced data 

There are many types of data which relate to floods that can be collected by citizens. Likewise, there are many ways to 

collect, analyse and use them (for monitoring, mapping and modelling). In the next sub-sections we address how these 

aspects were explored in the scientific literature. Each sub-section discusses a data type corresponding to a flood modelling 10 

                                                           
2 CAPTCHA stands for ‘Completely Automated Public Turing test to tell Computers and Humans Apart’. It is a test 

evaluating if the subject is human, which is used in websites to provide security. After the test is done the user can be asked 

to perform extra tasks, for example, tag images. 
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variable: water level, velocity, flood extent, land cover and topography. Depending on the type of flooding, other variables 

are relevant, such as precipitation. The scientific literature already shows that citizens’ contributions could be useful for 

observation this variable (Muller et al., 2015; De Vos et al., 2017). However, rainfall is not included in this section because it 

was already covered by the review of Muller et al. (2015). Moreover, in general it is a variable of greater importance for 

hydrological models, whilst the present review is focussed on a hydrodynamic representation of floods. There are articles 5 

mentioned and reviewed in more than one section because they evaluated more than one variable, as it is, for example, the 

case of Smith et al. (2015).  

2.1 Water level 

Table 1 gives an overview of the articles about collection of water level data. The studies presented started to involve 

citizens in the collection of water level data with the explicit goal of improving flood management. This is due to the ease of 10 

collecting such data, which mostly consists of comparing the water level with a clearly defined reference. In some cases, the 

reference is a water level gauge, the comparison is made by the citizen, and readings are being submitted to the researchers 

(Alfonso et al., 2010; Degrossi et al., 2014; Fava et al., 2014; Lowry and Fienen, 2013; Walker et al., 2016). Such kind of 

reading practically do not require further analysis, although they entail the installation of water level gauges. 

 15 

In other cases, the citizen provides qualitative data that will be compared to references by researchers. Mostly during 

flooding situations, citizens provide pictures (Fohringer et al., 2015; Kutija et al., 2014; Li et al., 2017; McDougall, 2011; 

McDougall and Temple-Watts, 2012; Smith et al., 2015; Starkey et al., 2017) or videos (Le Boursicaud et al., 2016; Le Coz 

et al., 2016; Michelsen et al., 2016). In the case of pictures/images, the water level is compared with objects in the images 

that have known or approximately known dimensions. For videos, although water level was estimated, the main goal was to 20 

obtain discharge values, via estimates of flow velocity. In two cases, texts from citizens were used (e.g. water over the knee), 

to calculate water level values or to assume a certain value when no value was provided (Li et al., 2017; Smith et al., 2015). 

This sort of data (text, pictures and videos) was mostly collected through social media and public image repositories. 

Gathering data from such sources requires mining of the relevant material (i.e. extraction of specific data from a dataset) and 

dealing with uncertainties in the spatio-temporal characterization of the data of interest. 25 

 

One aspect that varies across the studies is the level of detail in the comparison method used for determining the water level 

measurement. For example, McDougall (2011) and McDougall and Temple-Watts (2012) explicitly state that field visits to 

the selected photo locations are required in order to properly analyse the image and extract water level values. On the other 

hand, Fohringer et al. (2015), Smith et al. (2015) and Starkey et al. (2017) do not mention any method. 30 

In most cases, crowdsourcing has been used to monitor water level, followed by the use of such data for modelling and lastly 

for mapping. In the case of Starkey et al. (2017), although hydrological modelling was done and water levels were converted 

into discharge to allow for comparisons, only qualitative comparisons were made. 
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Table 1: Scientific literature on citizen contributions to measurement and analysis of water level 

Study Measurement/analysis methods Type Purpose 
Flood type 

Location 

Alfonso et al. 

(2010) 

Citizen’s reading of water level gauges sent 

by text message 

1D Monitoring No flooding The Netherlands 

Lowry and Fienen 

(2013) 

Citizen’s reading of water level gauges sent 

by text message 

1D Monitoring No flooding USA 

Degrossi et al. 

(2014) 

Citizen’s reading of water level gauge sent 

through app/webpage 

1D Monitoring No flooding Brazil 

Walker et al. 

(2016) 

Citizen’s reading of water level gauge 

collected and provided by the community 

1D Monitoring No flooding Ethiopia 

Fava et al. (2014) Citizen’s reading of water level gauge sent 

through app/webpage 

1D Modelling Flood 

forecasting 

Brazil 

Le Boursicaud et 

al. (2016) 

LSPIV analysis of video collected from 

social media (YouTube) 

1D Monitoring Flash flood France 

Le Coz et al. 

(2016) 

LISPIV analysis of video sent through 

webpage 

2D Modelling Fluvial flood Argentina 

Michelsen et al. 

(2016) 

Analysis of images extracted from videos 

collected from social media (YouTube) and 

own photographs 

Neither Monitoring No flooding Saudi Arabia 

Li et al. (2017) Analysis of texts and pictures collected 

from social media (Twitter) 

2D Monitoring Flood map  USA 

Starkey et al. 

(2017) 

Citizen’s reading of water level gauge and 

analysis of pictures and videos collected 

from social media (Twitter) and 

crowdsourced (email, webpage and mobile 

app)  

2D Monitoring Flood UK 

McDougall 

(2011), 

McDougall and 

Temple-Watts 

(2012) 

Analysis of texts and pictures collected 

from social media (Twitter, Facebook) and 

crowdsourced (email, text message, 

Ushahidi, Flickr and Picasa) 

2D Mapping Flood map Australia 

Kutija et al. 

(2014) 

Analysis of pictures collected by the 

University and City Council 

2D Modelling Pluvial and 

drainage 

flood 

UK 

Aulov et al. 

(2014) 

Visual analysis of texts and pictures 

collected from social media (Twitter and 

Instagram) 

2D Modelling Coastal flood USA 

Fohringer et al. 

(2015) 

Visual analysis of pictures collected from 

social media (Twitter) and crowdsourced 

(Flickr) 

2D Mapping Flood Germany 

Smith et al. 

(2015) 

Analysis of texts and pictures collected 

from social media (Twitter) 

2D Modelling Pluvial and 

drainage 

flood 

UK 
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2.2 Velocity 

As velocities and discharges traditionally require more complex measuring methods, the collection of this type of data by 

citizens has not been explored on a scientific basis. However, it is common to include direct measurements of velocity in 

protocols to monitor the environment and water quality, as it is the case of Hoosier Riverwatch (IDEM, 2015). In these 

cases, the citizens perform measurements that involve more processing (e.g. definition of transects to measure flow, use of 5 

formulas).  

 

To the best of the authors’ knowledge, only three studies were found that make use of velocity data collected by citizens, all 

for the study of floods, as presented in Table 2. Le Boursicaud et al. (2016) evaluated the surface velocity field in a channel 

from a YouTube video, using the LSPIV methodology (Large Scale Particle Image Velocimetry), an established method to 10 

obtain velocity from a sequence of images. For enabling this analysis, information about the camera (model and lens type) is 

needed, visible, fixed elements are needed to be used as reference points and it is also required that both river banks are 

visible. Although the method calculates the velocity in two dimensions, in Table 2 we referred to it as 1D because it was 

carried out in a channel, which in a context of flood modelling is considered as a 1D domain. A complementary project was 

discussed by Le Coz et al. (2016), in which the same technique is applied to a video crowdsourced by a citizen, this time 15 

using the result to estimate discharge and the latter to calibrate a 1D hydraulic model. For this, a visit to the location was 

needed to extract cross-sectional data. In this context, Yang and Kang (2017) developed a method for crowd-based 

velocimetry of surface flows, based on Particle Image Velocimetry, in which citizens mark features in the picture. The 

method has not been tested with citizen collected data yet. 

 20 

The third study, conducted by Smith et al. (2015), selected Twitter messages that include terms of semantic value related to 

the citizen location, water depth (e.g. knee-deep) and velocity. The terms were then associated with quantitative 

values/ranges. The authors did not go into detail on discussing the reliability and uncertainty in such data, even though the 

issue is recognised.  

 25 

Table 2: Scientific literature on citizen contributions to measurement and analysis of velocity 

Study Measurement/analysis methods Type Purpose Flood type Location 

Le Boursicaud et 

al. (2016) 

LSPIV analysis of video collected from 

social media (YouTube) 

1D Monitoring Flash flood France 

Le Coz et al. 

(2016) 

LSPIV analysis of video sent through 

webpage 

2D Modelling Fluvial flood Argentina 

Smith et al. 

(2015) 

Analysis of texts and pictures collected 

from social media (Twitter) 

2D Modelling Pluvial and 

drainage flood 

UK 
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2.3 Flood extent 

Flood extent, similarly to water level, is a variable that is simple to measure as it consists of binary values: flooded or non-

flooded area. As a 2D variable, it needs a lot of spatial information and it is the main reason related studies gather flood 

extent estimates in data rich environments, through social media/photo sharing services mining, as shown in Table 3. In 5 

some cases, the citizens act only as sensors, providing pictures to be analysed by the research team, while in other cases they 

also act as interpreters by providing the flooded/non-flooded information. As can be expected, all studies found were carried 

out in urban areas. 

 

In some of the studies the text and images are indicating the location of their origin as being flooded (georeferenced or 10 

inferred) (Aulov et al., 2014; Smith et al., 2015; Yu et al., 2016), whilst in others (Cervone et al., 2016; Li et al., 2017; 

Rosser et al., 2017; Schnebele et al., 2014; Schnebele and Cervone, 2013) there is processing of the information to infer the 

surrounding inundated areas. Additionally, the last group of studies mentioned fused flood extent data from citizens with 

satellite data or with gauge data. 

 15 

Table 3: Scientific literature on citizen contributions to measurement and analysis of flood extent 

Study Measurement/analysis methods Purpose Flood type Location 

Cervone et al. (2016), 

Schnebele et al. (2014), 

Schnebele and Cervone 

(2013) 

Analysis of pictures and videos collected 

from social media (Facebook and YouTube) 

and crowdsourced (Flickr) 

Mapping Flood map USA and 

Canada 

Li et al. (2017) Analysis of texts and pictures collected from 

social media (Twitter) 

Mapping Flood map USA 

Rosser et al. (2017) Analysis of crowdsourced pictures (Flickr) Mapping* Flood map UK 

Aulov et al. (2014) Visual analysis of texts and pictures 

collected from social media (Twitter and 

Instagram) 

Modelling Coastal flood USA 

Smith et al. (2015) Analysis of texts and pictures collected from 

social media (Twitter) 

Modelling Pluvial and 

drainage 

flood 

UK 

Yu et al. (2016) Citizen’s visual identification of flooded 

location collected by governmental Chinese 

Modelling Pluvial and 

drainage 

China 
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website flood 

Padawangi et al. (2016) Citizen information Monitoring Flood Indonesia 

* A statistical model is created, but in this study we consider only physical models in the modelling category 

2.4 Land cover/Land use 

Land cover is not a variable in flood-related models but we include it in this review for its importance in inferring roughness. 

Other valuable aspects of land use data are the information on roads and structures that can be obstacles to floods, which can 

be incorporated in the model structure; and the information on vulnerability (e.g. hospitals, dense residential areas, industrial 5 

zones), which can be used to obtain flood risk maps. According to Klonner et al. (2016), when reviewing the literature on 

VGI for natural hazard analysis, there are few studies for vulnerability analysis. The aspects of land use related to 

vulnerability and risk are complex and study topics on themselves, so these aspects are not discussed further in this article. 

Table 4 presents the articles considered for this review. Compared to previously discussed variables, the contribution of 

citizens to land cover maps generation has been already proved as a concept (Albrecht et al., 2014; Fritz et al., 2012), 10 

nowadays being researched further for quality of data (Salk et al., 2016) and fusion of maps (Lesiv et al., 2016). 

 

One of the first publications on the subject was from Iwao et al. (2006), in which they describe the Degree Confluence 

Project. The objective was to generate a global land cover map, which implies obtaining ground truth data from around the 

globe. For obvious reasons, it was unfeasible to make field campaign or analyse low-resolution images with sufficient 15 

resolution. Thus, they launched a webpage that invited citizens to visit integer coordinates (e.g. 25° W, 25°) locations, take 

photos from the four cardinal directions and provide comments on the region. They discovered that citizen-generated data 

was having quality similar to that provided by specialists.  

 

Another significant project in the area is GeoWiki. It started in 2009 as a platform for people to validate global land cover 20 

maps, by comparing their classification to high-resolution images (Fritz et al., 2009). The project has grown since and has 

recently achieved its main goal: to generate a hybrid global land cover map by fusing existing maps and performing 

calibration and validation using the analyses made by citizens (See et al., 2015). Current initiatives in the GeoWiki project 

include gamification and analysis of pictures uploaded onto the platform (See et al., 2015). Many studies stemmed from the 

data collected, generally focused on specific land cover types. A similar approach is taken by Dong et al. (2012), that 25 

analyses pictures uploaded by citizens using a different web application. The research conducted by Dorn et al. (2014) goes 

one step further, as it attributes roughness values to multiple land cover maps, including Open Street Maps ( a website where 

citizens can modify the current street and land cover map).  
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Table 4: Scientific literature on citizen contributions to measurement and analysis of land cover/land use 

Study Measurement/analysis methods Purpose Flood 

type 

Location 

Iwao et al. 

(2006) 

Visual interpretation of crowdsourced tagged pictures sent 

through app/webpage (Degree Confluence Project website) 

Mapping No 

flooding 

Global land cover 

map 

See et al. 

(2015b)* 

Visual interpretation of Google Earth and pictures sent 

through app/webpage (GeoWiki) 

Mapping No 

flooding 

Global land cover 

map 

Dong et al. 

(2012) 

Analysis of tagged pictures from Global Geo-Referenced 

Field Photo Library (DCP citizen pictures + field trip 

pictures) 

Mapping No 

flooding 

Forest cover map 

in Asia 

Dorn et al. 

(2014) 

Use of Open Street Maps Modelling Fluvial 

flood 

Austria 

* Many other articles related to crowdsourcing through GeoWiki 

2.5 Topography 

The Digital Elevation Model (DEM) is one of the most important components in flood modelling, as it generally heavily 

influences flood propagation. It is particularly important in urban settings, where spatial variability in refined scales has a 5 

considerable effect on the direction of water flows. Unfortunately, this is a complex variable to measure that so far relies 

either on fully trained professionals to go to the field, or on expensive airborne technologies. Recently, Shaad et al. (2016) 

studied a terrain capturing low-cost alternative to LiDAR remote sensing images and other expensive methods. The low-cost 

technique is the ground-based close-range photogrammetry (CRP) that consists of collecting images/videos from the ground, 

post-processing them and obtaining terrain information. Volunteers made the videos in a designated location, where even 10 

Unmanned Aerial Vehicles (UAVs) would not be able to collect data. After comparing the results to other methods, they 

concluded that the result has an acceptable quality. 

2.6 Summary analysis 

By classifying the discussed studies according to Craglia et al. (2012), there is an overall similarity in the number of studies 

that crowdsource data implicitly and explicitly (Fig. 3). It is visible though that this aspect does not translate into 15 

homogeneous distribution per flood-related variables, with most implicitly volunteered contributions being related to flood 

extent and most explicit being related to water level. There is a slightly higher concentration of modelling studies that are 

explicitly volunteered, but not enough to be able to draw any conclusions. 
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Figure 3: Selected studies represented in the typology of VGI (Volunteered Geographic Information) 

 

 

Considering the temporal distribution of studies evaluated in this review, it is evident that there is a trend: the rise in number 5 

of studies from 2014 onwards (Fig. 4). This relates to the initial barrier in acknowledging citizen data as having quality that 

is high enough for scientific studies (Buytaert et al., 2014). This resistance is reducing over time as such data is being proved 

useful, protocols are being designed and the data uncertainty is being better understood and quantified.  
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Figure 4: Number of studies analysed per year 

 

If the analysed studies are aggregated into categories (Fig. 5), it can be seen that modelling studies amount to approximately 

the same quantity as monitoring ones, but they are only about a third of all studies reviewed. This is expected because to use 5 

data in models it is necessary to monitor them first. Also, monitoring and mapping applications attend to more general end 

uses. Specifically for land cover, there is an unexplored field in modelling (there are more mapping studies than the ones in 

the graph, see Sect. 2.4). The reason behind may be that modellers do not tend to validate their own land cover maps and 

thus will not do it with citizen science data. What can be noted though, is the lack of exploration of velocity and topography 

variables, which, as mentioned, can be due to the complexity in analysing and setting up the experiment. 10 
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Figure 5: Number of studies analysed per flood-related variable per category: mapping, monitoring and modelling 

 

Related to that, previous sub-sections discussed in detail the methods for collection and analysis of flood-related data 

obtained through crowdsourcing. For example, water level data obtained from reading a water level gauge is easy to collect 5 

and easy to analyse. On the other hand, it requires the installation of gauges (Fig. 6). In summary, whenever data is collected 

from the Internet, there is the disadvantage of needing social media/photo sharing services mining, entailing computational 

efforts and dealing with a high percentage of data that is not georeferenced or time stamped. Further, in the case of water 

level and velocity, some studies suggest that also field visits are necessary and the methods to analyse data are complex. 

Considering crowdsourced data on land cover and topography, it is straightforward to measure and analyse them, although 10 

their delivery to the interested parties may require a smartphone app or a website to be set up and maintained (with the 

exception of Open Street Maps). 
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Figure 6: Pros and cons of collection and analysis methods used to collect flood-related data by citizens 

3 Crowdsourced data in flood modelling 

 By concentrating on the studies in which modelling was performed, we explore in detail how crowdsourced data was 

integrated into each component of flood models.  5 

There is a variety of flood models developed to deal with different types of flood, including: fluvial, pluvial, coastal and 

drainage floods. The main driver of fluvial floods is upstream river discharge, of pluvial floods it is precipitation and of 

coastal floods it is storm surges. In urban drainage floods, the flows inside, through and outside of drainage systems are 

pivotal for flood representation. Moreover, there are complex cases where more than one flood process needs to be 

represented. Although in physically-based flood models water flow is computed by the same principles, different sets of data 10 

are needed for different types of flood models. We focus on a general hydrodynamic model definition and its common inputs 

but present what was the flood type evaluated in the scientific literature (Table 5). 

The flood modelling process typically has two parts: model building, and model usage. (Fig. 7). Model building starts by 

defining the model setup (boundary conditions, parameters, schematization, input data), followed by calibration and 

validation of the water level and velocity fields (dependent variables) with observed values. Calibration and validation can 15 

be performed for both simulation and forecasting models. Once the model is ready, simulations can be run by using different 

boundary conditions or introducing designed measures for better flood management; or forecasts can be made by using 

forecasted water levels or discharges as boundaries. In a simulation setting, model parameters are assumed to be constant in 

time, while in a forecasting setting the parameters, inputs or states (water levels) can be updated while the model is in use, 

using data assimilation. 20 
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Figure 7: Flood models data requirements. Orange coloured tiles correspond to data that citizens have contributed to in a flood 

modelling context and gridded tiles correspond to data citizens cannot contribute to (forecasted water levels and discharges). 

. From the studies analysed (Table 5), three consider 1D channels and the others worked in a 2D setting. Most of them 

analyse only one variable, except Smith et al. (2015) that evaluate water level and velocity. Moreover, most of them model 5 

urban floods, some in a pluvial and others in a fluvial context. 

 

 

 

 10 

 

 

 

 

 15 

Table 5: Scientific literature on crowdsourced data used in flood modelling 

Use in 

modelling 
Study Measurement method 

Typ

e 
Variable Flood type Location 
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Model 

setup 

Dorn et al. 

(2014) 

Use of Open Street Maps 2D Land cover Fluvial flood Austria 

Shaad et al. 

(2016) 

Analysis of pictures captured 

by volunteers at selected 

location 

2D Topography Fluvial flood Indonesia 

Calibratio

n 

Smith et al. 

(2015)* 

Analysis of pictures and tweets 

collected from social media 

(Twitter) 

2D Water level 

and velocity 

Pluvial and 

drainage flood 

UK 

Le Coz et al. 

(2016) 

LSPIV analysis of videos sent 

through webpage 

1D Velocity Fluvial flood Argentina 

Yu et al. (2016) Citizen’s visual identification 

of flooded location provided 

through Chinese website 

2D Flood extent Pluvial and 

drainage flood 

China 

Validation Kutija et al. 

(2014) 

Analysis of pictures collected 

from the University and City 

Council 

2D Water level Pluvial and 

drainage flood 

UK 

Yu et al. (2016) Citizen’s visual identification 

of flooded location provided 

through Chinese website 

2D Flood extent Pluvial and 

drainage flood 

China 

Data 

assimilatio

n 

Aulov et al. 

(2014) 

Visual analysis of texts and 

pictures collected from social 

media (Twitter and Instagram) 

2D Water level 

and flood 

extent 

Coastal flood USA 

 Mazzoleni et 

al. (2015, 

2017) 

Simulated citizen reading of 

water level gauge sent through 

app 

1D Water level Flood 

forecasting 

without flood 

model 

Italy and USA 

 Fava et al. 

(2014) 

Citizen’s reading of a water 

level gauge sent through app 

or webpage 

1D Water level Flood 

forecasting 

without flood 

model 

Brazil 

* It is classified as calibration because, in the classical sense, it improves the model according to observations. However, 

what actually is done is the fine-tuning selection of the precipitation field that fits the observations better. 

 

Considering model building, specifically the model setup, citizens contributed to improving/updating land cover (and 

consequently roughness) and topography information. Dorn et al. (2014) used the land cover information contained in Open 5 

Street Maps3 for modelling a fluvial flood.. They do not analyse how much contribution was made by the citizens and data 

processing is restricted to attributing land cover classes to the features displayed in the maps. In the study of Shaad et al. 

                                                           
3 Open Street Maps (OSM) is an online platform that provides street maps and other information. The maps provided can be 

edited by the users at any time 
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(2016), which addresses topography, there is only one citizen contribution (low-cost alternative) in one selected location that 

is merged with an existing DEM and then used in the model. In both cases, the objective was to compare the performance of 

this low-cost alternative against the performance of consolidated technologies when used for hydrodynamic simulations. 

 

Crowdsourced data has also been used to calibrate and validate flood models in four studies.  One study gathered such data 5 

through social media and public image repositories mining and the others through data uploaded by citizens on specific 

platforms. Smith et al. (2015) identified storm events through social media, triggering shock-capturing hydrodynamic model 

runs with various rainfall intensities. The results were compared with social media data on water level/velocity. The 

comparison consisted of defining a buffer zone around the crowdsourced observation location, built a histogram of simulated 

cell values within it and evaluating the overlap of crowdsourced value/range and the histogram 70-95th percentile range. As 10 

most citizen contributions did not have a water level.velocity value, they received a minimum water level value. Because of 

that, the selected simulation was the one with more ‘overlaps’ and that would not perform better than a simulation with 

rainfall slightly higher. Yu et al. (2016) collected flooded data through a Chinese website and divided it into calibration and 

validation data sets for a pluvial flood model verification. There is no mentioning on how this data is provided (e.g. text or 

image). Le Coz et al. (2016) obtained a discharge value for calibration of a hydraulic model based on the surface velocity 15 

data obtained by a video uploaded to a specific website. Kutija et al. (2014) collected pictures uploaded by citizens and 

extract from them water levels by comparison with reference objects, such as cars (no further detailing on the method of 

extraction is made). Water level data is then used to validate a pluvial flood model. 

 

The described approaches so far consider citizen data for model building and its possible extension for recalibration and 20 

revalidation. Four studies went one step further, integrating crowdsourced data in model usage. Mazzoleni et al. (2015, 2017) 

used synthetically generated data to represent citizen observations, which were incorporated in the model through data 

assimilation algorithms, adapted to deal with the intermittent nature of crowdsourced data. Aulov et al. (2014) and Fava et al. 

(2014) also used the data for simulation/data assimilation, but the methods used are not detailed in the studies. However, the 

studies of Mazzoleni et al. (2015, 2017) and Fava et al. (2014) were made for flood forecasting through hydrological models 25 

and not using hydrodynamic models. 

3.1 Crowdsourced data information content 

If we aim at integrating data into model, data accuracy, volume and temporal and spatial coverage should be at a certain 

level. When these data properties are inadequate, data integration would not provide useful results (i.e. the model 

performance can be low). Although most modelling variables vary in time and space, the data does not need to cover all 30 

dimensions in all parts of the modelling process. For instance, in model setup, topographic data is not needed every 15 

minutes, hourly or daily; it can be provided in a discrete time coverage, from months to years. We analyse four data 

properties: temporal coverage, spatial coverage, volume and uncertainty (Table 6). Although same for all parts, the last two 
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properties vary significantly when analysing the information content of crowdsourced data and that is why these properties 

are included (Table 6).  

 

Table 6: Data properties currently required in the modelling process 

 Setup Calibration & Validation1 Simulation Data assimilation Data assimilation 

 Topography 

Land Cover 

Water Level 

Velocity 

Flood Extent 

Water Level 

Velocity 

Water Level 

Velocity 

Flood Extent 

Temporal coverage Discrete Discrete/Continuous Continuous Variable Variable 

Spatial coverage Distributed Discrete/Distributed Discrete Discrete Unknown 

Uncertainty The lower the better 

Volume The higher the better 
1 Dependent on purpose of the model 5 

 

Analysing crowdsourcing studies by their information content, it is possible to draw the following conclusions:  

 

 Model setup: for integration of topographic and land cover data, it is necessary to have spatially distributed data. 

While this has been achieved within land cover studies, there is only one study involving topography and the data 10 

obtained so far have discrete spatial coverage.  

 Calibration and validation: through mining and crowdsourcing of water level and flood extent estimates, spatially 

distributed crowdsourced data have already been obtained for calibration/validation of simulation models. The 

accuracy of the time stamp was considered vital (Kutija et al., 2015) and results in time have a preliminary good 

level of agreement with citizen observations (Yu et al., 2016). However, even though these studies compare the 15 

results with citizen observations in time, this is done qualitatively and there is no focus on reporting and evaluating 

the temporal coverage.   

 Simulation: traditional modelling efforts require time series of data at specific frequencies, which has only been 

achieved through crowdsourcing in the realm of community-based approaches, in which water levels are measured 

at 6 a.m. and 6 p.m. in agreement with the community (Walker et al., 2016). However, this type of data has been 20 

only monitored and not used in a modelling context so far.  

 Data assimilation: it generally assimilates data provided with a fixed time frequency, but there are a few studies that 

consider intermittent data to be assimilated (Mazzoleni et al., 2015, 2017). However, similarly to simulation, the 

temporal coverage of crowdsourced data is insufficient for data assimilation efforts.  

 25 

Considering uncertainty, this is highly dependent on the collection/analysis method. For example, obtaining water level 

values from pictures of flooded areas (2D) is uncertain, as it mostly involves the selection of what constitutes a good 
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reference point to be made by the citizen. Flood extent, on the other hand, tends to be less uncertain to measure, due to its 

binary nature. The collection through data mining (and sometimes crowdsourcing) has, in general, more sources of 

uncertainty: from geotagging, timestamping and the observed value. To deal with the first two, Aulov et al. (2014) used only 

data that contained proper geotag and time stamp. Kutija et al. (2014) classified non-timestamped data as during or after the 

event, based on picture visual inspection, defining an observation time range. Smith et al. (2015) dealt with uncertainty in 5 

location by generating a histogram of simulated values around the observed point. Yu et al. (2016) acknowledged these 

sources of uncertainty. Regarding uncertainty in value, existent in all sources of crowdsourced data, most studies used the 

(processed) observations as were, without indication of uncertainty. Smith et al. (2015) defined ranges, although these are 

not discussed. Mazzoleni et al. (2015, 2017), used uncertain synthetic crowdsourced data with variable uncertainty. 

 10 

Regarding volume of data collected, this is an issue for all modelling processes, although data mining has again been able to 

provide a better coverage. Besides the challenge of uncertainty,  data mining has also the challenge in providing data in 

conditions that are not extreme, as most of the contributions are done in floods situations and it is limited to certain variables 

(water level, flood extent and velocity). Some of the studies were proof of concepts and integrated up to 3 crowdsourced 

observations each (Le Coz et al., 2016; Fava et al.; 2014; Shaad et al., 2016). Others ranged from 12 to 298 observations 15 

(Kutija et al., 2014; Smith et al., 2015; Yu et al., 2016) and in some cases it was not possible to define the exact number 

(Aulov et al., 2014; Dorn et al., 2014). 

4 Opportunities and challenges 

In the last years, the interest in citizen science and the number of citizen science studies in the water resources context has 

risen considerably. The main factors affecting its use in flood modelling are the degree of how difficult it is to acquire and 20 

evaluate these data and their integration into the models. Our analysis of the existing literature allows for pointing out a 

number of positive experiences from which we can derive opportunities to: 

 

▪ Explore and improve the existing methods to obtain water velocity and topography from videos 

▪ Explore calibration and validation employing data collected through social media in urban environments 25 

▪ Explore the possibilities of setting up the models with the use of land cover maps validated with citizen science 

▪ Make use of apps/websites already developed for citizen science 

 

The first one is based on small scale but successful studies related to using well-developed techniques in a citizen science 

scenario. The relevant experience in data gathering and analysis can be updated to fit the needs of flood modelling. Also, 30 

social media and public image repositories mining has proved to be successful in calibration and validation in modelling 

studies, proving the concept and opening the opportunity to investigate how large this contribution is. As mentioned 
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previously, in the field of land cover map generation citizen data has been used to validate maps and this successful example 

could be used to obtain new roughness maps in a modelling context. Lastly, technological development of apps, websites 

and techniques could be shared and put to public use, to be tested further and to avoid duplicated work. 

 

There are aspects of the integration of crowdsourced data into flood modelling that are still challenging. These are: 5 

 

▪ Explore the use of citizens as data interpreters 

▪ Improve methods to estimate water level from pictures 

▪ Harmonise the time frequency and spatial distribution of models with the ones of crowdsourced data 

▪ Quantification of uncertainty 10 

▪ Increase the volume of data gathered, mainly in non-urban environments   

 

Most of the analysed studies regard the citizen as a sensor, with the exception of studies about land cover related data, in 

which the citizen also acts as an interpreter. For other variables, some studies have already started evaluating the ability of 

citizens to provide interpreted information (Degrossi et al., 2014), but these are few. Regarding water levels, readings from 15 

rulers and extraction from pictures are described differently in the literature, with varying degrees of thoroughness, 

indicating a need for development and testing of water level measurement methodologies in the context of citizens’ 

contributions. The third point brings up a challenge that concerns not only citizen science but also modelling: what is the 

necessary temporal and spatial distribution? Is the traditional modelling approach definitive in terms of data requirements 

and citizen science approaches should adapt to it, or, the modelling process can be adapted to receive citizen science data? 20 

The fourth challenge relates to the quality of data and, again, in the area of global land cover maps some articles have 

already discussed the subject (Foody et al., 2013), but still, when modelling is concerned, the crowdsourced data are treated 

as traditional data and the issue of quality is hardly addressed (albeit recognized as an issue). To which extent does this 

assumption hold? What is the uncertainty in citizen science data? Lastly, there is a challenge mentioned by many studies but 

not really addressed in itself and it is the volume of data. Although the volume of data necessary depends on the objective of 25 

the modelling effort, the volume of crowdsourced data tends to be low, lacking temporal/spatial coverage for integration into 

models. This leads to the question: How to increase the volume of data? Considering this limitation, it is also natural to move 

towards the question: How much data is needed to improve the model significantly?  

 

Application of citizen science in modelling brings an extra challenge of interdisciplinary. Among similar technical fields 30 

(e.g. geosciences and hydrodynamic modelling) there is an issue of technology transfer to be addressed, and there are 

discussions on underlying assumptions and uncertainties that need to be considered. Additionally, hard and soft sciences are 

also very linked, as the quality and value of the citizens’ observations and their temporal/spatial coverage are intrinsically 
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related to social drivers such as why citizens engage, for how long, with which frequency and what is the role of various 

stakeholders. 

5 Conclusions and recommendations 

Citizen science has successfully made its way in many scientific domains and it is only fair that the contribution of citizens 

to modelling floods is also investigated, due to the related intensive data needs. Analysis of literature clearly shows an 5 

increasing number of scientific studies in this area. Successful examples of using existing measurement and analysis 

methods (e.g. velocity and land cover) and of modelling floods with citizen science data (e.g. social media mining) have 

been published and are seen as a good basis for further exploration. There is a clear need to standardise and consolidate 

methodologies and there are challenges involving temporal and spatial distribution of data, uncertainty and volume.  

 10 

It can be observed that the role of citizen contributions is not only in providing information about the current state of the 

environment, in monitoring and mapping studies, but also in providing data that can be used in its modelling and forecasting. 

Studies reviewed in this article showed that crowdsourced data can be integrated: in model building, to improve their overall 

performance; and directly into models (by data assimilation), to improve immediate forecasts. These are promising studies, 

however still too few, and they highlight the need for further work in this direction. The integration of crowdsourced data 15 

into flood models is a viable way to help solve issues of data scarcity in both ungauged catchments and systems subject to 

change.  

One of the challenges worth mentioning is the integration of citizen data with other more traditional data sources like 

gauging and remote sensing. It is also necessary to analyse cases in which citizens are involved at higher levels of 

engagement (e.g. participating in the problem definition, analysis of results and even in the decision-making process) and to 20 

evaluate the trade-off between model data needs and levels of engagement.   

 

Finally, there is the challenge to make citizen contributions valuable in a time where automation in gaining increasing space. 

One may say that citizens are not needed because of automated sensors. At the same time, there are situations where 

crowdsourced data are very valuable. One of the non-technical challenges that we see here is to demonstrate such situations 25 

and increase acceptance of crowdsourced data by water managers. 
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