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Abstract.  
 

In semi-arid areas, agricultural production is restricted by water availability; hence efficient agricultural water 20 

management is a major issue. The design of tools providing regional estimates of evapotranspiration (ET), one 

of the most relevant water balance fluxes, may help the sustainable management of water resources.  

Remote sensing provides periodic data about actual vegetation temporal dynamics (through the Normalized 

Difference Vegetation Index NDVI) and water availability under water stress (through the land surface 

temperature LST) which are crucial factors controlling ET.  25 

In this study, spatially distributed estimates of ET (or its energy equivalent, the latent heat flux LE) in the 

Kairouan plain (Central Tunisia) were computed by applying the Soil Plant Atmosphere and Remote Sensing 

Evapotranspiration (SPARSE) model fed by low resolution remote sensing data (Terra and Aqua MODIS). The 

work goal was to assess the operational use of the SPARSE model and the accuracy of the modeled i) sensible 

heat flux (H) and ii) daily ET over a heterogeneous semi-arid landscape with a complex land cover (i.e. trees, 30 

winter cereals, summer vegetables). 

SPARSE was run to compute instantaneous estimates of H and LE fluxes at the satellite overpass time. The good 

correspondence (R
2
= 0.60 and 0.63 and RMSE=57.89 Wm

-2
 and 53.85 Wm

-2
; for Terra and Aqua, respectively) 

between instantaneous H estimates and large aperture scintillometer (XLAS) H measurements along a path 

length of 4 km over the study area showed that the SPARSE model presents satisfactory accuracy. Results 35 

showed that, despite the fairly large scatter, the instantaneous LE can be suitably estimated at large scale 

(RMSE=47.20 Wm
-2

 and 43.20 Wm
-2

; for Terra and Aqua, respectively and R
2
= 0.55 for both satellites). 

Additionally, water stress was investigated by comparing modeled (SPARSE) and observed (XLAS) water stress 

values; we found that most points were located within a 0.2 confidence interval, thus the general tendencies are 

well reproduced. Even though extrapolation of instantaneous latent heat flux values to daily totals was less 40 

obvious, daily ET estimates are deemed acceptable. 
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1 Introduction 45 

In water scarce regions, especially arid and semi-arid areas, the sustainable use of water by resource 

conservation as well as the use of appropriate technologies to do so is a priority for agriculture (Amri et al., 

2014; Pereira et al., 2002). 

Water use rationalization is needed especially for countries actually suffering from water scarcity, or for 

countries that probably would suffer from water restrictions according to climate change scenarios. Indeed, the 50 

Mediterranean region is one of the most prominent “hot spots” in future climate change projections (Giorgi and 

Lionello, 2008) due to an expected larger warming than the global average and to a pronounced increase in 

precipitation inter-annual variability. The major part of the southern Mediterranean countries, among others 

Tunisia, already suffer from water scarcity and show a growing water deficit, due to the combined effect of the 

water needs growth (soaring demography and irrigated areas extension), and the reduction of resources 55 

(temporary drought and/or climate change). This implies that closely monitoring the water budget components is 

a major issue (Oki and Kanae, 2006).  

The estimation of evapotranspiration (ET) is of paramount importance since it represents the preponderant 

component of the terrestrial water balance; it is the second largest component after precipitation (Glenn et al., 

2007); hence ET quantification is a key factor for scarce water resources management. Direct measurement of 60 

ET is only possible at local scale (single field) using the eddy covariance method for example; whereas, it is 

much more difficult at larger scales (irrigated perimeter or watershed) due to the complexity not only of the 

hydrological processes (Minacapilli et al., 2007) but also of the hydro-meteorological processes. Indeed, at 

landscape scale, surface heterogeneity influences regional and local climate, inducing for example cloudiness, 

precipitation and temperature patterns differences between areas of higher elevation (hills and mountains 65 

surrounding the Kairouan plain) and the plain downstream. Moreover, at these scales, land cover is usually 

heterogeneous and this affects the land-atmosphere exchanges of heat, water and other constituents (Giorgi and 

Avissar, 1997). ET estimates for various temporal and spatial scales, from hourly to monthly to seasonal time 

steps, and from field to global scales, are required for hydrologic applications in water resource management 

(Anderson et al., 2011). Techniques using remote sensing (RS) information are therefore essential when dealing 70 

with processes that cannot be represented by point measurements only (Su, 2002).  

In fact, the contribution of RS in vegetation’s physical characteristics monitoring on large areas have been 

identified for years (Tucker, 1978); RS provides periodic data about some major ET drivers, amongst others, 

land surface temperature and vegetation properties (e.g. Normalized Difference Vegetation Index NDVI and 

Leaf Area Index LAI) from field to regional scales (Li et al., 2009; Mauser and Schädlich, 1998). Many methods 75 

using remotely-sensed data to estimate ET are reviewed in Courault et al. (2005). ICARE (Gentine et al., 2007) 

and SiSPAT (Braud et al., 1995) are examples of complex physically based Land Surface Models (LSM) using 

RS data. They include a detailed description of the vegetation water uptake in the root zone, the interactions 

between groundwater, root zone and surface water. However, the lateral surface and subsurface flows are 

neglected. This can lead to inaccurate results when applied in areas where such interactions are important 80 

(Overgaard et al., 2006). 
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Moreover, RS can provide estimates of large area fluxes in remote locations, but those estimates are based on the 

spatial and temporal scales of the measuring systems and thus vary one from another. Hence, one solution is to 

upscale local micrometeorological measurements to larger spatial scales in order to acquire an optimum 85 

representation of land-atmosphere interactions (Samain et al., 2012). However, such up-scaling process is not 

always possible and results might not be reliable in comparison to the RS distributed products.  

Water and energy exchange in the soil-plant-atmosphere continuum have been simulated through several land 

surface models (Bastiaanssen et al., 2007; Feddes et al., 1978). Among them, two different approaches use 

remote sensing data to estimate spatially distributed ET (Minacapilli et al., 2009): one is based on the soil water 90 

balance (SWB) and one that solves the surface energy budget (SEB). The SWB approach exploits only visible-

near-infrared (VIS-NIR) observations to perceive the spatial variability of crop parameters. The SEB modeling 

approach uses visible (VIS), near-infrared (NIR) and thermal (TIR) data to solve the SEB equation by forcing 

remotely-sensed estimates of the SEB components (mainly the land surface temperature LST). In fact, there is a 

strong link between water availability in the soil and surface temperature under water stress, hence, in order to 95 

estimate soil moisture status as well as actual ET at relevant space and timescales, information in the TIR 

domain (3–15 µm) is frequently used (Boulet et al., 2007). The SWB approach has the advantage of high 

resolution and frequency VIS-NIR remote sensing data availability against limited availability of high resolution 

thermal imagery for the SEB approach. Indeed, satellite data such as Landsat or Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) provide field scale (30–100 m) estimates of ET (Allen et al., 100 

2011), but they have a low temporal resolution (16 day-monthly) (Anderson et al., 2011).  

The RS-based SWB models provide estimates of ET, soil water content, and irrigation requirements in a 

continuous way. For instance, at field scale, estimates of seasonal ET and irrigation can be obtained by SWB 

modeling using high resolution remote sensing forcing as done in the study with the SAtellite Monitoring of 

IRrigation (SAMIR) model by Saadi et al. (2015) over the Kairouan plain. However, for an appropriate 105 

estimation of ET, the SWB model requires knowledge of the water inputs (precipitation and irrigation) and an 

assessment of the extractable water from the soil (mostly derived from the soil moisture characteristics: actual 

available water content in the root zone, wilting point and field capacity), whereas, significant biases are found 

mainly when dealing with large areas and long periods, due to the spatial variability of the water inputs 

uncertainties as well as the inaccuracy in estimating other flux components such as the deep drainage (Calera et 110 

al., 2017). Hence, the major limitation of the SWB method is the high number of needed inputs whose estimation 

is highly uncertain especially over a heterogeneous land surface due to hydrologic processes complexity. 

Moreover, spatially distributed SWB models, typically those using the Food and Agriculture Organization-FAO 

guidelines (Allen et al., 1998) for crop ET estimation, generally parameterize the vegetation characteristics on 

the basis of land use maps (Bounoua et al., 2015; Xie et al., 2008), and different parameters are used for different 115 

land use classes. Nevertheless, SWB modelers generally do not have the possibility to carry out remote sensing-

based land use change mapping due to time, budget, or capacity constraints and use often very generic classes 

potentially leading to modeling errors (Hunink et al., 2017). In addition, the lack of data about the soil properties 

(controlling field capacity, wilting point and the water retention) as well as the actual root depths, lead to limited 

practical use of the SWB models (Calera et al., 2017). The same apply to the soil evaporation whose estimation 120 

generally rely on the FAO guidelines approach (Allen et al., 1998). Although, it was shown that under high 

evaporation conditions, the FAO-56 (Allen et al., 1998) daily evaporation computed on the basis of the readily 
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evaporable water (REW) is overestimated at the beginning of the dry down phase (i.e. the period after rain or 

irrigation where the soil moisture is decreasing due to evapotranspiration and drainage, Mutziger et al., 2005; 

Torres and Calera, 2010). Hence, to improve its estimation a reduction factor proposed by Torres and Calera 125 

(2010) was applied to deal with this problem in several studies (e.g. Odi-Lara et al., 2016; Saadi et al., 2015). 

Furthermore, SWB models such as SWAP (Kroes, 2017), Cropsyst (Stöckle et al., 2003), AquaCrop (Steduto et 

al., 2009) and SAMIR (Simonneaux et al., 2009) are able to take irrigation into account, either as an estimated 

amount provided by the farmer (as an input if available) or a predicted amount through a module triggering 

irrigation according to, say, critical soil moisture levels (as an output). However, the limited knowledge of the 130 

actual irrigation scheduling is a critical limitation for the validation protocol of irrigation requirements estimates 

by SWB modeling. Therefore, SWB modelers must deal with the lack of information about real irrigation which 

induces unreliable estimations.  

Consequently, ET estimation at regional scale is often achieved using SEB approaches, by combining surface 

temperature from medium to low resolution (kilometer scale) remote sensing data with vegetation parameters 135 

and meteorological variables (Liou and Kar, 2014). Recently, many efforts have been made to feed remotely 

sensed surface temperature into ET modeling platforms in combination with other critical variables, e.g., NDVI 

and albedo (Kalma et al., 2008; Kustas and Anderson, 2009). A wide range of satellite-based ET models were 

developed, and these methods are reviewed in (Liou and Kar, 2014). The majority of SEB-based models are 

single-source models; their algorithms compute a total latent heat flux as the sum of the evaporation and the 140 

transpiration components using a remotely sensed surface temperature. However, separate estimates of 

evaporation and transpiration makes the dual-source models more useful for agrohydrological applications 

(water stress detection, irrigation monitoring etc.) (Boulet et al., 2015).  

Contrarily to SWB models, most SEB models are run in their most standardized version, using observed remote 

sensing-based parameters such as albedo in conjunction with a set of input parameters taken from literature or in 145 

situ data. On the other hand, the SEB model validation with enough data in space and time is difficult to achieve, 

due to the limited availability of high resolution thermal images (Chirouze et al., 2014). Therefore, it is usually 

possible to evaluate SEB models results only at similar scale (km) to medium or low resolution images. Indeed, 

the pixel size of thermal remote sensing images, except for the scarce Landsat7 images (60 m), covers a range of 

1000 m (Moderate Sensors Resolution Imaging Spectroradiometer MODIS), to the order of 4000 m 150 

(Geostationary Operational Environmental Satellite GOES). However, direct methods measuring sensible heat 

fluxes (eddy covariance for example) only provide point measurements with a footprint considerably smaller 

than a satellite pixel. Therefore, scintillometry techniques have emerged as one of the best tools aiming to 

quantify averaged fluxes over heterogeneous land surfaces (Brunsell et al., 2011). They provide area-averaged 

sensible heat flux over areas comparable to those observed by satellites (Hemakumara et al., 2003; Lagouarde et 155 

al., 2002). Scintillometry can provide sensible heat using different wavelengths (optical and microwave 

wavelength ranges), aperture sizes (15-30 cm) and configurations (long-path and short-path scintillometry) 

(Meijninger et al., 2002). The upwind area contributing to the flux (i.e. the flux footprint) varies as wind 

direction and atmospheric stability, and must be estimated for the surface measurements in order to compare 

them to SEB estimates of the flux which are representative of the pixel (Brunsell et al., 2011). Assessing the 160 

upwind area contributing to the flux can be done using several footprint models (Schmid, 2002). Although 

footprint analysis ensures ad hoc spatial intersecting area between ground measurements and satellite-based 

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&sqi=2&ved=0ahUKEwiP7MCHhbjUAhWC1xoKHcvKD4MQFggzMAM&url=https%3A%2F%2Ffr.wikipedia.org%2Fwiki%2FGeostationary_Operational_Environmental_Satellite&usg=AFQjCNE2xZRDqjKqi2_mYjSVJwhjz9rG5w
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surface fluxes, the spatial heterogeneity at subpixel scale should be further considered in validating low 

resolution satellite data (Bai et al., 2015). The LAS technique has been validated over heterogeneous landscapes 

against eddy covariance measurements (Bai et al., 2009; Chehbouni et al., 2000; Ezzahar et al., 2009) and also 165 

against modeled fluxes (Marx et al., 2008; Samain et al., 2012; Watts et al., 2000). Few studies dealt with eXtra 

Large Aperture Scintillometer (XLAS) data (Kohsiek et al., 2006; Kohsiek et al., 2002; Moene et al., 2006). 

Historical survey, theoretical background as well as recent works in applied research concerning scintillometry 

are reviewed in De Bruin and Wang (2017). Since the scintillometer provides large-scale area-average sensible 

heat flux (H_XLAS), the corresponding latent heat flux (LE_XLAS) can then be computed as the energy balance 170 

residual term (LE_XLAS =Rn-G-H_XLAS), hence, the estimation of a representative value for the available 

energy (AE =Rn-G) is always crucial for the accuracy of the retrieved values of LE_XLAS. This assumption is 

valid only under the similarity hypothesis of Monin-Obukhov (MOST) (Monin and Obukhov, 1954), i.e. surface 

homogeneity and stationary flows. These hypothesis are verified in our study area where topography is flat, and 

landscape is heterogeneous only from an agronomic point of view since we find different land uses (cereals, 175 

market gardening and fruit trees mainly olive trees with considerable spacing of bare soil); however, this 

heterogeneity in landscape features at field scale is randomly distributed and there is no drastic change in height 

and density of the vegetation at the scale of the XLAS transect (i.e. little heterogeneity at the km scale, most 

MODIS pixels have similar NDVI values for instance).  

In this study, spatially distributed estimates of surface energy fluxes (sensible heat H and latent heat fluxes LE) 180 

over an irrigated area located in the Kairouan plain (Central Tunisia) were obtained by the SEB method, using 

the Soil Plant Atmosphere and Remote Sensing Evapotraspiration (SPARSE) model (Boulet et al., 2015) fed by 

1-km thermal data and 1-km NDVI data from MODIS sensors on Terra and Aqua satellites. The main objective 

of this paper is to compare the modeled H and LE simulated by the SPARSE model with, respectively, the H 

measured by the XLAS and the LE reconstructed from the XLAS measurements acquired during two years over 185 

a large, heterogeneous area. We explore the consistency between the instantaneous H and LE estimates at the 

satellite overpass time, the water stress estimates and also ET derived at daily time step from both approaches. 

2 Experimental site and datasets 

2.1 Study area 

The study site is a semi-arid region located in central Tunisia, the Kairouan plain (9°23ʹ−10°17ʹE, 190 

35°1ʹ−35°55ʹN, (Figure 1). The landscape is mainly flat, and the vegetation is dominated by agricultural 

production (cereals, olive groves, fruit trees, market gardening, Zribi et al., 2011). Water management in the 

study area is typical of semi-arid regions with an upstream sub-catchment that transfers surface and subsurface 

flows collected by a dam (the El Haouareb dam), and a downstream plain (Kairouan plain) supporting irrigated 

agriculture (Figure 1). Agriculture consumes more than 80% of the total amount of water extracted each year 195 

from the Kairouan aquifer (Poussin et al., 2008). Most farmers in the plain uses their own wells to extract water 

for irrigation (Pradeleix et al., 2015), while a few depends on public irrigation schemes based on collective 

networks of water distribution pipelines all linked to a main borehole. The crop intensification in the last 

decades, associated to increasing irrigation, has led to growing water demand, and an overexploitation of the 

groundwater (Leduc et al., 2004). 200 

http://www.mdpi.com/2072-4292/7/1/747/htm#fig_body_display_remotesensing-07-00747-f001
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Figure 1 : The study area: the downstream Merguellil sub-basin is the so called Kairouan plain; MODIS grid is the 

extracted 10 km × 8 km MODIS sub-image and in red the scintillomter XLAS transect 

2.2 Experimental set-up and remote sensing data 

An optical Kipp and Zonen Extra Large Aperture Scintillometer (XLAS) was operated continuously for more 205 

than two years (1 March 2013 to 3 June 2015) over a relatively flat terrain (maximum difference in elevation of 

about 18 m). The scintillometer consists in a transmitter and a receiver both with an aperture diameter of 0.3 m, 

which allows longer path length. The wavelength of the light beam emitted by the transmitter is 940 nm. The 

transmitter was located on an eastern water tower (coordinates: 35° 34' 0.7" N; 9° 53' 25.19" E; 127 m above sea 

level) and the receiver on a western water tower (coordinates: 35° 34' 17.22" N; 9° 56' 7.30"E; 145 m above sea 210 

level) separated by a path length of 4 km (Figure 2).  

The scintillometer transect was above mixed vegetation canopy: trees (mainly olive orchards) with some annual 

crops (cereals and market gardening) and the mean vegetation height is estimated about 1.17m along the 

transect. Both instruments were installed at 20 m height as recommended in the Kipp & Zonen instruction 

manual for LAS & XLAS (KIPP&ZONEN, 2007). At this height and for a 4-km path length, the devices are 215 

high enough to minimize measurement saturation and assumed to be above or close to the blending height where 

MOST applied.  

Furthermore, two automatic Campbell Scientific (Logan, USA) eddy covariance (EC) flux stations were also 

positioned at the same level on the two water tower top platforms. Half hourly turbulent fluxes in the western 

and the eastern EC stations were measured used a sonic anemometer CSAT3 (Campbell Scientific, USA) at a 220 

rate of 20 Hz and a sonic anemometer RM 81000 (Young, USA) at a rate of 10 Hz, respectively. The western 
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station data were more reliable with less measurement errors and gaps, hence, the western EC set-up was used to 

initialise friction velocity u* values and the Obukhov length Lo in the scintillometer flux computation (sect.3.1).  

Half hourly standard meteorological measurements including incoming long wave radiation i.e. global incoming 

radiation (Rg30), the incoming longwave radiation i.e atmospheric radiation (Ratm-30), wind speed (u30), wind 225 

direction (ud-30mn), air temperature (Ta-30) and relative humidity (RHa-30) and barometric pressure (P30) were 

recorded using an automated weather station installed in the study area (Figure 2), referred as the Ben Salem 

meteorological station (35° 33' 1.44" N; 9° 55' 18.11"E). Meteorological data were used either to force the 

SPARSE model or as input data in XLAS derived sensible and latent heat flux. The global incoming radiation 

was also used in the extrapolation method to scale instantaneous observed (sect. 3.3.2) and modeled (sect. 4.2) 230 

available energy as well as modeled sensible heat flux (sect. 4.2) to daily values.  

In addition, an EC flux station, referred as the Ben Salem flux station (few tens of meters away from the 

meteorological station) was installed from November 2012 to June 2013 in an irrigated wheat field (Figure 2) 

measuring half hourly convective fluxes exchanged between the surface and the atmosphere (HBS-30 and LEBS-30) 

combined with measurements of the net radiation RnBS-30 and the soil heat flux GBS-30. Net radiation and soil heat 235 

flux measurements were transferred to the meteorological station from June 2013 till June 2015. Since, there are 

no Rn and G measurements in the two water towers EC stations, RnBS and GBS measurements were among the 

inputs data to derive sensible and latent heat fluxes from the XLAS measurements. In addition, measured 

available energy (AEBS=RnBS―GBS) and HBS were used to calibrate the extrapolation relationship of the available 

energy and the sensible heat flux, respectively (sect. 3.3.2 and 4.2). 240 

Remotely sensed data were acquired for the study period (1
st
 September 2012 to 30

th
 June 2015) at the resolution 

of the MODIS sensor at 1 km, embarked on board of the satellites Terra (overpass time around 10:30 local solar 

time) and Aqua (overpass time around 13:30 local solar time). Downloaded MODIS products were (i) 

MOD11A1 and MYD11A1 for Terra and Aqua, respectively (land surface temperature LST, surface emissivity ε 

and viewing angle ϕ), (ii) MOD13A2 and MYD13A2 for Terra and Aqua, respectively (NDVI) and (iii) 245 

MCD43B1, MCD43B2 and MCD43B3 (albedo α). These MODIS data provided in sinusoidal projection were 

reprojected in UTM using the MODIS Reprojection Tool. Then, sub-images of 10 km × 8 km centered on the 

XLAS transect (Figure 1) were extracted. The daily MODIS LST and viewing angle, 8-day MODIS albedo, and 

16-day MODIS NDVI contain some missing or unreliable data; hence, days with missing data (35% of all dates) 

in MODIS pixels regarding the scintillometer footprint (see later footprint computation in sect.3.2) were 250 

excluded. Albedo products (MCD43) are available every 8 days; the day of interest is the central date. Both 

Terra and Aqua data are used in the generation of this product, providing the highest probability for quality input 

data and designating it as a combined product. Moreover, the 1km/16days NDVI products 

(MOD13A2/MYD13A2) are available every 16 days and separately for Terra and Aqua. Algorithms generating 

this product operate on a per-pixel basis and require multiple daily observations to generate a composite NDVI 255 

value that will represent the full period (16 days). For both products, data are linearly interpolated over the 

available dates in order to get daily estimates. For each pixel, the quality index supplied with each product is 

used to select the best data. 
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 260 
Figure 2 : XLAS set-up: XLAS transect (white), for which the emitter and the receiver are located at the extremity of 

each white arrow, half-hourly XLAS footprint for selected typical wind conditions (green), MODIS grid (black), 

orchards (blue) and the location of the Ben Salem meteorological and flux stations. Background is a three color (red, 

green, blue) composite of SPOT5 bands 3 (NIR), 2 (VIS-red) and 1(VIS-green) acquired on 9th April 2013 and 

showing in red the cereal plots.  265 

3 Extra Large aperture scintillometer (XLAS): data processing 

3.1 Scintillometer derived fluxes 

Scintillometer measurements are based on the scintillation theory; fluxes of sensible heat and momentum cause 

atmospheric turbulence close to the ground, and create, with surface evaporation, refractive index fluctuations 

due mainly to air temperature and humidity fluctuations (Hill et al., 1980). The fluctuations intensity of 270 

refractive index is directly linked to sensible and latent heat fluxes. The light beam emitted by the XLAS 

transmitter towards the receiver is dispersed by the atmospheric turbulence. The scintillations representing the 

intensity fluctuations are analyzed at the XLAS receiver and are expressed as the structure parameter of the 

refractive index of air integrated along the optical path     (m-2/3
) (Tatarskii, 1961). The sensitivity of the 

scintillometer to     along the beam is not uniform and follows a bell-shape curve due to the symmetry of the 275 

devices. This means that the measured flux is more sensitive to sources located towards the transect centre and is 

less affected by those close to the transect extremities.  

In order to compute the XLAS sensible heat flux, Cn
2
 was converted to the structure parameter of temperature 

turbulence CT
2
 (K

2
m

−2/3
) by introducing the Bowen ratio (ratio between sensible and latent heat fluxes), hereafter 

referred to as β, which is a temperature /humidity correlation factor. Moreover, the height of the scintillometer 280 

beam above the surface varies along the path. In our study site, the terrain is very flat leading to little beam 

height variation across the landscape, except for what is induced by the different roughness of the individual 

fields. Since the interspaces between trees are large, the effective roughness of the orchards is not significantly 

different from that of annual crops fields. Consequently, Cn
2
 and therefore CT

2
 are not only averaged horizontally 

but vertically as well. 285 
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At visible wavelengths, the refractive index is sensitive to temperature fluctuations. Then, we can relate the Cn² 

to CT² as follows: 

      
            

   

 

      
    

 
 
 

  (1) 

with T  the air temperature (°K) and P the atmospheric pressure (Pa).  

Green and Hayashi (1998) proposed another method to compute XLAS sensible heat flux (H_XLAS) assuming 

full energy budget closure and using an iterative process without the need of β as an input parameter. This 290 

method is called the “β-closure method” (BCM, Twine et al., 2000). In the calculation algorithm, β is estimated 

iteratively with the BCM method, as described in Solignac et al. (2009) with initial guess using RnBS and GBS 

from the Ben Salem flux station and initial u* coming from the western water tower EC station. 

Then, the similarity relationship proposed by (Andreas, 1988) is used to relate the CT² to the temperature scale T* 

in unstable atmospheric conditions as follows: 295 

            
 
 

  
            

      

  
 
 
 
 
   (2) 

And for stable atmospheric conditions: 

            
 
 

  
 

           
      

  
 

 
 
    (3) 

where LO (m) the Obukhov length , ZLAS (m) the scintillometer height, and d (m) the displacement height, which 

corresponds to 2/3 of the averaged vegetation height zv (see Sect. 4.1). 

From T* and the friction velocity u* (computed based on an iteration approach in the BCM method), the sensible 

heat flux can be derived as follows: 300 

            (4) 

where ρ (kgm
−3

) the density of air and cp (Jkg
-1

K
-1

) the specific heat of air at constant pressure. 

 H_XLAS was computed at a half hourly time step. Before flux computation, a strict filtering was applied to the 

XLAS data to remove outliers depending on weak demod signal. Negative night-time data were set to zero and 

daytime flux missing data (one to three 30 mn-data) were gap filled using simple interpolation. Furthermore, half 

hourly H_XLAS aberrant values due to measurement errors and values higher than 400 Wm
-2

, arising from 305 

measurement saturation, were ruled out (3% of the total measurement throughout the experiment duration). 

Finally, daily H_XLAS was computed as the average of the half hourly H_XLAS.  

3.2 XLAS footprint computation 

The footprint of a flux measurement defines the spatial context of the measurement and the source area that 

influences the sensors. In case of inhomogeneous surfaces like patches of various land covers and moisture 310 

variability due to irrigation, the measured signal is dependent on the fraction of the surface having the strongest 

influence on the sensor and thus on the footprint size and location. Footprint models (Horst and Weil, 1992; 

Leclerc and Thurtell, 1990) have been developed to determine what area is contributing to the heat fluxes as well 

as the relative weight of each particular cell inside the footprint limits. Contributions of upwind locations to the 

measured flux depend on the height of the vegetation, height of the instrumentation, wind speed, wind direction, 315 

and atmospheric stability conditions (Chávez et al., 2005).  
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According to the model of (Horst and Weil, 1992), for one-point measurement system, the footprint function f 

relates the spatial distribution of surface fluxes, F0(x,y) to the measured flux at height zm, F(x,y,zm), as follows: 

                
                          

 

  

 

  

  (5) 

The footprint function f is computed as: 

          
   

  

  
   

      

       
              (6) 

where       the mean wind speed profile and    the mean plume height for diffusion from a surface source. The 320 

variables A, b and c are scale factors and r a scale factor of the Gamma function. In the case of a scintillometer 

measurement, the footprint function has to be combined with the spatial weighting function W(x) of the 

scintillometer to account for the sensor integration along its path. Thus, the sensible heat flux footprint mainly 

depends on the scintillometer effective height zLAS (Hartogensis et al., 2003), which includes the topography 

below the path and the transmitter and receiver heights, the wind direction and the Obukhov length LO, which 325 

characterizes the atmospheric stability (Solignac et al., 2009). In a subsequent step, daily footprints were 

computed as a weighted sum of the half hourly footprints by the XLAS sensible heat flux.  

In fact, there is an issue with the MODIS pixel heterogeneity and notably the distribution of the land use classes 

at the intersection between the square pixel and the XLAS footprint (Bai et al., 2015). Hence, in order to provide 

a first guess on these relative heterogeneities, land use classes within each MODIS pixel of the 10 km × 8 km 330 

sub-image were studied based on the land use map of the 2013-2014 season (Chahbi, 2016). The average 

footprint of all half hourly footprints for the whole study period was computed and overlaid on the MODIS grid 

in order to identify the MODIS pixels partially or totally covered by footprint (Figure 3).  

 

Figure 3 : MODIS pixels partially or totally covered by XLAS source area 335 

The percentage of land use classes was computed for i) the part of each pixel that lies within the footprint, and ii) 

the complementary part of the pixel located outside of the footprint (Figure 4). Results show that difference in 

percentages of each land use classes for the pixel fractions located within or outside the footprint is low with 

1.8%, 1.7%, 1.0% and 3.5% for cereals, market gardening, trees and bare soil, respectively. Moreover, the major 

part of the area above transect is covered by fallow and orchards. The land use classes’ partition inside the 13 340 

MODIS pixels totally covered by the average footprint is comparable. 
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Figure 4: Land use classes’ percentage of the MODIS pixels within or outside the footprint 

3.3 XLAS derived latent heat flux  

Instantaneous (LE_residual_XLASt-FP) and daily (LE_residual_XLASday-FP) XLAS derived latent heat flux (i.e. 345 

residual latent heat flux) of the XLAS upwind area were computed using the energy budget closure of the XLAS 

measured sensible heat flux (H_XLAS) with additional estimations of remotely sensed net surface radiation Rn 

and soil heat flux G, as available energy (AE=Rn-G), as follows: 

                                    (7) 

                                           (8) 

H_XLASt and H_XLASday are respectively the instantaneous and daily measured H at the time of the satellite 

overpass interpolated from the half hourly fluxes measurements. Daily available energy within the footprint 350 

(AEday-FP) was computed from instantaneous available energy (AEt-FP) as detailed in Sect. 3.3.1 and Sect. 3.3.2. 

The subscripts “30”, “day” and “t” refer to half hourly, daily and instantaneous (at the time of Terra and Aqua 

overpasses) variables, respectively; while the subscript “FP” means that the footprint is taken into account i.e. 

instantaneous or the daily (depending on time scale) footprint was multiplied by the variable. 

3.3.1 Instantaneous available energy 355 

Net surface radiation is the balance of energy between incoming and outgoing shortwave and longwave radiation 

fluxes at the land-atmosphere interface. Remotely sensed surface radiative budget components provide 

unparalleled spatial and temporal information, thus several studies have attempted to estimate net radiation by 

combining remote sensing observations with surface and atmospheric data. Net radiation equation can be written 

as follows: 360 

                            
   (9) 

where Rg the incoming shortwave radiation (W.m
-2

), Ratm the incoming longwave radiation (W.m
-2

), ɛs the 

surface emissivity, σ Stefan-Boltzmann coefficient (W.m
-2

.K
4
) , α the albedo, and LST the land-surface 

temperature (°K).  

The soil heat flux G depends on the soil type and water content as well as the vegetation type (Allen et al., 

2005).The direct estimation of G by remote sensing data is not possible (Allen et al., 2011), however, empirical 365 
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relations can estimate the fraction ξ=G/Rn as a function of soil and vegetation characteristics using satellite 

image data, such as the LAI, NDVI, α and LST. Generally, G represents 5-20% of Rn during daylight hours 

(Kalma et al., 2008). In order to estimate the G/Rn ratio, several methods have been tested for various types of 

surfaces at different locations. The most common methods parameterize ξ as a constant for the entire day or at 

satellite overpass time (Ventura et al., 1999), according to NDVI (Jackson et al., 1987; Kustas and Daughtry, 370 

1990), LAI (Choudhury et al., 1987; Kustas et al., 1993; Tasumi et al., 2005), vegetation fraction (fc ) (Su, 

2002), LST and α (Bastiaanssen, 1995), or only LST (Santanello Jr and Friedl, 2003). These empirical methods 

are suitable for specific conditions; therefore, estimating G, especially in this type of environment where NDVI 

values are low and thus G/Rn values are large, is a critical issue. The approach adopted here was drawn on 

Danelichen et al. (2014) who evaluated the parameterization of these different models in three sites in Mato 375 

Grosso state in Brazil and found that the model proposed by (Bastiaanssen, 1995) showed the best performance 

for all sites, followed by the model from Choudhury et al. (1987) and Jackson et al. (1987):  

Bastiaanssen (1995): 

                                               (10) 

Choudhury et al. (1987): 

                       (11) 

Jackson et al. (1987) 380 

                            (12) 

 

Hence, these three methods were tested for the Ben Salem flux station measurements, by comparing the 

measured GBS-t and the computed G using measured RnBS-t, LSTBS-t, αBS, NDVIBS and LAIBS at Terra and Aqua 

overpass time (results not shown). The best results are issued from Bastiaanssen (1995) method with a Root 

Mean Square Error (RMSE) of 0.09 (average value of the two satellites overpass time) followed by Jackson et al. 385 

(1987) and Choudhury et al. (1987) with RMSE values of 0.15 and 0.2, respectively. Moreover, daily measured 

GBS-day was computed and a G accumulation is generally found as it has been already mentioned by (Clothier et 

al., 1986) who showed that G is neither constant nor negligible on diurnal timescales, and can constitute as much 

as 50% of Rn over sparsely vegetated area. Since G estimation was the most uncertain variable, the three above 

methods were tested to compute the distributed remotely sensed AE. The Ben Salem meteorological station was 390 

used to provide Rgt and Ratm-t. Remote sensing variables α, LST, ɛs and NDVI came from MODIS products. 

Remotely sensed LAI was computed from the MODIS NDVI using a single equation (Clevers, 1989) for all 

crops in the study area: 

     
 

 
   

          

              
    (13) 

The calibration of this relationship was done over the Yaqui irrigated perimeter (Mexico) during the 2007-2008 

growing season using hemispherical LAI measured in all the studied fields (Chirouze et al., 2014). Calibration 395 

results gave the asymptotical values of NDVI, NDVI∞ = 0.97 and NDVIsoil = 0.05, as well as the extinction factor 

k=1.13. As this relationship was calibrated over a heterogeneous land surface but on herbaceous vegetation only, 

its relevance for trees was checked. For that purpose, clump-LAI measurements on an olive tree, as well as 

allometric measurements i.e. mean distance between trees and mean crown size done using Pleiades satellite data 

(Mougenot et al., 2014;Touhami, 2013) were obtained. Clump LAI is the value of the LAI of an isolated element 400 

of vegetation (tree, shrub...); if this element occupies a fraction cover f and is surrounded by bare soil, then the 
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clump LAI value is equal to the area average LAI divided by f. Hence, we checked that the pixels with tree 

dominant cover show LAI values close to what was expected (of the order of 0.3 to 0.4 given the interrow 

distance of 12 m on average).  

Remote sensed available energy was computed for the 10 km × 8 km MODIS sub-images at Terra-MODIS and 405 

Aqua-MODIS overpass time, using the three methods estimating G. Since the measured heat fluxes H_XLASt 

represent only the weighted contribution of the fluxes from the upwind area to the tower (footprint), then 

instantaneous footprint at the time of Terra and Aqua overpass were selected among the two half hour preceding 

and following the satellite’s time of overpass (lowest time interval) and then was multiplied by the instantaneous 

remote sensed available energy AEt to get the available energy of the upwind area AEt-FP.  410 

3.3.2 Daily available energy 

Most methods using TIR domain data rely on once-a-day acquisitions, late morning (such as Terra-MODIS 

overpass time) or early afternoon (such as Aqua-MODIS overpass time). Thus, they provide a single 

instantaneous estimate of energy budget components. In order to obtain daily AE from these instantaneous 

measurements and to reconstruct hourly variations of AE, we considered that its evolution was proportional to 415 

another variable whose diurnal evolution can be easily known.  

The extrapolation from an instantaneous flux estimate to a daytime flux assumes that the surface energy budget 

is “self-preserving” i.e. the relative partitioning among components of the budget remains constant throughout 

the day. However, many studies (Brutsaert and Sugita, 1992; Gurney and Hsu, 1990; Sugita and Brutsaert, 1990) 

showed that the self-preservation method gives day-time latent heat estimates that are smaller than observed 420 

values by 5-10%. Moreover, (Anderson et al., 1997) found that the evaporative fraction computed from 

instantaneous measured fluxes tends to underestimate the daytime average by about 10%, hence, a corrected 

parameterization was used and a coefficient=1.1 was applied. Similarly, Delogu et al. (2012) found an 

overestimation of about 10% between estimated and measured daily component of the available energy thus, a 

coefficient =0.9 was applied. The corrected parameterization proposed by Delogu et al. (2012) was tested, but 425 

this coefficient did not give consistent results, therefore, the extrapolation relationship was calibrated in order to 

get accurate daily results of AE . 

Thereby, the applied extrapolation method was tested using in situ Ben Salem flux station measurements. The 

incoming short wavelengths radiation was used to scale available energy from instantaneous to daily values; but 

only for clear sky days for which MODIS images can be acquired and remote sensing data used to compute AE 430 

are available. Clear sky days were selected based on the ratio of daily measured incoming short wavelengths 

radiation Rgday to the theoretical clear sky radiation Rso as proposed by the FAO-56 method (Allen et al., 1998). 

A day was defined as clear if the measured Rgday is higher than 85 % of the theoretical clear sky radiation at the 

satellite overpass time (Delogu et al., 2012).  

Daily measured available energy AEBS-day computed as the average of half-hourly measured AEBS-30, was 435 

compared to daily available energy (AEBS-day-Terra and AEBS-day-Aqua) computed using the extrapolation method 

from instantaneous measured AEBS-t-Terra and AEBS-t-Aqua at Terra and Aqua overpass time, respectively (Equation 

14).  

 

 440 
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(1 4) 

                         

           

        

       

where Rgday is the daily measured incoming short wavelengths radiation in the Ben Salem meteorological 

station; Rgt-Terra and Rgt-Aqua are the instantaneous incoming short wavelengths radiations measured at Terra and 

Aqua overpass time, respectively and AEBS-t-Terra and AEBS-t-Aqua are the instantaneous measured available energy 

in the Ben Salem flux station, at Terra and Aqua overpass time. 

Results gave an overestimation of about 15 %. The corrected parameterizations of AE (Table 1), needed to 445 

remove the bias between measured (AEBS-day) and computed AE (AEBS-day-Terra and AEBS-day-Aqua), were applied to 

compute daily remotely sensed AE (AEday) from instantaneous AE (AEt) following the extrapolation method 

shown in equation 14. 

Table 1: Corrected parameterizations of available energy for the diurnal reconstitution 

Terra aTerra 0.85 

bTerra -19.81 

Aqua aAqua  0.87 

bAqua -18.94 

 450 

Then AEday was multiplied by the weighting coefficients ranging from zero and one of the corresponding daily 

footprint to get the daily available energy of the upwind area AEday-FP. Finally, estimates of Terra and Aqua 

observed daily LE (LE_residual_XLASday-FP) were obtained based on the three methods used to compute G. 

4 SPARSE model 

4.1 Energy fluxes derived from SPARSE model 455 

The SPARSE dual-source model solves the energy budgets of the soil and the vegetation. Here we use the “layer 

approach”, for which the resistance network relating the soil and vegetation heat sources to a main reference 

level through a common aerodynamic level use a series electrical branching. Main unknowns are the component 

temperatures, i.e. soil (Ts) and vegetation (Tv) temperatures. Totals at the reference height (the measurement 

height of the meteorological forcing), as well as the longwave radiation budget, are also solved so that altogether 460 

a system of five equations can be built: 

 
 
 

 
 

       

          

            

          

     
              

   (15) 

where Ratm the atmospheric radiation (Wm
-2

), Ra the net component longwave radiation (Wm
-2

) and Trathe 

radiative surface temperature (°K) as observed by the satellite; indexes “s” and “v” designate the soil and the 

vegetation, respectively. 

The first two (Eq. (15)) express the continuity of the latent and sensible heat fluxes from the sources to the 465 

aerodynamic level through to the reference level, the third and the fourth (Eq. (15)) are the soil and vegetation 

energy budgets, and the fifth (Eq. (15)) relates the radiative surface temperature Trad derived from observed LST 

to Ts and Tv . 
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The SPARSE model system of equations is fully described in Boulet et al. (2015). SPARSE is similar to the 

TSEB model (Kustas and Norman, 1999) but includes the expressions of the aerodynamic resistances of 470 

Choudhury and Monteith (1988) and Shuttleworth and Gurney (1990). This system can be solved in a forward 

mode for which the surface temperature is an output (prescribed conditions), and an inverse mode when the 

surface temperature is an input derived from satellite observations or in situ measurements in the thermal infra-

red domain (retrieval conditions). Figure 5 illustrates a diagram showing the flowchart of the model algorithm. 

System (15) is solved step-by-step by following similar guidelines as in the TSEB model: the first step assumes 475 

that the vegetation transpiration (LEv) is maximum, and evaporation (LEs) is computed. If this soil latent heat 

flux (LEs) is below a minimum positive threshold for vegetation stress detection of 30 Wm
-2

, the hypothesis that 

the vegetation is unstressed is no longer valid. In that case, the vegetation is assumed to suffer from water stress 

and the soil surface is assumed to be already long dry. Then, LEs is set to 30 Wm
-2

. This value accounts for the 

small but non negligible vapor flow reaching the surface (Boulet et al., 1997). The system is then solved for 480 

vegetation latent heat flux (LEv). If LEv is also negative, both LEs and LEv values are set to zero, whatever the 

value of Trad. The system of equation can also be solved for Ts and Tv only if the efficiencies representing stress 

levels (dependent on surface soil moisture for the evaporation, and root zone soil moisture for the transpiration) 

are known. In that case the sole first four equations are solved. This prescribed mode allows computing all the 

fluxes in known limiting soil moisture levels (very dry, e.g. fully stressed, and wet enough, e.g. potential). It 485 

limits unrealistically high values of component fluxes, latent heat flux values above the potential rates or sensible 

heat flux values above that of a non evaporating surface. The potential evaporation and transpiration rates used 

later on are computed using this prescribed mode with minimum surface resistance to evaporation and 

transpiration, respectively.  

 490 

Figure 5: Flowchart of the SPARSE algorithm; Trads, Hss , Hvs LEss and LEvs are radiative surface temperature, soil 

sensible heat flux, vegetation sensible heat flux, soil latent heat flux and vegetation latent heat flux in fully stressed 

conditions, respectively; Tradp, Hsp, Hvp, LEsp and LEvp are radiative surface temperature, soil sensible heat flux , 

vegetation sensible heat flux, soil latent heat flux and vegetation latent heat flux in potential conditions, respectively. 
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 Some of the model parameters were remotely sensed data while others were taken from the bibliography or 495 

measured in situ. Remotely sensed data fed into SPARSE are LST, ε, ϕ, NDVI, LAI and α. A grid of the 

vegetation height (zv) was also necessary as input in the SPARSE model; for herbaceous crops, vegetation height 

was interpolated with the help of NDVI time series between fixed minimum (0.05 m) and maximum (0.8 m) 

values, while for trees, the roughness length (zom) was linked to the allometric measurements (mentioned before) 

and computed as a function of canopy area index, drag coefficient and canopy height using the drag partition 500 

approach proposed by Raupach (1994) for tall sparse vegetative environments. Then, since SPARSE deals with 

vegetation height and not roughness length, the same simple rule of the thumb as the one used in SPARSE was 

used to reconstruct zv for the tree cover types (zv=zom/0.13). In a final step, to get spatial vegetation height, zv 

was averaged over the MODIS pixels. In situ parameters used in SPARSE were mainly meteorological data: Rg, 

Ratm, Ta, Ha and u. No calibration was performed on the model parameters shown in Table 2. 505 

 

Table 2. SPARSE parameters  

 Definition Value Data Sources 

 

Remote sensing parameters 
  

NDVI Normalized Difference Vegetation Index  Satellite imagery 

Trad (K) Radiative surface temperature (K)  Satellite imagery 

α Albedo   Satellite imagery 

ε Emissivity   Satellite imagery 

Φ (rad)  View zenith angle   Satellite imagery 

 

Meteorological parameters  
  

Rg (Wm
−2

) Incoming solar radiation   In situ data 

Ratm (Wm
−2

) Incoming atmospheric radiation  In situ data 

Ta (K) Air temperature at reference level   In situ data 

RHa (%) Air relative humidity  In situ data 

ua (ms
-1

) Horizontal wind speed at reference level  In situ data 

 

Fixed parameters 
  

za (m) Atmospheric forcing height  2.32 In situ data 

zv (m) Vegetation height  
Derived from land 

cover 

βpot  Evapotranspiration efficiency in full potential conditions 1.000  

βstress Evapotranspiration efficiency in fully stressed conditions 0.001  

rstmin (sm
-1

) Minimum stomatal resistance 100 (Boulet et al., 2015)  

w (m) Leaf width  0.05 (Braud et al., 1995)  

εv Vegetation emissivity 0.98 (Braud et al., 1995)  

αv Vegetation albedo 0.25 Estimation  

 

Constants  
  

ρcp 

(J.kg
−1

.K
−1

) 
Product of air density and specific heat 1170 (Braud et al., 1995) 

σ (W. m
-2

.k
4
) Stefan–Boltzmann constant 5.66. 10

-8
 (Braud et al., 1995) 

γ (Pa.K
−1

) Psychrometric constant  0.66 (Braud et al., 1995) 

zom,s(m) 
Equivalent roughness length of the underlying bare soil in 

the absence of vegetation  
5.10

-3
 (Braud et al., 1995) 

nSW 
Coefficient in rav (Aerodynamic resistance between the 

vegetation and the aerodynamic level)  
2.5 (Boulet et al., 2015) 

ξ 
Ratio between soil heat flux G and available net radiation 

on the bare soil Rns 
0.4 (Braud et al., 1995) 
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The retrieval and prescribed modes of the SPARSE model were run for the 10 km × 8 km sub-images at the time 

of Terra and Aqua overpasses, to get instantaneous modeled fluxes H_SPARSEt, LE_SPARSEt and 

AE_SPARSEt as well as sensible heat flux (Hs-t =Hss-t +Hvs-t) in fully stressed conditions and latent heat (LEp-t 510 

=LEsp-t +LEvp-t) and sensible heat (Hp-t =Hsp-t +Hvp-t) fluxes in potential conditions. Modeled values were then 

multiplied by the nearest half hourly footprint to the satellite overpass time, in order to get fluxes corresponding 

to the upwind area: H_SPARSEt-FP, LE_SPARSEt-FP, AE_SPARSEt-FP, Hs-t-FP, Hp-t-FP and LEp-t-FP. 

 In a subsequent step, the prescribed mode of SPARSE model at potential conditions was run at a half hourly 

time step using the half hourly meteorological measurements to get half hourly latent heat flux at potential 515 

conditions LEp-30. This potential LE weighted by the corresponding half hourly footprint (LEp-30-FP) is used later 

when computing daily LE based on the stress factor method (section 4.2). 

4.2 Reconstruction of daily modeled ET from instantaneous latent heat flux 

Daily ET is usually required for applications in hydrology or agronomy for instance, whereas most SEB methods 

provide a single instantaneous latent heat flux because the energy budget is only computed at the satellite 520 

overpass time (Delogu et al., 2012). In order to scale daily ET from one instantaneous estimate, there are various 

methods relying on the preservation, during the day, of the ratio of the latent heat flux to a scale factor having 

known diurnal evolution. Either the stress factor SF (Eq. (16)) or the evaporative fraction EF (Eq. (17)) are 

assumed invariant during the same day, the diurnal modeled fluxes are accounted for by recovering the diurnal 

course of either potential ET or available energy.  525 

      
             

        
    (16) 

   
             

             
  (17) 

Stress Factor (SF) method 

Assuming that the stress factor is constant during the day, the daily modeled ET (LE_SPARSEday-FP) can be 

expressed as the product of the instantaneous estimate of SF at the satellite overpass time and the daily potential 

evapotranspiration : 

                                 (18) 

LEp-day-FP was calculated as the sum of the half hourly modeled latent heat fluxes at potential conditions LEp-30-FP.  530 

Evaporative Fraction method 

The daily modeled ET (LE_SPARSEday-FP) can be expressed as the product of the instantaneous estimate of EF at 

the satellite overpass time and the daily modeled available energy: 

                                   (19) 

AE_SPARSEday was computed from instantaneous modeled available energy (AE_SPARSEt) using the same 

approach detailed in Sect. 3.3.2 and applying equation (14). AE_SPARSEday was weighted by the corresponding 535 

daily footprint to get the daily modeled AE of the upwind area AE_SPARSEday-FP. 
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Residual method 

Besides, daily modeled ET (LE_SPARSEday-FP) was also estimated as a residual term of the surface energy 

budget using daily modeled sensible heat flux (H_SPARSEday-FP) and available energy (AE_SPARSEday-FP) as 

follows: 540 

                                               (20) 

H_SPARSEday was computed from modeled sensible heat flux (H_SPARSEt) following the same extrapolation 

method used for the available energy (see Sect. 3.3.2). The corrected parameterizations of H were got from the 

comparison of daily measured sensible heat flux HBS-day computed as the average of half-hourly measured HBS-30 

and daily sensible heat flux (HBS-day-Terra and HBS-day-Aqua) computed using the extrapolation method from 

instantaneous measured HBS-t-Terra and HBS-t-Aqua at Terra and Aqua overpass time, respectively (Equation 21).  545 

                           

           

         

         
(21) 

                         

          

        

        

where HBS-t-Terra and HBS-t-Aqua are the instantaneous measured sensible heat flux in the Ben Salem flux station. 

Therefore, the corrected parameterizations of H (Table 3), needed to remove the bias between measured (HBS-day ) 

and computed H (HBS-day-Terra and AEBS-day-Aqua), were applied to compute daily modeled H ( H_SPARSEday) from 

instantaneous modeled H (H_SPARSEt) following the extrapolation method shown in equation 21. Finally, 

H_SPARSEday was weighted by the corresponding daily footprint to get the daily modeled H of the upwind area 550 

H_SPARSEday-FP. 

Table 3: Corrected parameterizations of sensible heat flux for the diurnal reconstitution 

Terra a’Terra 1.02 

b’ Terra -17.31 

Aqua a’Aqua  1.00 

b’Aqua -14.83 

 

5 Water stress estimates 

Water stress estimation is crucial to deduce the root zone soil moisture level using remote sensing data, (Hain et 555 

al., 2009). Water stress results in a drop of actual evapotranspiration below the potential rate. Its intensity is 

usually represented by a stress factor as defined in Sect. 4.2, ranging between 0 (unstressed surface) and 1 (fully 

stressed surface).  

Modeled values of SF at the time of Terra and Aqua overpass (SFmod) have been computed from modeled 

potential LE (LEp-t-FP) as follows: 560 

         
             

        
    (22)  

where LE_SPARSEt-FP and LEp-tFP are the modeled latent heat fluxes in actual and potential conditions, 

respectively.  

Furthermore, surface water stress factor derived from XLAS measurement, named SFobs, at the time of Terra and 

Aqua overpass was computed as follows (Su, 2002):  

       
               

                 
   (23) 
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where Hs-t-FP and Hp-t-FP are the modeled sensible heat flux in actual and potential conditions, respectively; and 565 

H_XLASt is the XLAS sensible heat flux at the satellite overpass time. 

6 Results and discussion 

6.1 XLAS and model derived instantaneous sensible heat fluxes  

Our primary focus is the comparison between scintillometer measurements and the modeled sensible heat fluxes 

computed using the Terra and Aqua remotely sensed data. The scintillometer H at the time of the two satellites 570 

overpass (H_XLASt) are interpolated from the half hourly H measurements. Heat flux determination was 

possible for typically about 87% of the daytime measurements during the summer, availability of XLAS heat 

flux values was lower during the cold season due to poor visibility and/or stable stratification. 

H_SPARSE was weighted by the XLAS footprint in order to be able to compare the modeled values 

(H_SPARSEt-FP) with the XLAS measurements (H_XLASt). Therefore, due to XLAS and remote sensing data 575 

availability, we got 175 and 118 values for Terra and Aqua respectively. In order to highlight H inter-seasonality 

between the drier 2012-2013 and the wetter 2013-2014 seasons, we present an example of two days each in one 

season, DOY 2013-083 shows H value ranging between 25 Wm
-2

 and 757 Wm
-2

 while DOY 2014-185 shows H 

value ranged between 128 Wm
-2

 and 470 Wm
-2

 (Figure 6). The colored area shows the modeled flux and the 

contours shows the surface source area contributing to the scintillometer measurements. The Day 2013-86 (24
th
 580 

March 2013) is chosen in the cold season while day 185-2014 (4
th

 July 2014) is in the warm season to focus on 

land cover impact on LST and thus on modeled H, (trees and cereals in winter vs. only irrigated trees and market 

gardening in summer). Moreover, the first day experiences a strong southern wind while there is a light northern 

wind during the second day. Generally, a little number of MODIS pixels brings a high contribution to the signal; 

among them two are hot pixels (pixel with high LST and low NDVI) in which the land use is mainly 585 

arboriculture.  

Prediction performance is assessed using RMSE and the coefficient of determination (R
2
). Results for the 

sensible heat flux are illustrated in figure 7 and show good agreement between modeled and measured H at the 

time of satellites overpass. This is illustrated by linear regressions of H_SPARSEt-FP = 1.065 H_XLASt -14.788 

(R
2
 = 0.6; RMSE = 57.89 Wm

−2
) and H_SPARSEt-FP = 1.12 H_XLASt -10.57 (R

2
 = 0.63; RMSE = 53.85 Wm

−2
) 590 

for Terra and Aqua, respectively. This result is of great interest considering that the SPARSE model was run 

with no prior calibration. However, we noted that bias is a function of the flux level and most outliers are 

recorded for H greater than 200 Wm
-2

. This can be explained by (i) the XLAS measurement saturation 

(according to the "Kipp & Zonen LAS and XLAS instruction manual” (KIPP&ZONEN, 2007), for a path length 

of 4 km and a scintillometer height of 20 m, saturation measurement problem starts from H values higher than 595 

300 Wm
-2

), (ii) uncertainties on the correction of stability using the universal stability function and (iii) potential 

inconsistencies between the area average MODIS radiative temperature and the air temperature measured locally 

at the meteorological station. 

Whereas there are several studies dealing with large aperture scintillometer (LAS) data whose measurements are 

compared to modeled fluxes, in the few studies dealing with extra large aperture scintillometer (XLAS) data, the 600 

comparison is generally done with Eddy Covariance station measurements (Kohsiek et al., 2002; Moene et al., 

2006). Indeed, our results are in agreement with those found by Marx et al. (2008) who compared LAS-derived 

http://www.linguee.fr/anglais-francais/traduction/although.html
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and satellite-derived H (SEBAL was applied with NOAA-AVHRR images providing maps of surface energy 

fluxes at a 1 km × 1 km spatial resolution), and found that modeled H is underestimated with a RMSE of 

39 Wm
−2

 for the site Tamale and 104 Wm
−2

 for the site Ejura. Moreover, Watts et al.(2000) compared the 605 

satellite (AVHRR radiometer) estimates of H to those from LAS over semi-arid grassland in northwest Mexico 

during the summer of 1997. They found RMSE values of 31 Wm
−2

 and 43 Wm
−2

 for LAS path lengths of 300 m 

and 600 m respectively and showed that LAS measurements are less good than those derived from a 3D sonic 

anemometer. They also suggested longer LAS path length (greater than 1.1 km) since the LAS is rather 

insensitive to the surface near the receiver and the emitter. 610 
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Figure 6: Model derived sensible heat fluxes and footprints for (a) DOY 2013-082 at Aqua time overpass and (b) DOY 

2014-185 at Terra time overpass. The colored area shows the modeled flux and the contours shows the surface source 

area contributing to the scintillometer measurements. 630 
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Figure 7: Modeled vs. observed sensible heat fluxes at Terra and Aqua time overpass 

6.2 XLAS and model derived instantaneous latent heat fluxes  

In a subsequent step, SPARSE derived LE (LE_SPARSEt-FP) was compared to observed LE 

(LE_residual_XLASt-FP). Results are illustrated in figure 8 showing a good agreement between modeled and 635 

observed LE. However, these results are less good than for the H results, as shown by the linear regressions: 

LE_SPARSEt-FP =0.94 LE_residual_XLASt-FP + 12.47 (RMSE = 47.20 Wm
-2

) and                  

LE_SPARSEt-FP = 0.85 LE_residual_XLASt-FP +11.51 (RMSE = 43.20 Wm
-2

) for Terra and Aqua respectively, 

with an overall R
2
 of 0.55 for both satellites. We note a greater scatter for latent heat flux than for the sensible 

heat flux (Figure 7), which can be explained by the fact that LE is here a residual term affected by estimation 640 

errors in both AE and H. Despite this moderate discrepancy, the good agreement between both approaches 

indicates that the methodology adopted in SPARSE for estimating H and AE using MODIS imagery is 

appropriate for modeling latent heat fluxes.  
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Figure 8: Modeled vs. observed latent heat fluxes at Terra and Aqua time overpass 645 

6.3 Water stress 

The scattered values of the Stress Factor as shown in figure 9 are consistent with previous studies such as Boulet 

et al. (2015). SEB retrieval of stress is limited by the scale mismatch between the instantaneous estimate of the 

surface temperature during the satellite overpass (which can be influenced by high frequency turbulence) and the 

aggregated values of other forcing data which are derived from half hourly averages (Lagouarde et al., 2013; 650 

Lagouarde et al., 2015). However, general tendencies are well reproduced, with most points located within a 0.2 

confidence interval (illustrated by dotted lines along the 1:1 line) as found by Boulet et al. (2015) at field scale, 

which is encouraging in a perspective of assimilating ET or SF in a water balance model for example. Moreover, 

it is noted that results include small LE and LEp values having the same order of magnitude as the measurement 

uncertainty itself. Most outliers having greater water stress (~1) correspond to high evaporation from bare soil 655 

since the dominant land use in the study area is arboriculture, but also, this could be due to saturation of 

scintillation which led to an underestimation of H XLAS measurements as pointed by Frehlich and Ochs (1990) 

and Kohsiek et al. (2002). 
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Figure 9: Modeled vs. XLAS derived stress index SF at Terra and Aqua time overpass 660 

 Modeled and observed stress index at Terra and Aqua time overpass show a consistent evolution with daily 

rainfall (Figure 10), although the modeled stress show a greater dispersion than the observed one. During a rainy 

episode (or an eventual irrigation period), the surface temperature decreases towards the unstressed surface 

temperature, thus marking an unstressed state, and SF tends to 0. Conversely, after a long dry down, the water 

stress appears and the surface temperature increases towards the equilibrium surface temperature computed by 665 

SPARSE under stressed conditions, and SF tends towards 1. Besides, it is noted that modeled stress indexes 

computed on the basis of Aqua MODIS’s LST are often greater than those computed used Terra MODIS’s LST 

due to higher LST (higher global solar radiation) at the time of Terra overpass (around midday). 

 

 670 
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a) 

 

 

b) 

 

 

Figure 10: Modeled and observed stress index evolution at (a) Terra and (b) Aqua time overpass compared to daily 

rainfall  675 

6.4 XLAS and model derived daily latent heat fluxes 

Daily observed ET, i.e. LE_residual_XLASday-FP, was computed using the residual method; hence, six estimates 

of the daily observed ET were obtained by combining the two satellite datasets and three methods to compute G 

and thus AE (see Sect. 3.3). Only the residual method was used to estimate daily observed ET for two reasons; 

on the first hand, to reduce the computations approach since, already, three methods to compute AE have been 680 

tested and on the other hand, the application of the EF method was not possible because we do not have a 

measured spatially distributed potential evapotranspiration (only point potential evapotranspiration data at the 

Ben Salem meteorological station are available). From daily observed ET estimates, minimum and maximum ET 

were selected for each day and minimum and maximum daily ET time series were interpolated between 

successive days based on the self preservation of the ratio of AE to Rg as scale factor (Figure 11).  685 

In addition, three methods were used to compute SPARSE daily ET for the Terra and Aqua overpasses (see Sect. 

4.2), providing six estimates of the daily modeled ET. For each day average ET was plotted (260 days) with 
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error bars figuring minimum and maximum values, along with precipitation to understand the rainfall impact on 

the ET evolution (Figure 11).  

Despite the uncertainty in reconstructing the daily ET from instantaneous ET, overall results show a good 690 

agreement between XLAS derived and SPARSE derived ET values with similar seasonal dynamics. Daily 

observed and modeled ET over the whole study period were both in the range of 0-4 mmday
-1

 with an RMSE of 

0.7 mmday
-1

 which is consistent with the land use present in the XLAS path: mainly trees spaced by a 

considerable fraction of bare soil, and less herbaceous soil-covering crops (see Sect.3.2). As expected, ET rates 

decrease significantly during dry periods (summers) since arid conditions limit the latent heat flux in favor of 695 

sensible heat flux and increase immediately after rainfall events due to the high amount of water evaporated from 

soil. The rainfall peaks that occurred on 3
rd

 September 2013 (about 10 mm), 6
th

 October 2013 (about 20 mm), 

15
th

 March 2014 (about 100 mm) and 22
nd

 April 2014 (about 25 mm) are followed by well-reproduced 

drydowns. 

At seasonal scale, we note a good agreement between modeled and observed daily ET for the 2013-2014 and 700 

2014-2015 seasons, especially when vegetation cover was more developed: from March to July 2014 and from 

March to Mai 2015; these periods correspond to cereals vegetation peak in some plots (March-April) and to 

market gardening crops (e.g. tomato, water melon, pepper, etc.) cultivated generally from spring to the beginning 

of autumn in the interrow area of trees plots, which is a common farming practice in the Kairouan plain. 

However, the 2012-2013 season was dry compared with the two other ones, and less accurate results were 705 

obtained. Some points with little to null ET were recorded from May to July 2013 which can be explained by the 

very dry conditions and scattered vegetation cover with a considerable amount of bare soil. This behavior was 

not observed in the same period of 2014, because 2014 was a rainy year in comparison to 2013, therefore, even 

supposing that the farmers have the same attitude and cultivate the same crop types between the two years 

(which is not true in the context of our study area and farmers always change crop types), precipitations favor the 710 

growth of spontaneous vegetation over fallows which contribute to ET rise. On the other hand, since this year 

experiences more rain, farmers cultivate a larger part of the land and diversify the crop types; the vegetation 

cover is denser and contributes to an overall increase in ET. Overall, lower ET values are recorder in autumn 

(October and November) which correspond to evapotranspiration from trees only, since the latest summer crops 

(market gardening crops) have been already harvested and the winter crops (mainly cereals) are not yet sown. 715 

Moreover, it can be seen that occasionally SPARSE overestimated ET. As example, three dates can be selected 

in August 2013 (15
th

, 25
th

 and 29
th
 August 2013) for which modeled ET were 3.30 mm, 3.80 mm and 2.80 mm 

while maximum observed ET were 2.0 mm, 2.40 mm and 1.20 mm, respectively; broader amplitude between 

modeled (4.00 mm) and observed ET (1.40 mm) was also recorded on the 18
th

 of May 2013. SPARSE also 

overestimates ET throughout ten days in August 2014 with an average difference of 1.1 mm and a maximum 720 

difference of 1.60 mm recorded in 23
rd

 August 2014. These discrepancies are always recorded under wet 

conditions (minimum stress factor) which show the difficulty in representing accurately the conditions close to 

the potential ET. This might be related to the theoretical limit of the model for low vegetation stress especially 

when coupled with low evaporation efficiencies (i.e. dry soil surface) as already reported by Boulet et al. (2015) 

for senescent vegetation. Average difference between SPARSE and XLAS derived LE estimates when both are 725 

available indicate that SPARSE can predict evapotranspiration with accuracies approaching 5% of that of the 

XLAS. 
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Figure 11: Modeled vs. observed daily latent heat fluxes. Dark grey color shows minimum and maximum daily observed LE. Light grey vertical bars show gaps in XLAS data. Error 

bars for the modeled ET show the minimum and the maximum daily ET resulting from the three methods used to compute daily ET from instantaneous modeled ET. 730 
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7 Conclusions 

This study evaluated the performances of the SPARSE model forced by MODIS remote sensing products in an 

operational context (no model calibration) to estimate instantaneous and daily evapotranspiration. The validation 735 

protocol was based on an unprecedented dataset with an extra large aperture scintillometer. Indeed, up to our 

knowledge, this is the first work based on XLAS measurements acquired during more than 2 years, as compared 

to three months in previous works (Kohsiek et al., 2002; Moene et al., 2006). The estimates of the sensible heat 

flux derived from the SPARSE model are in close agreement with those obtained from the XLAS. These results 

indicate that the XLAS can be fruitfully used to validate large-scale sensible heat flux derived from remote 740 

sensing data (and residual latent heat flux), in particular for the results obtained at the satellite overpass time, 

providing a feasible alternative to local micrometeorological techniques for measuring the sensible heat flux and 

validating satellite-derived estimates (i.e. eddy correlation). Furthermore, the extrapolation from instantaneous to 

daily evapotranspiration is less obvious and three methods were tested based on the stress index, the evaporative 

fraction and the residual approach. The daily latent heat fluxes derived from the XLAS agreed rather well with 745 

those modeled using SPARSE model, which shows the potential of the SPARSE model in water consumption 

monitoring over heterogeneous landscape in semi-arid conditions, and especially to locate areas most affected by 

water stress. However, the precision in ET prediction with the SPARSE model is restricted by several 

assumptions and uncertainties. For instance, the instantaneous remote sensing data and mainly LST which is 

paramount in stress coefficient computation are assumed to be reliable. Moreover, there is an issue with the 750 

MODIS pixel heterogeneity and notably the distribution of components at the intersection between the square 

pixel and the XLAS footprint. Uncertainties are also due to half hourly forcing (meteorological and flux data) 

and XLAS data as well as to the extrapolation method from instantaneous to daily results. Furthermore, the 

empirical estimation methods of soil heat flux G (three methods were tested) as well as the possible daily heat 

accumulation lead to possible errors in available energy estimation and in turn in residual LE estimation. 755 

Even if overall results are encouraging, further work is needed to improve results by i) being most efficient in the 

SPARSE model application using calibrated input data specific to our study area, especially input parameters to 

which the model is particularly sensitive such as the mean leaf width and the minimum stomatal resistance, ii) 

taking into account the heterogeneity of the 1km MODIS pixel by applying MODIS footprint, which is 

determined by the sensor's observation geometry and (iii) using a Land Surface Model applied at the field scale 760 

(Etchanchu et al., 2017) to analyze the scaling properties from the field to the footprint of the XLAS and the 

MODIS pixels similarly. 

Finally, in a future work, we plan to take advantage of the complementarities between the Soil Water Balance 

and Surface Energy Balance approaches (i.e. continuous but uncertain estimates using SWB due to poor soil 

water content control on one hand and sensitivity of SEB to the actual water stress on the other hand) to 765 

implement an assimilation scheme of the remotely sensed surface temperature into land surface models. In fact, 

in order to provide further information about distributed soil water status over the studied areas, the TIR-derived 

evapotranspiration products could be assimilated directly either in land surface or hydrological models.  
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