Preprints
https://doi.org/10.5194/hess-2017-452
https://doi.org/10.5194/hess-2017-452
18 Aug 2017
 | 18 Aug 2017
Status: this discussion paper is a preprint. It has been under review for the journal Hydrology and Earth System Sciences (HESS). The manuscript was not accepted for further review after discussion.

A surface model for water and energy balance in cold regions accounting for vapor diffusion

Enkhbayar Dandar, Maarten W. Saaltink, Jesús Carrera, and Buyankhishig Nemer

Abstract. Computation of recharge in subarctic climate regions is complicated by phase change and permafrost, causing conventional conceptual land surface models to be inaccurate. We conjecture that large vapor pressure gradients, driven by the large temperature difference between the soil surface and the thawing permafrost active layer, may cause a significant water and energy transfer during late spring and early summer. To analyze this conjecture, we develop a two-compartment water and energy balance model that accounts for freezing and melting and includes vapor diffusion as a water and energy transfer mechanism. It also accounts for the effect of slope orientation on radiation, which may be important for high latitude mountain areas. We apply this model to weather data from the Terelj station (Mongolia). We find that vapor diffusion plays an important quantitative role in the energy balance and a relevant qualitative role in the water balance. Except for snowmelt and a few large precipitation events, most of the continuous recharge is driven by vapor diffusion fluxes. Large vapor fluxes occur during spring and early summer, when surface temperatures are moderate, but the subsoil remains cold, creating large downwards vapor pressure gradients. Temperature gradients reverse in fall and early winter, but the vapor diffusion fluxes do not, because of the small vapor pressure differences at low temperature. The downwards latent heat flux associated to vapor diffusion is essential for the thawing of the active layer. On a yearly basis, it is largely compensated by heat conduction, which is much larger than in temperate regions and upwards on average. Furthermore, we find that total surface runoff is small and concentrated at the beginning of spring due to snowmelt. Recharge is relatively high and delayed with respect to snowmelt because a portion of it is associated to thawing at depth, which may occur much later.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Enkhbayar Dandar, Maarten W. Saaltink, Jesús Carrera, and Buyankhishig Nemer
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Enkhbayar Dandar, Maarten W. Saaltink, Jesús Carrera, and Buyankhishig Nemer
Enkhbayar Dandar, Maarten W. Saaltink, Jesús Carrera, and Buyankhishig Nemer

Viewed

Total article views: 1,666 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,242 369 55 1,666 83 78
  • HTML: 1,242
  • PDF: 369
  • XML: 55
  • Total: 1,666
  • BibTeX: 83
  • EndNote: 78
Views and downloads (calculated since 18 Aug 2017)
Cumulative views and downloads (calculated since 18 Aug 2017)

Viewed (geographical distribution)

Total article views: 1,613 (including HTML, PDF, and XML) Thereof 1,571 with geography defined and 42 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Discussed

Latest update: 14 Dec 2024