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Abstract. Diagnostics of hydrological models is pivotal for a better understanding of catchment functioning, and the analysis

of dominating model parameters plays a key role for region-specific calibration or parameter transfer. A major challenge in the

analysis of parameter sensitivity is the assessment of both temporal and spatial differences of parameter influences on simu-

lated streamflow response. We present a methodological approach for global sensitivity analysis of hydrological models. The

multilevel approach is geared towards complementary forms of streamflow response targets, and combines sensitivity analy-5

sis directed to hydrological fingerprints, i.e. temporally independent and temporally aggregated characteristics of streamflow

(INDPAS), with the conventional analysis of the temporal dynamics of parameter sensitivity (TEDPAS).

The approach was tested in 14 mesoscale headwater catchments of the river Ruhr in western Germany using simulations

with the spatially distributed hydrological model mHM. The multilevel analysis with diverse response characteristics allowed

to pinpoint parameter sensitivity patterns much clearer as compared to using TEDPAS alone. It was not only possible to identify10

two dominating parameters, for soil moisture dynamics and evapotranspiration, but we could also disentangle the role of these

and other parameters with reference to different streamflow characteristics. The combination of TEDPAS and INDPAS further

allowed to detect regional differences in parameter sensitivity and in simulated hydrological functioning, despite the rather

small differences in the hydroclimatic and topographic setting of the Ruhr headwaters.

1 Introduction15

1.1 Analysis of parameter influences

The role of hydrological model parameters has been studied for a long time. The ill-posed nature of problems in hydrological

modelling led to the awareness that parameter sets are not uniquely identifiable (Beven, 1993) and to the related branches of

uncertainty assessment (e.g. Gupta et al., 1998) and automated parameter estimation (e.g. Hogue et al., 2000). Both are closely

related to the sensitivity of model results to parameter variations. While a number of topics are often subsumed under sensitivity20

analysis, underlying objectives and methodological approaches can substantially differ from case to case (van Griensven et al.,

2006; Saltelli et al., 2008; Zajac, 2010; Razavi and Gupta, 2015). Local and global strategies of sensitivity analysis have shown

to be helpful at different stages of the modelling process (McCuen, 1973; Hamby, 1994; Sieber and Uhlenbrook, 2005; Razavi

and Gupta, 2015). Analogous to the number of different objectives and methods to assess parameter sensitivity, the results are
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subject to different forms of interpretation (Razavi and Gupta, 2015). The way the outcome of sensitivity analysis is evaluated

and illustrated can strongly affect the conclusions that are drawn. In this regard, results of sensitivity analysis can widely differ

if varying objective functions are considered for the evaluation of parameter influences (Demaria et al., 2007; Wagener et al.,

2009); for a comprehensive overview see Reusser et al. (2011).

Time-integrated sensitivity measures (van Griensven et al., 2006; Sudheer et al., 2011; Nossent and Bauwens, 2012) alone5

allow little more than rough estimates about the overall importance of parameters. Contrarily, McCuen (1973) pointed out early

that parameter sensitivity should be analysed in a time-dependent context, as hydrological systems are subject to temporally

dynamic processes. Guse et al. (2016b) argued that the study of temporal variations in sensitivity is essential to learn about the

relation between dominant parameters and governing processes under changing hydrological conditions. The characterisation

of temporal dynamics of parameter sensitivity (TEDPAS) has been accomplished in diverse ways (Cloke et al., 2008; Cibin10

et al., 2010; Reusser et al., 2011; Reusser and Zehe, 2011; Herman et al., 2013; Sanadhya et al., 2013; Guse et al., 2014;

Pfannerstill et al., 2015; Pianosi and Wagener, 2016). The choice of the temporal resolution is an important factor which clearly

influences the way parameters are identified and how inferences on related processes are made (Tang et al., 2007; Massmann

and Holzmann, 2012; O’Loughlin et al., 2013). Necessarily, the timescale of sensitivity analysis is selected in accordance with

the objective of the study and the dynamics of the system under investigation. The importance of parameters temporally varies15

as short periods of high flow alternate with longer periods of low flow (Massmann et al., 2014).

When model calibration and verification come into play, analysis of parameter sensitivity provides valuable information on

the importance of each input factor in regard to simulated model output. On this basis, it can be decided for each parameter

if its value should be determined exactly, or if it could even be completely excluded, fixed at predetermined values (Reusser

et al., 2011). Preferably, sensitivity analysis minimises the necessary number of parameters as hydrological models are often20

subject to overparameterisation (Beven, 2001; Kirchner, 2006; van Werkhoven et al., 2009; Samaniego et al., 2010b).

A common goal of sensitivity-guided studies dealing with an identification of dominant processes is the achievement of

a suitable representation of real-world hydrological processes by understanding the reasons for model defectiveness. If non-

sensitive parameters are detected, an indication of model structural deficits (Kirchner, 2006; Gupta et al., 2012), or a lack of the

adequate model response target data might be given. Sensitivity analysis is, not just recently, considered as helpful diagnostic25

tool to identify structural and performance deficits of hydrological models (McCuen, 1973; Sieber and Uhlenbrook, 2005;

Yilmaz et al., 2008; Kavetski and Clark, 2010; Guse et al., 2014; Pfannerstill et al., 2015). Reusser and Zehe (2011) showed

that a combined analysis of the temporally varying parameter dominance (sensitivity analysis) and model performance (error

analysis) can effectively detect structural inadequacies of model components for a specific landscape.

1.2 Fingerprint based sensitivity analysis30

The characterisation of catchment functioning and the underlying hydrological processes can be addressed in various ways,

at multiple scales and levels of complexity. Fingerprint metrics (hereinafter also referred to as fingerprints) are signatures

of dynamic catchment response that change on different temporal and spatial scales (Sivapalan, 2005; Wagener et al., 2007;

Winsemius et al., 2009).
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In hydrological modelling, multiple fingerprint metrics have been adopted to enhance model evaluation beyond the minimisa-

tion of streamflow residuals. Fingerprints of catchment functioning may be classified into measures based on single (statistical)

streamflow indices, and on characteristic curves, e.g. (cumulative) frequency curves, regime curves, or double mass curves. Ex-

amples for the two kinds of fingerprint metrics are the runoff ratio and the flow duration curve, respectively. Representatives of

both categories can be selected to describe single components of streamflow regimes, namely the magnitude, frequency of oc-5

currence, duration, timing and flashiness of flow events (Poff et al., 1997; Olden and Poff, 2003), or of the general hydrological

variability at different spatial and temporal scales.

In a comprehensive analysis of catchment functioning in order to understand dominant processes, the use of single criteria

is often not sufficient. Therefore, hydrological fingerprints have been jointly used as multivariate objectives to estimate the

parameters of hydrological models (Shamir et al., 2005a, b; Pokhrel et al., 2008; Castiglioni et al., 2010) or to assess model10

performance and evaluate model structures (Farmer et al., 2003; Gupta et al., 2008; Yilmaz et al., 2008; Clark et al., 2011;

Euser et al., 2013; Vrugt and Sadegh, 2013).

Sensitivity analysis related to streamflow characteristics was formerly mostly applied prior to model evaluation (e.g. Atkin-

son et al., 2003). For sensitivity analysis, different options have been selected as hydrological target variables. Sensitivity

analysis to assess the influence of parameters can be directed to (i) simulated streamflow, (ii) different objective functions (e.g.15

van Werkhoven et al., 2009; Wagener et al., 2009; Herman et al., 2013; Sanadhya et al., 2013), (iii) simulated hydrological

processes (e.g. Massmann and Holzmann, 2015; Pfannerstill et al., 2015; Guse et al., 2016a), or (iv) different hydrological

fingerprints (this study). Previous studies applied fingerprint metrics but based the analysis of parameter sensitivity only on

few aspects of streamflow (e.g. limb densities; Shamir et al., 2005a) or on single (statistical) streamflow indices of different

aggregation timescales (Shamir et al., 2005b).20

In our view, multivariate sensitivity analysis geared towards fingerprint metrics as response targets has not received adequate

consideration for model diagnostics. Especially in terms of joint fingerprints, using both single value indices and characteristic

curves along independent variables, the full potential for process-oriented model diagnostics has not been exploited. Some

progress has been made by Guse et al. (2016b) who combined TEDPAS for different temporal resolutions with segments of

the flow duration curve (FDC) to identify parameters and related processes that dominate at variable streamflow magnitudes of25

two distinct streamflow regimes.

1.3 Objectives, research questions and approach

The main objectives of this study are to analyse the parameter sensitivity of a mesoscale hydrological model for the simulation

of streamflow response and hydrological fingerprints at a set of headwater catchments of the Ruhr in Germany. The approach

extends the temporally dependent analysis of parameter sensitivity (TEDPAS) along two avenues: The first is to investigate30

TEDPAS results in more detail to derive parameter sensitivities in different hydrological conditions; the second is to direct the

analysis to other, temporally independent characteristics of streamflow response (INDPAS).

With this approach we explore the following three research questions:
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– Which sensitive parameters can be identified with regard to specific hydrological response characteristics?

– How does parameter sensitivity change with different hydrological objectives (response targets) applied in global sensi-

tivity analysis?

– How does parameter sensitivity change among different catchments with slightly distinct physiographic and hydrocli-

matic conditions?5

The methodological approach combines streamflow hydrographs and fingerprint metrics as response targets for the anal-

ysis of first-order partial parameter sensitivity. The analysis rests on a state-of-the-art distributed hydrological model and is

structured in the following steps:

– Combining the application of a hydrological model with global sensitivity analysis to generate an ensemble of parameter

sets;10

– Deriving fingerprint metrics (single value indices and characteristic curves) from simulated streamflow time series;

– Analysing parameter sensitivity to temporally resolved dynamics of streamflow response (TEDPAS);

– Analysing parameter sensitivity to both temporally aggregated (single value indices) and temporally independent (char-

acteristic curves) characteristics of streamflow (INDPAS);

– Assessing differences in parameter sensitivity between the two different methodological approaches (TEDPAS and IN-15

DPAS), and between the analysed headwaters.

In the study we will thus complement sensitivity analysis based on temporally dependent output variables (TEDPAS) with

fingerprint metrics of streamflow response (INDPAS), which include both temporally aggregated single-valued indices and

temporally independent characteristic curves. In cases where characteristic curves (e.g. the FDC) are used, changes in parameter

sensitivity will be analysed for changes in the independent variable (e.g. streamflow exceedance probability). We focus the20

study on the headwaters of the Ruhr catchment in western Germany based on available data sets.

From this we expect to pinpoint dominant parameters related to individual process components and to ease the interpretation

of parameter sensitivity detached from the variability of timescales. Bearing in mind the complexity of the evaluation of spa-

tially and temporally distributed model responses, our multilevel approach aims at providing further insight into the dominance

of model parameters and related streamflow response processes.25

2 Methods and models

First we detail the fingerprint metrics used to characterise streamflow response (section 2.1). We implemented the Fourier

Amplitude Sensitivity Test (FAST; section 2.2) to analyse the mesoscale Hydrologic Model (mHM; section 2.3) in the Ruhr

headwater catchments. Focusing on eight global mHM parameters (section 2.4), we employed two different forms (TEDPAS
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and INDPAS) of simulated streamflow response (section 2.5) in the sensitivity analysis. Finally, we introduce the catchment of

the river Ruhr and the headwaters which were selected for this study (section 2.6.1), and specify the data used for the analysis

(section 2.6.2).

2.1 Fingerprint metrics

Fingerprint metrics are often used in hydrology for characterising the hydrological response of catchments (Olden and Poff,5

2003; Yadav et al., 2007; Yilmaz et al., 2008; Winsemius et al., 2009). The fingerprint metrics used in this study included single

value indices and the flow duration curve as an example for catchment-characteristic curves. These fingerprints were derived

from model results and precipitation data (see section 2.6.2), respectively.

We chose eight indices reflecting different aspects of the integral and longterm hydrological functioning of catchments in

a single, time-aggregated number (Table 1). These fingerprints characterise the overall water balance (Runoff Ratio, RR), the10

variability of streamflow (Coefficient of Variation, CV), the frequency of flow events (High Pulse Count, HPC), the change

rate of streamflow (Slope of Flow Duration Curve between 33 % and 66 %, SLFDC), the streamflow during high-flow (High

Flow Discharge, HFD) and low-flow (Baseflow Index, BFI) conditions, the streamflow recession behaviour (Recession Time

Constant, RTC), and the autocorrelation structure of streamflow (Autocorrelation Time, ACT), respectively. In this study, the

slope of the flow duration curve (SLFDC) is the only single value fingerprint that could not be directly determined from15

streamflow hydrographs. Instead, the FDC was used as a basis for its derivation. The eight single value fingerprints were

implemented as model response targets for sensitivity analysis (section 2.5.2).

As an example for more complex characteristics than single-valued indices, we also used entire flow duration curves as a

model response target for sensitivity analysis (section 2.5.2).

2.2 Fourier Amplitude Sensitivity Test (FAST)20

FAST is a partial variance-based method to determine first-order sensitivities of parameter changes on the outcome of mono-

tonic and non-monotonic numeric models (Cukier et al., 1973; Schaibly and Shuler, 1973; Cukier et al., 1975). The general

idea of FAST is a) to vary parameters of interest with independent frequencies along a predefined number of model runs, and

b) to perform a Fourier analysis of the simulated target variable across the ensemble of model runs to obtain a power spectrum.

In the case of TEDPAS, the spectrum is calculated for each simulation time step. The variance σ2
i that is explained by a param-25

eter i is determined by normalising the corresponding power with the total power in the spectrum, which corresponds to the

total variance σ2
tot within the model ensemble. The sensitivity to model output of parameter i is then calculated as the partial

variance, which is the ratio σ2
i /σ

2
tot. Parameter interactions, i.e. higher-order sensitivity, are not detected by this method. For

more details on FAST the reader is referred to Reusser et al. (2011).

FAST was originally applied to study parametric model sensitivities of chemical reaction systems. In recent decades, the30

method has been used and evaluated in a variety of fields such as hydrogeology (Fontaine et al., 1992), atmospheric sciences

(Rodríguez-Camino and Avissar, 1998), geologic nuclear waste disposal modelling (Lu and Mohanty, 2001), food-safety risk

assessment (Frey and Patil, 2002), or ecologic forestry (Song et al., 2013). A number of studies treat the application of FAST
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in hydrological modelling (Reusser et al., 2011; Reusser and Zehe, 2011; Sanadhya et al., 2013; Guse et al., 2014; Pfannerstill

et al., 2015; Guse et al., 2016a, b).

FAST is a highly efficient computational method that requires significantly fewer model runs to yield similar results for

parameter sensitivity than other approaches (Saltelli and Bolado, 1998; Reusser et al., 2011). The number of model runs

(hence parameter sets) in FAST is determined by the number of analysed model parameters. This means that always the same5

number of model runs is required for a given number of parameters, independent of model, catchment or type of parameter.

2.3 mesoscale Hydrologic Model (mHM)

The mesoscale Hydrologic Model (mHM; Kumar et al., 2010; Samaniego et al., 2010b) accounts for diverse processes of the

hydrological cycle: Canopy interception, evapotranspiration, snow, soil moisture dynamics, overland flow, infiltration, inter-

flow, subsurface storage, groundwater recharge, baseflow, discharge attenuation as well as flood routing. The mHM is concep-10

tualised on the basis of grid cells, and has been applied to a wide range of mesoscale river catchments (101−104 km2; Kumar

et al., 2010; Samaniego et al., 2010a, 2011; Cuntz et al., 2015; Rakovec et al., 2016). Gridded information is implemented in

mHM at three levels: morphology (level 0), hydrology (level 1), meteorology (level 2), with l0 � l1 ≤ l2 denoting the relative

sizes of the grid cells at the respective data level (Kumar et al., 2010).

The parameterisation of mHM is based on a simultaneous regionalisation technique called multiscale parameter regionali-15

sation to account for the physiographic sub-grid and hydrological process variability (Samaniego et al., 2010b; Kumar et al.,

2013). Hydrological process parameters at level 1 are derived from physiographic characteristics at level 0 using (pedo-)transfer

functions with coefficients (in the following referred to as global mHM parameters). Hence, mHM is calibrated indirectly, by

altering the 52 level-0 parameters of the transfer functions instead of the hydrological level-1 parameters. This procedure not

only reduces the problem of overparameterisation and the dependence on specific hydrological scales (Beven, 2001) but also20

reduces the amount of time that is needed for grid-wise calibration (Samaniego et al., 2010b).

2.4 Model setup for sensitivity analysis

To facilitate the selection of the most sensitive parameters, we first carried out a preliminary FAST analysis at the local scale for

gauge Wenholthausen (WEN; Fig. 1) including all 52 global mHM parameters to reveal parameter sensitivities to streamflow

simulations. For this initial analysis, 21803 model runs were conducted and the streamflow hydrographs were analysed with25

FAST. We found 14 parameters with a maximal sensitivity value of more than 0.01 (1 %). When inspecting the model equations

we identified correlations between these parameters, which led to the removal of six parameters from this set.

The eight uncorrelated parameters (Table 2) were used for the regional sensitivity analysis in the 14 headwater catchments.

All other mHM parameters were kept fixed on calibrated values found via global automatic optimisation using the dynamically

dimensioned search algorithm (Tolson and Shoemaker, 2007) at WEN for the period 2002 to 2006. The value ranges for the30

parameters were selected from mHM literature (Samaniego et al., 2014), partly extended based on the results from the pre-

liminary analysis. For eight parameters, the FAST method requires 243 model runs based on different parameter combinations

originating from variation with independent frequencies inside the parameter ranges (Fig. 2). The same 243 combinations of
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mHM parameter sets were used for streamflow simulations in each of the 14 catchments. Differences between catchments in

terms of hydroclimatic forcing and physiographic attributes were included in the model by the locally specific meteorological

and morphological input on data levels l2 and l0.

The hydrological model level l1 and the meteorological l2 of mHM were set to a spatial resolution of 1 km, whereas for level

0 with the physiographic catchment data (morphology), a finer resolution of l0 = 200 m was selected as an adequate spatial5

discretisation. Model simulations were conducted for each of the 14 headwater catchments (see section 2.6.1) with a daily

timestep for the ten-year period of 1997 to 2006.

2.5 Sensitivity analysis

We analysed the parameter sensitivity in different forms to be able to evaluate the dominance of parameters and to potentially

detect local differences among the headwaters related to various aspects of streamflow response in a more specific way. We10

used simulated streamflow hydrographs (TEDPAS; section 2.5.1) and both temporally aggregated and temporally independent

fingerprint metrics of simulated streamflow response (INDPAS; section 2.5.2) as model response targets for the sensitivity

analyses.

2.5.1 TEDPAS - Temporal dynamics and sensitivity duration

Using simulated hydrographs with FAST provided daily time series of partial parameter sensitivities for each headwater catch-15

ment for the simulation period 1997-2006. These temporal dynamics of parameter sensitivity (TEDPAS; Reusser et al., 2011)

were analysed and compared for the Ruhr headwater catchments (section 3.1).

We also calculated Sensitivity Duration Curves (SDCs) for each parameter, which we defined in analogy to other well-known

cumulative frequency curves like the FDC. Each SDC is specific for one of the eight parameters, for one catchment and for the

period (1997-2006) in which sensitivity analysis is performed. SDCs were developed for each catchment by arranging the daily20

sensitivity values from FAST by magnitude in ascending order and by plotting them as a line against the percentage of time

during which the sensitivity equalled or exceeded the specified values. Sensitivities were normalised by the highest sensitivity

value found for each parameter among all headwaters. These curves reveal whether a parameter is consistently (non-)sensitive

or if its importance changes during the simulation period (section 3.2).

2.5.2 INDPAS - Parameter sensitivity to fingerprint metrics25

For each catchment we calculated eight single-valued fingerprint metrics (section 2.1 and Table 1) from each of the 243

simulated streamflow hydrographs. Using these fingerprint metrics as target variables for FAST yielded the partial sensitivities

of the model parameters with regard to each fingerprint (section 3.3.1).

In a similar way, for each headwater catchment, 243 flow duration curves were derived from the simulated streamflow time

series and analysed with FAST. This yielded parameter sensitivities along the axis of streamflow exceedance probability as30

an independent variable, revealing which parameters dominate streamflow simulations during high-, intermediate- or low-
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flow conditions. As a supplementary step, the parameters showing the highest sensitivity for a given streamflow exceedance

probability were extracted, revealing patterns of dominant parameters across the spectrum of streamflow in each headwater

catchment (section 3.3.2).

2.6 Study area and data

2.6.1 The Ruhr headwater catchments5

The Ruhr (Fig. 1) has a catchment area of 4.485 km2, and originates from a spring at about 670 m a.s.l. on the northern

slope of the Ruhrkopf (842 m a.s.l.). The Ruhr joins the Rhine at Duisburg-Ruhrort (20 m a.s.l.) after 219 km. The landscape

characteristics of the catchment range from densely wooded and scarcely populated lower mountain ranges in the Sauerland

to widely sealed urban areas in the river valleys and in the western part close to the mouth. The area belongs to the geology

and geography of the Rhenish Slate Mountains to the east of the Rhine (Brudy-Zippelius, 2003). The average discharge at the10

confluence with the Rhine is about 80.5 m3 s−1 (Bode et al., 2003). With a total of eight dams and five reservoirs the Ruhr

and its tributaries form a complex hydrological system. The total stored water surface area of about 35 km2 equates to about

480 million m3 of water retained behind damming structures (Ruhrverband, 2011). An intensive use of water resources (e.g.

reservoirs, barrages, withdrawals, inlets, etc.) supplies almost 5 million people with drinking and processing water along the

Ruhr, within its catchment and to adjacent watersheds.15

Our investigations concentrate on 14 headwater catchments (Fig. 1) of the river Ruhr and its tributaries (e.g. Bigge, Lenne and

Möhne), where the hydrological regimes are much less affected by water management measures. The headwaters are situated

in the eastern, rural part of the Ruhr basin with higher altitudes, and cover an area of 1742 km2 in total. Individual catchment

sizes range from 28.7 km2 at gauge Amecke (AME) to 453.1 km2 at gauge Bamenohl (BAM). Average catchment slopes vary

between 10.8 % (Rüblinghausen, RUE) and 26.1 % (Kickenbach, KIC). The dominant form of land cover is forest (39.7 %20

- 87.3 %) followed by pasture (0.8 % - 47.5 %), cropland (7.6 % - 43.9 %) plus a few predominantly dispersed settlements

(0.0 % - 13.2 %; Table 3). The climatic conditions are humid-warm-temperate (Göppert et al., 1998) with warm summers

and moderate winters. Annual mean temperature ranges between 8.45 ◦C and 5.45 ◦C at the lower and higher altitudes in the

study area, respectively. Annual precipitation ranges from 1025 mm in the northeast to 1425 mm in the southwest (1997-2006;

Table 3).25

2.6.2 Data

Different kinds of observation data were used to set up and calibrate the hydrological model, to perform simulations for

sensitivity analysis, and to derive the fingerprint metrics and a set of physiographic catchment descriptors.

Meteorological input data were daily values for precipitation (HYRAS; Rauthe et al., 2013), temperature (HYRAS; Frick

et al., 2014), and potential evapotranspiration (AMBAV; Löpmeier, 1994), all at a spatial resolution of 1 km2. Streamflow30

observations were available for all headwater catchments from 2002 to 2006. Spatial physiographic data were a digital ele-

vation model (50 m x 50 m), CORINE land cover data (100 m x 100 m; European Environment Agency, 2009), a soil map
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(1:200.000; Bundesanstalt für Geowissenschaften und Rohstoffe, 2015a) and a geological map (1:1.000.000; Bundesanstalt für

Geowissenschaften und Rohstoffe, 2015b).

A set of 14 descriptors to characterise the hydroclimatic and physiographic setting of the headwaters and to capture char-

acteristics that might jointly control relevant hydrological functions as defined by Black (1997) has been compiled in Table 3.

Each descriptor in Table 3 was assigned to one of five main classes of catchment characteristics, i.e. climate (1), landform5

(2), topography (3), land cover (4) and soil (5), as proposed by Yadav et al. (2007). The choice of climate and physiographic

descriptors originates from correlation analysis of catchment descriptors within each category (Yadav et al., 2007), multivariate

statistical analysis techniques (Di Prinzio et al., 2011), regionalisation models (Plate et al., 1988), GIS based analysis of the

digital elevation model and, in the case of the baseflow index (BFI), from comparison of methods for baseflow separation

(Duband et al., 1993). Table 3 includes the BFI as an intermediate form between physiographic descriptors of soil hydrological10

characteristics and temporally aggregated fingerprint metrics introduced in section 2.1.

3 Results

3.1 Temporal dynamics of parameter sensitivity (TEDPAS)

TEDPAS analysis for the 14 headwaters in the period of 1997-2006 showed a strong temporal dependence of the fraction of

the total variance explainable by first-order sensitivities for hydrograph simulation. The sum of all eight parameter sensitivity15

values per time step ranged between 0.26 and 0.87, while the average sum of the eight sensitivity values per time step was

0.71. The spread between the maximal and minimal sum per time step was found to be smaller in the southwestern (e.g.

Rüblinghausen RUE, 0.48) than in the northeastern (e.g. Völlinghausen VOE, 0.61) headwaters.

Minimal and maximal (Sensitivity Range) and the average (Sensitivity Mean) sensitivity values of the eight parameters,

summarised across all headwaters (Table 2), give a first impression that the soil moisture parameter Ksconst generally ex-20

hibited the highest influence (Sensitivity Mean 0.392), while AspectcorrPET showed the largest range (Sensitivity Range 0 -

0.78). The interflow parameter ExpslowInterflow had the smallest sensitivity range (0 - 0.22), whereas parameters for snow

(DegdayForest) and baseflow (GeoParam) had the overall lowest sensitivity mean values of 0.012. Across all headwaters, the

parameters listed in terms of their average sensitivity to streamflow simulations are (in descending order): Ksconst, Aspectcor-

rPET, ExpslowInterflow, RechargeCoeff, ThetaSconst, InfilShapeFactor, GeoParam and DegdayForest.25

TEDPAS did not reveal many differences between the headwaters. For instance, Ksconst consistently had a highly dynamic

course of sensitivity with frequently high values (Fig. 3a and b). Nevertheless, some of the parameters showed differences

between the headwaters, for example for DegdayForest (January - March; Fig. 3a and b) and AspectcorrPET (November

- April; Fig. 3c and d). AspectcorrPET allows to include the aspect of slopes, controlling insulation, in evapotranspiration

estimations, while DegdayForest is a parameter related to snow dynamics in forested areas.30

The example of these two parameters also illustrates the seasonality in sensitivity dynamics. AspectcorrPET showed highest

sensitivity in the summer period from April to August, when evapotranspiration processes dominate and streamflow dynamics
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are low (Fig. 3c and d, g and h). During that period, the parameter showed an alternating course of sensitivity compared to

Ksconst (Fig. 3b and d) with local maxima connected to (simulated) streamflow peaks (Fig. 3h).

Higher sensitivities of DegdayForest were found for periods (e.g. February) when snow processes (accumulation and melt-

ing) can occur. This was predominantly observed in catchments at higher altitudes, for example, rather for the headwater VOE

(up to 630 m a.s.l.) than for RUE (450 m a.s.l; Fig. 3a and b). Also, VOE (50 %) exhibits a higher percentage of forest cover5

(FOR) than RUE (43 %; Table 3). A similar distinction between summer and winter patterns was found for InfilShapeFactor, al-

though at lower sensitivity levels (Fig. 3c and d). For the rest of the parameters either no seasonal patterns (e.g. RechargeCoeff;

Fig. 3e and f) could be revealed, or only very low sensitivity values were found (e.g. ThetaSconst; Fig. 3a and b).

The ensembles of simulated streamflow compared reasonably well with the observed hydrographs (Fig. 3g and h), although

the simulation ensemble underestimated some high-flow periods.10

3.2 Sensitivity duration

Sensitivity duration curves for the 14 headwaters revealed distinct influences of the eight parameters on streamflow simulations

(Fig. 4). Different sensitivity characteristics were identifiable among the parameters, with either very low (e.g. DegdayForest;

Fig. 4a and ThetaSconst; Fig. 4b), intermediate (RechargeCoeff; Fig. 4g) or high (Ksconst; Fig. 4c) influence with respect to

sensitivity exceedance probability.15

Some of the parameters showed a regional variation of SDCs. Four of eight parameters, i.e. Ksconst (Fig. 4c), InfilShapeFac-

tor (Fig. 4d), AspectcorrPET (Fig. 4e) and ExpslowInterflow (Fig. 4f), revealed certain differences among the headwaters. The

SDCs of the two most influential parameters Ksconst (Fig. 4c) and AspectcorrPET (Fig. 4e) showed a systematic spread for the

different headwaters, with the curve of gauge RUE plotting at the lower (Fig. 4c) and upper (Fig. 4e) margins of the group of

headwaters, respectively. For InfilShapeFactor (Fig. 4d) the headwater Möhnesee-Neuhaus (MOE) and for ExpslowInterflow20

(Fig. 4f) both RUE and MOE deviated from the other headwaters and showed lower SDCs values.

In the case of AspectcorrPET (Fig. 4e) the SDCs were sorted from the southwestern (e.g. RUE) to the northeastern (e.g.

MES) headwaters (Fig. 1). In the southwestern headwaters (e.g. RUE) the slopes are more gentle with lower relief energy than

further northeast, where valleys are more deeply incised (e.g. NIC, SLOPE and ELR; Table 3). The slopes in the southwestern

headwaters are on average facing southeast, compared to the more southwest-facing slopes in the northern and eastern Ruhr25

headwaters (ASP; Table 3). Besides showing a different aspect, the southwestern headwater RUE also has the highest pro-

portion of urban areas (URB, 13 %; Table 3). Both factors influence the estimation of evapotranspiration in mHM and hence

streamflow simulations.

The SDCs of the most sensitive parameter Ksconst (Fig. 4c) showed concave curvatures, in contrast to the other parameters

which had convex SDCs. The SDCs of the largest headwater Bamenohl (BAM) fell in between the other catchments, showing30

a kind of transitional behaviour of sensitivity duration (Fig. 4), except for ExpslowInterflow.
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3.3 Parameter sensitivity to fingerprints (INDPAS)

3.3.1 Single value indices

Similar patterns of parameter sensitivities to single value fingerprints were consistently found across all 14 headwaters. Figure 5

shows the matrix representations for four representative headwaters (RUE, VOE, HER and WEN). All of them comprise eight

rows for the parameters and eight columns for the fingerprint metrics. Sensitivity to a specific fingerprint is arranged column-5

wise.

As in the TEDPAS analysis, Ksconst was by far the most sensitive parameter for the simulation of five of the fingerprints

(CV, HPC, HFD, BFI, RTC) in all 14 headwater catchments. The parameters ExpslowInterflow and RechargeCoeff were

identified as the second and the third most sensitive parameter in these cases. In terms of the fingerprint Runoff Ratio (RR),

in contrast, AspectcorrPET was the most sensitive parameter, while others, including Ksconst, showed almost no sensitivity to10

the simulation of the overall water balance. The parameters RechargeCoeff and Ksconst had similarly highest importance for

the simulation of the fingerprint SLFDC (slope of the flow duration curve). Other parameter-fingerprint combinations revealed

parameters with very low sensitivity values, e.g. DegdayForest or GeoParam which showed very low sensitivities to all of the

eight fingerprint metrics (Fig. 5).

Only minor differences in these patterns occurred between the catchments, and these related to small deviations in absolute15

sensitivity values or in the order of the second and third rank, e.g. for the fingerprint ACT (Fig. 5).

3.3.2 Flow duration curve

Using FDCs as model response targets revealed parameter sensitivities to different streamflow magnitudes. Again, a high

proportion of similarities among the headwaters was found. The highest influence was alternately exerted by the parameters

Ksconst and AspectcorrPET (Fig. 6a-d); their courses of parameter sensitivity were highly anticorrelated (mean correlation20

across all headwaters r =−0.975). The soil moisture parameter Ksconst clearly dominated the very high flows (0 - 10 % of

time Q is exceeded) and the entire mid- and low-flow sections (40 - 100 %); moderate high flows between 10 % and 40 % were

most affected by changes in the evapotranspiration parameter AspectcorrPET. These changes in the dominating parameter are

additionally illustrated in Fig. 6 by a catchment-specific strip showing the pattern of parametric dominance along the FDC,

which showed only slight differences in the lengths of the intermittent parts (AspectcorrPET) between the headwaters.25

The other parameters reached overall lower sensitivity levels. The patterns were again similar for all headwaters, with minor

differences regarding the absolute sensitivity values and the order of importance in the third and higher ranks. The parameters

RechargeCoeff and ExpslowInterflow revealed a bimodal sensitivity distribution. RechargeCoeff showed a first peak between

0 and 20 %, and a steady increase from 40 % to its maximum sensitivity value at very low flows with 100 % of streamflow

exceedance, which was a sensitivity value of about 0.25 in the case of gauge HER (Fig. 6c). ExpslowInterflow had its highest30

parametric influence at very high flows (0 - 15 %), and at moderate- to low-flow magnitudes. The curves of InfilShapeFactor

alternated with ExpslowInterflow along the FDCs (Fig. 6a-d), while the rest of the parameters did not show notable sensitivity

values.
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Interestingly, the ensembles of normalised FDCs showed distinct differences between the catchments (Fig. 6e-h), although

the sensitivity dynamics were similar, and the same 243 parameter variations from FAST were used for each headwater. The

largest spread of FDCs was found for the northeastern headwater VOE (Fig. 6f) with the largest catchment size among the

four shown headwaters. The smaller headwaters WEN, HER and RUE (Fig. 1) showed a decreasing spread of the FDCs from

northeast to southwest (Fig. 6h, g, e). Additionally, the widths of the simulation envelopes changed for different streamflow5

magnitudes. All ensembles of FDCs showed a constriction point located at about 20 % of streamflow exceedance (Fig. 6e-h),

which is the same point where Ksconst and AspectcorrPET showed lowest and highest sensitivity values, respectively (Fig. 6a-

d). The ensembles of simulated FDCs encompassed the observed FDC in most cases (e.g. VOE, HER, WEN; Fig. 6f-h). In

some cases the observed FDC was outside the simulated range (e.g. RUE; Fig. 6e).

4 Discussion10

4.1 Parameter sensitivities from TEDPAS and INDPAS

The combination of TEDPAS and INDPAS created a detailed sensitivity pattern for the response characteristics of the hydrolog-

ical model mHM. Overall, the soil moisture dynamics parameter Ksconst and the evapotranspiration parameter AspectcorrPET

were found most relevant for the simulation of the streamflow response of 14 Ruhr headwaters.

The TEDPAS analysis confirmed, as expected, a seasonality of sensitivity for parameters controlling snow (DegdayForest) or15

evapotranspiration (AspectcorrPET) processes. More interestingly, TEDPAS also showed an alternating dominance of Ksconst

and AspectcorrPET during the temporal course of the simulation. Using flow duration curves as response targets (INDPAS)

clarified that this was related to different streamflow magnitudes. The soil moisture dynamics (Ksconst) dominated at both

high and low flows, which may be attributed to the dual role of Ksconst in parameterising both storage (field capacity) and

transmission (conductivity) of soil water in mHM. During intermediate-flow conditions, evapotranspiration (AspectcorrPET)20

governed the streamflow simulations, probably because of the high influence of evapotranspiration on the shallow soil storage

and thus the system state of the catchment. This high sensitivity of an evapotranspiration parameter during intermediate-flow

conditions coincides with the findings of former studies (e.g. Guse et al., 2014, 2016b).

The specific influence of AspectcorrPET was mainly on the water balance (fingerprint RR: Runoff Ratio) in all of the

headwaters. Ksconst was the most sensitive parameter for most of the other single value fingerprints, encompassing those25

quantifying low-flow (BFI) as well as high-flow conditions or the flashiness of hydrological response (CV, HPC, HFD, RTC).

Only for one single value fingerprint (SLFDC, related to the rate of change in streamflow) another parameter (RechargeCoeff)

was found to be as sensitive as Ksconst. The moderate relevance of the groundwater-related RechargeCoeff increased during

low-flow periods, as illustrated by INDPAS using FDCs and TEDPAS.

A temporally resolved sensitivity makes it difficult to reveal clear patterns of dominant parameters when dealing with long30

time periods. Guse et al. (2016b) also recognised that parameter sensitivity by TEDPAS based on the streamflow hydrograph

should be analysed on different temporal aggregation levels and should be related to different streamflow magnitudes for a

detailed assessment of dominant model parameters and temporal process dynamics. While their methodological approach was
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purely based on aggregation and reordering of TEDPAS sensitivity and streamflow time series, we added additional value with

INDPAS aiming at multiple response targets including FDCs. The consideration of flow duration curves enabled analysing

streamflow free of autocorrelation and time dependence. The FDC as a model response target for sensitivity analysis provided

information on parameter sensitivity along the independent variable of streamflow exceedance probability. In contrast, for

classical hydrograph inspection, which is the basis of TEDPAS, time is the independent variable. INDPAS along FDCs allowed5

to draw conclusions about parametric influences at specific streamflow magnitudes.

Regardless of the chosen model response target, in the case of 14 Ruhr headwaters only one or a very small group of

parameters were identified as relevant for streamflow response. In this context, Herman et al. (2013) showed that the long-term

water balance is dominated by only very few parameters, irrespective of the hydrological conditions and of the model. Cuntz

et al. (2015) performed a global Sobol’s sensitivity analysis on the hydrologic model mHM. For three distinct humid and arid10

European catchments this analysis always resulted in about 20 informative parameters, though the dominant parameter sets

were composed very differently. Their criteria to select the sensitive parameters was substantially different from our approach

which renders a direct comparison between the studies difficult. The different number of dominant parameters might also be

due to correlated mHM parameters which we sorted out before sensitivity analysis. In contrast, Cuntz et al. (2015) considered

the degree of correlation between mHM parameters as rather minor to be interfering with parameter identification.15

Especially the application of fingerprints as model response targets for sensitivity analysis revealed further details of paramet-

ric dominance that can help in more directed model applications. Dominant parameters can be additionally adjusted pinpointed

to fingerprint metrics in a subsequent calibration step, while insensitive parameters can be disregarded for model calibration

directed to the respective response target (van Werkhoven et al., 2009). This reduces the parameter space and need for constrain-

ing parameter values and thus facilitates model calibration. A missing sensitivity signal to a fingerprint (e.g. RechargeCoeff20

to RR) can reveal that the chosen response target might not be relevant to further constrain the parameter identification in a

certain catchment.

The spread of the simulated response ensembles allows to judge whether a fingerprint metric is a reliable response target for

sensitivity analysis or if different fingerprints, e.g. the master recession curve or the double mass curve, should be considered

instead. For example, the hydrographs and FDCs showed significant spread that also differed between the catchments (Fig. 325

and Fig. 6). In contrast, the spread in simulated values for the Autocorrelation Time (ACT) was small for all catchments.

Accordingly, INDPAS analysis directed to ACT also showed only moderate sensitivities for the set of eight parameters (Fig. 5).

Our preselection of eight parameters can potentially lead to the elimination of other storage parameters that might be most

sensitive to ACT. Thus, one might conclude that parameter selection based on INDPAS would result in a different choice in the

set of the most sensitive parameters. In the case of ACT this is not very likely, since storage parameters (e.g. ExpslowInterflow30

and GeoParam) were still included. Instead, the precipitation time series has a large impact on the autocorrelation structure of

streamflow; the ACT metric is thus less informative than others that depend less on the hydroclimatic boundary conditions.

The resulting partial variances for each fingerprint are comparable as they portray the relative influence of the parameters on

the variation of the target, regardless of the specific values of the targets. In order to take into account the impact of the spread

of the simulation results on the parameter sensitivities, a weighting factor for partial parameter sensitivities might be helpful.35
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An impact-weighted INDPAS might then be used along with catchment class-specific response fingerprints to select relevant

parameters for the specific hydrological conditions. In Fig. 6 we normalised the FDCs by the maximum value of each time

series. For the visual comparison of sites this is a necessary step, but it might lead to a different form of appearance, including

the spread of the simulation ensemble. If absolute fingerprint values are replaced by normalised quantities (Samaniego et al.,

2010a; He et al., 2011), dimensions should be considered explicitly when determining sensitivity weighting factors.5

Our findings using different model response targets confirm the necessity of a multivariate sensitivity analysis. This was

similarly recognised by Wagener et al. (2009) who applied three standard error metrics as objective functions for sensitivity

analysis. Their results for parameter sensitivity were found to change spatially when the objective function was replaced. Razavi

and Gupta (2015) similarly pointed out that even conflicting conclusions could be drawn if different properties of the model

response were applied in sensitivity analysis. To avoid misinterpretation of sensitivity results we propose that the selection10

of specific fingerprint metrics should be determined by the purpose of the modelling; for instance, sensitivity to fingerprint

metrics for peak flow is suitable if flood prediction is the focus. Redundancy is not problematic if several similar metrics for a

specific streamflow characteristic are selected, e.g. HPC, CV and HFD for high flows. A multivariate analysis with metrics of

several, even partly similar streamflow characteristics (frequency of high flow, magnitude of high flows etc.) is rather helpful

to ensure complete parameter identification for different catchments. Aggregated and temporally independent fingerprints like15

the FDC proved to be especially applicable.

4.2 Regional differences in parameter sensitivity

Although the most sensitive parameters and the corresponding sensitivity patterns of streamflow response were found to be

similar for the 14 investigated Ruhr headwater catchments, the analysis with TEDPAS and INDPAS revealed certain regional

differences.20

Especially the analysis of sensitivity duration curves derived from TEDPAS revealed regional differences of parameter

sensitivity between headwaters. For half of the eight selected parameters we found regional differences in SDCs (section 3.2

and Fig. 4). The most sensitive parameters exhibited the largest spread of SDCs (e.g. Ksconst and AspectCorrPET; Fig. 4c

and e), and their SDCs were systematically ordered according to the geographical location (southwest-northeast) and the

physiographic setting (ASP, URB; Table 3). Some catchments deviate from the general pattern in SDCs for evapotranspiration25

and interflow parameters (e.g. RUE; Fig. 4e and f). In these cases, the specific combination of catchment characteristics (degree

of soil sealing, topographic gradients, land cover) might have led to different processes in streamflow simulations. For the

catchment of RUE, the smallest slope value among the headwaters in conjunction with the highest percentage of urban area

(SLOPE, URB; Table 3) can explain the deviation from the general pattern of SDCs for the two parameters. SDCs thus provided

a convenient means to identify regionally different sensitivity characteristics for each of the analysed parameters.30

The results from the INDPAS analysis directed to single-valued fingerprints also showed some differences between the

headwaters. In particular, the sensitivity patterns of the second and third ranked parameters were found to differ, although not

with the same systematic ordering as for the SDCs. The patterns of the most sensitive parameters along streamflow exceedance
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probability (catchment-specific strips in Fig. 6) provided visually condensed diagnostic information for different streamflow

magnitudes, but showed only minor differences between the catchments.

Together this shows that even the small physiographic gradients in the Ruhr headwater catchments can cause differences in

parameter sensitivity to streamflow response characteristics. This finding is partly contrary to those of Guse et al. (2014), who

reported almost no differences of parameter sensitivities among different subcatchments of the Treene in northern Germany in5

a similar analysis. This was explained by the absence of a pronounced heterogeneity in their study area.

Given that the same parameter sets are applied to all headwater catchments, any regional differences in parameter sensitivity

originate from differences either in the hydroclimatic or in the physiographic setting. In the case of the Ruhr headwaters,

the local hydroclimatic and physiographic differences (Table 3) seem to be sufficient to be discriminated by the hydrological

model structure in the form of a different variation in streamflow response. Due to their geographical proximity, the 14 Ruhr10

headwaters are generally similar in terms of the longterm hydroclimate (Wetness Index) and the physiography, e.g. in their soil

hydrological characteristics (BFI). They show, however, some differences in annual precipitation amount and in physiographic

characteristics such as the topographic gradient and land cover. The average annual precipitation in the simulation period

between 1997 and 2006 reveals a hydroclimatic gradient with lower to higher precipitation rates from northeast to southwest

(PMEAN) similar to the geographical ordering of the SDCs in Fig. 4. Song et al. (2013) also attributed local differences15

of parameter sensitivity to the spatial distribution of meteorologic forcing. Demaria et al. (2007) similarly concluded that

parameter sensitivity was more strongly determined by climate gradients than by changes in soil properties in their Monte

Carlo-based sensitivity study. Under different hydrological conditions regional sensitivity patterns or the number of parameters

which influence streamflow simulations might be different from the present example (Cuntz et al., 2015).

As parameter sensitivity is a prerequisite for parameter identifiability, even slight differences in sensitivity reveal information20

how identifiability can change among different catchments. Scale-dependent limitations have to be kept in mind to avoid a

levelling out of the explanatory value of a physiographic descriptor (Blöschl and Sivapalan, 1995), possibly resulting in an

intermediate course of sensitivity duration as seen for the largest headwater of Bamenohl (BAM; section 3.2 and Fig. 4). Van

Griensven et al. (2006) remarked that local differences indicate that results of global sensitivity analysis for one catchment

cannot be directly applied to other, even nearby locations, but may be used as reasonable estimates within the same catchment25

category. Locations with intermediate sensitivity characteristics (e.g. BAM) could at least serve as a starting point for parameter

transfer to closely located ungauged sites. As the local differences between the Ruhr headwaters are not very large, the most

sensitive parameters found for WEN in the first step of the analysis with all model parameters were also dominant in the other

subcatchments, which was corroborated by the TEDPAS analysis with eight selected parameters on all subcatchments. Any

local differences in parameter sensitivity revealed by the analysis of sensitivity duration or INDPAS could then be handled30

during individual model calibration for each catchment.
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5 Conclusions

We used FAST for a global sensitivity analysis of the hydrological model mHM in 14 headwater catchments of the river Ruhr

in Germany. Our multilevel approach not only reveals the dominating parameters for streamflow simulation, but also pinpoints

the influences of the analysed parameters to diverse aspects of hydrological response processes. Especially the application of

several hydrological fingerprints as response targets allows for detailed model diagnostics. Comparison of streamflow response5

characteristics and analysing along the range of streamflow magnitudes shows how the parametric dominances and the most

influential parameters can change with streamflow conditions, for example the complementary sensitivity of soil moisture

dynamics and evapotranspiration in our case. The combination of TEDPAS and INDPAS also provides a means to unveil

the slight differences in catchment-specific patterns between the closely located headwaters. The general similarity in the

sensitivity patterns indicates, however, that a parameter transfer to other catchments might be possible, provided that the10

interplay of catchment structure and local hydroclimate has evolved in a similar way.

The results provide in-depth diagnostics on the model and its parameters, which can support future improvements of model

structures, and facilitate case-specific model calibration in a reduced parameter space. The methodological approach of the

multilevel sensitivity analysis with fingerprints as response targets may be generalised to any hydrological model or kind of

catchment. The findings of this study motivate to include further catchments as regional end-members within different phys-15

iographic and climate settings to evaluate how parameter identifiability and the simulated hydrological functioning regionally

changes among distant catchments. The consideration of multivariate response variables in diagnostics of hydrological models

is beneficial for a complete identification, not only of parameter influences on simulated hydrological functioning but also of

the regional relevance for model calibration.
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Figure 1. The Ruhr catchment with altitudinal zones, river network and 14 gauged headwater catchments: Amecke (AME), Bamenohl

(BAM), Börlinghausen (BOE), Herrntrop (HER), Hüppcherhammer (HUE), Kickenbach (KIC), Kraghammer (KRA), Meschede1 (MES),

Möhnesee-Neuhaus (MOE), Nichtinghausen (NIC), Olpe (OLP), Rüblinghausen (RUE), Völlinghausen (VOE) and Wenholthausen (WEN).
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Figure 2. (a-c) Variations of the eight selected global mHM parameters for 243 model runs with independent frequencies according to the

FAST sampling plotted as connected curves (see also Table 2).
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Figure 5. Sensitivity of eight global mHM parameters to eight single value fingerprint metrics (RR, CV, HPC, SLFDC, HFD, BFI, RTC,
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26



0.1

0.3

0.5

0.7
a) RUE

S
e

n
s
it
iv

it
y
 [

−
]

 

 

b) VOE c) HER d) WEN

20 40 60 80

0.2

0.4

0.6

0.8

e)

[%] of time Q exceeded

N
o

rm
a

lis
e

d
 f

lo
w

 [
−

]

 

 

20 40 60 80
[%] of time Q exceeded

 

 

f)

20 40 60 80

g)

[%] of time Q exceeded

 

 

20 40 60 80

h)

[%] of time Q exceeded

 

 

DegdayForest

ThetaSconst

Ksconst

InfilShapeFactor

AspectcorrPET

ExpslowInterflow

RechargeCoeff

GeoParam

Observed

Simulated

Observed

Simulated

Observed

Simulated

Observed

Simulated
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Table 1. Temporally aggregated single value fingerprint metrics derived from FAST-mHM simulated streamflow and observed precipitation

time series, serving as model response targets for sensitivity analysis (INDPAS).

Response Characteristic Fingerprint metric Abbreviation [Unit] Derivation

Water balance Runoff Ratio RR [-] QTotal /PTotal

Streamflow variability Coefficient of Variation CV [-] σ /µ

Frequency of flow events High Pulse Count HPC [yr-1] (Number of timesteps Q> 3 ∗Qmean) / years

Rate of change in streamflow Slope of Flow Duration Curve SLFDC [%] Slope of FDC between 33 % & 66 % Q exceedance

High-flow conditions High Flow Discharge HFD [-] Q5th percentile /Qmedian

Low-flow conditions Baseflow Index BFI [-] QBaseflow /QTotal

Streamflow recession Recession Time Constant RTC [d] Mdn(Time required for Q to reach 1/e ∗QPeak)

Streamflow autocorrelation structure Autocorrelation Time ACT [d] Lag time required for AC function to decrease below 0.5

Q = Streamflow; P = Precipitation; σ = Standard deviation; µ = Mean; Mdn = Median; AC = Autocorrelation
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Table 2. Eight global mHM parameters (dimensionless): Function, value range for FAST, range and arithmetic mean of sensitivity values

(TEDPAS) across 14 Ruhr headwater catchments (1997–2006).

Parameter Process Description Value Range [-] Sensitivity Range [-] Sensitivity Mean [-]

DegdayForest snow Determination of degree daily factor and maximum degree-day factor 0 - 4 0 - 0.74 0.012

ThetaSconst soil moisture Estimation of water content at saturation of soil (Constant part) 0.65 - 0.95 0 - 0.68 0.018

Ksconst soil moisture Estimation of saturated vertical hydraulic conductivity -1.9 - 0.0 0 - 0.77 0.392

InfilShapeFactor soil moisture Determination of numerical index of rooting distribution 1 - 4 0 - 0.29 0.017

AspectcorrPET meteo correction Account for aspect dependent correction of PET 0.70 - 1.50 0 - 0.78 0.138

ExpslowInterflow interflow Determination of exponent for the interflow reservoir 0.05 - 0.3 0 - 0.22 0.062

RechargeCoeff percolation Determination of percolation coefficient 0 - 70 0 - 0.38 0.057

GeoParam baseflow Determination of baseflow recession parameter 0 - 1000 0 - 0.47 0.012
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