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Abstract. Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation and risk 

quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In a warming 

climate, the moisture holding capacity of the atmosphere is greater which increases the potential for short duration high 

intensity storm events. In this study, we improve the physical basis for short duration extreme rainfall estimation by simulating 

the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse model. Mechanistic rainfall 10 

models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process 

representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the 

known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and 

performed for single site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each 

gauge at the 5, 15 and 60 minute resolutions, and considerations for censor selection discussed.  15 

1. Introduction 

With growing evidence that the frequency and intensity of short duration rainfall extremes are increasing with climate change 

(Stocker et al. 2013, Westra et al. 2014, Kendon et al. 2014), the need for reliable extreme value estimation techniques is 

becoming more pressing. Extreme rainfall estimation is required for numerous applications in diverse disciplines ranging from 

engineering and hydrology to agriculture, ecology and insurance. It facilitates the planning, design and operation of key 20 

municipal infrastructure such as drainage and flood defences, as well as scenario analysis for climate impact assessment, and 

hazard risk modelling. Extremes are usually estimated using frequency techniques and intensity duration frequency curves. 

However, these methods are highly dependent on the observed rainfall record which may not be characteristic of the extreme 

behaviour. 

In this study we improve the physical basis of short duration extreme rainfall estimation by simulating the heavy portion of 25 

the observed rainfall time-series. Traditional approaches to extreme value estimation rely on sampling extremes from the 

observed record. However, rainfall observations present various problems for the practitioner. They are often not available at 

the location of interest, they are typically short in duration, and they may not be available at the temporal scale appropriate for 
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the intended use. These difficulties, together with the necessity to obtain perturbed time-series representative of future rainfall, 

have motivated the development of stochastic rainfall generators since the earliest such statistical models developed by Gabriel 30 

and Neumann (1962). The reader is referred to Waymire and Gupta (1981), Wilks and Wilby (1999) and Srikanthan and 

McMahon (2001) for detailed reviews of early developments in rainfall simulation.  

The principle of rainfall simulation is to replicate statistical properties of the observed record such that multiple realisations of 

statistically identical rainfall may be synthesized (Richardson 1981). Various methods of simulation exist, and there have been 

several attempts in the literature to categorize the different approaches. Aside from dynamic methods used in numerical 35 

weather prediction models, Cox and Isham (1994) suggest that statistical simulation methods may be broadly categorized as 

either purely statistical or stochastic, while Onof et al. (2000) further categorize stochastic methods into either multi-scaling 

or mechanistic. The latter of these differ from other statistical approaches because rainfall synthesis follows a simplified 

representation of the physical rainfall generating mechanism. Through the clustering of rain cells in storms, the unobserved 

continuous-time rainfall is constructed by superposition, enabling the synthetic rainfall hyetograph to be aggregated to 40 

whatever scale is desired (Kaczmarska et al. 2014). Because of this simplified process representation, mechanistic model 

parameters have physical meaning which makes this class of model particularly appealing in the context of extreme value 

estimation.  

When no likelihood function can be formulated (Rodriguez-Iturbe et al. 1988, R. E. Chandler 1997), mechanistic models are 

typically calibrated using a generalised method of moments (Wheater et al. 2007a) with key summary statistics at a range of 45 

temporal scales such as the mean, variance, autocorrelation and proportion of dry periods. Performance is assessed on the 

ability of the models to reproduce the calibration statistics as well as others not used in calibration including central moments 

and extremes. Since their inception in the late 1980s by Rodriguez-Iturbe et al. (1987, 1988), numerous studies have 

demonstrated the ability of these models to satisfactorily reproduce observed summary statistics [see Cowpertwait et al. (1996), 

N. Verhoest et al. (1997), Cameron et al. (2000a, 2000b), Kaczmarska et al. (Kaczmarska et al. 2014), Wasko and Sharma 50 

(2017) and Onof et al. (2000) for a review]. However, these studies have also shown that mechanistic models tend to 

underestimate rainfall extremes at the hourly and sub-hourly scales which limits their usefulness [see Verhoest et al. (2010) 

and references therein]. 

We hypothesize that stochastic mechanistic pulse-based models may be poor at estimating fine–scale extremes because the 

training data, and calibration method, are dominated by low intensity observations. Mechanistic stochastic models are fitted to 55 

the whole rainfall hyetograph, including zeroes, aggregated to a range of temporal scales. Typically, the range of scales used 

varies from hourly to daily, although implicit in most studies is the assumption that scales required in simulation should be 

within the range of scales used in calibration. Hence, if the intention of the model is to simulate 15 minute rainfall the training 

data should include 15 minute observations. As the temporal resolution of rainfall data becomes finer, the distribution of 

rainfall amounts becomes more positively skewed. Primarily, this is because of the increased proportion of dry periods, but 60 
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also the higher proportion of low intensity events characteristic of fine–scale rainfall. Because the calibration method uses 

central moments to fit model parameters, the greater skewness at finer temporal scales makes it difficult to obtain a good fit to 

extremes at these scales.  

In addition to the dominance of low observations, the estimation of fine–scale extremes may be further undermined by 

operation and sampling errors. This is particularly true of tipping bucket gauges where measurement precision at fine temporal 65 

scales is limited to the bucket volume, typically 0.2 or 0.5 mm. Fine–scale rainfall is highly intermittent (starting and stopping 

with high frequency), yet a tipping bucket gauge can only make a recording when the bucket is full. The limitations of tipping 

bucket measurements at fine temporal scales have long been understood (Goldhirsh et al. 1992, Nystuen et al. 1996, Yu et al. 

1997), although the first formal estimation of sampling error was performed by Habib et al. (2001). In this study, the authors 

investigate the ability of tipping bucket gauges to capture the temporal variability of fine–scale rainfall at 1, 5 and 15 minute 70 

scales using tipping bucket measurements simulated from high resolution optical rain gauge observations. The authors show 

that for the lowest rainfall intensities (< 5 mm/h) the mean relative error of the tipping bucket gauge at the 5 minute resolution 

is + 3.5%, with corresponding standard deviation just under + 30% for a bucket volume of 0.254 mm. Larger errors are obtained 

for the 1 minute resolution. They also show that increasing the bucket volume to 0.5 mm significantly increases the spread of 

the sampling error for low observations at the 5 minute resolution. The observed record comprised mainly convective storm 75 

events which are typical for Iowa in the US where the data were collected, although the error estimates are significant and 

present compelling evidence of the impact of sampling error on fine–scale low intensity rainfall observations.  

Significant effort has been made since the late 1980s to improve the performance of mechanistic rainfall models through 

structural developments, with substantial focus on the improved representation of fine–scale extremes (see Sect. 2 for a 

review). Despite this, little progress has been achieved. To test our hypothesis, a simple approach is proposed in which low 80 

observations for fine–scale data are censored from the models in calibration. For a given temporal resolution, a censor amount 

is set. Rainfall below the censor is set to zero and rainfall over the censor is reduced by the censor amount. This focusses model 

fitting on the heavier portion of the rainfall record at fine temporal scales, and reduces rainfall intensity at coarser scales. The 

aim is to investigate if existing mechanistic models can be used as simulators of fine–scale storm events by changing the data 

and not the model, thereby reducing the impact of low observations and sampling error on fine–scale extreme rainfall 85 

estimation. 

The choice of models is limited to those within the Bartlett-Lewis family of models which conform to the original concept of 

rectangular pulses developed by Rodriguez-Iturbe et al. (1987). Preference is given to the most parsimonious model variants 

on the basis that having fewer parameters improves parameter identifiability and reduces uncertainty. The Neyman-Scott 

family of models is excluded on the understanding that the clustering mechanisms of both model types perform equally well 90 

(Wheater et al. 2007a), and there is no evidence that randomisation of the Neyman-Scott model (Entekhabi et al. 1989) has 

any advantage over its Bartlett-Lewis counterpart.  
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In Sect. 2, we outline the main mechanistic model developments for improved representation of extremes. The Censored 

modelling approach for the estimation of fine–scale extremes is described in Sect. 3. Model structure and selection is explained 

in Sect. 4, and the data and fitting methodology are presented in Sect. 5. Results are given in Sect. 6 together with validation 95 

analysis. Discussion on censor selection and the results are given in Sects. 7 and 8. Section 9 outlines our main conclusions 

and thoughts for future research.  

2. Mechanistic model developments 

Attempts to improve the estimation of fine–scale extremes for point (single-site) rainfall using mechanistic models have 

focused on changing the model structure. Several authors have cited significant improvement (P. Cowpertwait 1994, Cameron 100 

et al. 2000b, Evin and Favre 2008), although increased parameterization and limited verification with real data have meant 

that most changes have not been widely adopted. An early criticism of the original mechanistic models presented by Rodriguez-

Iturbe et al. (1987) is that the exponential distribution applied to rainfall intensities is light-tailed. This choice is consistent 

with the observation that rainfall amounts, which in the model are obtained through the superposition of such cells, are 

approximately Gamma distributed (Katz 1977, Stern and Coe 1984).  105 

On the basis that the Gamma distribution gives more flexibility in generating rain cell intensities, Onof and Wheater (1994b) 

reformulate the modified (random η) Bartlett-Lewis (MBL) model (Rodriguez-Iturbe et al. 1987) with the Gamma distribution 

to improve the estimation of extremes. Despite the good fit to hourly extremes cited by Onof and Wheater (1994b), subsequent 

studies have continued to show underestimation at hourly and sub-hourly scales (N. Verhoest et al. 1997, Cameron et al. 2000a, 

Kaczmarska et al. 2014).   110 

In an extension of this approach, Cameron, Beven and Tawn (2000b) replace the exponential distribution in the MBL model 

with the Generalized Pareto (GP) distribution for rain cells over a high threshold. Depending on the value of the shape 

parameter (ξ), the GP converges to one of three forms: upper-bounded (ξ < 0), exponential (ξ = 0) and Pareto (ξ > 0). In the 

last case, we have a distribution with a heavier tail than the exponential or the gamma. Because the GP is a model for threshold 

exceedance, the authors specify a threshold below which the MBL model with exponential intensity distribution is used to 115 

simulate rain cell depth, and above which the Pareto distribution is used. This is justified on the assumption that the rain cell 

depth may be of either high or low intensity.  

The authors present a calibration strategy in which they first fit the MBL model with exponential cell depths to the whole 

rainfall record using the method of moments from Onof and Wheater (1994b). Generalised Likelihood Uncertainty Estimation 

(Beven and Binley 1992) is then used to find behavioural parameterizations of the Pareto scale and shape parameters for rain 120 

cell depths over the threshold – the location parameter being fixed at the threshold value. The central assumption of this model 

is that the Pareto scale and shape parameters for cells depths over the threshold will have “minimal impact on the standard 

statistics of the simulated continuous rainfall time-series” (Cameron et al. 2000b, p.206). The validity of this assumption is 
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disputed by Wheater et al. (2007a) who argue that the MBL model should be fitted to rainfall coincident with rain cells below 

the threshold, but point out that this is “impossible since cell intensities are not observed” (Wheater et al. 2007a, p.16). 125 

The model framework of Cameron, Beven and Tawn (2000b) differs from that of the MBL Gamma model of Onof and Wheater 

(1994a) and is essentially the nesting of two models. The authors present significant improvement in the estimation of hourly 

extremes and show good agreement with Generalized Extreme Value (GEV) estimates. However, because the underlying 

process of continuous-time rainfall is unobserved, the authors are forced to implement a calibration strategy which limits the 

impact on standard rainfall statistics – an approach which is undesirable (Wheater et al. 2007a). Furthermore, the framework 130 

appears to be an analogue of the N-cell rectangular pulse model structure initially developed by P. Cowpertwait (1994) for the 

Neyman-Scott model, and later incorporated into the Bartlett-Lewis models by Wheater et al. (2007a). Regardless of their 

relative performance, the large number of parameters required for these models is undesirable on the basis that more parameters 

reduces parameter identifiability and increases parameter uncertainty.  

In an earlier study, P. Cowpertwait (1994) differentiates between light and heavy rain cells in a modified version of the original 135 

(fixed η) Neyman-Scott Rectangular Pulse (NSRP) model (Rodriguez-Iturbe et al. 1987) by allowing rain cell intensity and 

duration to be drawn from more than one pair of exponential distributions. The new model termed the Generalised NSRP 

model (GNSRP) leads to a significant increase in parameterization over the original NSRP model, although the author presents 

an intelligent way to simplify calibration by relating model parameters to harmonic signals. While improvement is achieved 

in the fit to hourly extremes, the performance of the model in replicating other important statistics is not presented, in particular 140 

autocorrelation and the proportion of dry periods. Both of these properties are addressed by Rodriguez-Iturbe et al. (1987, 

1988) for the Bartlett-Lewis model with the inclusion of a “high frequency jitter” and randomisation of the rain cell duration 

parameter η. Entekhabi et al. (1989) present a randomised version of the Neyman-Scott model with significant improvement 

in the fit to dry periods. However, because no analytical expression was available for the proportion of dry periods this statistic 

was not used in model fitting, and other model parameters were not allowed to vary from storm to storm with randomisation. 145 

Consequently, while the MBL and the GNSRP models each allow rain cell intensity and duration to be drawn from more than 

one pair of distributions, the MBL structure is preferred because it has fewer parameters. 

In a later study, P. Cowpertwait (1998) hypothesised that including higher-order statistics in the fitting routine for mechanistic 

rainfall models would give a better fit to the tail of the empirical distribution for rainfall amounts. Focussing on the original 

(fixed η) NSRP model, analytical equations for skewness of the aggregated rainfall depth are presented and used in fitting the 150 

models. Empirical analysis showed that including skewness in the fitting statistics improved the estimation of Gumbel 

distribution parameters from simulated maxima when compared with parameters obtained from observed annual maxima.  

A criticism of the rectangular pulse model structure by Evin and Favre (2008) is that it assumes independence between rain 

cell intensity and duration. Following previous attempts to link the two variables [Kakou (1997), De Michele and Salvadori 

(2003), Kim and Kavvas (2006)], Evin and Favre (2008) present a new NSRP model in which the dependence between rain 155 
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cell depth and duration is explicitly modelled using a selection of copulas. While the authors are not primarily motivated to 

improve the estimation of rainfall extremes, good estimation of fine–scale extremes is achieved. However, the manner in which 

the results are presented makes interpretation and comparison with other studies difficult. In the first instance, the extreme 

performance of all models is almost entirely indistinguishable indicating that no overall improvement is achieved. Secondly, 

monthly annual extremes are presented at hourly and daily scales but without clearly stating which month in the year. Despite 160 

this, it is likely that monthly extremes will have lower variability than those taken from the whole year, and hence model 

performance is likely to be better. On the basis of the results presented, it is not clear that explicitly modelling dependence 

between rain cell depth and duration with copulas offers any discernable benefit over the original model structure.  

Theoretically, copulas offer an attractive framework for modelling the dependence structure between rainfall intensity and 

duration. However, the obvious mechanism for building copula dependence into mechanistic rainfall models is at the rain cell 165 

level as per Evin and Favre (2008). This approach draws upon the intuition that, just as for the rainfall amounts of storm events, 

rain cell amounts may be correlated with their duration. Such intuition follows earlier studies into the dependence structure 

between rainfall intensity and duration (Bacchi et al. 1994, Kurothe et al. 1997) – although as stated by Vandenberghe et al. 

(2011, p.14) “it is not very clear in which way this modelled dependence at cell level alters the dependence between the 

duration and mean intensity of the total storm”.  170 

In recent years, renewed focus on estimating rainfall extremes at hourly and sub-hourly scales has led to the development of a 

new type of mechanistic rainfall model based on instantaneous pulses (P. Cowpertwait et al. 2007, Kaczmarska 2011). In this 

model structure, rectangular pulses are replaced with a point process of instantaneous pulses with depth X and zero duration, 

the summation of pulses giving the aggregated time rainfall intensity. Considered initially to offer a more suitable 

representation of rainfall at sub-hourly scales than rectangular pulses, Kaczmarska et al. (2014) found that the best performing 175 

Bartlett-Lewis Instantaneous Pulse (BLIP) model effectively generated rectangular pulses when depth X was kept constant, 

and cell duration η was randomized. Because of the very large number of pulses generated within cells, the authors noted that 

this model structure imposes the “most extreme form of dependence” Kaczmarska et al. (2014, p.1977). Consequently, the 

authors developed a new rectangular pulse model in which both η and μx are randomized (BLRPRX) which was found to 

perform equally as well as the randomised version of the BLIP model but without additional parameterization. 180 

3. Censored modelling for fine–scale extremes   

Despite the model improvements outlined in Sect. 2, there is an on-going tendency for stochastic mechanistic models to 

underestimate extremes at hourly and sub-hourly scales, requiring the practitioner to employ additional methods for better 

extreme value performance including disaggregation (Koutsoyiannis and Onof 2000, Koutsoyiannis and Onof 2001, Onof et 

al. 2005, Onof and Arnbjerg-Nielsen 2009, Kossieris et al. 2013). We propose a censored approach to mechanistic rainfall 185 

modelling for improved estimation fine–scale extremes by focussing model fitting on the heavy portion of the rainfall time-
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series. The aim of this research is to investigate if mechanistic models can be used as simulators of fine–scale design storm 

events to reduce the impact of low observations on the estimation of fine–scale extremes. In this approach, rainfall below a 

low censor is set to zero and rainfall over the censor is reduced by the censor amount. The effect is to generate a time-series 

of heavy rainfall based on the observed record in which the proportion of dry periods is increased, and rainfall amounts are 190 

reduced.  

Figure 1 shows two arbitrary censors applied to 15 minute data at Atherstone in 2005 (refer to Sect. 5.1 for a description of 

the data). The left plot shows the uncensored rainfall, and the two right plots the change in rainfall with increasing censors. 

The reduced rainfall amounts are shown on the secondary y axes. It can be seen from these plots that the minimum recorded 195 

rainfall is 0.2 mm which corresponds to the tip volume of the tipping bucket rain gauge. Compared with higher rainfall amounts 

this volume is recorded with very high frequency throughout the year at the 15 minute resolution. 

Censored rainfall synthesis is a method for estimating sub-hourly to hourly extremes. Because observations below the censor 

are omitted from model fitting, censored model parameters are scale dependent and can only be used to simulate storm profiles 

above the censor at the same scale as the training data. It is the ability to simulate the heavy portion of storm profiles which 200 

enables extreme rainfall estimation. The basic procedure is as follows: 

1. For the chosen temporal resolution, select a suitable censor [mm] and apply it to the observed rainfall time-series by setting 

rainfall amounts below the censor to zero, and reducing rainfall amounts over the censor by the censor amount.  

2. Fit the mechanistic rainfall model to the censored rainfall by aggregating the censored time-series to a range of temporal 

scales and calculating summary statistics as necessary for model fitting.   205 

3. Simulate synthetic rainfall time-series at the same resolution as the training data in Step 1 and sample annual maxima.  

4. Restore the censor to the simulated annual maxima and plot against the observed.  

 

Figure 1 Example censoring applied to 15 minute rainfall data at Atherstone in 2005. Arbitrary censors of 0.25 mm 

and 0.5 mm are applied to demonstrate the effect of censoring on the rainfall record. 



8 

 

4. Model structure and selection  

Mechanistic point process rainfall models, first developed by Rodriguez-Iturbe et al. (1987) exist in various forms, although 

all models are formulated around two key assumptions about the rainfall generating process. Firstly, rainfall is assumed to 210 

arrive in rain cells following a clustering mechanism within storms. Secondly, the total rainfall within cells is represented by 

a pre-specified rainfall pattern which describes the rain cell duration and amount. The continuous time rainfall is the summation 

of all rainfall amounts in time Δt. Most models assume rectangular pulses to describe rainfall amount and duration, although 

alternative patterns have included a Gaussian distribution (Northrop and Stone 2005) and instantaneous pulses (P. Cowpertwait 

et al. 2007, P. S. P. Cowpertwait et al. 2011, Kaczmarska et al. 2014). In this latter formulation, pulses are assumed to arrive 215 

according to a Poisson process within cells, with each pulse representing an amount with zero duration. The continuous-time 

rainfall is therefore the summation of all pulse amounts in time Δt. Figure 2 shows a schematic representation of the rainfall 

generating process for rectangular pulse models.  

 

In the original form of the model, storms arrive according to a Poisson process with rate λ, and terminate after an exponentially 220 

distributed period with rate γ. The arrival of rain cells within storms follows a clustering mechanism which defines a secondary 

Poisson process with rate β. Two clustering mechanisms are specified by Rodriguez-Iturbe et al. (1987): the first is the 

Neyman-Scott mechanism in which the time intervals between storm and cell origins are assumed to be independent and 

identically distributed random variables; the second is the Bartlett-Lewis mechanism in which the time intervals between 

successive cell origins are independent and identically distributed random variables. In each case, the time intervals are 225 

 

Figure 2 Rainfall generation mechanism for mechanistic stochastic models with rectangular pulses. Panel (a) shows 

the arrival of storms and cells. Raincell intensity defines the height of each cell (X), and duration the length (L). 

Panel (b) shows the unobserved continuous-time rainfall time-series derived from the superposition of cells shown 

in (a). 
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assumed to be exponentially distributed. Rain cell profiles are rectangular with heights X for amounts, and lengths L for 

durations. Both X and L are assumed to be independent of each other and follow exponential distributions with parameters 

1 𝜇𝑥⁄  and η respectively. See Fig. 2 for a graphical illustration of the continuous-time rainfall generation process.   

The original Neyman-Scott and Bartlett-Lewis rectangular pulse models (NSRP and BLRP respectively) with exponential cell 

depth distributions are the most parsimonious models, each having only 5 parameters (see Table 1). A limitation of these 230 

models is that their simplicity implies all rainfall – stratiform, convective, and orographic - has the same statistical properties. 

On the assumption that rainfall may derive from different storm types, in particular convective and stratiform, it is physically 

more appealing to allow the statistical composition of rainfall models to vary between storms. 

Two different approaches have been developed to accommodate the simulation of different rainfall types with rectangular 235 

pulses. For the Neyman-Scott model, concurrent and superposed process have been developed in generalised (P. Cowpertwait 

1994) and mixed (P. Cowpertwait 2004) rectangular pulse models respectively. Both models enable explicit simulation of 

multiple storm types, although their increased parameterization and consequent impact on parameter identifiability means that 

Table 1 Model parameters for original and randomized BLRP models and the original NSRP model. 

 Units BLRP NSRP BLRPRη BLRPRX 

Storm arrival rate hr−1 λ λ λ λ 

Cell arrival rate hr−1 β β {β}(1) {β} 

Ratio of cell arrival rate to cell duration  - - - κ = β / η κ = β / η 

Mean cell depth mm hr−1 μx μx μx {μx}  

Ratio of mean cell depth to cell duration  mm - - - ι = μx / η 

Ratio of standard deviation to the mean cell depth - r = σx / μx r = σx / μx r = σx / μx r = σx / μx 

• Expected square of the cell depth (2) mm2 hr−2 {μx2} {μx2} {μx2} {μx2} 

• Expected cube of the cell depth for inclusion 

of skewness in the objective function (2) 

mm3 hr−3 {μx3} {μx3} {μx3} {μx3} 

Cell duration parameter hr−1 η  η {η} {η} 

• Gamma scale parameter for η - - - ν ν 

• Gamma shape parameter for η hr   α α 

Storm duration parameter hr−1 γ - {γ} {γ} 

Ratio of storm duration to cell duration  -   φ = γ / η φ = γ / η 

Mean number of cells per storm - - μc - - 

Number of parameters: exponential cell intensity - 5 5 6 6 

Number of parameters: gamma cell intensity  - 6 6 7 7 

NOTES: 

1. Parameters in curly brackets {} are not included in the objective function (see Sect. 5.2). 

2. For the two parameter gamma cell depth distribution, the expected square and cube of the cell depth (μx2 and μx3) are calculated from the standard 

deviation (σx) and mean (μx) of the cell depth. In practice it is the ratio of these (r) which is parameterized enabling calculation of μx2 and μx3. For 

both the exponential and gamma distributions, 𝜇𝑥2 =  𝑓1𝜇𝑋
2 and 𝜇𝑥3 = 𝑓2𝜇𝑋

3 where f1 = 1 + r2 and f2 = 1 + 3r2 + 2r4. Because the exponential 

distribution is a special case of the gamma distribution where r is equal to 1, μx2 = 2μx
2 and μx3 = 6μx

3. Therefore it is not necessary to parameterize 

r for the exponential distribution, meaning the exponential versions of these models require 1 parameter less with r set to 1 in calibration. 
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it is undesirable to simulate more than two storm types. For the Bartlett-Lewis model, randomization of the rain cell duration 

parameter η (Rodriguez-Iturbe et al. 1988, Onof and Wheater 1993, 1994b) with a Gamma distribution allows all storms to be 240 

drawn from different distributions. Because rain cell durations are assumed to be exponentially distributed, rain cells with high 

values of η are more likely to be shorter in duration, and those with low values of η will typically have longer durations. 

Additionally the rate at which rain cells arrive, and the storm durations, are defined in proportion to η by keeping the ratios 

β/η and γ/η constant (equal to κ and φ respectively). This means that typically, shorter storms will comprise shorter rain cells 

with shorter rates of arrival and the opposite for longer storms, which is characteristic of the differences between convective 245 

and stratiform rainfall.  

The modified (random η) Bartlett-Lewis model (see BLRPRη in Table 1) of Onof and Wheater (1993, 1994b) is the most 

parsimonious of the model structures able to accommodate multiple storm types comprising a minimum of 6 parameters for 

the exponential version. The modified (random η) Neyman-Scott model has the same number of parameters as the modified 

Bartlett-Lewis model, but because there is no evidence that it has any advantage over the latter it is excluded from this study. 250 

The updated random η Bartlett-Lewis model with mean cell depth μx also randomised (see BLRPRX in Table 1) requires fewer 

parameters than its instantaneous pulse counterpart and the same number of parameters as the modified BLRPRη model. 

Structurally, it is identical to the modified model, although μx is also allowed to vary randomly between storms by keeping the 

ratio ι = μx/η constant.  

Because the Neyman Scott and Bartlett Lewis clustering mechanisms are considered to perform equally well, model selection 255 

is limited to the most parsimonious model structures within the Bartlett-Lewis family of models: the original model (BLRP), 

the linear random parameter model (BLRPRη) and the linear random parameter model with randomized μx (BLRPRX). 

Hereafter, these models are referred to as BL0, BL1 and BL1M respectively. For the models used in this study, it is assumed 

that rain cells start at the storm origin to prevent the simulation of empty storms which can occur with the Bartlett-Lewis 

clustering mechanism if the first rain cell starts after the end of the storm.  260 

5. Data and model fitting   

5.1 Data selection  

Estimation of fine–scale extremes with censored rainfall simulation is performed on two gauges: Atherstone in the UK and 

Bochum in Germany. Atherstone is a tipping bucket raingauge (TBR) operated and maintained by the Environment Agency 

of England. The record duration is 48 years from 1967 to 2015, with one notable period of missing data from January 1974 to 265 

March 1975. The reason for the missing data is unknown, although it is not expected to affect model fitting and the estimation 

of extremes. This site was selected from all TBRs for the Environment Agency’s Midlands Region on the basis that the number 

of Environment Agency quality flags highlighted as “good” in the record is greater than 90%, and the number of “suspect” 

flags less than 10% (92.3% and 6.7% respectively). Between the 8th February 1981 and after 20th November 2003 the gauge 
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resolution is 0.5 mm. Before and after this period it is 0.2 mm. In the period before the 8th February 1981, the TBR record 270 

includes a number of observations of 0.1 mm at precisely 09:00:00. It is assumed that these are manual observations to correct 

the rain gauge totals to match with check gauge totals following quality checks of the data.  

Bochum is a Hellmann raingauge operated and maintained by the German Meteorological Service. It uses a floating pen 

mechanism to record rainfall on a drum or band recorder with a minimum gauge resolution of 0.01 mm. The duration is 69 

years from 1931 to 1999, and the data are aggregated to a minimum temporal resolution of 5 minutes. These sites are selected 275 

to represent rainfall in different geographical regions obtained using different measurement techniques. Figure 3 shows the 

locations of these two gauges. 

 

5.2 Parameter estimation 

Model fitting is performed in the R programming environment (R Core Team 2017) using an updated version of the MOMFIT 280 

software developed by Chandler et al. (2010) for the UK Government Department for the Environment, Food and Rural Affairs 

(DEFRA) research and development project FD2105 (Wheater et al. 2007a, 2007b). In this software, parameter estimation is 

performed using the generalised method of moments (GMM) with weighted least squares objective function: S(θ|T) =

 ∑ ωi[ti − τi(θ)]2k
i=1 . The reader is referred to Wheater et al. (2007b, Appendix A) for a detailed explanation of the fitting 

methodology.   285 

The GMM is preferred for mechanistic rainfall models because the complex dependency structure and marginal distribution 

of aggregated time-series makes it very difficult to obtain a useful likelihood function (Rodriguez-Iturbe et al. 1988). In this 

 

Figure 3 Plan showing the location of the UK and German rain gauges used in this study. 
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procedure, the difference between observed and expected summary statistics of the rainfall time-series at a range of temporal 

scales is minimised giving an optimal parameter set θ where: t = (t1 … tk)′ is a vector of k observed summary statistics, τ(θ) = 

(τ1(θ)… τk(θ))′ is a vector of k expected summary statistics which are functions of θ = (θ1…θp)′, i.e. of the vector of p model 290 

parameters for which analytical expression are available. The i-th summary statistic is weighted according to the inverse of its 

observed variance ωi = 1/var(ti) where ti is the vector of diagonal elements of the estimated covariance matrix of the mean 

summary statistics, Σ̂. While this weighting is not optimal, it provides a reasonable approximation to the optimal weights for 

the GMM giving robust estimation of the parameter standard errors (R. Chandler et al. 2010). Other weights can be applied 

allowing the user to influence the dominance of specific rainfall properties, although for unbiased estimates of the summary 295 

statistics the weights must be independent of the model parameters and the data (Wheater et al. 2007b).  

Typically, the vector of observed summary statistics T comprises the mean, variance, auto-correlation and proportion of dry 

periods for temporal scales between 1 and 24 hours. Prior to model fitting and to allow for seasonality, summary statistics are 

calculated for each month over the record length and pooled between months. For each month, the pooled statistics are used 

to estimate the covariance matrix of model parameters required for parameter uncertainty estimation, and the mean of the 300 

monthly statistics. Therefore 12 parameter sets are obtained for the whole year.  

Model parameters are estimated using two minimisation routines. First, Nelder-Mead optimisations are performed on random 

perturbations around user-supplied parameter values to identify promising regions of the parameter space. Following a series 

of heuristics to identify the best performing parameter set, random perturbations around these values are used as new starting 

points for subsequent Newton type optimisations. The parameter set with the lowest objective function is the best performing 305 

and selected for that month. Following the approach employed by Kaczmarska (2013) to obtain smoothly changing parameters 

throughout the year, this two-step optimisation is only applied to one month. Subsequent parameter estimation is based on a 

single Newton type optimisation using the previous month’s estimate as the starting point. Testing of this approach has shown 

that when the parameters are well identified the same seasonal variation is achieved regardless of the starting month. The 

sampling distribution of the estimators resulting from the GMM minimisation routine are approximately multivariate normal 310 

(MVN). The optimal parameter set is estimated by the mean of this distribution, and the covariance matrix is estimated from 

the Hessian of the least squares objective function S (Wheater et al. 2007b). The MVN distribution of model parameter 

estimators is used to estimate 95% confidence intervals for the parameter estimates. On occasions that the model parameters 

are poorly identified, it may not be possible to calculate the Hessian of the objective function preventing the estimation of 

parameter uncertainty.  315 

5.3 Experimental design 

Initial experiments with the coefficient of skewness and proportion of dry periods included in model fitting for censored data 

were limited by the inability to obtain well identified parameters for some or all months. While good model fits were obtained 

for some low censors, extreme value estimation continued to be underestimated. On the basis that censoring is a new approach 
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to enhance the estimation of rainfall extremes, skewness is not considered to be an important fitting statistic for censored 320 

simulations. Furthermore, because censored models cannot be used to generate continuous time-series of the sort which may 

be used for hydrological modelling, the proportion of dry periods is also considered to be unimportant for censoring. 

Consequently for censored model calibration, the choice of fitting statistics is reduced to the 1 hour mean, the coefficient of 

variation and lag-1 autocorrelation of the rainfall depths at the censor resolution, and the 6 and 24 hour resolutions. Again, to 

ensure well identified model parameters for the Atherstone dataset, it was necessary to extent the choice of fitting statistics to 325 

include the 1 hour statistics for 5 minute simulations. This was neither necessary for 15 and 60 minute simulations at 

Atherstone, nor the Bochum dataset. 

For all simulations the fitting window is widened to 3 months, hence for any given month the models are fitted to data for that 

month, together with the preceding and following months. This approach is used to increase the data available for fitting the 

models when censoring on the basis that censoring removes data which would otherwise be used in fitting. Tests have shown 330 

that widening the fitting window from one to three months has the effect of smoothing the seasonal variation in model 

parameters and improving parameter identifiability. There is also negligible impact on the estimation of summary statistics 

and extremes under the model parameters.  

For the two randomized models, BL1 and BL1M, the Gamma shape parameter α is constrained to a fixed value in calibration 

and simulation. The Gamma shape parameter α is an insensitive model parameter and can take any value within a very large 335 

range without significant impact on the estimation of summary statistics or extremes (see Appendix A). For the BL1 model, 

parameterization without an upper bound on α often results in poor identifiability with parameter estimates in the thousands to 

tens of thousands. For the BL1M model, α is typically better identified than for BL1 with a tendency to move towards the 

lower boundary. In order to avoid having infinite skewness, α must be greater than 4 for the BL1 model and 1 for the BL1M 

model (see Kaczmarska et al. (2014) and references therein for discussion on these criteria). Therefore, by fixing α at 100 for 340 

the BL1 model and 5 for the BL1M model, the number of parameters to be identified for these models is reduced by one. All 

models are fitted using the exponential distribution for mean cell depth. This further reduces the number of model parameters 

to be fitted for both uncensored and censored models, therefore in all cases the ratio of standard deviation to the mean cell 

depth (r = σx/μx) is fixed at 1. Fitted model parameters are presented in Appendix B for 5 and 15 minute rainfall at both sites 

for uncensored and censored rainfall using censors selected in Sect. 6.2 (Table 2).  345 

6. Results  

6.1 Extreme value estimation 

Rainfall extremes are estimated from the models by sampling annual maxima directly from simulations. For each model fitted 

to uncensored data, 100 realisations of 100 years duration are simulated using parameters randomly sampled from the 

multivariate normal (MVN) distribution of model parameters. This allows model parameter uncertainty to be represented in 350 
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the spread of the MVN extreme value estimates (hereafter referred to as MVN realisations), covering the full range of 

observations. Extreme value estimation up to the 1000-year return level is also provided to indicate the potential magnitude of 

rarer events. For this extrapolation, extremes are estimated from one realisation using the mean of the MVN distribution of 

parameter estimators (hereafter referred to as the optimal estimates). To ensure stability of the extreme value estimates up to 

approximately the 1000-year return level, simulations have been extended to 10,000 years. 355 

Extreme value estimation for the censored calibrations is shown in Figs. 4, 5 and 6 for 5, 15 and 60 minutes temporal resolutions 

respectively. The top three plots in each figure show the results for Bochum, and the bottom three plots the results for 

Atherstone, with observed and simulated annual maxima plotted using the Gringorten plotting positions. All plots show the 

equivalent extreme value estimates obtained without censoring obtained by simulating one realisation of 10,000 years duration 

with the optimal parameter set. Upper limits on censoring were identified when model parameterization noticeably deteriorated 360 

resulting in the mean of the MVN realisations to deviate away from the optimal. Results presented are limited to the 4 highest 

censors with well identified model parameters, together with 95% simulation bands. The simulation bands show the range of 

extreme value estimation between the 2.5 and 97.5 quantiles of the 100 MVN realisations for each simulated data point. 

All censored models have significantly improved the estimation of extremes at each site and scale with very good estimation 

by all three model variants particularly at the 5 and 15 minute scales. At these scales, the estimation of extremes with the 4 365 

censors presented has approximately converged on the observations. At the 60 minute scale there is notable improvement in 

the estimation of extremes with some convergence in estimation with increasing censors, although there is continued 

underestimation of the observed. The 95% confidence intervals by all censored models broadly bracket the observations and 

are largely unvaried with increasing censors, other than with the BL1M model at the 60 minute resolution.  

At the 5 minute scale, estimation has converged on the observations with censors between 0.5 and 0.65 mm at Bochum, and 370 

between 0.6 and 0.75 mm at Atherstone. For all three models there is slight underestimation of extremes higher than 

approximately the 10 year return period, although the BL1M model accurately estimates the highest observed extreme at both 

sites. At the 15 minute scale, convergence at Bochum has occurred for censors between 1.0 mm and 1.3 mm, while at 

Atherstone convergence has occurred for censors between 0.6 mm and 0.9 mm. As for the 5 minute resolution models, the 

BLIM model appears to perform slightly better than the BL0 and BL1 models, resulting in improved estimation of the highest 375 

observed extremes and elevated estimates of the 1000 year return period rainfall at both sites. At the 60 minute resolution, 

there is good convergence in estimation for all three models at Bochum, and the BL1M model at Atherstone. However, extreme 

value estimation with the BL0 and BL1 models at Atherstone is more widely spread across the applied censors. For the BL0 

and BL1 models, the 0.2 mm censor results in much lower estimates than the three higher censors, although the mean of the 

MVN realisations for the 0.6 and 0.8 mm censors are starting to deviate away from the optimum realisation. For the BL1M 380 

model, there is good convergence between the optimal realisations with each censor, although the mean of the MVN estimates 

for the 0.6 and 0.8 mm censors have significantly deviated from the optimum. 
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Figure 4 Extreme value estimation at 5 minute resolution. Optimal realisations (opt. AM) are shown with solid lines 

and the mean of the MVN realisation (mvn. AM) are shown with dashed lines.  
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Figure 5 Extreme value estimation at 15 minute resolution. Optimal realisations (opt. AM) are shown with solid lines 

and the mean of the MVN realisation (mvn. AM) are shown with dashed lines.  
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Figure 6 Extreme value estimation at 60 minute resolution. Optimal realisations (opt. AM) are shown with solid lines 

and the mean of the MVN realisation (mvn. AM) are shown with dashed lines. 
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The mean of the MVN realisations for the BL1M model at Atherstone with the 0.6 and 0.8 mm censors (see Fig.6) diverges 

from the optimum because of the generation of unrealistic extremes. This divergence is also observable in the larger spread of 

95% simulation bands over 100 realisations. While it has been possible to fit the model, Fig. 7 shows that as censoring has 

increased to 0.8 mm, confidence intervals on model parameters have widened for several months of the year, notably January, 

February and June. When sampling from the MVN distribution in simulation, these large confidence intervals mean that there 390 

is a high chance of sampling parameters which deviate significantly from the mean of the distribution thereby giving rise to a 

wide spread in extreme value estimates. These large confidence intervals indicate that the confidence in parameter estimation 

is reducing with higher censors and consequently the model error is too large for the reliable simulation of extremes. 

 

6.2 Validation 395 

The rainfall extremes presented in Sect. 6.1 have been generated mechanistically using model parameters derived from central 

moments of the censored rainfall time-series. While censored models cannot be used to simulate the whole rainfall hyetograph, 

it is important to ensure that the process by which the extremes are estimated is reliable. Therefore, model performance is 

validated in the usual way for this class of model by comparing the analytical summary statistics under the model parameters 

with the observations – here the observations are censored. The lowest censors presented in Figs. 4, 5 and 6 are selected for 400 

 

Figure 7 Comparison of censored BL1M model parameters for Atherstone 60 minute data. Optimal parameter 

estimates (params.) are shown with dot-dashed lines, and parameter uncertainty is represented with 95% 

confidence intervals.  
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validation. No distinction is made between models in this choice, although it is recognised that there is some variation in the 

extreme value performance of specific censors between model types. See Table 2 for censor selection at each site and scale. 

 

6.2.1 Replication of fitting statistics  

 405 

Figure 8 shows the seasonal variation in mean, coefficient of variation and lag-1 autocorrelation for all three models at 

Atherstone with the selected censors in Table 2. Comparable performance is achieve with the models for Bochum and hence 

these results are not presented. The plots show the estimated summary statistics calculated using the optimum parameter 

estimates, together with 95% simulation bands obtained by randomly sampling 100 parameter sets from the multivariate 

normal distribution of model parameters, estimating the summary statistics under the model and displaying the range of 410 

estimates between the 2.5 and 97.5 quantiles. Because models are fitted over 3 monthly moving windows, estimated summary 

statistics are compared with summary statistics for censored observations for the same periods. Fitting statistics for the 6 and 

Table 2 Censor selection for model validation. 

 5 minutes 15 minutes 60 minutes 

Bochum 0.5 mm 1.0 mm 1.0 mm 

Atherstone  0.6 mm 0.6 mm 0.2 mm 

 

 

 

Figure 8 Seasonal variation in mean, coefficient of variation and lag-1 autocorrelation for selected censors at 

Atherstone, observed vs. estimated.  



20 

 

24 hour scales are not shown. The limits on the vertical Y axes are optimized at each site and scale, therefore the reader is 

advised to pay careful attention to the scales when comparing summary statistics. 

All models perform very well with respect to replicating the summary statistics used in fitting with the 95% simulation bands 415 

comfortably bracketing the observations. The estimated summary statistics are very close to the observed with all models 

performing equally well. The seasonal variation in mean monthly rainfall varies between scales because there is a higher 

proportion of low observations at short temporal scales removed by the censors. The greater prominence in seasonal variation 

shown in plots a and b indicates that the summer months (approx. Apr - Oct) are more prone to short intense bursts of rain, 

and the winter months longer periods of low rainfall intensity. This is consistent with there being more convective rainfall in 420 

the summer, and stratiform rainfall in the winter. The plots in Fig. 8 demonstrate that the models are able to reproduce the 

censored fitting statistics, confirming reliability of the process. 

6.2.2 Replication of statistics not used in fitting 

A consequency of censoring is that it truncates the thin tail of the rainfall amounts distribution which significantly changes it’s 

shape. Because this truncation is not replicated in the analytical equations of the models used in this study, the models are not 425 

expected to be able to reproduce this statistic well. Therefore this statistic is excluded from validation. Conversely, censoring 

is not expected to significantly impact the ability of the models to estimate the proportion of wet periods. Despite this, censoring 

significantly changes this statistic at fine temporal scales. Figure 9 shows the seasonal variation in the proportion of wet periods 

for all three models at both sites with the selected censors in Table 2.  

  430 

 

Figure 9 Seasonal variation in skewness coefficient and proportion of wet periods for selected censors, observed 

vs. estimated. 
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The ability of the models to reproduce the proportion of wet periods is generally good, although there is a tendency for all 

models to overestimate this statistic at both sites. At the 5 minute resolution for Bochum, the 95% simulation bands comfortably 

bracket the observations between the months of May and October, although there is over-estimation in the other months and 

for all months at the 15 and 60 minute scales. At Atherstone, there is good representation of the proportion of wet periods at 

the 15 minute scale, although over-estimation at the 5 and 60 minute scales. Generally, there is very slightly better agreement 435 

in the summer months which, as highlighted in Sect. 6.2.1, may be more prone to short intense downpours at fine temporal 

scales. This suggests that the censored models may be more effective at simulating the heavier short duration rainfall 

characteristic of summer convective storms, than the longer duration low intensity rainfall characteristic of winter storms.  

7. Discussion on censor selection 

The censors selected for validation in Table 2 were chosen based on their extreme value performance. For the estimation of 440 

extremes at other locations, it would be preferable to have a set of heuristics to guide censor selection. The following discussion 

of extreme value estimation performed in this study is intended to guide practitioners in the application of censored modelling.  

7.1 Stability of confidence intervals 

Upper limits on censoring were identified where model parameters were either poorly identified or the mean of the MVN 

realisations deviated significantly from the observations. The onset of this effect was observed in Fig. 6 for estimation of 445 

hourly extremes at Atherstone with the BL1M model. Figure 10 shows the change in 95% confidence intervals and the mean 

of the MVN realisations obtained with censored models with well and poorly identified parameters for 15 minute data at 

Bochum and Atherstone. The comparison is made between extremes for the selected censors given in Table 2 (1.0 mm and 0.6 

mm respectively) and extremes from higher censors (1.5 mm and 1.0 mm respectively).  

Confidence intervals on extreme value estimates for Bochum 15 minute rainfall obtained with censors from 1.0–1.3 mm, and 450 

for Atherstone with censors from 0.6–0.9 mm (Fig. 5), are broadly stable and unchanging. This is indicative that 

parameterization across each model variant and censor is good enabling robust estimation of extremes. As the censor at 

Bochum is increased to 1.5 mm (Fig. 10, panels a–c), there is a noticeable increase in the upper confidence bound and the 

mean of the MVN realisations has diverged leading to over-estimation of the extremes. Increasing the censor at Atherstone to 

1.0 mm has resulted in very significant widening of the confidence intervals and divergence of the mean of the MVN realisation 455 

(Fig. 10, panels d–f). In each case, this divergence results from the generation of unrealistic extreme value realisations which 

are shown in Fig. 10 (light grey lines). 
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Figure 10 Change in 95% confidence intervals and mean of the MVN realisations for Bochum and Atherstone 15 minute 

data with well identified (> 1.0 mm and > 0.6 mm) and poorly identified (> 1.5 mm and > 1.0 mm) censored model 

parameters. 
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While it has been possible to fit models to data with these high censors, examination of the parameter estimates and associated 460 

uncertainty reveals that parameter identifiability is reducing. Figure 11 shows the seasonal variation in estimates for the BL1M 

model parameters α/ν, κ and φ fitted to Bochum 15 minute data with a 1.5 mm censor. Parameters λ and ι are well identified 

with tight confidence brackets around the optimum, while r and α are fixed, therefore these parameters are not shown. 

Confidence intervals on α/ν, κ and φ are very large in the winter months indicating that identifiability of these parameters has 

deteriorated. When sampling from the multivariate normal distribution for model parameters in simulation, these large 465 

uncertainties give rise to poor extreme value estimation. The same behaviour was observed for the BL1M model at Atherstone 

for 60 minute data as shown in Fig. 7. 

 

With the upper bound on censoring identified, the obvious question is how to identify a lower bound? The results presented in 

Figs. 4, 5 and 6 suggest that there is convergence in the estimation of extremes with increasing censors. If so, when is the onset 470 

of convergence? Figure 12 shows the change in extreme value estimation with censor for 15 minute rainfall at Bochum (top 

plots) and Atherstone (bottom plots) for 10 and 25 year return periods.  

At both locations, divergence in the mean of the MVN realisations and confidence intervals shown in Fig. 12 is easily identified 

with the very large box-plot whiskers at 1.5 mm and 1.0 mm censors for Bochum and Atherstone respectively. The plots for 

Bochum also show a large spread in the extreme realisations with a 1.4 mm censor for the BL1M model suggesting that 475 

parameter identifiability is deteriorating at this censor.  

At Atherstone, there is clear evidence of convergence in estimation between censors 0.5–0.9 mm. However, convergence is 

less obvious at Bochum. At Bochum, there is continual improvement in extreme value estimation with the increasing censors, 

although there is a perceptible reduction in improvement with each successive increase in censor. For censors of 0.7 mm and 

above, all model realisations bracket the observed extremes (horizontal dashed blue line), which is also true for censors above 480 

0.5 mm at Atherstone. Therefore, ranges may be identified at both sites for censors which may be considered to give 

satisfactory estimation of extremes: 0.7–1.3 mm at Bochum and 0.5–0.9 mm at Atherstone.  

 

Figure 11 Fitted model parameters for the BL1M model with 1.5 mm censor applied to Bochum 15 minute data.  
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Figure 12 Variation in extreme value estimation with censor for 15 minute data at Bochum and Atherstone for two 

annual return periods: 10 and 25 years.  
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7.2 How much rainfall to censor? 

In Sect. 7.1 we identify plausible censor ranges on the basis parameter stability and convergence of extreme value estimation. 485 

However, this doesn’t address the question of how much rainfall to censor? Because extremes are generated mechanistically, 

we want to simulate the storm event hyetograph therefore it is in our interest to keep the censor low in relation to the rainfall 

depth profile. The most basic check is that the minimum observed extreme (here designated as the smallest annual maxima) is 

greater than the censor being used. This is true for all the sites and scales investigated in this study, with the lowest observed 

annual maxima of 1.6 mm occurring at the 5 minute scale in Atherstone. However, this significantly exceeds the maximum 490 

censor applied to 5 minute data at Atherstone, 0.75 mm (see Fig. 4), therefore it’s unlikely that a well parameterized model 

would be achieved. 

Figure 13 shows the empirical cumulative distribution function (ECDF) plots for the above zero rainfall records at Bochum 

and Atherstone aggregated to 5 and 15 minute resolutions. All the censors used for the estimation of fine–scale extremes in 

Figs. 4, 5 and 6 are shown, with the top three censors highlighted magenta. The censors selected for model validation (Table 2) 495 

are highlighted blue, and the lower limits on censors identified in Sect. 7.1 for 15 minute rainfall are shown and highlighted 

green. The ECDF plots are truncated at the 99th percentile to aid comparison of the applied censors, therefore the maximum 

rainfall is highlighted in red text on the right of each plot. For all censors, their rainfall quantile values are shown with the 

colour matching the plotted lines.  

It can be seen from Fig. 13 that a substantial proportion of the above zero rainfall record is masked from the models with 500 

censoring. At the 5 minute scale, the selected censor of 0.5 and 0.6 mm removes in excess of 98% and 96% of the above zero 

rainfall from Bochum and Atherstone respectively. At the 15 minute scale, the selected censors of 1.0 and 0.6 mm remove in 

excess of 96% and 81% respectively. These quantiles are high and support the hypothesis that mechanistic models may be 

poor at estimating fine–scale extremes because the training data are dominated by low observations.  

A striking difference in the ECDF plots for the two locations is the smoothness of the curves. The stepped nature of the 505 

Atherstone plots is very pronounced and reflects the resolution of the gauge: 0.5 mm between 1982 and 2003, and 0.2 mm 

before and after these dates. The stepped nature of the plots at Atherstone highlights that the selected censor quantiles (blue) 

are just greater than the 0.5 mm quantiles. We also know from Fig. 12 that a censor of 0.5 mm for 15 minute rainfall at 

Atherstone would give very similar extreme value estimation to the selected 0.6 mm censor (highlighted in green on the ECDF 

plot, Fig. 13). This implies that to improve the estimation of fine–scale extremes at Atherstone, it has been necessary to remove 510 

all observations which correspond with the gauge resolution.  
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While the proportion of rainfall observations removed prior to model fitting is large - over 90% and 80% for 5 and 15 minute 

rainfall from Bochum and Atherstone respectively - comparison with the maximum rainfall amounts and an assessment of the 515 

number of independent peaks over the censor demonstrate that the censors are low. Table 3 shows the proportion of maximum 

rainfall and the number of independent peaks per year for the selected censors given in Table. 2. The number of peaks over 

the censors are estimated using a temporal separation of 48 hours to define independence.  

 

Figure 13 Empirical Cumulative Distribution Function plots for Bochum and Atherstone rainfall aggregated to 5 and 

15 minute temporal resolutions. The plots are limited to the 99th percentile rainfall and show the rainfall quantiles 

corresponding to the optimum censors used in the estimation of extremes in Figs. 4, 5, and 6.  
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The proportion of the maximum observed rainfall is less than 6% in all cases which is very low considering that the maximum 520 

recorded rainfall across both sites and scales is just 27.9 mm for Bochum 15 minute rainfall. For a standard Peaks over 

Threshold extreme value analysis, the threshold is typically set so that between 3 and 5 independent peaks per year remain in 

the partial duration series. Using a temporal separation of 48 hours to define independence, the number of peaks per year 

retained after censoring is between 27 and 65 (Table 3). The actual number of peaks retained for fitting the Bartlett-Lewis 

models is much greater than this because serial dependence in the rainfall time-series is simulated with mechanistic modelling. 525 

While it is possible to estimate return levels for serially dependent extremes using extreme value theory, the analysis set out 

in Fawcett and Walshaw (2012) demonstrate that estimating the extremal index is non-trivial can be subjective.   

8. Further discussion and conclusions 

The estimation of rainfall extremes presented in this study using censored rainfall simulation is highly promising and offers 

an alternative to frequency techniques. The estimation of extremes at sub-hourly scales has far exceeded expectation with all 530 

three models giving a very high level of accuracy across a range of censors. However, censoring uses rainfall models in a way 

they were never previously intended. Rainfall models have invariably been used for simulation of long duration time-series 

across a range of scales for input into hydrological and hydrodynamic models. Censored rainfall synthesis cannot be used in 

this way because only the heavy portion of the hyetograph is simulated.  

The success of this research is to broaden the scope of mechanistic rainfall modelling and ask new questions of it. Mechanistic 535 

models and related weather generators are very powerful at simulating key summary statistics for a range of environmental 

variables. An area where these models have consistently underperformed is the estimation of fine–scale extremes. Efforts to 

improve extreme value estimation at fine temporal scale have focussed on structural developments. But those developments 

have always been undertaken in the context of rainfall time-series generation. Continued underestimation at fine temporal 

scales has given rise to the notion that rectangular pulse models are potentially “unsuitable for fine–scale data” (Kaczmarska 540 

et al. 2014, p.1985).  

For effective scenario planning with hydrological models, good reproduction of rainfall time-series is necessary, with accurate 

estimation of key summary statistics. However, for assessment of extremes and estimation of storm profiles, good replication 

of rainfall central moments is arguably less important. The ability of the censored models to adequately reproduce the central 

moments used in calibration was checked to ensure that the process by which the extremes are constructed is reliable. Because 545 

Table 3 Proportion of maximum rainfall and number of independent peaks per year for the selected censors given 

in Table 2. 

 Scale [mins] Bochum Atherstone 

Proportion of maximum rainfall 5 3.0% 5.7% 

 15 3.6% 3.5% 

Number of independent peaks / year 5 53 27 

 15 46 65 
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rainfall over the censor is by definition coincident with rainfall below the censor, the censored models can be used to estimate 

uncensored extremes by simply restoring the censor to the estimates.  

Extreme rainfall estimation with censoring across all models, scales and sites is significantly improved on that without 

censoring as shown in Figs. 4, 5 and 6. Up to approximately the 25 year return period, estimation is broadly equivalent across 

all models. For rarer events, the BL1M model appears to perform better than the other two at the 5 and 15 minute scales at 550 

Bochum and Atherstone by accurately estimating the highest observations at those scale. This improvement over the BL0 and 

BL1 models is significant in the event that extreme rainfall estimation is required beyond the range of observations. This is 

demonstrated in all 4 cases (5 and 15 minute scales at Bochum and Atherstone) with the higher estimation of extremes at the 

1000 year return level by the BL1M model compared with the other two. Below approximately the 25 year return period the 

differences in extreme rainfall estimation are so small that it is not possible to single out any one model as having the best 555 

overall performance, although for increasingly rare events the results suggest a preference for the BL1M model. This result 

supports the findings reported by Kaczmarska et al. (2014) that the dependence structure between rain cell amounts and 

duration in the BL1M model is beneficial in estimating fine–scale extremes.  

In all three models, there is a slight upward curvature in the Gumbel plotting of extremes which is consistent with the GEV 

and GP distributions taking a positive shape parameter (ξ > 0). This curvature is more pronounced for the BL1M model which 560 

would be consistent with a higher positive shape parameter. While extreme value theory encompasses a range of distributions 

characterised by the sign of the shape parameter, Koutsoyiannis (2004a) argues that rainfall extremes naturally follow the 

Fréchet distribution for annual maxima (equivalent to the GEV with ξ > 0), supported with empirical evidence in Koutsoyiannis 

(2004b). The positive growth in extremes observed in our results is consistent with this hypothesis, and suggests that important 

information about the distribution of extremes is captured in the full storm profile hyetograph over the low censor. Futher 565 

research is required to investigate the theoretical link between mechanistic model parameters and their extreme value 

performance.   

The results presented in this paper show that the method has worked for single site data from two very different locations, and 

recorded using different gauging techniques. Consistency in the relative magnitude of selected censors identified at each 

location, and the stability of estimation across a range of censors gives confidence in the approach and supports the original 570 

hypothesis.  It is an obvious limitation of censoring that it cannot be used to obtain time-series of synthetic rainfall as is the 

principal application of mechanistic rainfall models. However, the intention of this research was to investigate if mechanistic 

models could be used for estimation of fine–scale extremes as an alternative to frequency techniques. The accuracy of estimates 

for sub-hourly rainfall extremes using all three model variants is very good, although the BL1M model appears to outperform 

the other two models at both sites for the 5 and 15 minute scales by accurately predicting the highest observed extreme.  575 

Reducing parameterization by fixing the Gamma shape parameter α in the randomised models, and increasing the data for 

parameterization by widening the fitting window to 3 months has enabled the models to be fitted successfully to censored 
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observations. It is likely that these aides to parameterization are necessary because censoring truncates the statistical 

distribution of the training data. The analytical solutions in the models do not make this assumption, therefore a mismatch 

between the training data and the models arises with censoring. At low censors, truncation is minor and the analytical solutions 580 

in the models are able to make reasonable estimates of the fitting statistics. However, as the censor increases and the mismatch 

grows a point is reached at which the analytical solutions are no longer able to estimate the fitting statistics causing 

deterioration in parameter identifiability.  

A principal goal of this research was to improve the physical basis of short duration extreme rainfall estimation. This has been 

achieved by simulating storm profiles mechanistically in a way which mimics the phenomenology of rainfall generation. This 585 

has given rise to extreme rainfall estimation which may be described as a function of a set of model parameters with physical 

meaning, e.g., the extreme rainfall quantile 𝑧 = 𝐹{𝜆, 𝜇𝑥 , 𝛿𝑥, 𝛿𝑐, 𝜇𝑐 , 𝛿𝑠} for the original Bartlett-Lewis model (See Appendix A 

for definitions of mechanistic model parameters). Future research is required to link model parameters to environmental 

covariates and spatial information. The latter may follow the regionalisation methodology of Kim et al. (2013).  

Further research is also required to investigate the potential for incorporating censored modelling into a multi-model approach 590 

for synthetic rainfall generation. This may take the form of simulating the rainfall below the censor using a bootstrapping 

approach similar to that in Costa et al. (2015), or continuous simulation of uncensored rainfall with replacement of storms 

simulated using the censoring approach.  

Data availability 

The Atherstone tipping bucket raingauge dataset was obtained directly from the Environment Agency for England, UK. The 595 

data are not publicly accessible because they are used by the Environment Agency for operational purposes, but can be obtained 

for non-commercial purposes on request. The Bochum dataset was obtained directly from Deutsche Montan Technologie and 

was recorded by the Emschergenossenschaft / Lippeverband in Germany. The data are not publicly accessible because they 

belong to the Emschergenossenschaft and Lippeverband public German water boards and are used for operational purposes.    

Appendix A: Bartlett-Lewis model parameter sensitivity and impact on extreme value estimation.  600 

To demonstrate the insensitivity of α for the randomised Bartlett-Lewis models, the BL1 and BL1M models were fitted to 

Bochum 15 minute rainfall with changing constraints on α. The models were fitted using the 1 hour mean and the 0.25, 6 and 

24 hour coefficient of variation, skewness coefficient and lag-1 autocorrelation. For the BL1 model, α is constrained between 

4.1 (lower bound) and 5, 10, 25, 50, 75 and 100 (upper bounds). For the BL1M model, α is constrained between 5, 10, 25, 50, 

75 and 100 (lower bounds) and infinity (upper bound). For the BL1 and BL1M models, α converges on the upper and lower 605 

bounds respectively, although because α is not held fixed parameter uncertainty is estimated. Parameter ranges are presented 

in the parallel coordinate plots in Fig. A1 by sampling 1000 parameter sets from the multivariate normal distribution of model 
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parameters for 4.1 < α < 1e+06. The parameter sets corresponding to α = 100 and α = 5 are shown for the BL1 and BL1M 

models respectively with dashed magenta lines. 

 610 

The parallel coordinate plots clearly show the insensitivity of α compared with the other model parameters. When α is 

constrained with upper and lower bounds of between 25-50 for the BL1 and BL1M models respectively, α is poorly identified 

and can take any value over a very large range (see Fig. A1). When α is constrained with upper and lower bounds of less than 

25 for the BL1 and BL1M models respectively, identifiability of α is improved. This insensitivity results from the shape of the 

fitted Gamma distribution used to sample η shown in Fig. A2. 615 

As α increases the Gamma distribution converges on the Normal distribution and becomes increasingly flat. Therefore, for 

high values of α, the probability of randomly sampling anywhere within the distribution is greater compared with low values 

of α. For α ≥ 50, the Gamma distribution is approximately normal and the range of η values which may be randomly sampled 

by both models is always large resulting in a narrow range of potential Exponential distributions from which to sample L where 

L is the cell duration. This impacts the estimation of extremes as shown in Fig. A3. Figure A3 shows extreme rainfall estimates 620 

from the BL1 and BL1M models with α fixed at 5, 50 and 100. For α ≥ 50, extreme rainfall estimation by both models is 

identical. For α = 5, the BL1 model estimates lower extremes than with higher α values, while the BL1M model gives improved 

 

Figure A1 Parallel coordinate plots for the two randomised Bartlett-Lewis rectangular pulse models, BL1 and BL1M. 

Plots show the range of January parameter values for uncensored models fitted to Bochum 15 minute rainfall. The 

dashed magenta lines show the parameter sets corresponding to α = 100 and α = 5 for the BL1 and BL1M models 

respectively.  
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estimation of the growth curve of extremes. Because of this combination of parameter insensitivity and relative performance 

in the extremes, α is fixed at 100 and 5 for the BL1 and BL1M models respectively.  

 625 

 

 

Figure A2. Fitted Gamma distributions for the cell duration parameter η for the BL1 and BL1M models with α = 

5, 50, 100 and 1000. Plots show the equivalent Normal distributions fitted to the mean and standard deviation of the 

Gamma distributions. The range of Exponential distributions for the cell duration parameter η are obtained by 

sampling 500 η values from the fitted Gamma distributions. The Exponential distributions for the mean of the fitted 

Gamma distributions are also shown.  

 

Figure A3 Sensitivity of extreme value estimation to choice of α for the randomised Bartlett-Lewis models. 
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Appendix B: Fitted model parameters 

Tables B1–4 show fitted model parameters for the BL1M model (BLRPRX in Table 1) for 5 and 15 minute rainfall at Bochum 

and Atherstone with uncensored and censored data. Censored model parameters correspond to the censors selected in Table 2. 

Additionally, Tables B1–4 show the objective function value, Smin, for the fitted parameter set, as well as mechanistic model 630 

parameters defined by Wheater et al. (2007b) which are listed below.  

Mean number of cells per storm: 𝜇𝑐 = 1 +
𝜅

𝜑
 [-] 

   

Mean cell duration: 𝛿𝑐 =
𝜈

𝛼 − 1
 [h] 

   

Mean duration of storm activity: 𝛿𝑐 =
𝜈

(𝛼 − 1)𝜑
 [h] 

 

Table B1 BL1M model parameters for the Bochum 5 minute data 

 λ [hr-1] ι [mm] α [hr] α/ν [hr] κ [-] φ [-] Smin [-] μc [-] δc [min] δs [hr] 

Uncensored [> 0 mm] 

Jan 0.022 0.318 4.100 3.788 0.469 0.042 22.4 12.2 20.9 8.3 

Feb 0.021 0.326 4.100 4.052 0.387 0.038 25.2 11.2 19.6 8.6 

Mar 0.021 0.350 4.100 4.788 0.300 0.034 27.4 9.8 16.6 8.1 

Apr 0.022 0.423 4.100 5.943 0.211 0.029 41.2 8.3 13.4 7.7 

May 0.024 0.510 4.100 7.594 0.205 0.032 48.4 7.4 10.4 5.4 

Jun 0.024 0.682 4.100 9.082 0.164 0.032 55.8 6.1 8.7 4.6 

Jul 0.024 0.766 4.100 9.839 0.152 0.032 57.0 5.8 8.1 4.2 

Aug 0.023 0.786 4.100 9.294 0.133 0.029 54.8 5.6 8.5 4.9 

Sep 0.021 0.626 4.100 7.743 0.175 0.029 46.8 7.0 10.2 5.9 

Oct 0.021 0.506 4.100 6.008 0.226 0.030 32.1 8.5 13.2 7.3 

Nov 0.021 0.380 4.100 4.697 0.359 0.036 28.1 11.0 16.9 7.8 

Dec 0.022 0.332 4.100 3.984 0.435 0.039 29.5 12.2 19.9 8.5 

Censored [> 0.5 mm] 

Jan 0.007 0.288 5.000 42.472 0.003 0.007 0.5 1.4 1.8 4.2 

Feb 0.007 0.302 5.000 47.366 0.002 0.005 0.2 1.4 1.6 5.3 

Mar 0.008 0.310 5.000 47.877 0.003 0.008 0.4 1.4 1.6 3.3 

Apr 0.009 0.500 5.000 36.524 0.005 0.011 0.0 1.5 2.1 3.1 

May 0.010 0.831 5.000 27.921 0.020 0.036 0.6 1.6 2.7 1.2 

Jun 0.011 1.056 5.000 21.226 0.030 0.039 1.6 1.8 3.5 1.5 

Jul 0.012 1.215 5.000 21.060 0.029 0.040 0.9 1.7 3.6 1.5 

Aug 0.011 1.177 5.000 21.399 0.025 0.033 0.7 1.8 3.5 1.8 

Sep 0.011 1.033 5.000 26.439 0.009 0.021 0.3 1.4 2.8 2.3 

Oct 0.009 0.716 5.000 31.356 0.003 0.010 0.1 1.3 2.4 4.0 

Nov 0.008 0.377 5.000 39.141 0.001 0.003 0.0 1.3 1.9 10.6 

Dec 0.007 0.317 5.000 41.561 0.001 0.005 0.0 1.2 1.8 6.0 

 

Table B2 BL1M model parameters for the Atherstone 5 minute data 635 

 λ [hr-1] ι [mm] α [hr] α/ν [hr] κ [-] φ [-] Smin [-] μc [-] δc [min] δs [hr] 

Uncensored [> 0 mm] 

Jan 0.023 0.095 4.100 79.758 0.157 0.005 49.4 32.4 1.0 3.3 

Feb 0.022 0.083 4.100 110.403 0.117 0.004 54.4 30.3 0.7 3.0 

Mar 0.022 0.097 4.100 64.565 0.139 0.005 61.7 28.8 1.2 4.1 

Apr 0.020 0.137 4.100 46.008 0.161 0.007 41.1 24.0 1.7 4.1 

May 0.018 0.233 4.100 28.827 0.172 0.011 28.3 16.6 2.8 4.2 

Jun 0.017 0.328 4.100 22.831 0.195 0.016 20.5 13.2 3.5 3.6 

Jul 0.017 0.395 4.400 19.700 0.186 0.018 20.0 11.3 3.9 3.6 

Aug 0.017 0.338 4.400 22.385 0.209 0.018 21.5 12.6 3.5 3.2 

Sep 0.018 0.253 4.100 26.711 0.224 0.014 28.2 17.0 3.0 3.5 
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Oct 0.019 0.164 4.100 37.406 0.245 0.010 37.6 25.5 2.1 3.5 

Nov 0.021 0.115 4.100 52.659 0.234 0.007 47.6 34.4 1.5 3.6 

Dec 0.022 0.091 4.100 84.400 0.185 0.005 49.1 38.0 0.9 3.1 

Censored [> 0.6  mm] 

Jan 0.007 0.316 5.000 43.290 0.029 0.057 5.5 1.5 1.7 0.5 

Feb 0.007 0.250 5.000 52.351 0.025 0.045 6.7 1.6 1.4 0.5 

Mar 0.007 0.275 5.000 56.244 0.014 0.028 4.5 1.5 1.3 0.8 

Apr 0.007 0.392 5.000 50.130 0.012 0.020 1.9 1.6 1.5 1.2 

May 0.007 0.594 5.000 37.073 0.014 0.022 0.9 1.6 2.0 1.5 

Jun 0.008 0.695 5.000 31.026 0.029 0.036 1.9 1.8 2.4 1.1 

Jul 0.008 0.805 5.000 26.653 0.027 0.034 0.6 1.8 2.8 1.4 

Aug 0.008 0.719 5.000 29.868 0.027 0.032 0.5 1.8 2.5 1.3 

Sep 0.008 0.644 5.000 33.789 0.014 0.023 1.5 1.6 2.2 1.6 

Oct 0.008 0.463 5.000 46.623 0.009 0.018 0.2 1.5 1.6 1.5 

Nov 0.008 0.369 5.000 46.777 0.007 0.021 1.6 1.3 1.6 1.3 

Dec 0.007 0.318 5.000 49.550 0.015 0.037 5.2 1.4 1.5 0.7 

 

Table B3 BL1M model parameters for the Bochum 15 minute data 

 λ [hr-1] ι [mm] α [hr] α/ν [hr] κ [-] φ [-] Smin [-] μc [-] δc [min] δs [hr] 

Uncensored [> 0 mm] 

Jan 0.022 0.373 4.100 2.562 0.545 0.059 18.1 10.2 31.0 8.7 

Feb 0.021 0.375 4.100 2.752 0.458 0.052 20.7 9.8 28.8 9.2 

Mar 0.021 0.376 4.100 3.251 0.404 0.049 23.6 9.2 24.4 8.3 

Apr 0.022 0.448 4.100 4.023 0.292 0.043 34.4 7.8 19.7 7.6 

May 0.024 0.518 4.100 5.323 0.307 0.049 40.3 7.3 14.9 5.1 

Jun 0.024 0.665 4.100 6.799 0.254 0.048 46.7 6.3 11.7 4.1 

Jul 0.024 0.738 4.100 7.496 0.241 0.048 46.8 6.0 10.6 3.7 

Aug 0.023 0.749 4.100 7.054 0.219 0.044 43.5 6.0 11.2 4.3 

Sep 0.021 0.624 4.100 5.539 0.268 0.045 35.0 7.0 14.3 5.3 

Oct 0.021 0.529 4.100 4.079 0.321 0.045 23.7 8.1 19.5 7.2 

Nov 0.021 0.434 4.100 3.117 0.439 0.051 19.3 9.6 25.5 8.3 

Dec 0.022 0.411 4.100 2.593 0.463 0.052 20.1 9.9 30.6 9.8 

Censored [> 1.0 mm] 

Jan 0.008 0.340 5.000 21.917 0.005 0.010 0.4 1.5 3.4 5.7 

Feb 0.008 0.355 5.000 23.830 0.004 0.010 0.3 1.4 3.1 5.2 

Mar 0.008 0.401 5.000 22.721 0.005 0.014 0.7 1.4 3.3 3.9 

Apr 0.009 0.629 5.000 18.092 0.007 0.016 0.6 1.4 4.1 4.3 

May 0.010 0.987 5.000 15.213 0.014 0.026 1.8 1.5 4.9 3.2 

Jun 0.012 1.240 5.000 13.109 0.017 0.026 1.5 1.7 5.7 3.7 

Jul 0.012 1.397 5.000 13.518 0.017 0.025 1.2 1.7 5.5 3.7 

Aug 0.012 1.372 5.000 13.857 0.013 0.020 0.4 1.7 5.4 4.5 

Sep 0.010 1.141 5.000 15.219 0.010 0.019 0.0 1.5 4.9 4.3 

Oct 0.009 0.809 5.000 16.864 0.005 0.011 0.0 1.5 4.4 6.7 

Nov 0.008 0.442 5.000 18.891 0.004 0.008 0.1 1.5 4.0 8.3 

Dec 0.007 0.385 5.000 21.324 0.003 0.007 0.1 1.4 3.5 8.4 

 

Table B4 BL1M model parameters for the Atherstone 15 minute data 

 λ [hr-1] ι [mm] α [hr] α/ν [hr] κ [-] φ [-] Smin [-] μc [-] δc [min] δs [hr] 

Uncensored [> 0 mm] 

Jan 0.022 0.147 4.100 14.734 0.505 0.025 17.6 21.2 5.4 3.6 

Feb 0.022 0.129 4.100 17.115 0.445 0.021 18.7 22.2 4.6 3.7 

Mar 0.022 0.141 4.100 16.373 0.354 0.019 24.5 19.6 4.8 4.3 

Apr 0.020 0.184 4.100 14.038 0.373 0.022 20.0 18.0 5.7 4.3 

May 0.018 0.302 4.100 10.715 0.327 0.027 19.1 13.1 7.4 4.6 

Jun 0.017 0.410 4.100 9.692 0.335 0.035 19.4 10.6 8.2 3.9 

Jul 0.017 0.482 4.100 9.013 0.304 0.038 21.9 9.0 8.8 3.9 

Aug 0.018 0.408 4.100 9.896 0.366 0.040 22.4 10.2 8.0 3.3 

Sep 0.019 0.335 4.100 9.388 0.440 0.039 24.0 12.3 8.5 3.6 

Oct 0.019 0.243 4.100 9.798 0.569 0.036 22.6 16.8 8.1 3.7 

Nov 0.021 0.199 4.100 10.078 0.620 0.034 20.4 19.2 7.9 3.9 
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Dec 0.021 0.164 4.100 11.699 0.640 0.031 15.9 21.6 6.8 3.6 

Censored [> 0.6 mm] 

Jan 0.010 0.472 5.000 12.186 0.047 0.048 0.5 2.0 6.2 2.1 

Feb 0.010 0.400 5.000 13.782 0.041 0.046 0.9 1.9 5.4 2.0 

Mar 0.010 0.399 5.000 15.383 0.029 0.038 0.3 1.8 4.9 2.1 

Apr 0.010 0.501 5.000 13.827 0.046 0.039 0.2 2.2 5.4 2.3 

May 0.010 0.780 5.000 11.245 0.031 0.028 0.1 2.1 6.7 4.0 

Jun 0.009 0.904 5.000 11.080 0.058 0.039 0.0 2.5 6.8 2.9 

Jul 0.010 1.056 5.000 10.606 0.041 0.033 0.1 2.2 7.1 3.6 

Aug 0.011 1.082 5.000 9.943 0.025 0.024 0.2 2.0 7.5 5.2 

Sep 0.011 0.924 5.000 9.330 0.019 0.017 0.2 2.1 8.0 7.9 

Oct 0.010 0.711 5.000 8.875 0.029 0.024 0.3 2.2 8.5 5.9 

Nov 0.010 0.522 5.000 9.761 0.057 0.040 0.5 2.4 7.7 3.2 

Dec 0.010 0.484 5.000 10.229 0.064 0.048 0.8 2.3 7.3 2.5 
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