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We would like to again express our appreciation to both Referee #1 and Referee #2 for their review of our manuscript. Their 

new round of comments certainly helped us improve the quality and clarity of our manuscript. Below we offer our response to 

both referees. 

 

Anonymous Referee #1: 10 

“I really appreciate the efforts that the authors made to include all the suggestions of the reviewers. I do not have any further 

comment. I wish the authors all the best with this and future studies.” 

 

Thank you very much for your feedback and your good wishes. 

 15 

Anonymous Referee #2: 

“I appreciate the authors’ response and the revised manuscript which extended the evaluation period for the low-resolution 

domain and included one probabilistic measure. I highly evaluate this unified approach to combine two different data 

assimilation approaches: sequential and variational methods. However, despite the effort, it is still doubtful that the capability 

and robustness of this new data assimilation approach, OPTIMISTS, are properly demonstrated through numerical 20 

experiments. Especially, probabilistic features of this new method are not evaluated, and instability is partly observed in the 

low flow forecasts. 

As shown in the extended analysis illustrated in Fig. 4, the forecasts by OPTIMISTS show unstable behaviors compared to the 

particle filter (PF), although such instability is not captured through statistical measures used in this study fortunately.  I don’t 

think this instability is evidence to give the new method an edge over traditional approaches (Page 16). Neither common 25 

Bayesian nor variational approaches lead to such numerical instability while the authors claimed the simulated result as the 

combined features of those two approaches.” 

 

We agree. After a further investigation, we found that the instabilities occurred for two main reasons: First, it was mostly a 

problem related to running the testing script in parallel which resulted in the VIC executable failing to finish the simulation in 30 

some instances and leading to the corresponding particle to have null results (i.e., to a type of sample impoverishment). This 
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is a problem with the testing environment and not the algorithm. Second, it was partly produced by the specific selection of 

OPTIMSTS parameters: low values for wroot lead to more random samples being created and low values for g lead to particles 

in trailing fronts to be weighted more prominently. 

The first cause was addressed by running the tests sequentially to avoid the executable failing, although this made the test take 

much longer to complete. Also, safeguards were implemented to attempt re-running failed simulations. The second cause was 5 

addressed by trying configurations with different parameter values (e.g., wroot and g). We found that there was a tradeoff 

between allowing for some level of “instability” and the scores obtained for the deterministic error measures. In effect, allowing 

for more “exploration” (and less “exploitation”) leads sometimes to better results thanks to ensemble diversity but sometimes 

to too much diversity (wider spread). The updated results show much improved behavior (see the new version of Figure 4). 

Also, the figure is now plotted in logarithmic scale in which instabilities in low flow periods would be greatly amplified. 10 

Additionally, to enhance the testing of the proposed method, we included a continuous test for the high-resolution Indiantown 

Run watershed spanning three months (with an hourly model time step) in which OPTIMISTS and the PF are compared. The 

results can be seen in the added Figure 7 and Table 6. 

 

“In the meanwhile, an additional question arises about whether or not model ensemble are properly setup before we discuss 15 

data assimilation. Ensemble spreads of PF and OPTIMISTS are extremely narrow in both 6-day and 24-day forecasts, which 

implies the model uncertainty is not properly represented by ensemble. Even if sampling and regularization steps were devised 

to avoid sample degeneracy in this study, it is highly likely that the space of state variables could remain narrow and sampling 

from such narrow space may not lead to optimal solutions whatever kernels or pareto methods are used. I suspect that 

inappropriate ensemble setup may be to blame for low performance in overall DA simulations.” 20 

 

Yes, the spread of the ensembles is very narrow. As we mention in the manuscript, this is probably a product of the tests 

ignoring uncertainty in the model parameters (parameters are assumed deterministic without any allowed range of variation) 

and in the forcings (perfect deterministic forcings are assumed). In operational conditions these uncertainties are not to be 

undermined this way. The reason we decided to assume these variables to be deterministic was to allow the tests to emphasize 25 

state variable uncertainty, which is the focus of data assimilation. The ensembles have a considerable initial spread since they 

are produced using different sets of model parameters, as described in subsection 3.1. Moreover, we want to reiterate that these 

conditions are applied uniformly to all cases (including the controls and the competing particle filter) and, therefore, do allow 

for a fair comparison. We have plans to explore the addition of these types of uncertainties in future experiments, but for this 

article we want to focus on the important aspects of the method and we think that such assumptions would not invalidate the 30 

results. Finally, as we discussed above, OPTIMISTS has the flexibility of being configured to produce forecasts with more 

variance, but such flexibility should be used with caution as some configurations may result in “instabilities”. 
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“Although the authors claimed OPTIMISTS efficiently produced ‘probabilistic’ forecasts in the abstract, no evidence is given 

to prove this claim. CRPS, the only probabilistic measure used in the revised manuscript, just shows the magnitude of bias. 

Whether or not posterior distributions produced by the OPTIMISTS are appropriate from probabilistic perspectives still 

remains unproven. It should be also mentioned that non-normality (non-Gaussian feature) is not evaluated because measures 

used rely on the first two moments (mean and variance). Rather, given 50% ensemble traces in Fig. 4, if the rank histogram 5 

(Talagrand diagram) is estimated, U-shaped diagram is expected because the ensemble spread is too small (For perfect 

probabilistic forecasts, the rank histogram is flat).” 

 

Agreed. We incorporated a new probabilistic error metric in both comparison tests to fill this gap: the density of the 

observations given the forecast distribution (see Table 5 and 6). While we did not include the rank histograms in the manuscript, 10 

the results are indeed as expected:  

  

We acknowledge that this constitutes evidence that the forecasts being produced are not perfect by any measure. Further 

improvements to the assimilation methods should seek to produce better estimates. However, the manuscript inquires on the 

quality of the forecasts produced by the proposed method in relation with those of an existing method under some (challenging) 15 

test circumstances. The included density metric is now able to evaluate the comparative performance of both algorithms in 

probabilistic terms. Please see page 13, lines 20-30 in the revised manuscript on this. 

 

“Reproducibility of the algorithm is key to hydrologic research. Although the authors claimed details are explained in 

subsections, I don’t think any hydrologic experts can reproduce the data assimilation procedure by following this manuscript.  20 

It remains still vague about how to implement this method for high-dimensional hydrologic modeling. If all are explained as 
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the authors claimed, it may be reasonable to think the current implementation procedure is lacking important part to represent 

model uncertainty and generate spatial diversity of ensemble.” 

 

Reproducibility is indeed of paramount importance. Although OPTIMISTS is more complex than other existing DA methods, 

we believe that it can be implemented following the description provided in the manuscript. While we do not provide every 5 

detail, due to page limit, regarding the underpinnings of the multiple conceptual frameworks that contributed to the algorithm 

(PFs, variational DA, kernel density probability distributions, multi-objective evolutionary optimization, etc.), ample resources 

for their understanding are appropriately referenced throughout the explanation. It is possible that the readers get confused  if 

the terminology utilized does not completely match that of their background discipline, but we believe we have tried as much 

as we can to navigate this multi-disciplinary approach and included enough cross-referencing of terms and ideas to bridge the 10 

differences between them. 

It is also not specific which components of the algorithm are unclear to the referee. Regarding “model uncertainty” and 

“ensemble diversity”: Uncertainty in OPTIMISTS is addressed through the use of probability distributions, specifically kernel 

density (KD) ones. KD distributions are like other non-parametric (Monte Carlo) distributions used in the DA literature in that 

they are mostly defined by a set of particles or members. Dependencies/relationships between the variables are further 15 

represented by the bandwidth matrix. As in EnKFs and PFs, the diversity is mostly dictated by the values on each of the 

members/particles. Additionally, in our experiments model uncertainty is only attributed to the state variables (not parameters 

nor forcings). 

Using OPTIMISTS for high-resolution modeling requires that the most computationally-intensive equations be replaced by 

simpler approximations. This is explained in subsection 2.3. Other than that, OPTIMISTS is used in the same way as with low-20 

resolution models. 

We would gladly address comments regarding the clarity of the explanations if they are made more specific. Additionally, we 

have decided to share OPTIMISTS in GitHub so that users can replicate the experiments in the manuscript, perform forecasts 

for the Blue River and Indiantown Run watersheds, or any other watershed that is included using the VIC and DHSVM models. 

  25 
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List of changes to the manuscript 

Below is the list of changes made in the revision. Specific pages and lines on the modified manuscript are referenced by page 

and line number as: (p<page number>, l<line number(s)>). 

 (p1, l6-22) Abstract modified to reflect the new results from the continuous forecast experiments on both watersheds.  

 (p13, l20-30) Introduction of the new probabilistic error metric (density). 10 

 (p15, l30 – p16, l11) Results of the updated continuous forecast experiment on the Blue River. 

 (p17, l3-18) Results of the updated continuous forecast experiment on the Indiantown Run. 

 (p19, l21-24) Modified conclusions based on the updated continuous forecast experiments. 

 (p20, l2-4) Publication of OPTIMISTS software in GitHub. 

 (p28) Update of Figure 4 with new results. 15 

 (p31) Incorporation of Figure 7 with results of continuous experiments in the Indiantown Run). 

 (p34) Update of Table 5 with new results. 

 (p34) Incorporation of Table 6 with results of continuous experiments in the Indiantown Run). 
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Abstract. The success of real-time estimation and forecasting applications based on geophysical models has been possible 

thanks to the two main existing frameworks for the determination of the models’ initial conditions: Bayesian data assimilation 

and variational data assimilation. However, while there have been efforts to unify these two paradigms, existing attempts 

struggle to fully leverage the advantages of both in order to face the challenges posed by modern high-resolution models—

mainly related to model indeterminacy and steep computational requirements. In this article we introduce a hybrid algorithm 10 

called OPTIMISTS (Optimized PareTo Inverse Modeling through Integrated STochastic Search) which is targeted at non-

linear high-resolution problems and that brings together ideas from particle filters, 4-dimensional variational methods, 

evolutionary Pareto optimization, and kernel density estimation in a unique way. Streamflow forecasting experiments were 

conducted to test which specific configurations/parameterizations of OPTIMISTS can leadled to higher predictive accuracy. 

The experiments were conducted on two watersheds: the Blue River (low-resolution) using the VIC (Variable Infiltration 15 

Capacity) model and the Indiantown Run (high-resolution) using the DHSVM (Distributed Hydrology Soil Vegetation Model). 

By selecting kernel-based non-parametric sampling, non-sequential evaluation of candidate particles, and through the multi-

objective minimization of departures from the streamflow observations and from the background states, OPTIMISTS was 

shown to efficiently produce probabilistic forecasts with higher or similarcomparable accuracy than those producedto those 

obtained from using a particle filter. Moreover, the experiments demonstrated that OPTIMISTS scales well in high-resolution 20 

cases without imposing a significant computational overhead and that it was successful in mitigating the harmful effects of 

overfitting.. With the combined advantages of allowing for fast, non-Gaussian, non-linear, high-resolution prediction, the 

algorithm shows the potential to increase the accuracy and efficiency forof operational prediction systems. 

1 Introduction 

Decision support systems that rely on model-based forecasting of natural phenomena are invaluable to society (Adams et al., 25 

2003; Penning-Rowsell et al., 2000; Ziervogel et al., 2005). However, despite increasing availability of Earth-sensing data, the 

problem of estimation or prediction in geophysical systems remains as underdetermined as ever because of the growing 

complexity of such models (Clark et al., 2017). For example, taking advantage of distributed physics and the mounting 

availability of computational power, modern models have the potential to more accurately represent impacts of heterogeneities 

on eco-hydrological processes (Koster et al., 2017). This is achieved through the replacement of lumped representations with 30 
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distributed ones, which entails the inclusion of numerous parameters and state variables. The price to pay for thus forsaking 

parsimony is the added uncertainty in the evaluation of these additional unknowns. Therefore, in order to be able to rely on 

these high-resolution models for critical real-time and forecast applications, considerable improvements on parameter and 

initial state estimation techniques must be made with two main goals: First, to allow for an efficient management of the huge 

number of unknowns; and second, to mitigate the harmful effects of overfitting—i.e., the loss of forecast skill due to an over-5 

reliance on the calibration/training data (Hawkins, 2004). Because of the numerous degrees of freedom associated with these 

high-resolution distributed models, overfitting is a much bigger threat due to the phenomenon of equifinality (Beven, 2006). 

There exists a plethora of techniques to initialize the state variables of a model through the incorporation of available 

observations, and they possess overlapping features that make it difficult to develop clear-cut classifications. However, two 

main “schools” can be fairly identified: Bayesian data assimilation and variational data assimilation. Bayesian data assimilation 10 

creates probabilistic estimates of the state variables in an attempt to also capture their uncertainty. These state probability 

distributions are adjusted sequentially to better match the observations using Bayes’ theorem. While the Kalman filter (KF) is 

constrained to linear dynamics and Gaussian distributions, ensemble Kalman filters (EnKF) can support non-linear models 

(Evensen, 2009), and particle filters (PF) can also manage non-Gaussian estimates for added accuracy (Smith et al., 2013). 

The stochastic nature of these Bayesian filters is highly valuable because equifinality can rarely be avoided and because of the 15 

benefits of quantifying the uncertainty in forecasting applications (Verkade and Werner, 2011; Zhu et al., 2002). While superior 

in accuracy, PFs are usually regarded as impractical for high-dimensional applications (Snyder et al., 2008), and thus recent 

research has focused on improving their efficiency (van Leeuwen, 2015). 

On the other hand, variational data assimilation is more akin to traditional calibration approaches (Efstratiadis and 

Koutsoyiannis, 2010) because of its use of optimization methods. It seeks to find a single/deterministic initial state variable 20 

combination that minimizes the departures (or “variations”) of the modelled values from the observations (Reichle et al., 2001) 

and, commonly, from their history. One- to three- dimensional variants are also employed sequentially, but the paradigm lends 

itself easily to evaluating the performance of candidate solutions throughout an extended time window in four-dimensional 

versions (4D-Var). If the model’s dynamics are linearized, the optimum can be very efficiently found in the resulting convex 

search space through the use of gradient methods. While this feature has made 4D-Var very popular in meteorology and 25 

oceanography (Ghil and Malanotte-Rizzoli, 1991), its application in hydrology has been less widespread because of the 

difficulty of linearizing land-surface physics (Liu and Gupta, 2007). Moreover, variational data assimilation requires the 

inclusion of computationally-expensive adjoint models if one wishes to account for the uncertainty of the state estimates 

(Errico, 1997). 

Traditional implementations from both schools have interesting characteristics and thus the development of hybrid methods 30 

has received considerable attention (Bannister, 2016). For example, Bayesian filters have been used as adjoints in 4D-Var to 

enable probabilistic estimates (Zhang et al., 2009). Moreover, some Bayesian approaches have been coupled with optimization 

techniques to select ensemble members (Dumedah and Coulibaly, 2013; Park et al., 2009). 4DEnVar (Buehner et al., 2010), a 

fully-hybridized algorithm, is gaining increasing attention for weather prediction (Desroziers et al., 2014; Lorenc et al., 2015). 



 

8 

 

It is especially interesting that some algorithms have defied the traditional choice between sequential and “extended-time” 

evaluations. Weak-constrained 4D-Var allows state estimates to be determined at several time steps within the assimilation 

time window and not only at the beginning (Ning et al., 2014; Trémolet, 2006). Conversely, modifications to EnKFs and PFs 

have been proposed to extend the analysis of candidate members/particles to span multiple time steps (Evensen and van 

Leeuwen, 2000; Noh et al., 2011). The success of these hybrids demonstrates that there is a balance to be sought between the 5 

allowed number of degrees of freedom and the amount of information to be assimilated at once. 

Following these promising paths, in this article we introduce OPTIMISTS (Optimized PareTo Inverse Modelling through 

Integrated STochastic Search), a hybrid data assimilation algorithm whose design was guided by the two stated goals: to allow 

for practical scalability to high-dimensional models, and to enable balancing the imperfect observations and the imperfect 

model estimates to minimize overfitting. Table 1 summarizes the main characteristics of typical Bayesian and variational 10 

approaches, and their contrasts with those of OPTIMISTS. Our algorithm incorporates the features that the literature has found 

to be the most valuable from both Bayesian and variational methods while mitigating the deficiencies or disadvantages 

associated with these original approaches (e.g., the linearity and determinism of 4D-Var and the limited scalability of PFs): 

Non-Gaussian probabilistic estimation and support for non-linear model dynamics have been long held as advantageous over 

their alternatives (Gordon et al., 1993; van Leeuwen, 2009) and, similarly, meteorologists favour extended-period evaluations 15 

over sequential ones (Gauthier et al., 2007; Rawlins et al., 2007; Yang et al., 2009). As shown in the table, OPTIMISTS can 

readily adopt these proven strategies. 

However, there are other aspects of the assimilation problem for which no single combination of features has demonstrated its 

superiority. For example, is the consistency with previous states better achieved through the minimization of a cost function 

that includes a background error term (Fisher, 2003), as in variational methods, or through limiting the exploration to samples 20 

drawn from that background state distribution, as in Bayesian methods? Table 1 shows that in these cases OPTIMISTS allows 

for flexible configurations, and it is an additional objective of this study to test which set of feature interactions allows for 

more accurate forecasts when using highly-distributed models. While many of the concepts utilized within the algorithm have 

been proposed in the literature before, their combination and broad range of available configurations are unlike those of other 

methods, including existing hybrids which have mostly been developed around ensemble Kalman filters and convex 25 

optimization techniques (Bannister, 2016)—and therefore limited to Gaussian distributions and linear dynamics. 

2 Data assimilation algorithm 

In this section we describe OPTIMISTS, our proposed data assimilation algorithm which combines advantageous features 

from several Bayesian and variational methods. As will be explained in detail for each of the steps of the algorithm, these 

features were selected with the intent of mitigating the limitations of existing methods. OPTIMISTS allows selecting a flexible 30 

data assimilation time step ∆𝑡—i.e., the time window in which candidate state configurations are compared to observations. It 

can be as short as the model time step, or as long as the entire assimilation window. For each assimilation time step at time 𝑡 
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a new state probability distribution 𝑺𝑡+∆𝑡 is estimated from the current distribution 𝑺𝑡, the model, and one or more observations 

𝒐obs
𝑡:𝑡+∆𝑡. For hydrologic applications, as those explored in this article, these states 𝑺 include land surface variables within the 

modelled watershed such as soil moisture, snow cover/water equivalent, and stream water volume; and observations 𝒐 are 

typically of streamflow at the outlet (Clark et al., 2008), soil moisture (Houser et al., 1998), and/or snow cover (Andreadis and 

Lettenmaier, 2006). However, the description of the algorithm will use field-agnostic terminology not to discourage its 5 

application in other disciplines. 

State probability distributions 𝑺 in OPTIMISTS are determined from a set of weighted “root” or “base” sample states 𝒔𝑖  using 

multivariate weighted kernel density estimation (West, 1993). This form of non-parametric distributions stands in stark contrast 

with those from KFs and EnKFs in their ability to model non-Gaussian behaviour—an established advantage of PFs. Each of 

these samples or ensemble members 𝒔𝑖  is comprised of a value vector for the state variables. The objective of the algorithm is 10 

then to produce a set of 𝑛 samples 𝒔𝑖
𝑡+∆𝑡 with corresponding weights 𝑤𝑖  for the next assimilation time step to determine the 

target distribution 𝑺𝑡+∆𝑡. 

This process is repeated iteratively each assimilation time step ∆𝑡 until the entire assimilation time frame is covered, at which 

point the resulting distribution can be used to perform the forecast simulations. In subsection 2.1 we describe the main ideas 

and steps involved in the OPTIMISTS data assimilation algorithm; details regarding the state probability distributions, mainly 15 

on how to generate random samples and evaluate the likelihood of particles, are explained in subsection 2.2; and modifications 

required for high-dimensional problems are described in subsection 2.3. 

2.1 Description of the OPTIMISTS data assimilation algorithm 

Let a “particle” 𝑷𝑖 be defined by a “source” (or initial) vector of state variables 𝒔𝑖
𝑡  (which is a sample of distribution 𝑺𝑡), a 

corresponding “target” (or final) state vector 𝒔𝑖
𝑡+∆𝑡 (a sample of distribution 𝑺𝑡+∆𝑡), a set of output values 𝒐𝑖

𝑡:𝑡+∆𝑡 (those that 20 

have corresponding observations 𝒐obs
𝑡:𝑡+∆𝑡), a set of fitness metrics 𝒇𝑖, a rank 𝑟𝑖, and a weight 𝑤𝑖 . Note that the denomination 

“particle” stems from the PF literature and is analogous to the “member” term in EnKFs. The fitness metrics 𝒇𝑖 are used to 

compare particles with each other in the light of one or more optimization objectives. The algorithm consists of the following 

steps, whose motivation and details are included in the subsubsections below and their interactions illustrated in Figure 1. 

Table 2 lists the meaning of each of the seven global parameters (∆𝑡, 𝑛, 𝑤root, 𝑝samp, 𝑘F−class, 𝑛evo, and 𝑔). 25 

1. Drawing: draw root samples 𝒔𝑖
𝑡  from 𝑺𝑡 in descending weight order until ∑ 𝑤𝑖 ≥ 𝑤root 

2. Sampling: randomly sample 𝑺𝑡 until the total number of samples in the ensemble is 𝑝samp ∗ 𝑛 

3. Simulation: compute 𝒔𝑖
𝑡+∆𝑡 and 𝒐𝑖

𝑡:𝑡+∆𝑡 from each non-evaluated sample 𝒔𝑖
𝑡  using the model 

4. Evaluation: compute the fitness values 𝒇𝑖 for each particle 𝑷𝑖 

5. Optimization: create additional samples using evolutionary algorithms and return to 3 (if number of samples is below 𝑛) 30 

6. Ranking: assign ranks 𝑟𝑖 to all particles 𝑷𝑖 using non-dominated sorting 

7. Weighting: compute the weight 𝑤𝑖  for each particle 𝑷𝑖 based on its rank 𝑟𝑖 
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2.1.1 Drawing step 

While traditional PFs draw all the root (or base) samples from 𝑺𝑡 (Gordon et al., 1993), OPTIMISTS can limit this selection 

to a subset of them. The root samples with the highest weight—those that are the “best performers”—are drawn first, then the 

next ones in descending weight order, until the total weight of the drawn samples ∑ 𝑤𝑖  reaches 𝑤root. 𝑤root thus controls what 

percentage of the root samples to draw, and, if set to one, all of them are selected. 5 

2.1.2 Sampling step 

In this step the set of root samples drawn is complemented with random samples. The distinction between root samples and 

random samples is that the former are those that define the probability distribution 𝑺𝑡 (that serve as centroids for the kernels), 

while the latter are generated stochastically from the kernels. Random samples are generated until the size of the combined set 

reaches 𝑝samp ∗ 𝑛 by following the equations introduced in subsection 2.2. This second step contributes to the diversity of the 10 

ensemble in order to avoid sample impoverishment as seen on PFs (Carpenter et al., 1999), and serves as a replacement for 

traditional resampling strategies (Liu and Chen, 1998). The parameter 𝑤root therefore controls the intensity with which this 

feature is applied to offer users some level of flexibility. Here generating random samples at the beginning, instead of 

resampling those that have been already evaluated, could lead to discarding degenerate particles (those with high errors) early 

on and contribute to improved efficiency, given that the ones discarded are mainly those with the lowest weight as determined 15 

in the previous assimilation time step. 

2.1.3 Simulation step 

In this step, the algorithm uses the model to compute the resulting state vector 𝒔𝑖
𝑡+∆𝑡 and an additional set of output variables 

𝒐𝑖
𝑡:𝑡+∆𝑡 for each of the samples (it is possible that state variables double as output variables). The simulation is executed starting 

at time 𝑡 for the duration of the assimilation time step ∆𝑡 (not to be confused with the model time step which is usually shorter). 20 

Depending on the complexity of the model, the simulation step can be the one with the highest computational requirements. 

In those cases, parallelization of the simulations would greatly help in reducing the total footprint of the assimilation process. 

The construction of each particle 𝑷𝑖 is started by assembling the corresponding values computed so far: 𝒔𝑖
𝑡  (drawing, sampling, 

and optimization steps), and 𝒔𝑖
𝑡+∆𝑡 and 𝒐𝑖

𝑡:𝑡+∆𝑡 (simulation step). 

2.1.4 Evaluation step 25 

In order to determine which initial state 𝒔𝑖
𝑡  is the most desirable, a two-term cost function 𝐽 is typically used in variational 

methods that simultaneously measures the resulting deviations of modelled values 𝒐𝑖
𝑡:𝑡+∆𝑡 from observed values 𝒐obs

𝑡:𝑡+∆𝑡 and 

the departures from the background state distribution 𝑺𝑡 (Fisher, 2003). The function usually has the form shown in Eq. (1): 

𝐽𝑖 = 𝑐1 ∙ 𝐽background(𝒔𝑖
𝑡, 𝑺𝑡  ) + 𝑐2 ∙ 𝐽observations(𝒐𝑖

𝑡:𝑡+∆𝑡, 𝒐obs
𝑡:𝑡+∆𝑡), (1) 
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where 𝑐1 and 𝑐2 are balancing constants usually set so that 𝑐1 = 𝑐2. Such a multi-criteria evaluation is crucial both to guarantee 

a good level of fit with the observations (second term) and to avoid the optimization algorithm to produce an initial state that 

is inconsistent with previous states (first term)—which could potentially result in overfitting problems rooted in 

disproportionate violations of mass and energy conservation laws (e.g., in hydrologic applications a sharp, unrealistic rise in 

the initial soil moisture could reduce 𝐽observations but would increase 𝐽background). In Bayesian methods, since the consistency 5 

with the history is maintained by sampling only from the prior/background distribution 𝑺𝑡, single term functions are used 

instead—which typically measure the probability density or likelihood of the modelled values given a distribution of the 

observations. 

In OPTIMISTS any such fitness metric could be used and, most importantly, the algorithm allows defining several of them. 

Moreover, users can determine whether if each function is to be minimized (e.g., costs or errors) or maximized (e.g., 10 

likelihoods). We expect these features to be helpful if one wishes to separate errors when multiple types of observations are 

available (Montzka et al., 2012) and as a more natural way to consider different fitness criteria (lumping them together in a 

single function as in Eq. (1) can lead to balancing and “apples and oranges” complications). Moreover, it might prove beneficial 

to take into account the consistency with the state history both by explicitly defining such an objective here and by allowin g 

states to be sampled from the previous distribution (and thus compounding the individual mechanisms of Bayesian and 15 

variational methods). Functions to measure this consistency are proposed in subsection 2.2. With the set of objective functions 

defined by the user, the algorithm computes the vector of fitness metrics 𝒇𝑖 for each particle during the evaluation step. 

2.1.5 Optimization step 

The optimization step is optional and is used to generate additional particles by exploiting the knowledge encoded in the fitness 

values of the current particle ensemble. In a twist to the signature characteristic of variational data assimilation, OPTIMISTS 20 

incorporates evolutionary multi-objective optimization algorithms (Deb, 2014) instead of the established gradient-based, 

single-objective methods. Evolutionary optimizers compensate their slower convergence speed with the capability of 

efficiently navigating non-convex solution spaces (i.e., the models and the fitness functions do not need to be linear with 

respect to the observations and the states). This feature effectively opens the door for variational methods to be used in 

disciplines where the linearization of the driving dynamics is either impractical, inconvenient, or undesirable. Whereas any 25 

traditional multi-objective global optimization method would work, our implementation of OPTIMISTS features a state-of-

the-art adaptive ensemble algorithm similar to AMALGAM (Vrugt and Robinson, 2007) that allows model simulations to be 

run in parallel (Crainic and Toulouse, 2010). The optimizer ensemble includes a genetic algorithm (Deb et al., 2002) and a 

hybrid approach that combines ant colony optimization (Socha and Dorigo, 2008) and Metropolis-Hastings sampling (Haario 

et al., 2001). 30 

During the optimization step, the group of optimizers is used to generate 𝑛evo new sample states 𝒔𝑖
𝑡  based on those in the 

current ensemble. For example, the genetic algorithm selects pairs of base samples with high performance scores 𝒇𝑖 and then 
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proceeds to combine their individual values using standard crossover and mutation operators. The simulation and evaluation 

steps are repeated for these new samples, and then this iterative process is repeated until the particle ensemble has a size of 𝑛. 

Note that 𝑤root  and 𝑝samp  thus determine what percentage of the particles is generated in which way. For example, for 

relatively small values of 𝑤root and a 𝑝samp of 0.2, 80% of the particles will be generated by the optimization algorithms. In 

this way, OPTIMISTS offers its users the flexibility to behave anywhere in the range between “fully Bayesian” (𝑝samp = 1) 5 

and “fully variational” (𝑝samp = 0) in terms of particle generation. In the latter case, in which no root and random samples are 

available, the initial “population”/ensemble of states 𝒔𝑖
𝑡  is sampled uniformly from the viable range of each state variable. 

2.1.6 Ranking step 

A fundamental aspect of OPTIMISTS is the way in which it provides a probabilistic interpretation to the results of the multi-

objective evaluation, thus bridging the gap between Bayesian and variational assimilation. Such method has been used before 10 

(Dumedah et al., 2011) and is based on the employment of non-dominated sorting (Deb, 2014), another technique from the 

multi-objective optimization literature, which is used to balance the potential tensions between various objectives. This sorting 

approach is centred on the concept of “dominance,” instead of organizing all particles from the “best” to the “worst.” A particle 

dominates another if it outperforms it according to at least one of the criteria/objectives while simultaneously is not 

outperformed according to any of the others. Following this principle, in the ranking step particles are grouped in “fronts” 15 

comprised of members which are mutually non-dominated; that is, none of them is dominated by any of the rest. Particles in a 

front, therefore, represent the effective trade-offs between the competing criteria. 

Figure 1.c illustrates the result of non-dominated sorting applied to nine particles being analysed under two objectives: 

minimum deviation from observations and maximum likelihood given the background state distribution 𝑺𝑡. Note that if a 

single objective function is used, the sorting method assigns ranks from best to worst according to that function, and two 20 

particles would only share ranks if their fitness value coincides. In our implementation we use the fast non-dominated sorting 

algorithm to define the fronts and assign the corresponding ranks 𝑟𝑖 (Deb et al., 2002). More efficient non-dominated sorting 

alternatives are available if performance becomes an issue (Zhang et al., 2015). 

2.1.7 Weighting step 

In this final step, OPTIMISTS assigns weights 𝑤𝑖  to each particle according to its rank 𝑟𝑖 as shown in Eqs. (2) and (3). This 25 

Gaussian weighting depends on the ensemble size 𝑛 and the greed parameter 𝑔, and is similar to the one proposed by (Socha 

and Dorigo, 2008). When 𝑔 is equal to zero, particles in all fronts are weighted uniformly; when 𝑔 is equal to one, only 

particles in the Pareto/first front are assigned non-zero weights. With this, the final estimated probability distribution of state 

variables for the next time step 𝑺𝑡+∆𝑡 can be established using multivariate weighted kernel density estimation (details in the 

next subsection), as demonstrated in Fig. 1.e., by taking all target states 𝒔𝑖
𝑡+∆𝑡 (circles) as the centroids of the kernels. The 30 
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obtained distribution 𝑺𝑡+∆𝑡 can then be used as the initial distribution for a new assimilation time step or, if the end of the 

assimilation window has been reached, it can be used to perform (ensemble) forecast simulations. 

𝑤𝑖 =
1

𝜎√2𝜋
𝑒

−
(𝑟𝑖−1)2

2𝜎2  (2) 

𝜎 = 𝑛 ∙ [0.1 + 9.9 ∙ (1 − 𝑔)5] (3) 

2.2 Model state probability distributions 

As mentioned before, OPTIMISTS uses kernel density probability distributions (West, 1993) to model the stochastic estimates 

of the state variable vectors. The algorithm requires two computations related to the state-variable probability distribution 𝑺𝑡: 5 

obtaining the probability density 𝑝 or likelihood ℒ of a sample and generating random samples. The first computation can be 

used in the evaluation step as an objective function to preserve the consistency of particles with the state history (e.g., to 

penalize aggressive departures from the prior conditions). It should be noted that several metrics that try to approximate this 

consistency exist, from very simple (Dumedah et al., 2011) to quite complex (Ning et al., 2014). For example, it is common 

in variational data assimilation to utilize the background error term 10 

𝐽background = (𝒔 − 𝒔𝑏)T𝐂−1(𝒔 − 𝒔𝑏), (4) 

where 𝒔𝑏  and 𝐂 are the mean and the covariance of the “background” state distribution (𝑺𝑡 in our case) which is assumed to 

be Gaussian (Fisher, 2003). The term 𝐽background is plugged into the cost function shown in Eq. (1). For OPTIMISTS, we 

propose that the probability density of the weighted state kernel density distribution 𝑺𝑡 at a given point (𝑝) be used as a stand-

alone objective. The density is given by Eq. (5) (Wand and Jones, 1994). If Gaussian kernels are selected, the kernel function 

𝐾, parameterized by the bandwidth matrix 𝐁, is evaluated using Eq. (6). 15 

𝑝(𝒔|𝑺) =
1

∑ 𝑤𝑖

∑[𝑤𝑖 ∙ 𝐾𝐁(𝒔 − 𝒔𝑖)]

𝑛

𝑖=1

 (5) 

𝐾𝐁
Gauss(𝒛) =

1

√(2𝜋)𝑛 ∙ |𝐁|
exp (−

1

2
𝒛T𝐁−1𝒛) (6) 

Matrix 𝐁 is the covariance matrix of the kernels, and thus determines their spread and orientation in the state space. 𝐁 is of 

size 𝑑 × 𝑑, where 𝑑 is the dimensionality of the state distribution (i.e., the number of variables), and can be thought of as a 

scaled-down version of the “background error covariance” matrix 𝐂 from the variational literature. In this sense, matrix 𝐁, 

together with the spread of the ensemble of samples 𝒔𝑖 , effectively encode the uncertainty of the state variables. Several 

optimization-based methods exist to compute 𝐁 by attempting to minimize the asymptotic mean integrated squared error 20 

(AMISE) (Duong and Hazelton, 2005; Sheather and Jones, 1991). However, here we opt to use a simplified approach for the 

sake of computational efficiency: we determine 𝐁 by scaling down the sample covariance matrix 𝐂 using Silverman’s rule of 

thumb, which takes into account the number of samples 𝑛 and the dimensionality of the distribution 𝑑, as shown in Eq. (7) 

(Silverman, 1986). Figure 1 shows the density of two two-dimensional example distributions using this method (a and e). If 
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computational constraints are not a concern, using AMISE-based methods or kernels with variable bandwidth (Hazelton, 2003; 

Terrell and Scott, 1992) could result in higher accuracy. 

𝐁Silverman = (
4

𝑑 + 2
)

2
𝑑+4

∙ 𝑛−
2

𝑑+4 ∙ 𝐂 (7) 

Secondly, OPTIMISTS’ sampling step requires generating random samples from a multivariate weighted kernel density 

distribution. This is achieved by dividing the problem into two: we first select the root sample and then generate a random 

sample from the kernel associated with that base sample. The first step corresponds to randomly sampling a multinomial 5 

distribution with 𝑛 categories and assigning the normalized weights of the particles as the probability of each category. Once 

a root sample 𝒔root is selected, a random sample 𝒔random can be generated from a vector 𝒗 of independent standard normal 

random values of size 𝑑  and a matrix 𝐀  as shown in Eq. (8). 𝐀  can be computed from a Cholesky decomposition 

(Krishnamoorthy and Menon, 2011) such that 𝐀𝐀T = 𝐁. Alternatively, an eigendecomposition can be used to obtain 𝐐𝚲𝐐T =

𝐁 to then set 𝐀 = 𝐐𝚲½. 10 

𝒔random = 𝒔root + 𝐀𝒗 (8) 

Both computations (density/likelihood and sampling) require 𝐁 to be invertible and, therefore, that none of the variables have 

zero variance or are perfectly linearly-dependent on each other. Zero-variance variables must therefore be isolated and 𝐁 

marginalized before attempting to use Eq. (6) or to compute 𝐀 . Similarly, linear dependencies must also be identified 

beforehand. If we include variables one by one in the construction of 𝐂, we can determine if a newly added one is linearly 

dependent if the determinant of the extended sample covariance matrix 𝐂 is zero. Once identified, the regression coefficients 15 

for the dependent variable can be efficiently computed from 𝐂 following the method described by (Friedman et al., 2008). The 

constant coefficient of the regression must also be calculated for future reference. What this process effectively does is to 

determine a linear model for each dependent variable that is represented by a set of regression coefficients. Dependent variables 

are not included in 𝐂, but they need to be taken into account afterwards (e.g., by determining their values for the random 

samples by solving the linear model with the values obtained for the variables in 𝐂). 20 

2.3 High-dimensional state vectors 

When the state vector of the model becomes large (i.e., 𝑑 increases), as is the case for distributed high-resolution numerical 

models, difficulties start to arise when dealing with the computations involving the probability distribution. At first, the 

probability density, as computed with Eqs. (5) and (6), tends to diverge either towards zero or towards infinity. This 

phenomenon is related to the normalization of the density—so that it can integrate to one—and to its fast exponential decay as 25 

a function of the sample’s distance from the kernel’s centres. In these cases we propose replacing the density computation with 

an approximated likelihood formulation that is proportional to the inverse square Mahalanobis distance (Mahalanobis, 1936) 

to the root samples, thus skipping the exponentiation and normalization operations of the Gaussian density. This simplification, 

which corresponds to the inverse square difference between the sample value and the kernel’s mean in the univariate case, is 
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shown in Eq. (9). The resulting distortion of the Gaussian bell-curve shape does not affect the results significantly, given that 

OPTIMISTS uses the fitness functions only to check for domination between particles—so only the sign of the differences 

between likelihood values are important and not their actual magnitudes. 

ℒMahalanobis(𝒔|𝑺) =
1

∑ 𝑤𝑖

∑
𝑤𝑖

|(𝒔 − 𝒔𝑖)T𝐁−1(𝒔 − 𝒔𝑖)|

𝑛

𝑖=1

 (9) 

However, computational constraints might also make this simplified approach unfeasible both due to the 𝑂(𝑑2)  space 

requirements for storing the bandwidth matrix 𝐁 and the 𝑂(𝑑3) time complexity of the decomposition algorithms, which 5 

rapidly become huge burdens for the memory and the processors. Therefore, we can chose to sacrifice some accuracy by using 

a diagonal bandwidth matrix 𝐁 which does not include any covariance term—only the variance terms in the diagonal are 

computed and stored. This implies that, even though the multiplicity of root samples would help in maintaining a large portion 

of the covariance, another portion is lost by preventing the kernels from reflecting the existing correlations. In other words, 

variables would not be rendered completely independent, but rather conditionally independent because the kernels are still 10 

centred on the set of root samples. Kernels using diagonal bandwidth matrices are referred to as “D-class” while those using 

the full covariance matrix are referred to as “F-class.” The 𝑘F−class parameter controls which version is used. 

With only the diagonal terms of matrix 𝐁 available (𝑏𝑗𝑗), we opt to roughly approximate the likelihood by computing the 

average of the standardized marginal likelihood value for each variable 𝑗, as shown in Eq. (10): 

ℒ independent(𝒔|𝑺) =
1

𝑑√2𝜋 ∑ 𝑤𝑖
∑ ∑ {𝑤𝑖 ∙ exp [−

(𝑠𝑗−𝑠𝑖,𝑗)
2

2𝑏𝑗𝑗
]}𝑛

𝑖=1
𝑑
𝑗=1 , (10) 

where 𝑠𝑗  represents the 𝑗 th element of state vector 𝒔 , and 𝑠𝑖,𝑗  represents the 𝑗 th element of the 𝑖 th sample of probability 15 

distribution 𝑺. Independent/marginal random sampling of each variable can also be applied to replace Eq. (8) by adding random 

Gaussian residuals to the elements of the selected root sample 𝒔root. Sparse bandwidth matrices (Friedman et al., 2008; Ghil 

and Malanotte-Rizzoli, 1991) or low-rank approximations (Bannister, 2008; Ghorbanidehno et al., 2015; Li et al., 2015) could 

be worthwhile intermediate alternatives to our proposed quasi-independent approach to be explored in the future. 

3 Experimental setup 20 

In this section we prepare the elements to investigate whether if OPTIMISTS can help improve the forecasting skill of 

hydrologic models. More specifically, the experiments seek to answer the following questions: Which characteristics of 

Bayesian and variational methods are the most advantageous? How can OPTIMISTS be configured to take advantage of these 

characteristics? How does the algorithm compare to established data assimilation methods? And how does it perform with 

high-dimensional applications? To help answer these questions, this section first introduces two case studies and then it 25 

describes a traditional PF that was used for comparison purposes. 
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3.1 Case studies 

We coupled a Java implementation of OPTIMISTS with two popular open-source distributed hydrologic modelling engines: 

Variable Infiltration Capacity (VIC) (Liang et al., 1994, 1996b, 1996a, Liang and Xie, 2001, 2003) and the Distributed 

Hydrology Soil and Vegetation Model (DHSVM) (Wigmosta et al., 1994, 2002). VIC is targeted at large watersheds by 

focusing on vertical subsurface dynamics, and also enabling intra-cell precipitation, soil, and vegetation heterogeneity. The 5 

DHSVM, on the other hand, was conceived for high-resolution representations of the Earth’s surface, allowing for saturated 

and unsaturated subsurface flow routing and 1D/2D surface routing (Zhang et al., 2018). Both engines needed several 

modifications so that they could be executed in a non-continuous fashion as required for sequential assimilation. Given the 

non-Markovian nature of surface routing schemes coupled with VIC that are based either on multiscale approaches (Guo et 

al., 2004; Wen et al., 2012) or on the unit hydrograph concept (Lohmann et al., 1998), a simplified routing routine was 10 

developed that treats the model cells as channels—albeit with longer retention times. In the simplified method, direct runoff 

and baseflow produced by each model cell is partly routed through an assumed “equivalent” channel (slow component) and 

partly poured directly to the channel network (fast component). Both the channel network and the equivalent channels 

representing overland flow hydraulics are modelled using the Muskingum method. On the other hand, several important bugs 

in version 3.2.1 of the DHSVM, mostly related to the initialization of state variables but also pertaining to routing data and 15 

physics, were fixed. 

We selected two watersheds to perform streamflow forecasting tests using OPTIMISTS: one with the VIC model running at a 

1/8th degree resolution for the Blue River watershed in Oklahoma, and the other with the DHSVM running at a 100 m resolution 

for the Indiantown Run watershed in Pennsylvania. Table 3 lists the main characteristics of the two test watersheds and the 

information of their associated model configurations. Figure 2 shows the land cover map together with the layout of the 20 

modelling cells for the two watersheds. The multi-objective ensemble optimization algorithm included in OPTIMISTS was 

employed to calibrate the parameters of the two models with the streamflow measurements from the corresponding USGS 

stations. For the Blue River, the traditional ℓ2-norm Nash-Sutcliffe Efficiency (NSEℓ2
) (which focuses mostly on the peaks of 

hydrographs), an ℓ1-norm version of the Nash-Sutcliffe Efficiency coefficient (NSEℓ1
) (Krause et al., 2005), and the mean 

absolute relative error MARE (which focuses mostly on the inter-peak periods) were used as optimization criteria. From 85,600 25 

candidate parameterizations tried, one was chosen from the resulting Pareto front with NSEℓ2
 = 0.69, NSEℓ1

 = 0.56, and MARE 

= 44.71%. For the Indiantown Run, the NSEℓ2
, MARE, and absolute bias were optimized, resulting in a parameterization, out 

of 2,575, with NSEℓ2
 = 0.81, MARE = 37.85%, and an absolute bias of 11.83 l/s. 

These “optimal” parameter sets, together with additional sets produced in the optimization process were used to run the models 

and determine a set of time-lagged state variable vectors 𝒔 to construct the state probability distribution 𝑺0 at the beginning of 30 

each of a set of data assimilation scenarios. The state variables include liquid and solid interception; ponding, water equivalent 

and temperature of the snow packs; and moisture and temperature of each of the soil layers. While we do not expect all of 

these variables to be identifiable and sensitive within the assimilation problem, we decided to be thorough in their inclusion—
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a decision that also increases the challenge for the algorithm in terms of the potential for overfitting. The Blue River model 

application has 20 cells, with a maximum of seven intra-cell soil/vegetation partitions. After adding the stream network 

variables, the model has a total of 𝑑 = 812 state variables. The Indiantown Run model application has a total of 1,472 cells and 

𝑑 = 33,455 state variables. 

Three diverse scenarios were selected for the Blue River, each of them comprised of a two-week assimilation period (when 5 

streamflow observations are assimilated), and a two-week forecasting period (when the model is run in an open loop using the 

states obtained at the end of the assimilation period): Scenario 1, starting on October 15th, 1996, is rainy through the entire four 

weeks. Scenario 2, which starts on January 15th, 1997, has a dry assimilation period and a mildly rainy forecast period. Scenario 

3, starting on June 1st, 1997, has a relatively rainy assimilation period and a mostly-dry forecast period. Two scenarios, also 

spanning four weeks, were selected for the Indiantown Run, one starting on July 26th, 2009 and the other on August 26th, 2009. 10 

We used factorial experiments (Montgomery, 2012) to test different configurations of OPTIMISTS on each of these scenarios, 

by first assimilating the streamflow and then measuring the forecasting skill. In this type of experimental designs a set of 

assignments is established for each parameter and then all possible assignment combinations are tried. The design allows to 

establish the statistical significance of altering several parameters simultaneously, providing an adequate framework for 

determining, for example, whether if using a short or a long assimilation time step ∆𝑡 is preferable, or if utilizing the optional 15 

optimization step within the algorithm is worthwhile. Table 4 shows the setup of each of the three full factorial experiments 

we conducted, together with the selected set of assignments for OPTIMISTS’ parameters. The forecasts were produced in an 

ensemble fashion, by running the models using each of the samples 𝒔𝑖  from the state distribution 𝑺 at the end of the assimilation 

time period, and then using the samples’ weights 𝑤𝑖  to produce an average forecast. Deterministic model parameters (those 

from the calibrated models) and forcings were used in all simulations. 20 

Observation errors are usually taken into account in traditional assimilation algorithms by assuming a probability distribution 

for the observations at each time step, and then performing a probabilistic evaluation of the predicted value of each 

particle/member against that distribution. As mentioned in section 2, such a fitness metric like the likelihood utilized in PFs to 

weight candidate particles, is perfectly compatible with OPTIMISTS. However, since it is difficult to estimate the magnitude 

of the observation error in general, and fitness metrics 𝒇𝑖 here are only used to determine (non-)dominance between particles, 25 

we opted to use the mean absolute error (MAE) with respect to the streamflow observations in all cases. 

For the Blue River scenarios, a secondary likelihood objective/metric was used in some cases to select for particles with higher 

consistency with the history. It was computed using either Eq. (10) if 𝑘F−class was set to false, or Eq. (9) if it was set to true. 

Equation (10) was used for all Indiantown Run scenarios given the large number of dimensions. The assimilation period was 

of two weeks for most configurations, except for those in Experiment 3 which have ∆𝑡 = 4 weeks. During both the assimilation 30 

and the forecasting periods we used unaltered streamflow data from the USGS and forcing data from NLDAS-2 (Cosgrove et 

al., 2003)—even though a forecasted forcing would be used instead in an operational setting (e.g., from systems like NAM 

(Rogers et al., 2009) or ECMWF (Molteni et al., 1996)). While adopting perfect forcings for the forecast period leads to an 

overestimation of their accuracy, any comparisons with control runs or between methods are still valid as they all share the 
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same benefit. Also, removing the uncertainty in the meteorological forcings allows the analysis to focus on the uncertainty 

corresponding to the land surface. 

3.2 Data assimilation method comparison 

Comparing the performance of different configurations of OPTIMISTS can shed light into the adequacy of individual strategies 

utilized by traditional Bayesian and variational methods. For example, producing all particles with the optimization algorithms 5 

(𝑝samp = 0), setting long values for ∆𝑡, and utilizing a traditional two-term cost function as that in Eq. (1), makes the method 

behave somewhat as a hard-constrained 4D-Var approach; while sampling all particles from the source state distribution (𝑝samp 

= 1), setting ∆𝑡 equal to the model time step, and using a single likelihood objective involving the observation error, would 

resemble a PF. Herein we also compare OPTIMISTS with a traditional PF on the Blue River VICboth model 

applicationapplications. Since the forcing is assumed to be deterministic, the implemented PF uses Gaussian 10 

“regularization”/perturbation of resampled particles to avoid degeneration (Pham, 2001).(Pham, 2001). Resampling is 

executed such that the probability of duplicating a particle is proportional to their weight (Moradkhani et al., 2012)(Moradkhani 

et al., 2012). 

Additionally, the comparison is performed using a continuous forecasting experiment setup instead of a scenario-based one. 

In this continuous test, forecasts are performed daily (the same as the modelevery time step) and compiled in series for different 15 

forecast lead times that span a whole year, from November, 1996 to November, 1997.several months. Forecast lead times are 

of 1, 3, 6, 12, and 2412 days. for the Blue River and of 6 hours, and 1, 4, and 16 days for the Indiantown Run. Before each 

daily forecast, both OPTIMISTS and the PF assimilate streamflow observations for the assimilation time step of each algorithm 

(daily for the PF). The assimilation is performed cumulatively, meaning that the initial state distribution 𝑺𝑡 was produced by 

assimilating all the records available since the beginning of the experiment on October, 1996 until time 𝑡. The forecasted 20 

streamflow series are then compared to the actual measurements to evaluate their quality using deterministic metrics (NSEℓ2
, 

NSEℓ1
, and MARE) and atwo probabilistic oneones: the ensemble-based continuous ranked probability score (CRPS) (Bröcker, 

2012)(Bröcker, 2012), which is computed for each time step and then averaged for the entire duration of the forecast.; and the 

average normalized probability density 𝑝 of the observed streamflow 𝑞obs given the distribution of the forecasted ensemble 

𝒒forecast: 25 

𝑝(𝑞obs|𝒒forecast) =
∑ 𝑤𝑖∙(2𝜋𝑏2)

−2
∙exp[−(𝑞obs−𝑞𝑖)2 (2𝑏2)⁄ ]𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

, (11) 

where the forecasted streamflow 𝒒forecast is composed of values 𝑞𝑖  for each particle 𝑖 and accompanying weight 𝑤𝑖 , and 𝑏 is 

the bandwidth of the univariate kernel density estimate. 𝑏 can be obtained utilizing Silverman’s rule of thumb (Silverman, 

1986). The probability 𝑝 is computed every time step, then normalized by multiplying by the standard deviation of the estimate, 

and then averaged for all time steps. As opposed to the CRPS, which can only give an idea of the bias of the estimate, the 

density 𝑝 can detect both bias and under/over-confidence: high values for the density indicate that the ensemble is producing 30 
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narrow estimates around the true value, while low values indicate either that the stochastic estimate is spread too thin or is 

centred far away from the true value. 

4 Results and discussion 

This section summarizes the forecasting results obtained from the three scenario-based experiments and the continuous 

forecasting experiments on the Blue River and the Indiantown Run model applications, and the continuous forecasting 5 

experiment performed on the Blue River application. The scenario-based experiments were performed to explore the effects 

of multiple parameterizations of OPTIMISTS, and the performance was analysed as follows. The model was run for the 

duration of the forecast period (two weeks) using the state configuration encoded in each root state 𝑠𝑖 of the distribution 𝑺 

obtained at the end of the assimilation period for each configuration of OPTIMISTS and each scenario. We then computed the 

mean streamflow time series for each case by averaging the model results for each particle 𝑷𝑖 (the average was weighted based 10 

on the corresponding weights 𝑤𝑖). With this averaged streamflow series, we compute the three performance metrics—the 

NSEℓ2
, the NSEℓ1

, and the MARE—based on the observations from the corresponding stream gauge. The values for each 

experiment, scenario, and configuration are listed in tables in the supplementary material. With these, we compute the change 

in the forecast performance between each configuration and a control open-loop model run (one without the benefit of 

assimilating the observations). 15 

4.1 Blue River – low resolution application 

The supplementary material includes the performance metrics for all of the tested configurations on all scenarios and for all 

experiments. Figure 3 summarizes the results for Experiment 1 with the VIC model application for the Blue River watershed, 

in which the distributions of the changes in MARE after marginalizing the results for each scenario and each of the parameter 

assignments are shown. That is, each box (and pair of whiskers) represents the distribution of change in MARE of all cases in 20 

the specified scenario or for which the specified parameter assignment was used. Negative values in the vertical axis indicate 

that OPTIMISTS decreased the error, while positive values indicate it increased the error. It can be seen that, on average, 

OPTIMISTS improves the precision of the forecast in most cases, except for several of the configurations in Scenario 1 (for 

this scenario the control already produces a good forecast) and when using an assimilation step ∆𝑡 of one day. We performed 

an analysis of variance (ANOVA) to determine the statistical significance of the difference found for each of the factors 25 

indicated in the horizontal axis. While Figure 3 shows the 𝑝-values for the main effects, the full ANOVA table for all 

experiments can be found in the supplementary material. From the values in Figure 3,Figure 3, we can conclude that the 

assimilation time step, the number of objectives, and the use of optimization algorithms are all statistically significant. On the 

other hand, the number of particles and the use of F-class kernels are not. 

A ∆𝑡 of five days produced the best results overall for the tested case, suggesting that there exists a sweet spot that balances 30 

the amount of information being assimilated (larger for a long ∆𝑡), and the number of state variables to be modified (larger for 
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a small ∆𝑡). Based on such results, it is reasonable to assume that the sweet spot may depend on the time series of precipitation, 

the characteristics of the watershed, and the temporal and spatial resolutions of its model application. From this perspective, 

the poor results for a step of one day could be explained in terms of overfitting, where there are many degrees of freedom and 

only one value being assimilated per step. Evaluating particles in the light of two objectives, one minimizing departures from 

the observations and the other maximizing the likelihood of the source state, resulted in statistically-significant improvements 5 

compared to using the first objective alone. Additionally, the data suggests that not executing the optional optimization step of 

the algorithm (“optimization = false”), but instead relying only on particles sampled from the prior/source distribution, is also 

beneficial. These two results reinforce the idea that maintaining consistency with the history to some extent is of paramount 

importance, perhaps to the point where the strategies used in Bayesian filters and variational methods are insufficient in 

isolation. Indeed, the best performance was observed only when both sampling was limited to generate particles from the prior 10 

state distribution and the particles were evaluated for their consistency with that distribution. 

On the other hand, we found it counterintuitive that neither using a larger particle ensemble nor taking into account state-

variable dependencies through the use of F-class kernels lead to improved results. In the first case it could be hypothesized 

that using many too many particles could lead to overfitting, since there would be more chances of particles being generated 

that happen to match the observations better but for the “wrong reasons.” In the second case, the non-parametric nature of 15 

kernel density estimation could be sufficient for encoding the raw dependencies between variables, especially in low-resolution 

cases like this one, in which significant correlations between variables in adjacent cells are not expected to be too high. Both 

results deserve further investigation, especially concerning the impact of D- vs. F-class kernels in high-dimensional models. 

Interestingly, the ANOVA also yielded small 𝑝-values for several high-order interactions (see the ANOVA table in the 

supplementary material). This means that, unlike the general case for factorial experiments as characterized by the sparsity-20 

of-effects principle (Montgomery et al., 2009), specific combinations of multiple parameters have a large effect on the 

forecasting skill of the model. Significant interactions (with 𝑝 smaller than 0.05) are between the objectives and ∆𝑡 (𝑝 = 0.001); 

𝑛 and 𝑘F−class (𝑝 = 0.039); ∆𝑡 and the use of optimization (𝑝 = 0.000); the use of optimization and 𝑘F−class (𝑝 = 0.029); the 

objectives, ∆𝑡, and the use of optimization (𝑝 = 0.043); 𝑛, ∆𝑡, and 𝑘F−class (𝑝 = 0.020); 𝑛, the use of optimization, and 𝑘F−class 

(𝑝 = 0.013); and 𝑛, ∆𝑡, the use of optimizers, and 𝑘F−class (𝑝 = 0.006). These interactions show that, for example, using a 25 

single objective is especially inadequate when the time step is of one day or when optimization is used. Also, employing 

optimization is only significantly detrimental when ∆𝑡 is of one day—probably because of intensified overfitting, and that 

choosing F-class kernels leads to higher errors when ∆𝑡 is small, 𝑛 large, and the optimizers are being used. 

Based on these results, we recommend the use of both objectives and no optimization as the preferred configuration of 

OPTIMISTS for the Blue River application. A time step of five days appears to be adequate for this specific model application. 30 

Also, without strong evidence for their advantages, we recommend using more particles or kernels of class F only if there is 

no pressure for computational frugality. However, the number of particles should not be too small to ensure an appropriate 

sample size. 
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Table 5 shows the results of the year-long continuous forecasting experiment on the Blue River using a 5030-particle PF and 

a configuration of OPTIMISTS with a 7-day assimilation time step ∆𝑡, boththree objectives, 50 (NSEℓ2
, MARE, and the 

likelihood), 30 particles, no optimization, and FD-class kernels. Both the OPTIMISTS and the PF methods show relatively 

good performance for all lead times (1, 3, 6, 12, and 2412 days) based on both the deterministic and probabilistic the 

performance metrics. However, OPTIMISTS , although, the PF generally outperforms the PF, especially for the longest lead 5 

times of 12 and 24 days. The errors with OPTIMISTS are usually smaller for longer lead times than the PF method, indicating 

that the longer ∆𝑡 leads to reductions in overfitting. This is probably because particles that performperforms better over a wider 

time frame are more likely to be selected. Such a result also suggests that the search for an optimal ∆𝑡 should consider the 

range of lead times that are deemed most critical for specific applications. 

than OPTIMISTS. Figure 4 shows the probabilistic streamflow forecasts for both algorithms for a lead time of 6 days and 24 10 

days. The portrayed evolution of the density evidences the non-Gaussian nature of both estimates. While the behaviour of 

OPTIMISTS’ forecasts of the low flow regime seems less stable in contrast with the PF’s, its relative higherWe offer three 

possible explanations for such performance suggests that the estimates of the PF are overconfident and that OPTIMISTS’ 

display a more sensible understanding of the associated uncertainty. These comparisons thus provide evidence showing that 

the combined features of Bayesian and variational data assimilation, if configured properly, effectively give. First, the 15 

relatively low dimensionality of this test case does not allow OPTIMISTS to showcase its real strength, perhaps especially 

since the large scale of the watershed does not allow for tight spatial interactions between state variables. Second, OPTIMISTS 

an edge over traditional approachescan find solutions based on multiple objectives rather than a single one, which could be 

advantageous when multiple types of observations are available (e.g., of streamflow, evapotranspiration, and soil moisture). 

Thus, the solutions are likely not the best for each individual objective, but the algorithm balances their overall behaviour 20 

across the multiple objectives. Due to the lack of observations on multiple variables, only streamflow observations are used in 

these experiments even though more than one objective is used. Since it is the case that these objectives are consistent with 

each other, to a large extent, for the studied watershed, the strengths of using multiple objectives within the Pareto approach 

in OPTIMISTS cannot be fully evidenced. Third, additional efforts might be needed to find a configuration of the algorithm, 

together with a set of objectives, that best suit the specific conditions of the tested watershed. 25 

4.2 Indiantown Run – high resolution application 

Figure 5 summarizes the changes in performance when using OPTIMISTS in Experiment 2. In this case, the more uniform 

forcing and streamflow conditions of the two scenarios allowed to statistically analyse all three performance metrics. For 

Scenario 1 we can see that OPTIMISTS produces a general increase in the Nash-Sutcliffe coefficients, but a decline in the 

MARE, evidencing tension between fitting the peaks and the inter-peak periods at the same time. For both scenarios there are 30 

configurations that performed very poorly, and we can look at the marginalized results in the boxplots for clues into which 

parameters might have caused this. Similar to the Blue River case, the use of a 1-hour time step significantly reduced the 

forecast skill, while the longer step almost always improved it; and the inclusion of the secondary history-consistency objective 
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(“2 objectives”) also resulted in improved performance. Not only does it seem that for this watershed the secondary objective 

mitigated the effects of overfitting, but it was interesting to note some configurations in which using it actually helped to 

achieve a better fit during the assimilation period. 

While the ANOVA also provided evidence against the use of optimization algorithms, we are reluctant to instantly rule them 

out on the grounds that there were statistically significant interactions with other parameters (see the ANOVA table in the 5 

supplementary material). The optimizers led to poor results in cases with one-hour time steps or when only the first objective 

was used. Other statistically significant results point to the benefits of using the root samples more intensively (in opposi tion 

to using random samples) and, to a lesser extent, to the benefits of maintaining an ensemble of moderate size. 

Figure 6 shows the summarized changes in Experiment 3, where the effect of the time step ∆𝑡 is explored in greater detail. 

Once again, there appears to be evidence favouring the hypothesis that there exists a sweet spot, and in this case it appears to 10 

be close to the two weeks mark: both shorter and longer time steps led to considerably poorer performance. In this experiment, 

with all configurations using both optimization objectives, we can see that there are no clear disadvantages of using 

optimization algorithms (but also no advantages). Experiment 3 also shows that the effect of the greed parameter 𝑔 is not very 

significant. That is, selecting some particles from dominated fronts to construct the target state distribution, and not only f rom 

the Pareto front, does not seem to affect the results. 15 

With this information, we can select a preferred configuration of OPTIMISTS with a time step of two weeks, two objectives, 

100 particles, no optimization, 𝑤root = 95%, and 𝑔 = 0.5. Figure 7 shows the forecast comparisons between this configuration 

and the control open-loop model for scenarios 1 and 2. In both cases we see the control becoming too dry throughout, possibly 

because of recessions occurring faster than they should, at least during the period being studied. Assimilating streamflow data 

with OPTIMISTS leads to improvements in both cases. Also note that the performance metrics in Table 6 and Figure 7 (and 20 

in many of the results in all three scenario-based experiments) might make the error seem as being too large in the light of 

traditional standards, but this is justified given the very short time period of evaluation, and the ever-present effect of structural 

errors in the model applications—which in any case do not invalidate any of the results as all conditions also apply uniformly 

to the control runs and the PF method. 

 show the results from comparing continuous forecasts from the PF and from a configuration of OPTIMISTS with a time step 25 

of one week, two objectives, 50 particles, and no optimization. Both algorithms display overconfidence in their estimations, 

which is evidenced in Figure 7 by the bias and narrowness of the ensembles’ spread. It is possible that a more realistic 

incorporation of uncertainties pertaining to model parameters and forcings (which, as mentioned, are trivialized in these tests) 

would help compensate overconfidence. For the time being, these experiments help characterize the performance of 

OPTIMISTS in contrast with the PF, as both algorithms are deployed under the same circumstances. In this sense, while the 30 

forecasts obtained using the PF show slightly better results for lead times of 6 hours and 1 day, OPTIMISTS shows a better 

characterization of the ensemble’s uncertainty for the longer lead times. 

OPTIMISTS’ improved results in this high-resolution test case over those in the low-resolution one suggest that the strengths 

of the hybrid method might become more apparent as the dimensionality, and therefore the difficulty, of the assimilation 
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problem increases. While OPTIMISTS was able to produce comparable results to those of the PF, it was not able to provide 

definite advantages in terms of accuracy. But we expect that OPTIMISTS could offer benefits over the PF when on has multiple 

observed variables as explained in the Blue River test. Also, additional efforts might be needed to find the configurations of 

OPTIMISTS that better match the characteristics of the individual case studies. Moreover, the implemented version of the PF 

did not present the particle degeneracy or impoverishment problems that are usually associated with these filters when dealing 5 

with high dimensionality, which also prompts further investigation. 

4.3 Computational performance 

It is worth noting that the longer the assimilation time step, the faster the entire process is. This occurs because, even though 

the number of hydrological calculations is the same in the end, for every assimilation time step the model files need to be 

generated accordingly, then accessed, and finally the result files written and accessed. This whole process takes a considerable 10 

amount of time. Therefore, everything else being constant, sequential assimilation (like with PFs) automatically imposes 

additional computational requirements. In our tests we used RAM drive software to accelerate the process of running the 

models sequentially and, even then, the overhead imposed by OPTIMISTS was consistently below 10% of the total 

computation time. Most of the computational effort remained with running the model, both for VIC and the DHSVM. In this 

sense, model developers may consider allowing their engines to be able to receive input data from main memory, if possible, 15 

to facilitate data assimilation and other similar processes. 

4.4 Recommendations for configuring OPTIMISTS 

Finally, here we summarize the recommended choices for the parameters in OPTIMISTS based on the results of the 

experiments. In the first place, given their low observed effect, default values can be used for 𝑔 (around 0.5). A 𝑤root higher 

than 90% was found to be advantageous. The execution of the optimization step (𝑝samp < 1) was, on the other hand, not found 20 

to be advantageous and, therefore, we consider it a cleaner approach to simply generate all samples from the initial distribution. 

Similarly, while not found to be disadvantageous, using diagonal bandwidth (D-class) kernels provide a significant 

improvement in computational efficiency and are thus recommended for the time being. Future work will be conducted to 

further explore the effect of the bandwidth configuration in OPTIMISTS. 

Even though only two objective functions were tested, one measuring the departures from the observations being assimilated 25 

and another measuring the compatibility of initial samples with the initial distribution, the results clearly show that it is 

beneficial to simultaneously evaluate candidate particles using both criteria. While traditional cost functions like the one in 

Eq. (1) do indeed consider both aspects, we argue that that using multiple objectives has the added benefit of enriching the 

diversity of the particle ensemble and, ultimately, the resulting probabilistic estimate of the target states. 

Our results demonstrated that the assimilation time step is the most sensitive parameter and, therefore, its selection must be 30 

done with the greatest involvement. Taken the results together, we recommend that multiple choices be tried for any new case 

study looking to strike a balance between the amount of information being assimilated and the number of degrees of freedom. 
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This empirical selection should also be performed with a rough sense of what is the range of forecasting lead -times that is 

considered the most important. Lastly, more work is required to provide guidelines to select the number of particles 𝑛 to be 

used. While the literature suggests that more should increase forecast accuracy, our tests did not back this conclusion. We 

tentatively recommend trying different ensemble sizes based on the computational resources available and selecting the one 

that offers the best observed trade-off between accuracy and efficiency. 5 

5 Conclusions and future work 

In this article we introduced OPTIMISTS, a flexible, model-independent data assimilation algorithm that effectively combines 

the signature elements from Bayesian and variational methods: By employing essential features from particle filters, it allows 

performing probabilistic non-Gaussian estimates of state variables through the filtering of a set of particles drawn from a prior 

distribution to better match the available observations. Adding critical features from variational methods, OPTIMISTS grants 10 

its users the option of exploring the state space using optimization techniques and evaluating candidate states through a time 

window of arbitrary length. The algorithm fuses a multi-objective/Pareto analysis of candidate particles with kernel density 

probability distributions to effectively bridge the gap between the probabilistic and the variational perspectives. Moreover, the 

use of evolutionary optimization algorithms enables its efficient application on highly non-linear models as those usually found 

in most geosciences. This unique combination of features represent a clear differentiation from the existing hybrid assimilation 15 

methods in the literature (Bannister, 2016), which are limited to Gaussian distributions and linear dynamics. 

We conducted a set of hydrologic forecasting factorial experiments on two watersheds, the Blue River with 812 state variables 

and the Indiantown Run with 33,455, at two distinct modelling resolutions using two different modelling engines: VIC and the 

DHSVM, respectively. Capitalizing on the flexible configurations available for OPTIMISTS, these tests allowed to determine 

which individual characteristics of traditional algorithms prove to be the most advantageous for forecasting applications. For 20 

example, while there is a general consensus in the literature favouring extended time steps (4D) over sequential ones (1D-3D), 

the results from assimilating streamflow data in our experiments suggest that there is an ideal duration of the assimilation time 

step that is dependent on the case study under consideration, on the spatiotemporal resolution of the corresponding model 

application, and on the desired forecast length. Sequential time steps not only required considerably longer computational 

times but also produced the worst results—perhaps given the overwhelming number of degrees of freedom in contrast with 25 

the scarce observations available. Similarly, there was a drop in the performance of the forecast ensemble when the algorithm 

was set to use overly long time steps. 

Procuring the consistency of candidate particles, not only with the observations but also with the history, led to significant 

gains in predictive skill. OPTIMISTS can be configured to both perform Bayesian sampling and find Pareto-optimal particles 

that trade-off deviations from the observations and from the prior conditions, a strategy that proved superior to those of 30 

traditional algorithms.. This Bayesian/multi-objective formulation of the optimization problem was especially beneficial for 
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the high-resolution watershed application, as it allows the model to overcome the risk of overfitting generated by the enlarged 

effect of equifinality. 

On the other hand, our experiments did not produce enough evidence to recommend neither exploring the state space with 

optimization algorithms instead of doing so with simple probabilistic sampling, the use of a larger number of particles above 

the established baseline of 100, nor the computationally-intensive utilization of full covariance matrices to encode the 5 

dependencies between variables in the kernel-based state distributions. Nevertheless, strong interactions between several of 

these parameters suggest that some specific combinations could potentially yield strong outcomes. Together with OPTIMISTS’ 

observed high level of sensitivity to the parameters, these results indicate that there could be promise in the implementation of 

self-adaptive strategies (Karafotias et al., 2014) to assist in their selection in the future. With these experiments, we were able 

to configure the algorithm to consistently improve the forecasting skill of the models compared to control open-loop runs. 10 

Additionally, a comparative test using the Blue River model applicationtests showed that OPTIMISTS was able to reliably 

produce adequate forecasts that were better than or similar comparable to those resulting from assimilating the observations 

with a particle filter in the high-resolution application. While it leads to similar performance compared to the particle filter, 

OPTIMISTS does offer considerable gains in computational efficiency given its ability to analyse multiple model time steps 

each time. 15 

Moreover, in this article we offered several alternatives in the implementation of the components of OPTIMISTS whenever 

there were tensions between prediction accuracy and computational efficiency. In the future, we will focus on incorporating 

additional successful ideas from diverse assimilation algorithms and on improving components in such a way that both of these 

goals are attained with ever-smaller compromises. For instance, the estimation of initial states should not be overburdened 

with the responsibility of compensating structural and calibration deficiencies in the model. In this sense, we embrace the 20 

vision of a unified framework for the joint probabilistic estimation of structures, parameters, and state variables (Liu and Gupta, 

2007), where it is important to address challenges associated with approaches that would increase the indeterminacy of the 

problem by adding unknowns without providing additional information or additional means of relating existing variables.  We 

expect that with continued efforts OPTIMISTS will be a worthy candidate framework to be deployed in operational settings 

for hydrologic prediction and beyond. 25 

Data and code availability  

All the data utilized to construct the models is publicly available through the internet from their corresponding US government 

agencies’ websites. The Java implementation of OPTIMISTS is available by request to the authors. The source codeand of the 

particle filter isare available through GitHub (https://github.com/felherc/). These sources include all the information needed to 

replicate the experiments in this article. 30 

https://github.com/felherc/
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Figure 1. Steps in OPTIMISTS, to be repeated for each assimilation time step ∆𝒕. In this example state vectors have two variables, 

observations are of streamflow, and particles are judged using two user-selected objectives: the likelihood given 𝑺𝒕 to be maximized 

and the error given the observations to be minimized. (a) Initial state kernel density distribution 𝑺𝒕 from which root samples (purple 

rhombi) are taken during the drawing step and random samples (yellow rhombi) are taken during the sampling step. (b) Execution 5 
of the model (simulation step) for each source sample for a time equal to ∆𝒕 to compute output variables (for comparison with 

observations) and target samples (circles). (c) Evaluation of each particle (evaluation step) based on the objectives and organization 

into non-domination fronts (ranking step). The dashed lines represent the fronts while the arrows denote domination relationships 

between particles in adjacent fronts. (d) Optional optimization step which can be executed several times and that uses a population-

based evolutionary optimization algorithm to generate additional samples (red rhombi). (e) Target state kernel density distribution 10 
𝑺𝒕+∆𝒕 constructed from the particles’ final samples (circles) after being weighted according to the rank of their front (weighting 

step): kernels centred on samples with higher weight (shown larger) have a higher probability density contribution. 
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Figure 2. Maps of the two test watersheds in the United States displaying the 30 m resolution land cover distribution from the NLCD 

(Homer et al., 2012). Left: Oklahoma’s Blue River watershed 0.125° resolution VIC model (20 cells). Right: Pennsylvania’s 

Indiantown Run watershed 100 m-resolution DHSVM model (1,472 cells). 
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Figure 3. Boxplots of the changes in forecasting error (MARE) achieved while using OPTIMISTS on Experiment 1 (Blue River). 

Changes are relative to an open-loop control run where no assimilation was performed. Each column corresponds to the distribution 

of the error changes on the specified scenario or assignment to the indicated parameter. Positive values indicate that OPTIMISTS 

increased the error, while negative values indicate it decreased the error. Outliers are noted as asterisks and values were limited to 5 
100%. For the one-objective case the particles’ 𝐌𝐀𝐄 was to be minimized; for the two-objective case, the likelihood given the 

background was to be maximized in addition. No optimization (“false”) corresponds to 𝒑𝐬𝐚𝐦𝐩 = 1.0 (i.e., all samples are obtained 

from the prior distribution); “true” corresponds to 𝒑𝐬𝐚𝐦𝐩 = 0.25. The 𝒑-values were determined using ANOVA (Montgomery, 2012), 

and indicate the probability that the differences in means corresponding to boxes of the same colour are produced by chance (e.g., 

values close to zero indicate certainty that the parameter effectively affects the forecast error). 10 
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Figure 4. Comparison of 6six-day (top) and 24-day (bottom) lead time probabilistic streamflow (top) and soil moisture (bottom) 

forecasts between OPTIMISTS (“OP” – ∆(∆𝒕 = 7 days, 2; 3 objectives,: 𝐍𝐒𝐄𝓵𝟐, 𝐌𝐀𝐑𝐄, and likelihood; 𝒏 = 50,30; no optimization, 

and FD-class kernels) and a traditional PF (𝒏 = 5030) for the Blue River. The dark blue and orange lines indicate the mean of 

OPTIMISTS’ and the PF’s ensembles respectively, while the light blue and light orange bands illustrate the spread of the forecast 5 
by highlighting the areas where the probability density of the estimate is at least 50% of the density at the mode (the maximum) at 

that time step. The green bands indicate areas where the light blue and light orange bands intersect.  
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Figure 5. Boxplots of the changes in forecasting performance (𝐍𝐒𝐄𝓵𝟐, 𝐍𝐒𝐄𝓵𝟏, and 𝐌𝐀𝐑𝐄) achieved while using OPTIMISTS on 

Experiment 2 (Indiantown Run). Changes are relative to an open-loop control run where no assimilation was performed. Each 

column corresponds to the distribution of the error metric changes on the specified scenario or assignment to the indicated 

parameter. Outliers are noted as stars and values were constrained to 𝐍𝐒𝐄𝓵𝟐  ≥ −𝟑, 𝐍𝐒𝐄𝓵𝟏  ≥  −𝟑, and 𝐌𝐀𝐑𝐄 ≤ 𝟐𝟎𝟎%. Positive 5 
values indicate improvements for the 𝐍𝐒𝐄𝓵𝟐 and the 𝐍𝐒𝐄𝓵𝟏. The meanings for the MARE and for other symbols are the same as 

those defined in Fig. 3. 
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Figure 6. Boxplots of the changes in forecasting performance (𝐍𝐒𝐄𝓵𝟐, 𝐍𝐒𝐄𝓵𝟏, and 𝐌𝐀𝐑𝐄) achieved while using OPTIMISTS on 

Experiment 3 (Indiantown Run). Changes are relative to an open-loop control run where no assimilation was performed. Each 

column corresponds to the distribution of the error metric changes on the specified scenario or assignment to the indicated 

parameter. Positive values indicate improvements for the 𝐍𝐒𝐄𝓵𝟐 and the 𝐍𝐒𝐄𝓵𝟏. See the caption of Fig. 3 for more information. 5 
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Figure 7. Comparison of hydrographs for each of the two Indiantown Run scenarios. The results from the control model (with no 

data assimilationfour-day lead time probabilistic streamflow (top) and from the ensemble average of ansoil moisture (bottom) 

forecasts between OPTIMISTS configuration with ∆(∆𝒕 = 2 weeks7 days, 2 objectives, 𝒏 = 10050, no optimization, and D-class 

kernels are compared with the observations from the stream gauge. The first two weeks correspond to the assimilation period) and 5 
a traditional PF (𝒏 = 50) for the Indiantown Run. The dark blue and orange lines indicate the mean of OPTIMISTS’ and the PF’s 

ensembles respectively, while the latter correspond to light blue and light orange bands illustrate the spread of the forecast period. 

The error metrics corresponding toby highlighting the areas where the probability density of the forecast period are indicated 

forestimate is at least 50% of the default model (above) and density at the OPTIMISTS ensemble (below) as follows: 𝐍𝐒𝐄𝓵𝟐 / 𝐍𝐒𝐄𝓵𝟏 

/ 𝐌𝐀𝐑𝐄mode (the maximum) at that time step. The green bands indicate areas where the light blue and light orange bands intersect. 10 
Layer 2 of the soil corresponds to 100 to 250 mm depths. 
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Table 1. Comparison between the main features of standard Bayesian data assimilation algorithms (KF: Kalman Filter, EnKF: 

Ensemble KF, PF: Particle Filter), variational data assimilation (one- to four-dimensional), and OPTIMISTS. 

 Bayesian Variational OPTIMISTS 

Resulting state-

variable estimate 

Probabilistic: Gaussian (KF, 

EnKF), Non-Gaussian (PF) 

Deterministic (unless adjoint 

model is used) 

Probabilistic  

(using kernel density estimation) 

Solution quality 

criteria 

High likelihood given 

observations 

Minimum cost value (error, 

departure from history) 

Minimum error, maximum 

consistency with history 

Analysis time step Sequential 
Sequential (1D-3D) or entire 

assimilation window (4D) 
Flexible 

Search method 
Iterative Bayesian belief 

propagation 
Convex optimization 

Coupled belief 

propagation/multi-objective 

optimization 

Model dynamics 
Linear (KF),  

non-linear (EnKF, PF) 

Linearized to obtain convex 

solution space 

Non-linear  

(non-convex solution space) 

 

Table 2. List of global parameters in OPTIMISTS 

Symbol Description Range 

∆𝑡 Assimilation time step (particle evaluation time frame) ℝ+ 

𝑛 Total number of root states 𝒔𝑖  in the probability distributions ℕ ≥ 2 

𝑤root Total weight of root samples drawn from 𝑺𝑡 ℝ ∈ [0, 1] 

𝑝samp Percentage of 𝑛 corresponding to drawn and random samples ℝ ∈ [0, 1] 

𝑘F−class Whether or not to use F-class kernels. If not: D-class kernels. true or false 

𝑛evo Samples to be generated by the optimizers per iteration ℕ ≥ 2 

𝑔 Level of greed for the assignment of particle weights 𝑤𝑖  ℝ ∈ [−1, 1] 

 5 
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Table 3. Characteristics of the two test watersheds: Blue River and Indiantown Run. US hydrologic units are defined in (Seaber et 

al., 1987). Elevation information was obtained from the Shuttle Radar Topography Mission (Rodríguez et al., 2006); land cover and 

impervious percentage from the National Land Cover Database (Homer et al., 2012); soil type from CONUS-SOIL (Miller and 

White, 1998); and precipitation, evapotranspiration, and temperature from NLDAS-2 (Cosgrove et al., 2003). The streamflow and 

temperature include their range of variation of 90% of the time (5% tails at the high and low end are excluded). 5 

Model characteristic Blue River Indiantown Run 

USGS station; US hydrologic 

unit 
07332500; 11140102 01572950; 02050305 

Area (km2); impervious 3,031; 8.05% 14.78; 0.83% 

Elevation range; average slope 158 m – 403 m; 3.5% 153 m – 412 m; 14.5% 

Land cover 
43% grassland, 28% forest,  

21% pasture/hay 
74.6% deciduous forest 

Soil type 
Clay loam (26.4%), clay (24.8%), 

sandy loam (20.26%) 
Silt loam (51%), sandy loam (49%) 

Avg. streamflow (90% range) 9.06 m3/s (0.59 m3/s – 44.71 m3/s) 0.3 m3/s (0.035 m3/s – 0.793 m3/s) 

Avg. precipitation; avg. ET 1,086 mm/year; 748 mm/year 1,176 mm/year; 528 mm/year 

Avg. temperature (90% range)  17.26°C (2.5°C – 31°C) 10.9°C (-3.5°C – 24°C) 

Model cells; stream segments; 𝑑 20; 14; 812 1,472; 21; 33,455 

Resolution  0.125°; daily 100 m; hourly 

Calibration 
167 parameters; 85 months; 

objectives: NSEℓ2
, NSEℓ1

, MARE 

18 parameters; 20 months; objectives: 

NSEℓ2
, MARE, absolute bias 

 

Table 4. Setup of the three factorial experiments, including the watershed, the total number of configurations (conf.), the values 

assigned to OPTIMISTS’ parameters, and which objectives (objs.) were used (one objective: minimize 𝐌𝐀𝐄 given the streamflow 

observations; two objectives: minimize 𝐌𝐀𝐄 and maximize likelihood given source/background state distribution 𝑺𝒕). 𝒏𝐞𝐯𝐨 was set 

to 25 in all cases. The total number of configurations results from combining all the possible parameter assignments listed for each 10 
experiment. Note that for Experiment 3 there are configurations that require a four-week assimilation period (all others have a 

length of two weeks). 

No. Watershed Conf. ∆𝑡 𝑛 𝑤root 𝑝samp 𝑘F−class 𝑔 objs. 

1 Blue River 48 1d, 5d, 2w 100, 500 0.95 0.25, 1 false, true 0.75 1, 2 

2 Indiantown Run 32 1h, 2w 100, 200 0.6, 0.95 0.25, 1 false 0.75 1, 2 

3 Indiantown Run 24 1h, 6h, 1d, 3.5d, 2w, 4w 100 0.95 0.4, 1 false 0.5, 1 2 
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Table 5. Continuous daily streamflow forecast performance metrics for the Blue River application using OPTIMISTS (∆𝒕 = 7 days, 

23 objectives,: 𝐍𝐒𝐄𝓵𝟐
, 𝐌𝐀𝐑𝐄, and likelihood; 𝒏 = 50,30; no optimization,; and FD-class kernels) and a traditional PF (𝒏 = 5030). 

The continuous forecast extends from November, 1996January to NovemberJune, 1997. The 𝐍𝐒𝐄𝓵𝟐 , 𝐍𝐒𝐄𝓵𝟏 , and 𝐌𝐀𝐑𝐄 

(deterministic) are computed using the mean streamflow of the forecast ensembles and contrasting it with the daily observations, 5 
while the 𝐂𝐑𝐏𝐒 and the density (probabilistic) are computed taking into account all the members of the forecasted ensemble. 

Algorithm 
Lead 

time 
𝐍𝐒𝐄𝓵𝟐 𝐍𝐒𝐄𝓵𝟏 𝐌𝐀𝐑𝐄 

𝐂𝐑𝐏𝐒 

(m3/s) 
Density 

OPTIMISTS 

1 day 0.497 0.293 51.40% 7.173 0.061 

3 days 0.527 0.312 50.16% 6.959 0.065 

6 days 0.534 0.315 50.18% 6.945 0.073 

12 days 0.516 0.297 51.26% 7.124 0.078 

Particle filter 

1 day 0.675 0.522 30.06% 4.480 0.098 

3 days 0.623 0.493 33.20% 4.744 0.113 

6 days 0.602 0.473 35.79% 5.000 0.109 

12 days 0.515 0.432 38.36% 5.593 0.105 

 

Table 6. Continuous hourly streamflow forecast performance metrics for the Indiantown Run application using OPTIMISTS (∆𝒕 = 

7 days, 2 objectives; 𝒏 = 50; no optimization; and D-class kernels) and a traditional PF (𝒏 = 50). The continuous forecast extends 

from September to December, 2009. The 𝐍𝐒𝐄𝓵𝟐, 𝐍𝐒𝐄𝓵𝟏, and 𝐌𝐀𝐑𝐄 (deterministic) are computed using the mean streamflow of the 10 
forecast ensembles and contrasting it with the daily observations, while the 𝐂𝐑𝐏𝐒 and the density (probabilistic) isare computed 

taking into account all the particles inmembers of the forecasted ensemble. 

Algorithm 
Lead time 

(days) 
𝐍𝐒𝐄𝓵𝟐 𝐍𝐒𝐄𝓵𝟏 𝐌𝐀𝐑𝐄 

𝐂𝐑𝐏𝐒 

(m3l/s) 
Density 

OPTIMISTS 

1 day6 

hours 
0.827574 0.636316 37.2032.25% 3.74597.27 

0.016 

3 days1 

day 
0.750609 0.555340 31.42.86% 4.89993.92 

0.013 

64 days 0.812573 0.604316 38.8832.20% 4.06797.19 0.025 

1216 days 0.788521 0.625272 38.6933.90% 3.959103.51 0.013 

24 days 0.801 0.609 39.01% 3.861 

Particle filter 

1 day6 

hours 
0.796660 0.638480 35.5926.87% 4.17579.61 

0.061 

3 days1 

day 
0.776639 0.612464 37.5226.68% 4.46382.75 

0.051 

64 days 0.733558 0.588401 39.4427.42% 4.76693.20 0.021 

12 days 0.705 0.578 40.48% 4.857 

2416 days 0.743520 0.588346 41.1628.75% 4.772102.37 0.010 
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