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List of changes to the manuscript 

We would like to once again thank the two anonymous referees and the editor for their valuable comments and suggestions 

which lead to significant modifications to the manuscript. We believe implementing their comments and suggestions has 

improved the presentation, clearness, and accuracy of our work. Below is the list of changes made in the revision. Specific 

pages and lines on the modified manuscript are referenced by page and line number as: (p<page number>, l<line number(s)>). 10 

 (p1, l14-16) clarify that two different case studies were used, each with a different modelling engine and a different 

spatial resolution. 

 (p1, l16-19) and (p1, l21-24) summarize the new comparison results in light of the addition of the continuous 

forecasting experiment and summarize the advantages of OPTIMISTS over existing methods. 

 The last two paragraphs of the introduction (p3, l9-28) and the first paragraph of section 2 (p3-4) now include the 15 

differences between OPTIMISTS and other hybrid data assimilation approaches. 

 The last two paragraphs of the introduction (p3, l9-28) explain some of the contrasts presented in Table 1 to improve 

the ties between the text and the table. 

 Figure 1 was expanded to illustrate the entire functional structure of the algorithm and the first paragraph in subsection 

2.1 (p4) ties the presented structure with the text. 20 

 References to subsection 2.2, which deals with the computations with the state probability distribution, are found in 

subsubsections 2.1.2 (p5) and 2.1.4 (p6) to remind the reader that the details regarding the distributions will be 

discussed at a later point. 

 The fifth paragraph of subsection 3.1 (p12, l14-23) summarizes how the factorial experiments were set up and its 

purpose in determining the best assignments to OPTIMISTS parameters. 25 

 The second-to-last paragraph in subsection 3.1 (p12, l24-29) discusses how OPTIMISTS deals with observation errors 

in contrast with well-known methods. 

 The original Figure 4 was removed to avoid the confusing details of the analysis of the results of Experiment 1. The 

main take-away is summarized in (p15, l14-17). 
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 Table 5 and Figure 4 show the results of the newly-included continuous forecasting experiment that compares 

OPTIMISTS and a particle filter in a year-long time frame. The experimental setup is described in subsection 3.2 

(p12) and the results are discussed in the last two paragraphs of subsection 4.1 (p15, l18-32). 

 Table 5 includes the probabilistic CRPS forecast performance metric in addition to the previous three deterministic 

performance metrics. 5 

 Figure 4 shows the distribution of the streamflow forecast and not only its mean. 

 (p16, l30-p17, l2) discuss why the errors in the scenario-based experiments seem large. 

 A section named “Previous versions” was added before the references (p20) that references the 2016 version of the 

manuscript published in HESSD and mentions the differences between that version and the current one. 

  10 
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Abstract. The success of real-time estimation and forecasting applications based on geophysical models has been possible 

thanks to the two main existing frameworks for the determination of the models’ initial conditions: Bayesian data assimilation 

and variational data assimilation. However, while there have been efforts to unify these two paradigms, existing attempts 

struggle to fully leverage the advantages of both in order to face the challenges posed by modern high-resolution models—

mainly related to model indeterminacy and steep computational requirements. In this article we introduce a hybrid algorithm 10 

called OPTIMISTS (Optimized PareTo Inverse Modeling through Integrated STochastic Search) which is targeted at non-

linear high-resolution problems and that brings together ideas from particle filters, 4-dimensional variational methods, 

evolutionary Pareto optimization, and kernel density estimation in a unique way. Streamflow forecasting experiments were 

conducted to test which specific configurations/parameterizations of OPTIMISTS ledcan lead to higher predictive accuracy. 

The experiments analysedwere conducted on two watersheds, one with a : the Blue River (low -resolution) using the VIC 15 

(Variable Infiltration Capacity) model and one with a the Indiantown Run (high-resolution) using the DHSVM (Distributed 

Hydrology Soil Vegetation Model). By selecting kernel-based non-parametric sampling, non-sequential evaluation of 

candidate particles, and through the multi-objective minimization of departures from the streamflow observations and from 

the background states, OPTIMISTS was shown to outperformefficiently produce probabilistic forecasts with higher or similar 

accuracy than those produced using a particle filter and a 4D variational method. Moreover, the experiments demonstrated that 20 

OPTIMISTS scales well in high-resolution cases without imposing a significant computational overhead and that it was 

successful in mitigating the harmful effects of overfitting. With thesethe combined advantages of allowing for fast, non-

Gaussian, non-linear, high-resolution prediction, the algorithm shows the potential to increase the accuracy and efficiency 

offor operational prediction systems for the improved management of natural resources. 

1 Introduction 25 

Decision support systems that rely on model-based forecasting of natural phenomena are invaluable to society (Adams et al., 

2003; Penning-Rowsell et al., 2000; Ziervogel et al., 2005)(Adams et al., 2003; Penning-Rowsell et al., 2000; Ziervogel et al., 

2005).. However, despite increasing availability of Earth-sensing data, the problem of estimation or prediction in geophysical 

systems remains as underdetermined as ever because of the growing complexity of such models (Clark et al., 2017)(Clark et 

al., 2017).. For example, taking advantage of distributed physics and the mounting availability of computational power, modern 30 
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models have the potential to more accurately represent impacts of heterogeneities on eco-hydrological processes (Koster et al., 

2017).. This is achieved through the replacement of lumped representations with distributed ones, which entails the inclusion 

of numerous parameters and state variables. The price to pay for this abandonment ofthus forsaking parsimony is the added 

uncertainty in the evaluation of these additional unknowns. Therefore, in order to be able to rely on these high-resolution 

models for critical real-time and forecast applications, considerable improvements on traditional parameter and initial state 5 

estimation techniques must be made with two main goals: First, to allow for an efficient management of the huge number of 

unknowns; and second, to mitigate the harmful effects of overfitting—i.e., the loss of forecast skill due to an over-reliance on 

the calibration/training data (Hawkins, 2004)(Hawkins, 2004).. Because of the numerous degrees of freedom associated with 

these high-resolution distributed models, overfitting is a much bigger threat due to the phenomenon of equifinality (Beven, 

2006)(Beven, 2006).. 10 

There exists a plethora of techniques to initialize the state variables of a model through the incorporation of available 

observations, and they possess overlapping features that make it difficult to develop clear-cut classifications. However, two 

main “schools” can be fairly identified: Bayesian data assimilation and variational data assimilation. Bayesian data assimilation 

creates probabilistic estimates of the state variables in an attempt to also capture their uncertainty. These state probability 

distributions are adjusted sequentially to better match the observations using Bayes’ theorem. While the seminal Kalman 15 

Filterfilter (KF) is constrained to linear dynamics and Gaussian distributions, Ensembleensemble Kalman Filtersfilters (EnKF) 

can support non-linear models (Evensen, 2009)(Evensen, 2009),, and Particle Filtersparticle filters (PF) can also manage non-

Gaussian estimates for added accuracy (Smith et al., 2013)(Smith et al., 2013).. The stochastic nature of these Bayesian filters 

is highly valuable because equifinality can rarely be avoided and due tobecause of the benefits of quantifying the uncertainty 

in forecasting applications (Verkade and Werner, 2011; Zhu et al., 2002)(Verkade and Werner, 2011; Zhu et al., 2002).. While 20 

superior in accuracy, PFs are usually regarded as impractical for high-dimensional applications (Snyder et al., 2008)(Snyder 

et al., 2008),, and thus recent research has focused on improving their efficiency (van Leeuwen, 2015)(van Leeuwen, 2015).. 

On the other hand, variational data assimilation is more akin to traditional calibration approaches (Efstratiadis and 

Koutsoyiannis, 2010)(Efstratiadis and Koutsoyiannis, 2010) because of its use of optimization methods. It seeks to find a 

single/deterministic initial state variable combination that minimizes the departures (or “variations”) of the modelled values 25 

from the observations (Reichle et al., 2001)(Reichle et al., 2001) and, commonly, from their history. One- to three- dimensional 

variants are also employed sequentially, but the paradigm lends itself easily to evaluating the performance of candidate 

solutions throughout an extended time window in four-dimensional versions (4D-Var). If the model’s dynamics are linearized, 

the optimum can be very efficiently found in the resulting convex search space through the use of gradient methods. While 

this feature has made 4D-Var very popular in meteorology and oceanography (Ghil and Malanotte-Rizzoli, 1991)(Ghil and 30 

Malanotte-Rizzoli, 1991),, its application in hydrology has been less widespread because of the difficulty of linearizing land-

surface physics (Liu and Gupta, 2007)(Liu and Gupta, 2007).. Moreover, variational data assimilation requires the inclusion 

of computationally-expensive adjoint models if one wishes to account for the uncertainty of the state estimates (Errico, 

1997)(Errico, 1997).. 
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Traditional implementations from both schools have interesting characteristics and thus the development of hybrid methods 

has received considerable attention (Bannister, 2016)(Bannister, 2016).. For example, Bayesian filters have been used as 

adjoints in 4D-Var to enable probabilistic estimates (Zhang et al., 2009)(Zhang et al., 2009).. Moreover, some Bayesian 

approaches have been coupled with optimization techniques to select ensemble members (Dumedah and Coulibaly, 2013; Park 

et al., 2009)(Dumedah and Coulibaly, 2013; Park et al., 2009).. 4DEnVar (Buehner et al., 2010)(Buehner et al., 2010),, a fully-5 

hybridized algorithm, is gaining increasing attention for weather prediction (Desroziers et al., 2014; Lorenc et al., 

2015)(Desroziers et al., 2014; Lorenc et al., 2015).. It is especially interesting that some algorithms have defied the traditional 

choice between sequential and “extended-time” evaluations. Weak-constrained 4D-Var allows state estimates to be determined 

at several time steps within the assimilation time window and not only at the beginning (Ning et al., 2014; Trémolet, 

2006)(Ning et al., 2014; Trémolet, 2006).. Conversely, modifications to EnKFs and PFs have been proposed to extend the 10 

analysis of candidate members/particles to span multiple time steps (Evensen and van Leeuwen, 2000; Noh et al., 

2011)(Evensen and van Leeuwen, 2000; Noh et al., 2011).. The success of these hybrids demonstrates that there is a balance 

to be sought between the allowed number of degrees of freedom and the amount of information to be assimilated at once. 

Following these promising paths, in this article we introduce OPTIMISTS (Optimized PareTo Inverse Modelling through 

Integrated STochastic Search), a hybrid data assimilation algorithm that incorporates the most valuable features from both 15 

Bayesian and variational methods while mitigating the deficiencies or disadvantages of the original approaches (e.g., the 

linearity and determinism of 4D-Var and the limited scalability of PFs). The choice of the selected features and the design of 

their interactions werewhose design was guided by the two stated goals: to allow for practical scalability to high-dimensional 

models, and to enable balancing the imperfect observations and the imperfect model estimates to minimize overfitting. Table 

1This unique set of interactions is unlike those of any other method in the current literature. 20 

Table 1 summarizes the main characteristics of typical Bayesian and variational approaches, and their contrasts with 

OPTIMISTS.those of OPTIMISTS. Our algorithm incorporates the features that the literature has found to be the most valuable 

from both Bayesian and variational methods while mitigating the deficiencies or disadvantages associated with these original 

approaches (e.g., the linearity and determinism of 4D-Var and the limited scalability of PFs): Non-Gaussian probabilistic 

estimation and support for non-linear model dynamics have been long held as advantageous over their alternatives (Gordon et 25 

al., 1993; van Leeuwen, 2009)(Gordon et al., 1993; van Leeuwen, 2009) and, similarly, meteorologists favour extended-period 

evaluations over sequential ones (Gauthier et al., 2007; Rawlins et al., 2007; Yang et al., 2009)(Gauthier et al., 2007; Rawlins 

et al., 2007; Yang et al., 2009).. As shown in the table, OPTIMISTS can readily adoptsadopt these proven strategies, but. 

However, there are others inother aspects of the assimilation problem for which no single combination of features has 

demonstrated its superiority. For example, is the consistency with previous states better achieved through the minimization of 30 

a cost function that includes a background error term (Fisher, 2003)(Fisher, 2003),, as in variational methods, or through 

limiting the exploration to samples drawn from that background state distribution, as in Bayesian methods? Table 1While 

shows that in these cases OPTIMISTS allows for flexible configurations, ourand it is an additional objective is alsoof this 

study to test which set of featuresfeature interactions allows for more accurate forecasts when using highly-distributed models. 
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While many of the concepts utilized within the algorithm have been proposed in the literature before, their combination and 

the broad range of configurations available did not exist before. In other words, the concepts used in OPTIMISTS are unlike 

those of other methods, including existing hybrids which have mostly been developed around ensemble Kalman filters and 

convex optimization techniques (Bannister, 2016)—and therefore limited to Gaussian distributions and linear dynamics. 

2 Data assimilation algorithm 5 

In this section we describe OPTIMISTS, our proposed data assimilation algorithm which combines advantageous features 

from several Bayesian and variational methods. As will be explained in detail infor each of the steps of the algorithm, these 

features were selected with the intent of mitigating the limitations of existing methods. While most of the components utilized 

within the algorithm have been proposed in the literature before, their unique combination is innovative and distinct from the 

typical approaches used for hybridized data assimilation. 10 

OPTIMISTS allows selecting a flexible data assimilation time step ∆𝑡—i.e., the time window in which candidate state 

configurations are compared to observations. It can be as short as the model time step, or as long as the entire assimilation 

window. For each assimilation time step at time 𝑡 a new state probability distribution 𝑺𝑡+∆𝑡 is estimated from the current 

distribution 𝑺𝑡, the model, and one or more observations 𝒐obs
𝑡:𝑡+∆𝑡. For hydrologic applications, as those explored in this article, 

these states 𝑺 include land surface variables within the modelled watershed such as soil moisture, snow cover/snow water 15 

equivalent, and stream water volume; and observations 𝒐 are typically of streamflow at the outlet (Clark et al., 2008)(Clark et 

al., 2008),, soil moisture (Houser et al., 1998)(Houser et al., 1998),, and/or snow cover (Andreadis and Lettenmaier, 

2006)(Andreadis and Lettenmaier, 2006).. However, the description of the algorithm will use field-agnostic terminology not 

to discourage its application in other disciplines. 

TheState probability distributions 𝑺 in OPTIMISTS are determined from a set of weighted “root” or “base” sample states 𝒔𝑖 20 

using multivariate weighted kernel density estimation (West, 1993)(West, 1993).. This form of non-parametric distributions 

standstands in stark contrast with those from KFs and EnKFs in their ability to model non-Gaussian behaviour—an established 

advantage of PFs. Each of these samples or ensemble members 𝒔𝑖 is comprised of a value vector for the state variables. The 

objective of the algorithm is then to produce a set of 𝑛 samples 𝒔𝑖
𝑡+∆𝑡 with corresponding weights 𝑤𝑖  for the next assimilation 

time step to determine the target distribution 𝑺𝑡+∆𝑡.  25 

This process is repeated iteratively each assimilation time step ∆𝑡 until the entire assimilation time frame is covered, at which 

point the resulting distribution can be used to perform the forecast simulations. In subsection 2.1 we describe the main ideas 

and steps involved in the OPTIMISTS data assimilation algorithm; details regarding the state probability distributions, mainly 

on how to generate random samples and evaluate the likelihood of particles, are explained in subsection 2.2; and modifications 

required for high-dimensional problems are described in subsection 2.3. 30 
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2.1 Description of the OPTIMISTS data assimilation algorithm  

Let a “particle” 𝑷𝑖 be defined by a “source” (or initial) vector of state variables 𝒔𝑖
𝑡, (which is a sample of distribution 𝑺𝑡), a 

corresponding “target” (or final) state vector 𝒔𝑖
𝑡+∆𝑡, (a sample of distribution 𝑺𝑡+∆𝑡), a set of output values 𝒐𝑖

𝑡:𝑡+∆𝑡 (those that 

have corresponding observations 𝒐obs
𝑡:𝑡+∆𝑡), a set of fitness metrics 𝒇𝑖, a rank 𝑟𝑖, and a weight 𝑤𝑖 . Note that the denomination of 

“particle” stems from the PF literature and is analogous to the “member” term in EnKFs. The fitness metrics 𝒇𝑖 are used to 5 

compare particles with each other in the light of one or more optimization objectives. The algorithm consists of the following 

steps, whose motivation and details are included in the subsubsections below and their interactions illustrated in Figure 1. 

Table 2. Table 2 lists the meaning of each of the seven global parameters involved in the algorithm (∆𝑡, 𝑛, 𝑤root, 𝑝samp, 

𝑘F−class, 𝑛evo, and 𝑔). 

1. Drawing: draw root samples 𝒔𝑖
𝑡 from 𝑺𝑡 in descending weight order until ∑ 𝑤𝑖 ≥ 𝑤root 10 

2. Sampling: randomly sample 𝑺𝑡 until the total number of samples in the ensemble is 𝑝samp ∗ 𝑛 

3. Simulation: compute 𝒔𝑖
𝑡+∆𝑡 and 𝒐𝑖

𝑡:𝑡+∆𝑡 from each non-evaluated sample 𝒔𝑖
𝑡 using the model 

4. Evaluation: compute the fitness values 𝒇𝑖 for each sample/particle 𝑷𝑖 

5. Optimization: create additional samples using evolutionary algorithms and return to 3 (if number of samples is below 𝑛) 

6. Ranking: assign ranks 𝑟𝑖 to all particles 𝑷𝑖 using non-dominated sorting 15 

7. Weighting: compute the weight 𝑤𝑖  for each particle 𝑷𝑖 based on its rank 𝑟𝑖 

2.1.1 Drawing step 

While traditional PFs draw all the root (or base) samples from 𝑺𝑡 (Gordon et al., 1993)(Gordon et al., 1993),, OPTIMISTS can 

limit this selection to a subset of them. The root samples with the highest weight—those that are the “best performers”—are 

drawn first, then the next ones in descending weight order, until the total weight of the drawn samples ∑ 𝑤𝑖  reaches 𝑤root. 20 

𝑤root thus controls what percentage of the root samples to draw, and, if set to one, all of them are selected. 

2.1.2 Sampling step 

In this step the set of root samples drawn is complemented with random samples. The distinction between root samples and 

random samples is that the former are those that define the probability distribution 𝑺𝑡 (that serve as centroids for the kernels), 

while the latter are generated stochastically from the kernels. Random samples are generated until the size of the combined set 25 

reaches 𝑝samp ∗ 𝑛. by following the equations introduced in subsection 2.2. This second step contributes to the diversity of the 

ensemble in order to avoid sample impoverishment as seen on PFs (Carpenter et al., 1999)(Carpenter et al., 1999),, and serves 

as a replacement for traditional resampling strategies (Liu and Chen, 1998)(Liu and Chen, 1998).. The parameter 𝑤root 

therefore controls the intensity with which this feature is applied to offer users some level of flexibility. GeneratingHere 

generating random samples at the beginning, instead of resampling those that have been already evaluated, could lead to 30 
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discarding degenerate particles (those with high errors) early on and contribute to improved efficiency, given that the ones 

discarded are mainly those with the lowest weight as determined in the previous assimilation time step. 

2.1.3 Simulation step 

In this step, the algorithm uses the model to compute the resulting state vector 𝒔𝑖
𝑡+∆𝑡 and an additional set of output variables 

𝒐𝑖
𝑡:𝑡+∆𝑡  for each of the samples (it is possible that state variables double as output variables, though).). The simulation is 5 

executed starting at time 𝑡 for the duration of the assimilation time step ∆𝑡 (not to be confused with the model time step which 

is usually shorter). Depending on the complexity of the model, thisthe simulation step can be the one with the highest 

computational requirements. In those cases, parallelization of the simulations would help greatly to reducehelp in reducing the 

total footprint of the assimilation process. The construction of each particle 𝑷𝑖 is started by assembling the corresponding 

values computed so far: 𝒔𝑖
𝑡, (drawing, sampling, and optimization steps), and 𝒔𝑖

𝑡+∆𝑡, and 𝒐𝑖
𝑡:𝑡+∆𝑡. (simulation step). 10 

2.1.4 Evaluation step 

In order to determine which initial state 𝒔𝑖
𝑡 is the most desirable, a two-term cost function 𝐽 is typically used in variational 

methods that simultaneously measures the resulting deviations of modelled values 𝒐𝑖
𝑡:𝑡+∆𝑡 from observed values 𝒐obs

𝑡:𝑡+∆𝑡 and 

the departures from the background state distribution 𝑺𝑡  (Fisher, 2003)(Fisher, 2003).. The function usually has the form 

shown in Eq. (1)(1):: 15 

𝐽𝑖 = 𝑐1 ∙ 𝐽background(𝒔𝑖
𝑡 , 𝑺𝑡  ) + 𝑐2 ∙ 𝐽observations(𝒐𝑖

𝑡:𝑡+∆𝑡 , 𝒐obs
𝑡:𝑡+∆𝑡), (1) 

where 𝑐1 and 𝑐2 are balancing constants usuallynormally set so that 𝑐1 = 𝑐2. Such a multi-criteria evaluation is crucial both to 

guarantee a good level of fit with the observations (second term) and to avoid the optimization algorithm to produce an initial 

state that is inconsistent with previous states (thusfirst term)—which could potentially resultingresult in overfitting problems 

rooted in disproportionate violations of mass and energy conservation laws). (e.g., in hydrologic applications a sharp, 

unrealistic rise in the initial soil moisture could reduce 𝐽observations but would increase 𝐽background). In Bayesian methods, 20 

since the consistency with the history is maintained by sampling only from the prior/background distribution 𝑺𝑡, single term 

functions are used instead—which typically measure the probability density or likelihood of the modelled values given a 

distribution of the observations. 

In OPTIMISTS, any such fitness metric could be used and, most importantly, the algorithm allows defining several of them. 

Moreover, users can determine whether if each function is to be minimized (e.g., costs or errors) or maximized (e.g., 25 

likelihoods). We expect these features to be helpful if one wishes to separate errors when multiple types of observations are 

available (Montzka et al., 2012)(Montzka et al., 2012) and as a more natural way to consider different fitness criteria (lumping 

them together in a single function as in Eq. (1) can lead to balancing and “apples and oranges” complications). Moreover, it 

might prove beneficial to take into account the consistency with the state history both by explicitly defining such an objective 

here and by allowing states to be sampled from the previous distribution (and thus compounding the individual mechanisms 30 
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of Bayesian and variational methods). Functions to measure this consistency are proposed in subsection 2.2. With the set of 

optimizationobjective functions defined by the user, the algorithm computes the vector of fitness metrics 𝒇𝑖 for each particle 

during the evaluation step. 

2.1.5 Optimization step 

The optimization step is optional and is used to generate additional particles by exploiting the knowledge encoded in the fitness 5 

values of the current particle ensemble. In a twist to the signature characteristic of variational data assimilation, OPTIMISTS 

incorporates evolutionary multi-objective optimization algorithms (Deb, 2014)(Deb, 2014) instead of the established gradient-

based, single-objective methods. Evolutionary optimizers compensate their slower convergence speed with the capability of 

efficiently navigating non-convex solution spaces (i.e., the models and the fitness functions do not need to be linear with 

respect to the observations and the states). This feature effectively opens the door for variational methods to be used in 10 

disciplines where the linearization of the driving dynamics is either impractical, inconvenient, or undesirable. Whereas any 

traditional multi-objective global optimization method would work, our implementation of OPTIMISTS features a state-of-

the-art adaptive ensemble algorithm similar to AMALGAM (Vrugt and Robinson, 2007)(Vrugt and Robinson, 2007) that 

allows model simulations to be run in parallel (Crainic and Toulouse, 2010)(Crainic and Toulouse, 2010).. The optimizer 

ensemble includes a genetic algorithm (Deb et al., 2002)(Deb et al., 2002) and a hybrid approach that combines ant colony 15 

optimization (Socha and Dorigo, 2008)(Socha and Dorigo, 2008) and Metropolis-Hastings sampling (Haario et al., 

2001)(Haario et al., 2001).. 

During the optimization step, the group of optimizers is used to generate 𝑛evo new sample states 𝒔𝑖
𝑡 based on those in the 

current ensemble. For example, the genetic algorithm selects pairs of base samples with high performance scores 𝒇𝑖 and then 

proceeds to combine their individual values using standard crossover and mutation operators. The simulation and evaluation 20 

steps are repeated for these new samples, and then this iterative process is repeated until the particle ensemble has a size of 𝑛. 

Note that 𝑤root  and 𝑝samp  thus determine what percentage of the particles is generated in which way. For example, for 

relatively small values of 𝑤root and a 𝑝samp of 0.2, 80% of the particles will be generated by the optimization algorithms. In 

this way, OPTIMISTS offers its users the flexibility to behave anywhere in the range between “fully Bayesian” (𝑝samp = 1) 

and “fully variational” (𝑝samp = 0) in terms of particle generation. In the latter case, in which no root and random samples are 25 

available, the initial “population””/ensemble of states 𝒔𝑖
𝑡 is sampled uniformly from the viable range of each state variable. 

2.1.6 Ranking step 

A fundamental aspect of OPTIMISTS is the way in which it provides a probabilistic interpretation to the results of the multi-

objective evaluation, thus bridging the gap between Bayesian and variational assimilation. Such method has been used before 

(Dumedah et al., 2011)(Dumedah et al., 2011) and is based on the employment of non-dominated sorting (Deb, 2014)(Deb, 30 

2014),, another technique from the multi-objective optimization literature, which is used to balance the potential tensions 



10 

 

between various objectives. This sorting approach is centred on the concept of “dominance”,” instead of organizing all particles 

from the “best” to the “worst.” A particle dominates another if it outperforms it according to at least one of the 

criteria/objectives while simultaneously is not outperformed according to any of the others. Following this principle, in the 

ranking step particles are grouped in “fronts” comprised of members which are mutually non-dominated; that is, none of them 

is dominated by any of the rest. Particles in a front, therefore, represent the effective trade-offs between the competing criteria. 5 

Figure 1Figure 1.a.c illustrates the result of non-dominated sorting applied to nine particles being analysed under two 

objectives: minimum deviation from observations and maximum likelihood given the background state distribution 𝑺𝑡. Note 

that if a single objective function is used, the sorting method assigns ranks from “best” to “worst” according to that function, 

and two particles would only share ranks if their fitness value coincides. In our implementation we use the fast non-dominated 

sorting algorithm to define the fronts and assign the corresponding ranks 𝑟𝑖 (Deb et al., 2002)(Deb et al., 2002).. More efficient 10 

non-dominated sorting alternatives are available if performance becomes an issue (Zhang et al., 2015)(Zhang et al., 2015).. 

2.1.7 Weighting step 

In this final step, OPTIMISTS assigns weights 𝑤𝑖  to each particle according to its rank 𝑟𝑖 as shown in Eqs. (2)(2) and (3)(3).. 

This Gaussian weighting depends on the ensemble size 𝑛 and the greed parameter 𝑔, and is similar to the one proposed by 

(Socha and Dorigo, 2008)Socha and Dorigo (2008).. When 𝑔 is equal to zero, particles in all fronts are weighted uniformly; 15 

when 𝑔 is equal to one, only particles in the Pareto/first front are assigned non-zero weights. With this, the final estimated 

probability distribution of state variables for the next time step 𝑺𝑡+∆𝑡 can be established using multivariate weighted kernel 

density estimation, (details in the next subsection), as demonstrated in Fig. 1.be., by taking all target states 𝒔𝑖
𝑡+∆𝑡 (circles) as 

the centroids of the kernels. The obtained distribution 𝑺𝑡+∆𝑡 can then be used as the initial distribution for a new assimilation 

time step or, if the end of the assimilation window has been reached, it can be used to perform (ensemble) forecast simulations. 20 

𝑤𝑖 =
1

𝜎√2𝜋
𝑒

−
(𝑟𝑖−1)2

2𝜎2  (2) 

𝜎 = 𝑛 ∙ [0.1 + 9.9 ∙ (1 − 𝑔)5] (3) 

2.2 Model state probability distributions 

As mentioned before, OPTIMISTS uses kernel density probability distributions (West, 1993)OPTIMISTS to model the 

stochastic estimates of the state variable vectors. The algorithm requires two computations related to the state-variable 

probability distribution 𝑺𝑡: obtaining the probability density 𝑝 or likelihood ℒ of a sample and generating random samples. 

The first computation can be used in the evaluation step as an objective function to preserve the consistency of particles with 25 

the state history. (e.g., to penalize aggressive departures from the prior conditions). It should be noted that other suchseveral 

metrics that try to approximate this consistency exist, from very simple (Dumedah et al., 2011)(Dumedah et al., 2011) to quite 

complex (Ning et al., 2014). For example, it is common in variational data assimilation to utilize the background error term 
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𝐽background = (𝒔 − 𝒔𝑏)T𝐂−1(𝒔 − 𝒔𝑏), (4) 

where 𝒔𝑏 and 𝐂 are the mean and the covariance of the “background” state distribution (𝑺𝑡 in our case) which is assumed to 

be Gaussian (Fisher, 2003). The term 𝐽background is plugged into the cost function shown in Eq. (1)(Ning et al., 2014). The. 

For OPTIMISTS, we propose that the probability density of athe weighted state kernel density distribution 𝑺𝑡 at a given point 

(𝑝) be used as a stand-alone objective. The density is given by Eq. (5) (Wand and Jones, 1994) can be computed using Eq. (4) 

(Wand and Jones, 1994).. If Gaussian kernels are selected, the kernel function 𝐾, parameterized by the bandwidth matrix 𝐁, is 5 

evaluated using Eq. (6)(5).. 

𝑝(𝒔|𝑺) =
1

∑ 𝑤𝑖

∑[𝑤𝑖 ∙ 𝐾𝐁(𝒔 − 𝒔𝑖)]

𝑛

𝑖=1

 (5) 

𝐾𝐁
Gauss(𝒛) =

1

√(2𝜋)𝑛 ∙ |𝐁|
exp (−

1

2
𝒛T𝐁−1𝒛) (6) 

Matrix 𝐁 is the covariance matrix of the kernels, and thus determines their spread and orientation in the state space. 𝐁 is of 

size 𝑑 × 𝑑, where 𝑑 is the dimensionality of the state distribution (i.e., the number of variables), and can be thought of as a 

scaled-down version of the “background error covariance” matrix 𝐂 from the variational literature. In this sense matrix 𝐁, 

together with the spread of the ensemble of samples 𝒔𝑖 , effectively encode the uncertainty of the state variables. Several 10 

optimization-based methods exist to compute 𝐁 by attempting to minimize the asymptotic mean integrated squared error 

(AMISE) (Duong and Hazelton, 2005; Sheather and Jones, 1991)(Duong and Hazelton, 2005; Sheather and Jones, 1991).. 

However, here we opt to use a simplified approach for the sake of computational efficiency: we determine 𝐁 by scaling down 

the sample covariance matrix 𝐂 using Silverman’s rule of thumb, which takes into account the number of samples 𝑛 and the 

dimensionality of the distribution 𝑑, as shown in Eq. (7) (Silverman, 1986)(6) (Silverman, 1986). Figure 1.b. Figure 1 shows 15 

the density of atwo two-dimensional example distributiondistributions using this method. (a and e). If computational 

constraints are not a concern, using AMISE-based methods or kernels with variable bandwidth (Hazelton, 2003; Terrell and 

Scott, 1992)(Hazelton, 2003; Terrell and Scott, 1992) could result in higher accuracy. 

𝐁Silverman = (
4

𝑑 + 2
)

2
𝑑+4

∙ 𝑛−
2

𝑑+4 ∙ 𝐂 (7) 

Secondly, we can generateOPTIMISTS’ sampling step requires generating random samples from a multivariate weighted 

kernel density distribution. This is achieved by dividing the problem into two: we first select the root sample and then generate 20 

a random sample from the kernel associated with that base sample. The first step corresponds to randomly sampling a 

multinomial distribution with 𝑛 categories and assigning the normalized weights of the particles as the probability of each 

category. Once a root sample 𝒔root is selected, a random sample 𝒔random can be generated from a vector 𝒗 of independent 

standard normal random values of size 𝑑 , and a matrix 𝐀 as shown in Eq. (8)(7).. 𝐀 can be computed from a Cholesky 

decomposition (Krishnamoorthy and Menon, 2011)(Krishnamoorthy and Menon, 2011) such that 𝐀𝐀T = 𝐁. Alternatively, an 25 

eigendecomposition can be used to obtain 𝐐𝚲𝐐T = 𝐁 to then set 𝐀 = 𝐐𝚲½. 
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𝒔random = 𝒔root + 𝐀𝒗 (8) 

Both computations (density/likelihood and sampling) require 𝐁 to be invertible and, therefore, that none of the variables have 

zero variance or are perfectly linearly -dependent on each other. Zero-variance variables must therefore be isolated and 𝐁 

marginalized before attempting to use Eq. (6)(5) or to compute 𝐀. Similarly, linear dependencies must also be identified 

beforehand. If we include variables one by one in the construction of 𝐂, we can determine if a newly added one is linearly 

dependent if the determinant of the extended sample covariance matrix 𝐂 is zero. Once identified, the regression coefficients 5 

for the dependent variable can be efficiently computed from 𝐂  following the method described by (Friedman et al., 

2008)(Friedman et al., 2008).. The constant coefficient of the regression must also be calculated for future reference. What 

this process effectively does is to determine a linear model for each dependent variable that is represented by a set of regression 

coefficients. Dependent variables are not included in 𝐂, but they need to be taken into account afterwards (e.g., by determining 

their values for the random samples by solving the linear model with the values obtained for the variables in 𝐂). 10 

2.3 High-dimensional state vectors 

When the state vector of the model becomes large (i.e., 𝑑 increases), as is the case for distributed high-resolution numerical 

models, difficulties start to arise when dealing with the computations involving the probability distribution. At first, the 

probability density, as computed with Eqs. (5)(4) and (6)(5),, tends to diverge either towards zero or towards infinity. This 

phenomenon is related to the normalization of the density—so that it can integrate to one—and to its fast exponential decay as 15 

a function of the sample’s distance from the kernel’s centres. In these cases we propose replacing the density computation with 

an approximated likelihood formulation that is proportional to the inverse square Mahalanobis distance (Mahalanobis, 

1936)(Mahalanobis, 1936) to the root samples, thus skipping the exponentiation and normalization operations of the Gaussian 

density. This simplification, which corresponds to the inverse square difference between the sample value and the kernel’s 

mean in the univariate case, is shown in Eq. (9)(8).. The resulting distortion of the Gaussian bell-curve shape does not affect 20 

the results significantly, given that OPTIMISTS uses the fitness functions only to check for domination between particles—so 

only the sign of the differences between likelihood values are important and not their actual magnitudes. 

ℒMahalanobis(𝒔|𝑺) =
1

∑ 𝑤𝑖

∑
𝑤𝑖

|(𝒔 − 𝒔𝑖)
T𝐁−1(𝒔 − 𝒔𝑖)|

𝑛

𝑖=1

 (9) 

However, computational constraints might also make this simplified approach unfeasible both due to the 𝑂(𝑑2)  space 

requirements for storing the bandwidth matrix 𝐁 and the 𝑂(𝑑3) time complexity of the decomposition algorithms, which 

rapidly become huge burdens for the memory and the processors. Therefore, we can chose to sacrifice some accuracy by using 25 

a diagonal bandwidth matrix 𝐁 which does not include any covariance term—only the variance terms in the diagonal are 

computed and stored. This meansimplies that, even though the multiplicity of root samples would help in maintaining a large 

portion of the covariance, another portion is lost by preventing the kernels from reflecting the existing correlations. In other 

words, variables would not be rendered completely independent, but rather conditionally independent because the kernels are 
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still centred on the set of root samples. Kernels using diagonal bandwidth matrices are referred to as “D-class” while those 

using the full covariance matrix are referred to as “F-class..” The 𝑘F−class parameter controls which caseversion is used. 

With only the diagonal terms of matrix 𝐁 available (𝑏𝑗𝑗), we opt to roughly approximate the likelihood by computing the 

average of the standardized marginal likelihood value for each variable 𝑗, as shown in Eq. (10)(9):: 

ℒ independent(𝒔|𝑺) =
1

𝑑√2𝜋 ∑ 𝑤𝑖
∑ ∑ {𝑤𝑖 ∙ exp [−

(𝑠𝑗−𝑠𝑖,𝑗)
2

2𝑏𝑗𝑗
]}𝑛

𝑖=1
𝑑
𝑗=1 , (10) 

where 𝑠𝑗  represents the 𝑗 th element of state vector 𝒔 , and 𝑠𝑖,𝑗  represents the 𝑗 th element of the 𝑖 th sample of probability 5 

distribution 𝑺. Independent/marginal random sampling of each variable can also be applied to replace Eq. (8)(7) by adding 

random Gaussian residuals to the elements of the selected root sample 𝒔root. Sparse bandwidth matrices (Friedman et al., 2008; 

Ghil and Malanotte-Rizzoli, 1991)(Friedman et al., 2008; Ghil and Malanotte-Rizzoli, 1991) or low-rank approximations 

(Bannister, 2008; Ghorbanidehno et al., 2015; Li et al., 2015)(Bannister, 2008; Ghorbanidehno et al., 2015; Li et al., 2015) 

could be worthwhile intermediate alternatives to our proposed quasi-independent approach to be explored in the future. 10 

3 Experimental setup 

In this section we prepare the elements to investigate whether if OPTIMISTS can help improve the forecasting skill of 

hydrologic models. More specifically, the experiments seek to answer the following questions: Which characteristics of 

Bayesian and variational methods are the most advantageous? How can OPTIMISTS be configured to take advantage of these 

characteristics? How does the algorithm compare to established data assimilation methods? And how does it perform with 15 

high-dimensional applications? To help answer these questions, this section first introduces two case studies and then it 

presents two assimilation algorithmscharacterizes a traditional PF that werewas used for comparison purposes. 

3.1 Case studies 

We coupled a Java implementation of OPTIMISTS with two popular open-source distributed hydrologic modelling 

frameworksengines: Variable Infiltration Capacity (VIC) (Liang et al., 1994, 1996a, 1996b, Liang and Xie, 2001, 2003)(Liang 20 

et al., 1994, 1996a, 1996b, Liang and Xie, 2001, 2003) and the Distributed Hydrology Soil and Vegetation Model (DHSVM) 

(Wigmosta et al., 2002, 1994)(Wigmosta et al., 2002, 1994).. VIC is targeted at large watersheds by focusing on vertical 

subsurface dynamics, and also enabling intra-cell precipitation, soil, and vegetation heterogeneity. The DHSVM, on the other 

hand, was conceived for high-resolution representations of the Earth’s surface, allowing for saturated and unsaturated 

subsurface flow routing and 1D/2D surface routing (Zhang et al., 2018).. Both engines needed several modifications so that 25 

they could be executed in a non-continuous fashion as required for sequential assimilation. Given the non-Markovian nature 

of surface routing schemes coupled with VIC that are based either on multiscale routing frameworks (Guo et al., 2004; Wen 

et al., 2012)approaches (Guo et al., 2004; Wen et al., 2012) or on the unit hydrograph concept (Lohmann et al., 1998)(Lohmann 

et al., 1998),, a simplified routing routine was developed that treats the model cells as channels—albeit with longer retention 
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times. In the simplified method, direct runoff and baseflow produced by each model cell is partly routed through an assumed 

“equivalent” channel (slow component) and partly poured directly to the channel network (fast component). Both the channel 

network and the equivalent channels representing overland flow hydraulics are modelled using the Muskingum method. On 

the other hand, several important bugs in version 3.2.1 of the DHSVM, mostly related to the initialization of state variables 

but also pertaining to routing data and physics, were fixed. 5 

We selected two model applicationswatersheds to perform streamflow forecasting tests using OPTIMISTS: one with the VIC 

model running at a 1/8th degree resolution for the Blue River watershed in Oklahoma, and the other with the DHSVM running 

at a 100 m resolution for the Indiantown Run watershed in Pennsylvania. Table 3Table 3 lists the main characteristics of the 

two test watersheds and the information of their associated model configurations. Figure 2Figure 2 shows the land cover map 

together with the layout of the modelling cells for the two watersheds. The multi-objective ensemble optimization algorithm 10 

included in OPTIMISTS was employed to calibrate the two models’ parameters of the two models with the streamflow 

measurements from the corresponding USGS stations. For the Blue River, the traditional ℓ2-norm Nash-Sutcliffe Efficiency 

(NSEℓ2
) (which focuses mostly on the peaks of hydrographs), an ℓ1-norm version of the Nash-Sutcliffe Efficiency coefficient 

(NSEℓ1
) (Krause et al., 2005)(Krause et al., 2005),, and the mean absolute relative error MARE (which focuses mostly on the 

inter-peak periods) were used as optimization criteria. From 85,600 candidate parameterizations tried, one was chosen from 15 

the resulting Pareto front with NSEℓ2
 = 0.69, NSEℓ1

 = 0.56, and MARE = 44.71%. For the Indiantown Run, the NSEℓ2
, MARE, 

and absolute bias were optimized, resulting in a parameterization, out of 2,575, with NSEℓ2
 = 0.81, MARE = 37.85%, and an 

absolute bias of 11.83 l/s. 

These “optimal” parameter sets, together with additional sets produced in the optimization process were used to run the models 

and determine a set of time-lagged state variable vectors 𝒔 to construct the state probability distribution 𝑺0 at the beginning of 20 

each of a set of data assimilation scenarioscenarios. The state variables include liquid and solid interception; ponding, water 

equivalent and temperature of the snow packs; and moisture and temperature of each of the soil layers. While we do not expect 

all of these variables to be identifiable and sensitive within the assimilation problem, we decided to be thorough in their 

inclusion—a decision that also increases the challenge for the algorithm in terms of the potential for overfitting. The Blue 

River model application has 20 cells, with a maximum of seven intra-cell soil/vegetation partitions. After adding the stream 25 

network variables, the model has a total of 𝑑 = 812 state variables. The Indiantown Run model application has a total of 1,472 

cells and 𝑑 = 33,455 state variables. 

Three diverse scenarios were selected for the Blue River, each of them comprised of a two-week assimilation period (when 

streamflow observations are assimilated), and a two-week forecasting period (when the model is run in an open loop using the 

states obtained at the end of the assimilation period): Scenario 1, starting on October 15th, 1996, is rainy through the entire four 30 

weeks. Scenario 2, which starts on January 15th, 1997, has a dry assimilation period and a mildly rainy forecast period. Scenario 

3, starting on June 1st, 1997, has a relatively rainy assimilation period and a mostly-dry forecast period. Two scenarios, also 

spanning four weeks, were selected for the Indiantown Run, one starting on July 26th, 2009 and the other on August 26th, 2009. 
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We used factorial experiments (Montgomery, 2012)(Montgomery, 2012) to test different configurations of OPTIMISTS on 

each of these scenarios, by first assimilating the streamflow and then measuring the forecasting skill. ThisIn this type of 

experimental designs a set of assignments is established for each parameter and then all possible assignment combinations are 

tried. The design allows to establish the statistical significance of altering several parameters simultaneously, providing an 

adequate framework for determining, for example, whether if using a short or a long assimilation time step ∆𝑡 is preferable, or 5 

if utilizing the optional optimization step within the algorithm is worthwhile. Table 4Table 4 shows the setup of each of the 

three full factorial experiments we conducted, together with the selected set of assignments for OPTIMISTS’ parameters. The 

forecasts were produced in an ensemble fashion, by running the models using each of the samples 𝒔𝑖 from the state distribution 

𝑺  at the end of the assimilation time period, and then using the samples’ weights 𝑤𝑖  to produce an average forecast. 

Deterministic model parameters (those from the calibrated models) and forcings were used in all simulations. 10 

TheObservation errors are usually taken into account in traditional assimilation algorithms by assuming a probability 

distribution for the observations at each time step, and then performing a probabilistic evaluation of the predicted value of each 

particle/member against that distribution. As mentioned in section 2, such a fitness metric like the likelihood utilized in PFs to 

weight candidate particles, is perfectly compatible with OPTIMISTS. However, since it is difficult to estimate the magnitude 

of the observation error in general, and fitness metrics 𝒇𝑖 here are only used to determine (non-)dominance between particles, 15 

we opted to use the mean absolute error (MAE) with respect to the streamflow observations was used as an objective in in all 

cases.  

For the Blue River scenarios, thea secondary likelihood objective (when/metric was used) in some cases to select for particles 

with higher consistency with the history. It was computed using either Eq. (10)(9) if 𝑘F−class was set to false, or Eq. (9)(8) if 

it was set to true. Equation (10)(9) was used for all Indiantown Run scenarios given the large number of dimensions. The 20 

assimilation period was of two weeks for most configurations, except for those in Experiment 3 which have ∆𝑡 = 4 weeks. 

During both the assimilation and the forecasting periods we used unaltered streamflow data from the USGS and forcing data 

from NLDAS-2 (Cosgrove et al., 2003)(Cosgrove et al., 2003)——even though a forecasted forcing would be used instead in 

an operational setting (e.g., from systems like NAM (Rogers et al., 2009)(Rogers et al., 2009) or ECMWF (Molteni et al., 

1996)(Molteni et al., 1996)).). While adopting actualperfect forcings for the forecast period leads to an overestimation of their 25 

accuracy, any comparisons with control runs or between methods are still valid as they all share the same benefit. Also, 

removing the uncertainty in the meteorological forcings allows the analysis to focus on the uncertainty relatedcorresponding 

to the land surface. 

3.2 Data assimilation method comparison 

Comparing the performance of different configurations of OPTIMISTS can shed light into the adequacy of individual strategies 30 

utilized by traditional Bayesian and variational methods. For example, producing all particles with the optimization algorithms 

(𝑝samp = 0) and), setting long values for ∆𝑡, and utilizing a traditional two-term cost function as that in Eq. (1), makes the 
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method behave somewhat as a hard-constrained 4D-Var approach; while sampling all particles from the source state 

distribution (𝑝samp = 1), and setting ∆𝑡 equal to the model time step, and using a single likelihood objective involving the 

observation error, would resemble a traditional PF. Herein we also compare OPTIMISTS with two other data assimilation 

algorithmsa traditional PF on the Blue River VIC model application: a PF, and an evolutionary 4D variational (Evo4DVar) 

method. 5 

. Since the forcing is assumed to be deterministic, the implemented PF uses Gaussian “regularization”/perturbation of 

resampled particles to avoid degeneration (Pham, 2001)(Pham, 2001).. Resampling is executed such that the probability of 

duplicating a particle is proportional to their weight (Moradkhani et al., 2012)(Moradkhani et al., 2012). Evo4DVar is very 

similar to traditional 4DVar with the difference that an evolutionary optimization algorithm is used to navigate the non-convex 

solution space imposed by the non-linear nature of VIC. A single-objective version of the ensemble optimizer in OPTIMISTS 10 

is used, which is similar to AMALGAM-SO (Vrugt et al., 2009). The objective cost function 𝐽 to be minimized takes into 

account departures from the observations and from the mean background state as is the orthodoxy in variational methods. 

Assuming the background state distribution to be normally distributed, 𝐽 is given by Eq. (10):. 

Additionally, the comparison is performed using a continuous forecasting experiment setup instead of a scenario-based one. 

In this continuous test, forecasts are performed daily (the same as the model time step) and compiled in series for different 15 

forecast lead times that span a whole year, from November, 1996 to November, 1997. Forecast lead times are of 1, 3, 6, 12, 

and 24 days. Before each daily forecast, both OPTIMISTS and the PF assimilate streamflow observations for the assimilation 

time step of each algorithm (daily for the PF). The assimilation is performed cumulatively, meaning that the initial state 

distribution 𝑺𝑡 was produced by assimilating all the records available since the beginning of the experiment on October, 1996 

until time 𝑡. The forecasted streamflow series are then compared to the actual measurements to evaluate their quality using 20 

deterministic metrics (NSEℓ2
, NSEℓ1

, and MARE) and a probabilistic one: the ensemble-based continuous ranked probability 

score (CRPS) (Bröcker, 2012)where 𝒔𝑏 and 𝐂 are the mean and the covariance of the background state distribution, 𝑛𝑡 is the 

number of observations, 𝑞𝑡  and 𝑞obs
𝑡  are the modelled and observed streamflow values at time 𝑡 , and 𝜎𝑞  is the standard 

deviation of the observations (due to measurement errors). While the PF produces an ensemble of states (probabilistic) at the 

end of the assimilation period, Evo4DVar produces a single state vector (deterministic) which results from the state that 25 

minimizes 𝐽. 

, which is computed for each time step and then averaged for the entire duration of the forecast. 

4 Results and discussion 

The performance of each forecast produced by OPTIMISTS was analysed as follows.This section summarizes the forecasting 

results obtained from the three scenario-based experiments on the Blue River and the Indiantown Run model applications, and 30 

the continuous forecasting experiment performed on the Blue River application. The scenario-based experiments were 

performed to explore the effects of multiple parameterizations of OPTIMISTS, and the performance was analysed as follows. 
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The model was run for the duration of the forecast period (two weeks) using the state configuration encoded in each root state 

𝑠𝑖 of the distribution 𝑺 obtained at the end of the assimilation period for each configuration of OPTIMISTS and each scenario. 

We then computed the mean streamflow time series for each case by averaging the model results for each particle 𝑷𝑖 (the 

average was weighted based on the corresponding weights 𝑤𝑖). With this averaged streamflow series, we compute the three 

performance metrics—the NSEℓ2
, the NSEℓ1

, and the MARE—based on the observations from the corresponding stream gauge. 5 

The values for each experiment, scenario, and configuration are listed in tables in the supplementary material. With these, we 

compute the change in the forecast performance between each configuration and a control open-loop model run (one without 

the benefit of assimilating the observations). 

4.1 Blue River – low resolution application 

Figure 3The supplementary material includes the performance metrics for all of the tested configurations on all scenarios and 10 

for all experiments. Figure 3 summarizes the results for Experiment 1 with the VIC model application for the Blue River 

watershed, in which the distributions of the changes in MARE after marginalizing the results for each scenario and each of the 

parameter assignments are shown. That is, each box (and pair of whiskers) represents the distribution of change in MARE of 

all cases in the specified scenario or for which the specified parameter assignment was used. Negative values in the vertical 

axis indicate that OPTIMISTS decreased the error, while positive values indicate it increased the error. It can be seen that, on 15 

average, OPTIMISTS improves the precision of the forecast in most cases, except for several of the configurations in Scenario 

1 (for this scenario the control already produces a good forecast) and when using an assimilation step ∆𝑡 of one day. We 

performed an analysis of variance (ANOVA) to determine the statistical significance of the difference found for each of the 

factors. indicated in the horizontal axis. While Figure 3Figure 3 shows the 𝑝-values for the main effects, the full ANOVA table 

for all experiments can be found in the supplementary material. From the values in the figureFigure 3, we can conclude that 20 

the assimilation time step, the number of objectives, and the use of optimization algorithms are all statistically significant. On 

the other hand, the number of particles and the use of F-class kernels are not. 

A ∆𝑡 of five days produced the best results overall for the tested case, suggesting that there exists a sweet spot that balances 

the amount of information being assimilated (larger for a long ∆𝑡), and the number of state variables to be modified (larger for 

a small ∆𝑡). InBased on such caseresults, it would be logicalis reasonable to assume that thisthe sweet spot depends on the 25 

specificmay depend on the time series of precipitation, the characteristics of the watershed, and the temporal and spatial 

resolutions of its model application. From thatthis perspective, the poor results for a step of one day could be explained in 

terms of overfitting, where there are many degrees of freedom and only one value being assimilated per step. Evaluating 

particles in the light of two objectives, one minimizing departures from the observations and the other maximizing the 

likelihood of the source state, resulted in statistically-significant improvements compared to using the first objective alone. 30 

Additionally, the data suggests that not executing the optional optimization step of the algorithm (“optimization = false”), but 

instead relying only on particles sampled from the prior/source distribution, is also beneficial. These two results reinforce the 
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idea that maintaining consistency with the history to some extent is of paramount importance, perhaps to the point where the 

strategies used in Bayesian filters and variational methods are insufficient in isolation. Indeed, the best performance was 

observed only when both sampling was limited to generate particles from the prior state distribution and the particles were 

evaluated for their consistency with that distribution. 

On the other hand, we found it counterintuitive that neither using a larger particle ensemble nor taking into account state-5 

variable dependencies through the use of F-class kernels lead to improved results. In the first case it could be hypothesized 

that using too many particles leadscould lead to overfitting, since there arewould be more chances of particles being generated 

that happen to match the observations better but for the “wrong reasons.” In the second case, the non-parametric nature of 

kernel density estimation could be sufficient for encoding the raw dependencies between variables, especially in low-resolution 

cases like this one, in which significant correlations between variables in adjacent cells are not expected to be too largehigh. 10 

Both results deserve further investigation, especially concerning the impact of D- vs. F-class kernels in high-dimensional 

models. 

Interestingly, the ANOVA also yielded small 𝑝-values for several high-order interactions (see the ANOVA table in the 

supplementary material). This means that, unlike the general case for factorial experiments as characterized by the sparsity-

of-effects principle (Montgomery et al., 2009)(Montgomery et al., 2009),, specific combinations of multiple parameters have 15 

a large effect on the forecasting skill of the model. Significant interactions (with 𝑝 smaller than 0.05) are between the objectives 

and ∆𝑡 (𝑝 = 0.001); 𝑛 and 𝑘F−class (𝑝 = 0.039); ∆𝑡 and the use of optimization (𝑝 = 0.000); the use of optimization and 𝑘F−class 

(𝑝 = 0.029); the objectives, ∆𝑡 , and the use of optimization (𝑝 = 0.043); 𝑛 , ∆𝑡 , and 𝑘F−class  (𝑝 = 0.020); 𝑛 , the use of 

optimization, and 𝑘F−class (𝑝 = 0.013); and 𝑛, ∆𝑡, the use of optimizers, and 𝑘F−class (𝑝 = 0.006). These interactions show that, 

for example, using a single objective is especially inadequate when the time step is of one day or when optimization is used. 20 

Figure 4 shows the forecast results for specific parameter combinations to help understand other such interactions. For example, 

the first column shows the distribution of the six cases with an assimilation time step of one day, 100 particles, no optimization 

algorithms, and D-class kernels. The boxplots demonstrate that, for instanceAlso, employing optimization is only significantly 

detrimental when ∆𝑡 is of one day—probably because of intensified overfitting, and that choosing F-class kernels leads to 

higher errors when ∆𝑡  is small, 𝑛  large, and the optimizers are being used. While other patterns can be pointed to, the 25 

supporting 𝑝-values (shown in the figure) are inconclusive. 

Based on these results, we recommend the use of both objectives and no optimization as the preferred configuration of 

OPTIMISTS for the Blue River application. A time step of five days appears to be adequate for this specific model application. 

Also, without strong evidence for their advantages, we recommend using more particles or kernels of class F only if there is 

no pressure for computational frugality. Figure 5 compares the forecasting accuracy of the model after assimilating the 30 

streamflow observations with the PF, Evo4DVar, and OPTIMISTS with a configuration of ∆𝑡 = 5 days, two objectives, 𝑛 = 

100, 𝑝samp = 1.0, and 𝑘F−class = true for each of the three Blue River scenarios. A number of 100 particles was used for the 

PF, and Evo4DVar was allowed to try 100 configurations with 𝑐1 = 0.01 and 𝑐2 = 1.0. This combination of the balancing 
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constants 𝑐1 and 𝑐2 was found to yield good results for the Evo4DVar method given how the state variables outnumber the 

observations 812 to 14. Additionally, both the PF and Evo4DVar were seeded with the same set of states 𝑠𝑖
0 at the beginning 

of the assimilation periodHowever, the number of particles should not be too small to ensure an appropriate sample size. 

Table 5 shows the results of the year-long continuous forecasting experiment on the Blue River using a 50-particle PF and a 

configuration of OPTIMISTS with a 7-day assimilation time step ∆𝑡, both objectives, 50 particles, no optimization, and F-5 

class kernels. Both the OPTIMISTS and PF methods show relatively good performance for all lead times (1, 3, 6, 12, and 24 

days) based on both the deterministic and probabilistic performance metrics. However, OPTIMISTS generally outperforms 

the PF, especially for the longest lead times of 12 and 24 days. The errors with OPTIMISTS are usually smaller for longer lead 

times than the PF method, indicating that the longer ∆𝑡 leads to reductions in overfitting. This is probably because particles 

that perform better over a wider time frame are more likely to be selected. Such a result also suggests that the search for an 10 

optimal ∆𝑡 should consider the range of lead times that are deemed most critical for specific applications. 

Figure 4Table 5 shows the corresponding performance metrics for these forecasts. It can be seen that the three methods perform 

similarly on the rainy autumn case (Scenario 1) and on the dry-wet winter case (Scenario 2), with OPTIMISTS displaying a 

modestly higher accuracy. On the other hand, Evo4DVar and especially the PF considerably overestimate the recession flow 

on the wet-dry summer case (Scenario 3), while OPTIMISTS is able to maintain a very reasonable performance. It can be 15 

hypothesized that the large observed peak during the assimilation period forced the PF and Evo4DVar to overestimate the 

moisture in the entire watershed, while the hybrid method proved better-equipped to maintain the overall consistency of the 

ensemble and thus avoid a bad case of overfitting. We attribute this to the combined strengths of Bayesian sampling and the 

multi-objective, history-aware ranking of candidate particles; which again appears to outperform each of the two strategies if 

they are used in isolation. shows the probabilistic streamflow forecasts for both algorithms for a lead time of 6 days and 24 20 

days. The portrayed evolution of the density evidences the non-Gaussian nature of both estimates. While the behaviour of 

OPTIMISTS’ forecasts of the low flow regime seems less stable in contrast with the PF’s, its relative higher performance 

suggests that the estimates of the PF are overconfident and that OPTIMISTS’ display a more sensible understanding of the 

associated uncertainty. These comparisons thus provide evidence showing that the combined features of Bayesian and 

variational data assimilation, if configured properly, effectively give OPTIMISTS an edge over traditional approaches. 25 

4.2 Indiantown Run – high resolution application 

Figure 5Figure 6 summarizes the changes in performance when using OPTIMISTS in Experiment 2. In this case, the more 

uniform forcing and streamflow conditions of the two scenarios allowed to statistically analyse all three performance metrics. 

For Scenario 1 we can see that OPTIMISTS produces a general increase in the Nash-Sutcliffe coefficients, but a decline in the 

MARE, evidencing tension between fitting the peaks and the inter-peak periods at the same time. For both scenarios there are 30 

configurations that performed very poorly, and we can look at the marginalized results in the boxplots for clues into which 

parameters might have caused this. Similar to the Blue River case, the use of a 1-hour time step significantly reduced the 

forecast skill, while the longer step almost always improved it; and the inclusion of the secondary history-consistency objective 
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(“2 objectives”) also resulted in improved performance. Not only does it seem that for this watershed the secondary objective 

mitigated the effects of overfitting, but it was interesting to note some configurations in which using it actually helped 

achievingto achieve a better fit during the assimilation period. 

While the ANOVA also provided evidence against the use of optimization algorithms, we are reluctant to instantly rule them 

out on the grounds that there were statistically significant interactions with other parameters (see the ANOVA table in the 5 

supplementary material). The optimizers led to poor results in cases with one-hour time steps or when only the first objective 

was used. Other statistically significant results point to the benefits of using the root samples more intensively (in opposition 

to using random samples) and, to a lesser extent, to the benefits of maintaining an ensemble of moderate size. 

Figure 6Figure 7 shows the summarized changes in Experiment 3, where we wanted to explore the effect of the time step ∆𝑡 

is explored in greater detail. Once again, there seemsappears to be evidence favouring the hypothesis that there exists a sweet 10 

spot, and in this case it appears to be close to the two weeks mark: both shorter and longer time steps led to considerably poorer 

performance. This timeIn this experiment, with all configurations using both optimization objectives, we can see that there are 

no clear disadvantages of using optimization algorithms (but also no advantages). Experiment 3 also shows that the effect of 

the greed parameter 𝑔 is not very significant. That is, selecting some particles from dominated fronts to construct the target 

state distribution, and not only from the Pareto front, does not seem to affect the results. 15 

With this information, we can select a preferred configuration of OPTIMISTS with a time step of two weeks, two objectives, 

100 particles, no optimization, 𝑤root  = 95%, and 𝑔 = 0.5. Figure 7Figure 8 shows the forecast comparisons between this 

configuration and the control open-loop model for scenarios 1 and 2. In both cases we see the control becoming too dry 

throughout, possibly because of recessions occurring faster than they should, at least during the period being studied. 

Assimilating streamflow data with OPTIMISTS leads to improvements in both cases. Also note that the performance metrics 20 

in Figure 7 (and in many of the results in all three scenario-based experiments) might make the error seem as being too large 

in the light of traditional standards, but this is justified given the very short time period of evaluation, and the ever-present 

effect of structural errors in the model applications—which in any case do not invalidate any of the results as all conditions 

also apply uniformly to the control runs and the PF method. 

4.3 Computational performance 25 

It is worth noting that the longer the assimilation time step, the faster the entire process is. This occurs because, even though 

the number of hydrological calculations is the same in the end, for every assimilation time step the model files need to be 

generated accordingly, then accessed, and finally the result files written and accessed. This whole process takes a considerable 

amount of time. Therefore, everything else being constant, sequential assimilation (like with PFs) automatically imposes 

additional computational requirements. In our tests we used RAM drive software to accelerate the process of running the 30 

models sequentially and, even then, the overhead imposed by OPTIMISTS was consistently below 10% of the total 

computation time. Most of the computational effort remained with running the model, both for VIC and the DHSVM. In this 
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sense, model developers may consider allowing their engines to be able to receive input data from main memory, if possible, 

to facilitate data assimilation and other similar processes. 

4.4 Recommendations for configuring OPTIMISTS 

Finally, here we summarize the recommended choices for the parameters in OPTIMISTS based on the results of the 

experiments. In the first place, given their low observed effect, default values can be used for 𝑔 (around 0.5). A 𝑤root higher 5 

than 90% was found to be advantageous. The execution of the optimization step (𝑝samp < 1) was, on the other hand, not found 

to be advantageous and, therefore, we consider it a cleaner approach to simply generate all samples from the initial distribution. 

Similarly, while not found to be disadvantageous, using diagonal bandwidth (D-class) kernels provide a significant 

improvement in computational efficiency and are thus recommended for the time being. Future work will be conducted to 

further explore the effect of the bandwidth configuration in OPTIMISTS. 10 

Even though only two objective functions were tested, one measuring the departures from the observations being assimilated 

and another measuring the compatibility of initial samples with the initial distribution, the results clearly show that it is 

beneficial to simultaneously evaluate candidate particles using both criteria. While traditional cost functions like the one in 

Eq. (1) do indeed consider both aspects, we argue that that using multiple objectives has the added benefit of enriching the 

diversity of the particle ensemble and, ultimately, the resulting probabilistic estimate of the target states. 15 

Our results demonstrated that the assimilation time step is the most sensitive parameter and, therefore, its selection must be 

done with the greatest involvement. Taken the results together, we recommend that multiple choices be tried for any new case 

study looking to strike a balance between the amount of information being assimilated and the number of degrees of freedom. 

This empirical selection should also be performed with a rough sense of what is the range of forecasting lead-times that is 

considered the most important. Lastly, more work is required to provide guidelines to select the number of particles 𝑛 to be 20 

used. While the literature suggests that more should increase forecast accuracy, our tests did not back this conclusion. We 

tentatively recommend trying different ensemble sizes based on the computational resources available and selecting the one 

that offers the best observed trade-off between accuracy and efficiency. 

5 Conclusions and future work 

In this article we introduced OPTIMISTS, a flexible, model-independent data assimilation algorithm that effectively combines 25 

the signature elements from Bayesian and variational methods: By employing essential features from particle filters, it allows 

performing probabilistic non-Gaussian estimates of state variables through the filtering of a set of particles drawn from a prior 

distribution to better match the available observations.  Adding critical features from variational methods, OPTIMISTS grants 

its users the option of exploring the state space using optimization techniques and evaluating candidate states through a time 

window of arbitrary length. The algorithm fuses a multi-objective/Pareto analysis of candidate particles with kernel density 30 

probability distributions to effectively bridge the gap between the probabilistic and the variational perspectives. Moreover, the 
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use of evolutionary optimization algorithms enables its efficient application on highly non-linear models as those usually found 

in most geophysical sciences.geosciences. This unique combination of features represent a clear differentiation from the 

existing hybrid assimilation methods in the literature (Bannister, 2016)(Bannister, 2016),, which have mostly been developed 

around ensemble Kalman filters and convex optimization techniques (and thereforeare limited to Gaussian distributions and 

linear dynamics).. 5 

We conducted a set of hydrologic forecasting factorial experiments on two watersheds, the Blue River with 812 state variables 

and the Indiantown Run with 33,455, at two distinct modelling resolutions using two different modelling engines: VIC and the 

DHSVM, respectively. Capitalizing on the flexible configurations available for OPTIMISTS, these tests allowed to determine 

which individual characteristics of traditional algorithms prove to be the most advantageous for forecasting applications. For 

example, while there is a general consensus in the literature favouring extended time steps (4D) over sequential ones (1D-3D), 10 

the results from assimilating streamflow data in our experiments suggest that there is an ideal duration of the assimilation time 

step that is dependent on the case study under consideration and, on the spatiotemporal resolution of the corresponding model 

application, and on the desired forecast length. Sequential time steps not only required considerably longer computational 

times but also produced the worst results—perhaps given the overwhelming number of degrees of freedom in contrast with 

the scarce observations available. Similarly, there was a drop in the performance of the forecast ensemble when the algorithm 15 

was set to use overly long time steps. 

Procuring the consistency of candidate particles, not only with the observations but also with the history, led to significant 

gains in predictive skill. OPTIMISTS can be configured to both perform Bayesian sampling and find Pareto-optimal particles 

that trade-off deviations from the observations and from the prior conditions, a strategy that proved superior to those of 

traditional algorithms. This Bayesian/multi-objective formulation of the optimization problem was especially beneficial for 20 

the high-resolution watershed application, as it allows the model to overcome the risk of overfitting generated by the enlarged 

effect of equifinality. 

On the other hand, our experiments did not produce enough evidence to recommend neither exploring the state space with 

optimization algorithms instead of doing so with simple probabilistic sampling, the use of a larger number of particles above 

the established baseline of 100, nor the computationally-intensive utilization of full covariance matrices to encode the 25 

dependencies between variables in the kernel-based state distributions. Nevertheless, strong interactions between several of 

these parameters suggest that some specific combinations could potentially yield strong outcomes. Together with OPTIMISTS’ 

observed high level of sensitivity to the parameters, these results indicate that there could be promise in the implementation of 

self-adaptive strategies (Karafotias et al., 2014)(Karafotias et al., 2014) to assist in their selection in the future. With these 

experiments, we were able to configure the algorithm to consistently improve the forecasting skill of the models compared to 30 

control open-loop runs. Additionally, a comparative test using the Blue River model application showed that OPTIMISTS was 

able to reliably produce adequate forecasts that were better than or similar or better (with errors as much as 50% smaller) 

thanto those resulting from assimilating the observations with a particle filter and an evolutionary 4D variational method. 
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Moreover, in this article we offered several alternatives in the implementation of the components of OPTIMISTS whenever 

there were tensions between prediction accuracy and computational efficiency. In the future, we will focus on incorporating 

additional successful ideas from diverse assimilation algorithms and on improving components in such a way that both of these 

goals are attained with ever-smaller compromises. For instance, the estimation of initial states should not be overburdened 

with the responsibility of compensating structural and calibration deficiencies in the model. In this sense, we embrace the 5 

vision of a unified framework for the joint probabilistic estimation of structures, parameters, and state variables (Liu and Gupta, 

2007)(Liu and Gupta, 2007), but we remain sceptical of, where it is important to address challenges associated with approaches 

that would increase the indeterminacy of the problem by adding unknowns without providing additional information or 

additional means of relating existing variables. We expect that with continued efforts OPTIMISTS will be a worthy candidate 

framework to be deployed in operational settings for hydrologic prediction and beyond. 10 

Data and code availability  

All the data utilized to construct the models is publicly available through the internet from their corresponding US government 

agencies’ websites. The executable forJava implementation of OPTIMISTS, is available by request to the authors. The source 

code of the particle filter, and the evolutionary 4D variational algorithm are is available through GitHub 

(https://github.com/felherc/(https://github.com/felherc/). The repositories). These sources include all the information needed 15 

to replicate the experiments in this article. 

Acknowledgements  

The authors are thankful to the two anonymous referees and the Editor for their valuable comments and suggestions. This work 

was supported in part by the United States Department of Transportation through award #OASRTRS-14-H-PIT to the 

University of Pittsburgh and by the William Kepler Whiteford Professorship from the University of Pittsburgh. 20 

Previous versions 

An earlier version of this article was submitted for peer review to be considered for publication on HESS and is available in 

the HESSD archive (Hernández and Liang, 2016). While the proposed method itself has seen no changes since, this new 

version attempts to make its presentation much more approachable and has included the comparative tests with the particle 

filter. 25 

References 

Adams, R. M., Houston, L. L., McCarl, B. A., Tiscareño, M. L., Matus, J. G. and Weiher, R. F.: The benefits to Mexican 

https://github.com/felherc/


24 

 

agriculture of an El Niño-southern oscillation (ENSO) early warning system, Agric. For. Meteorol., 115(3–4), 183–194, 

doi:10.1016/S0168-1923(02)00201-0, 2003. 

Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, 

Adv. Water Resour., 29(6), 872–886, doi:10.1016/j.advwatres.2005.08.004, 2006. 

Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the 5 

forecast error covariance statistics, Q. J. R. Meteorol. Soc., 134(637), 1971–1996, doi:10.1002/qj.340, 2008. 

Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. R. Meteorol. 

Soc., 29(January), 1–29, doi:10.1002/QJ.2982, 2016. 

Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320(1–2), 18–36, doi:10.1016/j.jhydrol.2005.07.007, 2006. 

Bröcker, J.: Evaluating raw ensembles with the continuous ranked probability score, Q. J. R. Meteorol. Soc., 138(667), 1611–10 

1617, doi:10.1002/qj.1891, 2012. 

Buehner, M., Houtekamer, P. L., Charette, C., Mitchell, H. L. and He, B.: Intercomparison of Variational Data Assimilation 

and the Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations, 

Mon. Weather Rev., 138(5), 1567–1586, doi:10.1175/2009MWR3158.1, 2010. 

Carpenter, J., Clifford, P. and Fearnhead, P.: Improved particle filter for nonlinear problems, IEE Proc. - Radar, Sonar Navig., 15 

146(1), 2, doi:10.1049/ip-rsn:19990255, 1999. 

Clark, M. P., Rupp, D. E., Woods, R. a., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J. and Uddstrom, M. J.: Hydrological 

data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed 

hydrological model, Adv. Water Resour., 31(10), 1309–1324, doi:10.1016/j.advwatres.2008.06.005, 2008. 

Clark, M. P., Bierkens, M. F. P. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N. N., Cai, 20 

X., Wood, A. W., Peters-Lidard, C. D., Uijenhoet, R., Bennet, K. E., Pauwels, V. R. N. N., Cai, X., Wood, A. W. and 

Peters-Lidard, C. D.: The evolution of process-based hydrologic models: Historical challenges and the collective quest for 

physical realism, Hydrol. Earth Syst. Sci. Discuss., 21(January), 1–14, doi:10.5194/hess-2016-693, 2017. 

Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Marshall, C., Sheffield, 

J., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., Tarpley, J. D. and Meng, J.: Real-time and retrospective forcing in the 25 

North American Land Data Assimilation System (NLDAS) project, J. Geophys. Res. Atmos., 108(D22), 

doi:10.1029/2002JD003118, 2003. 

Crainic, T. G. and Toulouse, M.: Parallel Meta-heuristics, in Handbook of Metaheuristics, vol. 146, edited by M. Gendreau 

and J.-Y. Potvin, pp. 497–541, Springer US., 2010. 

Deb, K.: Multi-objective Optimization, in Search Methodologies: Introductory Tutorials in Optimization and Decision Support 30 

Techniques, edited by E. K. Burke and G. Kendall, pp. 403–449, Springer US., 2014. 

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II, Evol. 

Comput. IEEE Trans., 6(2), 182–197, doi:10.1109/4235.996017, 2002. 

Desroziers, G., Camino, J. T. and Berre, L.: 4DEnVar: Link with 4D state formulation of variational assimilation and different 

possible implementations, Q. J. R. Meteorol. Soc., 140(684), 2097–2110, doi:10.1002/qj.2325, 2014. 35 

Dumedah, G. and Coulibaly, P.: Evolutionary assimilation of streamflow in distributed hydrologic modeling using in-situ soil 

moisture data, Adv. Water Resour., 53, 231–241, doi:10.1016/j.advwatres.2012.07.012, 2013. 

Dumedah, G., Berg, A. a. and Wineberg, M.: An Integrated Framework for a Joint Assimilation of Brightness Temperature 

and Soil Moisture Using the Nondominated Sorting Genetic Algorithm II, J. Hydrometeorol., 12(6), 1596–1609, 

doi:10.1175/JHM-D-10-05029.1, 2011. 40 

Duong, T. and Hazelton, M. L.: Cross-validation bandwidth matrices for multivariate kernel density estimation, Scand. J. Stat., 

32, 485–506, doi:10.1111/j.1467-9469.2005.00445.x, 2005. 

Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-objective calibration approaches in hydrological modelling: a 



25 

 

review, Hydrol. Sci. J., 55(February 2015), 58–78, doi:10.1080/02626660903526292, 2010. 

Errico, R. M.: What Is an Adjoint Model?, Bull. Am. Meteorol. Soc., 78(11), 2577–2591, doi:10.1175/1520-

0477(1997)078<2577:WIAAM>2.0.CO;2, 1997. 

Evensen, G.: Data assimilation: the ensemble Kalman filter, Springer Science & Business Media., 2009. 

Evensen, G. and van Leeuwen, P. J.: An ensemble Kalman smoother for nonlinear dynamics, Mon. Weather Rev., 128(6), 5 

1852–1867, doi:10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2, 2000. 

Fisher, M.: Background error covariance modelling, Semin. Recent Dev. Data Assim. …, 45–63 [online] Available from: 

ftp://beryl.cerfacs.fr/pub/globc/exchanges/daget/DOCS/sem2003_fisher.pdf%5Cnpapers2://publication/uuid/265DCC42-

4A9C-482A-B2CF-74866FCC2312, 2003. 

Friedman, J., Hastie, T. and Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 9(3), 10 

432–441, doi:10.1093/biostatistics/kxm045, 2008. 

Gauthier, P., Tanguay, M., Laroche, S., Pellerin, S. and Morneau, J.: Extension of 3DVAR to 4DVAR: Implementation of 

4DVAR at the Meteorological Service of Canada, Mon. Weather Rev., 135(6), 2339–2354, doi:10.1175/MWR3394.1, 

2007. 

Ghil, M. and Malanotte-Rizzoli, P.: Data assimilation in meteorology and oceanography, Adv. Geophys, 33, 141–266, 15 

doi:10.1016/S0065-2687(08)60442-2, 1991. 

Ghorbanidehno, H., Kokkinaki, A., Li, J. Y., Darve, E. and Kitanidis, P. K.: Real-time data assimilation for large-scale systems: 

The spectral Kalman filter, Adv. Water Resour., 86, 260–272, doi:10.1016/j.advwatres.2015.07.017, 2015. 

Gordon, N. J., Salmond, D. J. and Smith, A. F. M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE 

Proc. F Radar Signal Process., 140(2), 107, doi:10.1049/ip-f-2.1993.0015, 1993. 20 

Guo, J., Liang, X. and Leung, L. R.: A new multiscale flow network generation scheme for land surface models, Geophys. 

Res. Lett., 31(23), 1–4, doi:10.1029/2004GL021381, 2004. 

Haario, H., Saksman, E. and Tamminen, J.: An Adaptive Metropolis Algorithm, Bernoulli, 7(2), 223–242, 

doi:10.2307/3318737, 2001. 

Hawkins, D. M.: The Problem of Overfitting, J. Chem. Inf. Comput. Sci., 44(1), 1–12, doi:10.1021/ci0342472, 2004. 25 

Hazelton, M. L.: Variable kernel density estimation, Aust. N. Z. J. Stat., 45(3), 271–284, doi:10.1111/1467-842X.00283, 2003. 

Hernández, F. and Liang, X.: Hybridizing sequential and variational data assimilation for robust high-resolution hydrologic 

forecasting, Hydrol. Earth Syst. Sci. Discuss., (September), 1–25, doi:10.5194/hess-2016-454, 2016. 

Homer, C., Fry, J. and Barnes, C.: The National Land Cover Database, US Geol. Surv. Fact Sheet, 3020(February), 1–4 [online] 

Available from: http://pubs.usgs.gov/fs/2012/3020/, 2012. 30 

Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V, Syed, K. H. and Goodrich, D. C.: Integration of soil moisture 

remote sensing and hydrologic modeling using data assimilation, Water Resour. Res., 34(12), 1998. 

Karafotias, G., Hoogendoorn, M. and Eiben,  aA. E.: Parameter Control in Evolutionary Algorithms: Trends and Challenges, 

IEEE Trans. Evol. Comput., to appear,(2), 167–187, doi:10.1109/TEVC.2014.2308294, 2014. 

Koster, R. D., Betts, A. K., Dirmeyer, P. A., Bierkens, M., Bennett, K. E., Déry, S. J., Evans, J. P., Fu, R., Hernandez, F., 35 

Leung, L. R., Liang, X., Masood, M., Savenije, H., Wang, G. and Yuan, X.: Hydroclimatic variability and predictability: 

a survey of recent research, Hydrol. Earth Syst. Sci., 21(7), 3777–3798, doi:10.5194/hess-21-3777-2017, 2017. 

Krause, P., Boyle, D. P. and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. 

Geosci., 5(89), 89–97, doi:10.5194/adgeo-5-89-2005, 2005. 

Krishnamoorthy, A. and Menon, D.: Matrix Inversion Using Cholesky Decomposition, CoRR, (3), 10–12 [online] Available 40 

from: http://arxiv.org/abs/1111.4144, 2011. 



26 

 

van Leeuwen, P. J.: Particle Filtering in Geophysical Systems, Mon. Weather Rev., 137(12), 4089–4114, 

doi:10.1175/2009MWR2835.1, 2009. 

van Leeuwen, P. J.: Nonlinear Data Assimilation for high-dimensional systems, in Nonlinear Data Assimilation, edited by J. 

P. Van Leeuwen, Y. Cheng, and S. Reich, pp. 1–73, Springer International Publishing., 2015. 

Li, J. Y., Kokkinaki, A., Ghorbanidehno, H., Darve, E. F. and Kitanidis, P. K.: The compressed state Kalman filter for nonlinear 5 

state estimation: Application to large-scale reservoir monitoring, Water Resour. Res., 51(12), 9942–9963, 

doi:10.1002/2015WR017203, 2015. 

Liang, X. and Xie, Z.: A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models, 

Adv. Water Resour., 24(9), 1173–1193, 2001. 

Liang, X. and Xie, Z.: Important factors in land–atmosphere interactions: surface runoff generations and interactions between 10 

surface and groundwater, Glob. Planet. Change, 38(1), 101–114, 2003. 

Liang, X., Lettenmaier, D. P., Wood, E. F. and Burges, S. J.: A simple hydrologically based model of land surface water and 

energy fluxes for general circulation models, J. Geophys. Res., 99(D7), 14415, doi:10.1029/94JD00483, 1994. 

Liang, X., Lettenmaier, D. P. and Wood, E. F.: One-dimensional statistical dynamic representation of subgrid spatial variability 

of precipitation in the two-layer variable infiltration capacity model, J. Geophys. Res. Atmos., 101(D16), 21403–21422, 15 

1996a. 

Liang, X., Wood, E. F. and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and 

modification, Glob. Planet. Change, 13(1), 195–206, 1996b. 

Liu, J. S. and Chen, R.: Sequential Monte Carlo Methods for Dynamic Systems, J. Am. Stat. Assoc., 93(443), 1032–1044, 

doi:10.2307/2669847, 1998. 20 

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water 

Resour. Res., 43(7), 1–18, doi:10.1029/2006WR005756, 2007. 

Lohmann, D., Rashke, E., Nijssen, B. and Lettenmaier, D. P.: Regional scale hydrology: I. Formulation of the VIC-2L model 

coupled to a routing model, Hydrol. Sci. J., 43(1), 131–141, doi:10.1080/02626669809492107, 1998. 

Lorenc, A. C., Bowler, N. E., Clayton, A. M., Pring, S. R. and Fairbairn, D.: Comparison of Hybrid-4DEnVar and Hybrid-25 

4DVar Data Assimilation Methods for Global NWP, Mon. Weather Rev., 143(1), 212–229, doi:10.1175/MWR-D-14-

00195.1, 2015. 

Mahalanobis, P. C.: On the generalized distance in statistics, Proc. Natl. Inst. Sci., 2, 49–55, 1936. 

Miller, D. A. and White, R. A.: A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate 

and Hydrology Modeling, Earth Interact., 2(1), 2–2, doi:10.1175/1087-3562(1998)002<0002:CUSMS>2.0.CO;2, 1998. 30 

Molteni, F., Buizza, R., Palmer, T. N. and Petroliagis, T.: The ECMWF ensemble prediction system: Methodology and 

validation, Q. J. R. Meteorol. Soc., 122(529), 73–119, doi:10.1002/qj.49712252905, 1996. 

Montgomery, D. C.: Design and analysis of experiments, Eigth edit., John Wiley & Sons., 2012. 

Montgomery, D. C., Runger, G. C. and Hubele, N. F.: Engineering statistics, John Wiley & Sons., 2009. 

Montzka, C., Pauwels, V. R. N., Franssen, H.-J. H., Han, X. and Vereecken, H.: Multivariate and Multiscale Data Assimilation 35 

in Terrestrial Systems: A Review, Sensors, 12(12), 16291–16333, doi:10.3390/s121216291, 2012. 

Moradkhani, H., DeChant, C. M. and Sorooshian, S.: Evolution of ensemble data assimilation for uncertainty quantification 

using the particle filter-Markov chain Monte Carlo method, Water Resour. Res., 48(12), doi:10.1029/2012WR012144, 

2012. 

Ning, L., Carli, F. P., Ebtehaj, A. M., Foufoula-Georgiou, E. and Georgiou, T. T.: Coping with model error in variational data 40 

assimilation using optimal mass transport, Water Resour. Res., 50(7), 5817–5830, doi:10.1002/2013WR014966, 2014. 

Noh, S. J., Tachikawa, Y., Shiiba, M. and Kim, S.: Applying sequential Monte Carlo methods into a distributed hydrologic 



27 

 

model: Lagged particle filtering approach with regularization, Hydrol. Earth Syst. Sci., 15(10), 3237–3251, 

doi:10.5194/hess-15-3237-2011, 2011. 

Park, S., Hwang, J. P., Kim, E. and Kang, H. J.: A new evolutionary particle filter for the prevention of sample impoverishment, 

IEEE Trans. Evol. Comput., 13(4), 801–809, doi:10.1109/TEVC.2008.2011729, 2009. 

Penning-Rowsell, E. C., Tunstall, S. M., Tapsell, S. M. and Parker, D. J.: The benefits of flood warnings: Real but elusive, and 5 

politically significant, J. Chart. Inst. Water Environ. Manag., 14(1), 7–14, doi:10.1111/j.1747-6593.2000.tb00219.x, 2000. 

Pham, D. T.: Stochastic methods for sequential data assimilation in strongly nonlinear systems, Mon. Weather Rev., 129(5), 

1194–1207, doi:10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2, 2001. 

Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., Inverarity, G. W., Lorenc, A. C. and Payne, T. J.: The Met 

Office global four-dimensional variational data assimilation scheme, Q. J. R. Meteorol. Soc., 133(623), 347–362, 10 

doi:10.1002/qj.32, 2007. 

Reichle, R. H., McLaughlin, D. B. and Entekhabi, D.: Variational data assimilation of microwave radiobrightness observations 

for land surface hydrology applications, Geosci. Remote Sensing, IEEE Trans., 39(8), 1708–1718, doi:10.1109/36.942549, 

2001. 

Rodríguez, E., Morris, C. S. and Belz, J. E.: A global assessment of the SRTM performance, Photogramm. Eng. Remote Sens., 15 

72(3), 249–260, 2006. 

Rogers, E., DiMego, G., Black, T., Ek, M., Ferrier, B., Gayno, G., Janic, Z., Lin, Y., Pyle, M., Wong, V. and Wu, W.-S.: The 

NCEP North American Mesoscale Modeling System: Recent Changes and Future Plans, 23rd Conf. Weather Anal. 

Forecast. Conf. Numer. Weather Predict., (1995) [online] Available from: 

http://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154114.htm, 2009. 20 

Seaber, P. R., Kapinos, F. P. and Knapp, G. L.: Hydrologic unit maps, US Government Printing Office Washington, DC, USA., 

1987. 

Sheather, S. J. and Jones, M. C.: A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation, J. R. 

Stat. Soc. Ser. B, 53(3), 683–690, doi:10.2307/2345597, 1991. 

Silverman, B. B. W.: Density estimation for statistics and data analysis, CRC press., 1986. 25 

Smith, A., Doucet, A., de Freitas, N. and Gordon, N.: Sequential Monte Carlo methods in practice, Springer Science & 

Business Media., 2013. 

Snyder, C., Bengtsson, T., Bickel, P. and Anderson, J.: Obstacles to High-Dimensional Particle Filtering, Mon. Weather Rev., 

136(12), 4629–4640, doi:10.1175/2008MWR2529.1, 2008. 

Socha, K. and Dorigo, M.: Ant colony optimization for continuous domains, Eur. J. Oper. Res., 185(3), 1155–1173, 30 

doi:10.1016/j.ejor.2006.06.046, 2008. 

Terrell, G. R. and Scott, D. W.: Variable kernel density estimation, Ann. Stat., 1236–1265, doi:10.1214/aos/1176348768, 1992. 

Trémolet, Y.: Accounting for an imperfect model in 4D-Var, Q. J. R. Meteorol. Soc., 132(621), 2483–2504, 

doi:10.1256/qj.05.224, 2006. 

Verkade, J. S. and Werner, M. G. F.: Estimating the benefits of single value and probability forecasting for flood warning, 35 

Hydrol. Earth Syst. Sci., 15(12), 3751–3765, doi:10.5194/hess-15-3751-2011, 2011. 

Vrugt, J. A. and Robinson, B. A.: Improved evolutionary optimization from genetically adaptive multimethod search, Proc. 

Natl. Acad. Sci., 104(3), 708–711, doi:10.1073/pnas.0610471104, 2007. 

Vrugt, J. A., Robinson, B. A. and Hyman, J. M.: Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter 

Spaces, Evol. Comput. IEEE Trans., 13(2), 243–259, doi:10.1109/TEVC.2008.924428, 2009. 40 

Wand, M. P. and Jones, M. C.: Kernel smoothing, Crc Press., 1994. 

Wen, Z., Liang, X. and Yang, S.: A new multiscale routing framework and its evaluation for land surface modeling 



28 

 

applications, , 48(June), 1–16, doi:10.1029/2011WR011337, 2012. 

West, M.: Mixture models, Monte Carlo, Bayesian updating, and dynamic models, Comput. Sci. Stat., 1–11 [online] Available 

from: http://www.stat.duke.edu/~mw/MWextrapubs/West1993a.pdf, 1993. 

Wigmosta, M., Nijssen, B. and Storck, P.: The distributed hydrology soil vegetation model, Math. Model. Small Watershed 

Hydrol. Appl., 7–42 [online] Available from: http://www.cabdirect.org/abstracts/20033121322.html, 2002. 5 

Wigmosta, M. S., Vail, L. W. and Lettenmaier, D. P.: A distributed hydrology-vegetation model for complex terrain, Water 

Resour. Res., 30(6), doi:10.1029/94WR00436, 1994. 

Yang, S.-C., Corazza, M., Carrassi, A., Kalnay, E. and Miyoshi, T.: Comparison of Local Ensemble Transform Kalman Filter, 

3DVAR, and 4DVAR in a Quasigeostrophic Model, Mon. Weather Rev., 137(2), 693–709, doi:10.1175/2008MWR2396.1, 

2009. 10 

Zhang, F., Zhang, M. and Hansen, J.: Coupling ensemble Kalman filter with four-dimensional variational data assimilation, 

Adv. Atmos. Sci., 26(1), 1–8, doi:10.1007/s00376-009-0001-8.1.Introduction, 2009. 

Zhang, L., Nan, Z., Liang, X., Xu, Y., Hernández, F. and Li, L.: Application of the MacCormack scheme to overland flow 

routing for high-spatial resolution distributed hydrological model, J. Hydrol., 558, 421–431, 

doi:10.1016/j.jhydrol.2018.01.048, 2018. 15 

Zhang, X., Tian, Y., Cheng, R. and Jin, Y.: An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective 

Optimization, Evol. Comput. IEEE Trans., 19(2), 201–213, doi:10.1109/TEVC.2014.2308305, 2015. 

Zhu, Y., Toth, Z., Wobus, R., Richardson, D. and Mylne, K.: The economic value of ensemble-based weather forecasts, Bull. 

Am. Meteorol. Soc., 83(1), 73–83, doi:10.1175/1520-0477(2002)083<0073:TEVOEB>2.3.CO;2, 2002. 

Ziervogel, G., Bithell, M., Washington, R. and Downing, T.: Agent-based social simulation: A method for assessing the impact 20 

of seasonal climate forecast applications among smallholder farmers, Agric. Syst., 83(1), 1–26, 

doi:10.1016/j.agsy.2004.02.009, 2005. 

 

  



29 

 

 

 

Figure 11. (a) Nine labelled . Steps in OPTIMISTS, to be repeated for each assimilation time step ∆𝒕. In this example state vectors 

have two variables, observations are of streamflow, and particles arrangedare judged using two user-selected objectives: the 

likelihood given 𝑺𝒕 to be maximized and the error given the observations to be minimized. (a) Initial state kernel density distribution 5 
𝑺𝒕 from which root samples (purple rhombi) are taken during the drawing step and random samples (yellow rhombi) are taken 

during the sampling step. (b) Execution of the model (simulation step) for each source sample for a time equal to ∆𝒕 to compute 

output variables (for comparison with observations) and target samples (circles). (c) Evaluation of each particle (evaluation step) 

based on the objectives and organization into three non-domination fronts on a scatterplot of two filtering objectives (minimum 

deviation from observations and maximum likelihood given background).(ranking step). The dashed lines represent the fronts while 10 
the arrows denote domination relationships between particles in adjacent fronts. Particles in highly-ranked fronts are assigned 

larger weights 𝒘𝒊  (represented by particle size). (b) Probability density (or likelihood) of an example two-dimensional state 

distribution (d) Optional optimization step which can be executed several times and that uses a population-based evolutionary 

optimization algorithm to generate additional samples (red rhombi). (e) Target state kernel density distribution 𝑺𝒕+∆𝒕 constructed 

from the same nine particles using multivariateparticles’ final samples (circles) after being weighted kernel density estimation. 15 
Kernelsaccording to the rank of their front (weighting step): kernels centred on particlessamples with higher weight (shown larger) 

have a higher probability density contribution. 
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Figure 22.. Maps of the two test watersheds in the United States displaying the 30 m resolution land cover distribution from the 

NLCD (Homer et al., 2012)(Homer et al., 2012).. Left: Oklahoma’s Blue River watershed 0.125° resolution VIC model (20 cells). 

Right: Pennsylvania’s Indiantown Run watershed 100 m-resolution DHSVM model (1,472 cells). 
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Figure 33.. Boxplots of the changes in forecasting error (MARE) achieved while using OPTIMISTS on Experiment 1 (Blue River). 

Changes are relative to an open-loop control run where no assimilation was performed. Each column corresponds to the distribution 

of the error changes on the specified scenario or assignment to the indicated parameter. Positive values indicate that OPTIMISTS 

increased the error, while negative values indicate it decreased the error. Outliers are noted as asterisks and values were limited to 5 
100%. For the one-objective case the particles’ 𝐌𝐀𝐄 was to be minimized; for the two-objective case, the likelihood given the 

background was to be maximized in addition. No optimization (“false”) corresponds to 𝒑𝐬𝐚𝐦𝐩 = 1.0 (i.e., all samples are obtained 

from the prior distribution); “true” corresponds to 𝒑𝐬𝐚𝐦𝐩 = 0.25. The 𝒑-values were determined using ANOVA (Montgomery, 

2012)(Montgomery, 2012),, and indicate the probability that the differences in means corresponding to boxes of the same colour are 

produced by chance (e.g., values close to zero indicate certainty that the parameter effectively affects the forecast error). 10 
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Figure 44. Results of change in forecast MARE in Experiment 1 (Blue River) with different configurations of OPTIMISTS. Changes 

are relative to an open-loop control run where no assimilation was performed. Each column corresponds to the distribution of the 

error changes for the specified set of parameter assignments. Each box and pair of whiskers represent six cases (three scenarios and 5 
one or two objectives). Positive values indicate that OPTIMISTS increased the error, while negative values indicate it decreased the 

error. The values beneath the graph represent p-values from two-sample t-tests between the two indicated columns or group of 

columns (p-values smaller than 0.1 are shown in boldface). 
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Figure 5.. Comparison of hydrographs produced by three different data assimilation methods for each of the three Blue River 

scenarios. The methods compared are the PF, Evo4DVar (𝒄𝟏 = 0.01 and 𝒄𝟐 = 1.0), and OPTIMISTS (∆𝒕 = 56-day (top) and 24-day 

(bottom) lead time probabilistic forecasts between OPTIMISTS (“OP” – ∆𝒕 = 7 days, 2 objectives, 𝒏 = 10050, no optimization, and 

F-class kernels). Each scenario consists of two weeks where observations are assimilated (100 particles for each method),) and a 5 
subsequent open-loop forecast of two weeks. For traditional PF (𝒏 = 50) for the Blue River. The dark blue and orange lines indicate 

the mean of OPTIMISTS’ and the PF’s ensembles respectively, while the light blue and light orange bands illustrate the spread of 

the forecast by highlighting the areas where the probability density of the estimate is at least 50% of the PF and OPTIMISTSdensity 

at the hydrographs represent ensemble averages. The percentage values at mode (the bottom of each panel are maximum) at that 

time step. The green bands indicate areas where the MAREs in the forecast period with respect to the observations for each of the 10 
methods (in the order they appear in the legend).light blue and light orange bands intersect.  
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Figure 56.. Boxplots of the changes in forecasting performance (𝐍𝐒𝐄𝓵𝟐, 𝐍𝐒𝐄𝓵𝟏, and 𝐌𝐀𝐑𝐄) achieved while using OPTIMISTS on 

Experiment 2 (Indiantown Run). Changes are relative to an open-loop control run where no assimilation was performed. Each 

column corresponds to the distribution of the error metric changes on the specified scenario or assignment to the indicated 

parameter. Outliers are noted as stars and values were constrained to 𝐍𝐒𝐄𝓵𝟐  ≥ −𝟑, 𝐍𝐒𝐄𝓵𝟏  ≥  −𝟑, and 𝐌𝐀𝐑𝐄 ≤ 𝟐𝟎𝟎%. Positive 5 
values indicate improvements for the 𝐍𝐒𝐄𝓵𝟐 and the 𝐍𝐒𝐄𝓵𝟏. The meanings for the MARE and for other symbols are the same as 

those defined in Fig. 3. 
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Figure 67.. Boxplots of the changes in forecasting performance (𝐍𝐒𝐄𝓵𝟐, 𝐍𝐒𝐄𝓵𝟏, and 𝐌𝐀𝐑𝐄) achieved while using OPTIMISTS on 

Experiment 3 (Indiantown Run). Changes are relative to an open-loop control run where no assimilation was performed. Each 

column corresponds to the distribution of the error metric changes on the specified scenario or assignment to the indicated 

parameter. Positive values indicate improvements for the 𝐍𝐒𝐄𝓵𝟐 and the 𝐍𝐒𝐄𝓵𝟏. See the caption of Fig. 3 for more information. 5 
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Figure 78.. Comparison of hydrographs for each of the two Indiantown Run scenarios. The results from the control model (with no 

data assimilation) and from the ensemble average of an OPTIMISTS configuration with ∆𝒕 = 2 weeks, 2 objectives, 𝒏 = 100, no 

optimization, and D-class kernels are compared with the observations from the stream gauge. The first two weeks correspond to the 5 
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assimilation period while the latter correspond to the forecast period. The error metrics corresponding to the forecast period are 

indicated for the default model (above) and the OPTIMISTS ensemble (below) as follows: 𝐍𝐒𝐄𝓵𝟐 / 𝐍𝐒𝐄𝓵𝟏 / 𝐌𝐀𝐑𝐄. 

 

 

 5 
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Table 11.. Comparison between the main features of standard Bayesian data assimilation algorithms (KF: Kalman Filter, EnKF: 

Ensemble KF, PF: Particle Filter), variational data assimilation (one- to four-dimensional), and OPTIMISTS. 

 Bayesian Variational OPTIMISTS 

Resulting state-

variable estimate 

Probabilistic: Gaussian (KF, 

EnKF), Non-Gaussian (PF) 

Deterministic (unless adjoint 

model is used) 

Probabilistic  

(using kernel density estimation) 

Solution quality 

criteria 

High likelihood given 

observations 

Minimum cost value (error, 

departure from history) 

Minimum error, maximum 

consistency with history 

Analysis time step Sequential 
Sequential (1D-3D) or entire 

assimilation window (4D) 
Flexible 

Search method 
Iterative Bayesian belief 

propagation 
Convex optimization 

Coupled belief 

propagation/multi-objective 

optimization 

Model dynamics 
Linear (KF),  

non-linear (EnKF, PF) 

Linearized to obtain convex 

solution space 

Non-linear  

(non-convex solution space) 

 

 

Table 22.. List of global parameters in OPTIMISTS 5 

Symbol Description Range 

∆𝑡 Assimilation time step (particle evaluation time frame) ℝ+ 

𝑛 Total number of root states 𝒔𝑖 in the probability distributions ℕ ≥ 2 

𝑤root Total weight of root samples drawn from 𝑺𝑡 ℝ ∈ [0, 1] 

𝑝samp Percentage of 𝑛 corresponding to drawn and random samples ℝ ∈ [0, 1] 

𝑘F−class Whether or not to use F-class kernels. If not: D-class kernels. true or false 

𝑛evo Samples to be generated by the optimizers per iteration ℕ ≥ 2 

𝑔 Level of greed for the assignment of particle weights 𝑤𝑖  ℝ ∈ [−1, 1] 
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Table 33.. Characteristics of the two test watersheds: Blue River and Indiantown Run. US hydrologic units are defined in (Seaber 

et al., 1987)Seaber et al. (1987).. Elevation information was obtained from the Shuttle Radar Topography Mission (Rodríguez et al., 

2006)(Rodríguez et al., 2006);; land cover and impervious percentage from the National Land Cover Database (Homer et al., 

2012)(Homer et al., 2012);; soil type from CONUS-SOIL (Miller and White, 1998)(Miller and White, 1998);; and precipitation, 

evapotranspiration, and temperature from NLDAS-2 (Cosgrove et al., 2003)(Cosgrove et al., 2003. The streamflow and temperature 5 
include their range of variation for 90% of the time (5% tails at the high and low end are excluded). 

Model characteristic Blue River Indiantown Run 

USGS station; US hydrologic 

unit 
07332500; 11140102 01572950; 02050305 

Area (km2); impervious 3,031; 8.05% 14.78; 0.83% 

Elevation range; average slope 158 m – 403 m; 3.5% 153 m – 412 m; 14.5% 

Land cover 
43% grassland, 28% forest,  

21% pasture/hay 
74.6% deciduous forest 

Soil type 
Clay loam (26.4%), clay (24.8%), 

sandy loam (20.26%) 
Silt loam (51%), sandy loam (49%) 

Avg. streamflow (90% range) 9.06 m3/s (0.59 m3/s – 44.71 m3/s) 0.3 m3/s (0.035 m3/s – 0.793 m3/s) 

Avg. precipitation; avg. ET 1,086 mm/year; 748 mm/year 1,176 mm/year; 528 mm/year 

Avg. temperature (90% range)  17.26°C (2.5°C – 31°C) 10.9°C (-3.5°C – 24°C) 

Model cells; stream segments; 𝑑 20; 14; 812 1,472; 21; 33,455 

Resolution  0.125°; daily 100 m; hourly 

Calibration 
167 parameters; 85 months; 

objectives: NSEℓ2
, NSEℓ1

, MARE 

18 parameters; 20 months; objectives: 

NSEℓ2
, MARE, absolute bias 

 

 

Table 44.. Setup of the three factorial experiments, including the watershed, the total number of configurations (conf.), the values 

assigned to OPTIMISTS’ parameters, and which objectives (objs.) were used (one objective: minimize 𝐌𝐀𝐄 given the streamflow 10 
observations; two objectives: minimize 𝐌𝐀𝐄 and maximize likelihood given source/background state distribution 𝑺𝒕). 𝒏𝐞𝐯𝐨 was set 

to 25 in all cases. The total number of configurations results from combining all the possible parameter assignments listed for each 

experiment. Note that for Experiment 3 there are configurations that require a four-week assimilation period (all others have a 

length of two weeks). 

No. Watershed Conf. ∆𝑡 𝑛 𝑤root 𝑝samp 𝑘F−class 𝑔 objs. 

1 Blue River 48 1d, 5d, 2w 100, 500 0.95 0.25, 1 false, true 0.75 1, 2 

2 Indiantown Run 32 1h, 2w 100, 200 0.6, 0.95 0.25, 1 false 0.75 1, 2 

3 Indiantown Run 24 1h, 6h, 1d, 3.5d, 2w, 4w 100 0.95 0.4, 1 false 0.5, 1 2 

 15 
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Table 55. Forecast . Continuous daily streamflow forecast performance metrics for the Blue River application after assimilating two 

weeks’ worth of daily streamflow observations using a PF, Evo4DVar (𝒄𝟏 = 0.01 and 𝒄𝟐 = 1.0), and OPTIMISTS (∆𝒕 = 57 days, 2 

objectives, 𝒏  = 10050, no optimization, and F-class kernels) with 100 particles.and a traditional PF ( 𝒏  = 50). The error 

metricscontinuous forecast extends from November, 1996 to November, 1997. The 𝐍𝐒𝐄𝓵𝟐, 𝐍𝐒𝐄𝓵𝟏, and 𝐌𝐀𝐑𝐄 (deterministic) are 5 
computed throughout the two weeks of the forecast period by comparing the streamflow of the deterministic solution (Evo4DVar) 

orusing the mean streamflow of the forecast ensembles and contrasting it with the daily observations, while the 𝐂𝐑𝐏𝐒 (probabilistic) 

is computed taking into account all the particles in the ensemble (PF and OPTIMISTS) with the observations. 

Algorithm 
Lead time 

(days) 
𝐍𝐒𝐄𝓵𝟐 𝐍𝐒𝐄𝓵𝟏 𝐌𝐀𝐑𝐄 

𝐂𝐑𝐏𝐒 

(m3/s) 

OPTIMISTS 

1 day 0.827 0.636 37.20% 3.745 

3 days 0.750 0.555 42.86% 4.899 

6 days 0.812 0.604 38.88% 4.067 

12 days 0.788 0.625 38.69% 3.959 

24 days 0.801 0.609 39.01% 3.861 

Particle filter 

1 day 0.796 0.638 35.59% 4.175 

3 days 0.776 0.612 37.52% 4.463 

6 days 0.733 0.588 39.44% 4.766 

12 days 0.705 0.578 40.48% 4.857 

24 days 0.743 0.588 41.16% 4.772 

 

  10 
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Hybridizing Bayesian and variational data assimilation for robust 

high-resolution hydrologic forecasting 

Felipe Hernández, Xu Liang 

Civil and Environmental Engineering Department, University of Pittsburgh, Pittsburgh, 15213, United States of America 

Correspondence to: Xu Liang (xuliang@pitt.edu) 5 

We would first like to express our appreciation to both Referee #1 and Referee #2 for their careful and thorough review of our 

manuscript. Their comments will certainly help us improve the quality and clarity of our manuscript. Below we offer our 

response to Referee #1. 

 

Anonymous Referee #1 on 13 October 2017: 10 

“I really enjoyed reading the paper, which deals with the important issue of improving model updating techniques for better 

flood predictions. This manuscript proposes a new data assimilation procedure which combines Bayesian and variational 

approaches. I believe this is an important contribute to DA research field and of notable interest and modernity, especially for 

the HESS readership. However, I still have some comments regarding method, structure, and readability of the paper. Below 

you can find some major comments:” 15 

 

We are very glad that you enjoyed the manuscript and found it of value. We appreciate your generous compliments and hope 

that our work will be a worthy contribution to the community. We thank you for your careful analysis and suggestions. Below 

we respond to your comments. 

 20 

“Results of this research are not well described in the abstract and it is somehow difficult to grasp the main advantage of this 

approach.” 

 

We will modify the last sentences of the abstract to better convey the findings of our experiments: that OPTIMISTS allowed 

to produce more robust forecasts when compared to a more traditional method, and that its application on a high-dimensional 25 

model was successful in that it maintained the levels of performance observed in the case of lower dimensionality without 

sacrificing computational efficiency. 

 

“From the introduction, it is not really clear the difference between OPTIMIST and other hybrid 4D approaches. Novelty has 

to be better explained in order to further appreciate the added value of such method.” 30 

 

mailto:xuliang@pitt.edu
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We will extend the introduction to better convey the differences and our proposed innovations in the revised manuscript. For 

your information, the main differences were summarized in the conclusions (p16-l28) in the original submission: that 

OPTIMISTS is inspired in part by the particle filter (instead of being inspired by the EnKF), that it allows for multi-criteria 

evaluations of candidate particles, and that it utilizes global (evolutionary) optimization methods (instead of using convex 

ones). Further differences can be extracted from table 1: e.g., that OPTIMISTS allows for non-Gaussian state estimates through 5 

kernel density estimation.  

 

“Nowadays, there are many DA methods with varying complexities and accuracies. However, few of these methods are used 

in early warning system to improve flood predictions. Did the authors investigate the way to easily implement OPTIMISTS by 

water authorities for flood forecasting in any existing early warning system? Is there any advantage in terms of computational 10 

time if compared to PF and 4D-Var?” 

 

It is our vision that, once OPTIMISTS’ advantages prove greater than its disadvantages (e.g., its relatively higher complexity) 

in a significant set of test cases, the method will be considered for integration in operational prediction systems for multiple 

applications. Applicability in high-dimensional cases has been one of our guiding design principles, as we believe this is key 15 

for adequate performance in these large-scale/complex systems. While the method currently can be executed in parallel 

environments and it offers configurations that work well with very large state variable vectors, we are already working in 

developing enhancements to take the next step in scalability and efficiency, and we will be happy to continue working 

alongside government agencies or private partners to carry out our vision. 

 20 

Regarding the comparisons with the PF and 4D-Var, we believe our experiments indicate that OPTIMISTS can provide gains 

in computational time given that the main strategy for increased performance in most DA methods is through the use of 

additional model runs: e.g., enlarging the ensemble size in EnKF and PF or the number of candidate solutions explored in the 

optimization problem in Var. Therefore, showing a more robust performance indicates not only that OPTIMISTS can produce 

better forecasts with the same resources, but that the same level of performance can be obtained with fewer resources (in this 25 

case particles/ simulations). 

 

“Page 1, lines 14-16: Is this sentence related to the watershed’s location or to the use of different models for different case 

studies? Authors should clarify this point.” 

 30 

Both: two different locations are used and, because the watersheds are of significantly different scale, we used a different 

modelling engine for each. We made this decision to diversify the test conditions of our experiments. We will change the 

wording in this sentence to convey the correct meaning more clearly. 
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“Page 3, lines 8-9: The authors mentioned that “a hybrid data assimilation algorithm that incorporates the most valuable 

features from both Bayesian and variational methods “. Which ones are these valuable features? 

Description of Table 1 should be better included within the paper. Right now it looks quite disconnected from the other part 

of the introduction.” 

 5 

Our intention was to let Table 1 convey the contrast in features between OPTIMISTS and traditional methods. We will add 

discussions in the main text so that there is a stronger connection with the table and that these claimed advantages are more 

easily understood. 

 

“I found very difficult to follow the flow of thoughts of the authors in describing the DA method. I think it will be beneficial 10 

for the readability of the paper to include in section 2 a figure representing the structure of OPTIMISTS. In addition, authors 

tend to use complex terms for non-DA expert. I suggest revising the description of the paper in order to make it “accessible” 

to everyone and increase its impact on the scientific community.” 

 

Thank you for your good suggestions. We will use more common terminology in the revised manuscript to accompany 15 

technical/domain-specific terms to improve the accessibility of the section. We will also add a figure that will help in 

understanding how the algorithm works. 

 

“At this point, results are valid only for the 5 considered flood events and 2 basins obtained. As expected, results largely 

depend on the features of the flood events and quality of rainfall data. I am afraid that the samll number of events makes results 20 

rather random. I suggest to increase the number of flood events to make more general conclusions for this study.” 

 

Thanks for the good suggestions. We will change the comparative test design so that we can analyze multiple months’ worth 

of forecasts using OPTIMISTS and the particle filter. We already developed some scripts that allow performing assimilation 

and forecast continuously for this purpose. This will allow for a more thorough and realistic comparison between the two 25 

methods. However, we decided to drop the comparison with Evo4DVar as this is not a standard method found in the literature, 

and its deterministic nature makes a direct comparison complicated. 

 

“A crucial component in each DA application is the proper definition of model and observational error. While model error is 

accurately described, I could not see a clear definition of the observations error (standard deviation in Eq.10). The authors 30 

have to include more information and references about it.” 

 

We will incorporate the effect of uncertainties in the observations within the description of the algorithm to better convey the 

multiple ways in which it can be addressed through OPTIMISTS and the contrasts with traditional methods. 
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“Are you using actual meteorological forecasts or are you using the observations as perfect forecasts? Please specify” 

 

 In this study, “perfect” meteorological forecasts are used to force the model in all cases (see in page 12, lines 8-13).  We also 

argue that this advantage is applied uniformly to both OPTIMISTS and the other algorithms so that it does not represent an 5 

unfair advantage to any. In the revised manuscript, we will make this clearer.  

 

“I suggest the authors to split results and discussions in two different sections, this would make reading the text so much 

easier.” 

 10 

We understand that having separate results and discussion sections allows having the “cold facts” separated from the 

“subjective” interpretations and opinions of the authors. However, as many authors do, we prefer having these two sections 

combined because otherwise the discussion section will often have to reference results and figures from the previous section 

and have the reader jumping back and forth between sections. This both helps the readability of the article and its compactness. 

Having both styles be accepted in many communities, we hope this reviewer would agree with us on this point to maintain the 15 

two sections combined. We will, however, scan the entire section in search for instances where the distinction between 

objective results and subjective opinion is not clearly established and revised them accordingly based on this reviewer’s good 

comments. 

 

 20 
  



50 

 

Hybridizing Bayesian and variational data assimilation for robust 

high-resolution hydrologic forecasting 

Felipe Hernández, Xu Liang 

Civil and Environmental Engineering Department, University of Pittsburgh, Pittsburgh, 15213, United States of America 

Correspondence to: Xu Liang (xuliang@pitt.edu) 5 

We would first like to express our appreciation to both Referee #1 and Referee #2 for their careful and thorough review of our 

manuscript. Their comments will certainly help us improve the quality and clarity of our manuscript. Below we offer our 

response to Referee #2. 

 

Anonymous Referee #2 on 21 December 2017: 10 

“Before beginning review of this manuscript, although not mentioned in the text and reference, this should be considered a 

re-submission of the previous HESSD manuscript entitled “Hybridizing sequential and variational data assimilation for robust 

high-resolution hydrologic forecasting (https://doi.org/10.5194/hess-2016-454)” by the same authors, which was rejected in 

2016. I suggest the editorial board compare the final revision of the previous HESSD manuscript with the current one if the 

track record was not screened yet. I cannot examine whether the authors submitted the final revision in the previous submission 15 

in 2016 or not. However, if so, improvement and uniqueness of the current manuscript over the rejected final manuscript 

should be carefully evaluated. In addition, since HESSD is independent publication, the previous manuscript in 2016 should 

be cited and discussed in this manuscript.” 

 

This point had been discussed with the editor, to whom we expressed that we will adhere to the guidelines required by the 20 

journal and the editorial board. This manuscript is a revised version of the cited one in 2016, which takes into account the 

comments made by the referees back then and by the previous editor. A detailed account of the changes made was submitted 

to the journal. The 2016 manuscript was rejected by the editor because he considered that the required modifications deserved 

a more careful timeframe than the one available for the special issue it was submitted to. No final version of the 2016 

manuscript was submitted.  25 

 

“This manuscript proposed a hybrid DA method, OPTIMISTS, combining sequential and variational methods, and compared 

performance of developed methodology over PF and VAR using distributed hydrologic models. The topic is of interest to a 

wide range of hydrologic modelling community. The strategy of the proposed methodology to leverage different DA 

approaches, sequential and variational DA, is one of the important trends in recent studies. However, there are major gaps in 30 

experimental setup and evaluation, and incomplete reasoning in new methodology which require significant changes before 

publication. I hope the followings would be helpful to improve the quality of manuscript. 

mailto:xuliang@pitt.edu
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1) Evaluation period and methods In this manuscript, the total evaluation period is 10 weeks (5 cases with a 2-weeks period 

each): 3 scenarios for 2-weeks forecasts in the Blue River and 2 scenarios for 2-weeks forecasts in the Indiantown Run, not 

including assimilation period. 

The evaluation period for hydrologic modelling and data assimilation is usually longer than at least 6-8 months and up to 

multiple decades. The total 10-weeks forecasts (2-weeks piecewise each) and associated metrics cannot be accepted as a 5 

rigorous evaluation. 

Given that the selected events in the Blue River in the 2016 manuscript are different from those in the current one, there seems 

to a potential to further increase evaluation period. In Table 3, the authors also mentioned calibration periods are 85 and 20 

months, respectively. 

Considering the availability of observation data, what is the maximum evaluation period for two catchments? Why don’t you 10 

use the whole or most calibration period for DA evaluation? Was there any reason to use the limited period for evaluation? 

For the larger domain, the Blue River catchment, is there just one streamflow observation gage over 3,000 square kilometer 

area? Why don’t you assimilate observations in multiple locations to reduce equifinality and overfitting? 

In this study, evaluation metrics were estimated for the whole 2-weeks forecast period. However, it is more common to evaluate 

metrics for varying forecast lead times because the impact of updating varies and disappears over time. 15 

I highly suggest the evaluation period and method should be reconsidered to qualify a kind of general standard shown in many 

forecast and DA-related papers: simulating more than several months for each catchment and evaluating metrics for varying 

forecast lead times.” 

 

Thank you for the good suggestions. We will evaluate our method based on the suggestions here in the revised manuscript. 20 

We already extended our scripts to allow running an extended-time data assimilation experiment where assimilation is 

performed with OPTIMISTS continuously to allow producing multiple time series of forecasts with a fixed lead time for the 

Blue River. We should be able to produce these forecasts for multiple months in order to analyze the performance of the 

algorithm. We will similarly develop a script to run the particle filter in the same fashion and to be able to compare its forecasts 

with those of OPTIMISTS. 25 

 

On the other hand, this new experimental setup will preclude the comparison with the 4D evolutionary variational algorithm 

for the reason that we were using the same prior “particle” ensemble to seed its population that the one used for the other 

methods. However, given that 4DVar is inherently a deterministic approach, such ensemble will not be able to be updated to 

be the seed of continuous assimilation periods. In practice, variational methods compensate the lack of an ensemble by 30 

performing a guided search of the initial state solution space until convergence, but in this case we consider that the model 

simulation quota that we are allowing each of the methods will not suffice to reach an optimal solution. Moreover, evolutionary 

variational methods are rare in the literature (more so in operational settings) and therefore we now consider that the 

comparison would not be of enough significance. While ideally we would like to compare OPTIMISTS with proven 4DVar 
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methods, these require the linearization of the model’s dynamics—which is rare in hydrology, would require an enormous 

amount of additional work, and it is outside the scope of this paper.  

 

Also, while we will implement this new evaluation scheme for the comparison of OPTIMISTS with the particle filter, we will 

still maintain the scenario-based design for the analysis of the parameters of the assimilator. Even though not “rigorous,” we 5 

are confident that the variability in the scenarios considered is enough to differentiate relatively adequate configurations of the 

algorithm. As discussed in the manuscript, we will conduct future tests for cases where there was not enough statistical 

evidence to conclude one configuration was better than the other. Extended-time evaluations would, in this case, require an 

extensive computational budget given the large number of parameter combinations selected. 

 10 

We agree that assimilating data from additional streamflow gages in the Blue River would allow for improved forecasts but, 

for the purposes of this manuscript, the assimilation of a single measurement provides a balanced challenge that enables the 

analysis of the strengths and weaknesses of OPTIMISTS in contrast with other methods, and the determination of an adequate 

set of parameters. That said, we have actually already worked on testing the algorithm using distributed high-resolution 

observations in a watershed and look forward to include such analyses in a future publication at its due time. 15 

 

“2) Probabilistic evaluation Although the proposed method is a stochastic approach, probabilistic metrics were not measured 

and analyzed. At least, basic metrics such as reliability, CRPS, predictive QQ plot and Brier score should be compared over 

the conventional method such as PF. Without such evaluation, improvements and features of the hybrid ensemble method 

cannot be understood in terms of stochastic perspectives. 20 

In addition, Figs 5 and 8 (streamflow hydrographs) should include traces or spreads of ensemble for visual inspection.” 

 

Indeed, probabilistic evaluation is very important to determine if forecasts are over-confident or under-confident. We will 

include an evaluation metric that allows comparing the confidence of forecasts between OPTIMISTS and the particle filter. 

We will also modify the plots to show the temporal evolution of the distributions in the revised manuscript. 25 

 

“3) uncertainty specification on hydrologic DA In order to apply DA for hydrologic modelling, uncertainties for states and 

observations should be carefully taken care of. Sometimes, not surprisingly, noise configuration or specification may 

significantly affect DA performance. However, there is no description on how uncertainties of different state variables and 

observations such as interception, snow, soil moisture and streamflows were formulated and implemented for hydrologic 30 

ensemble modelling, which should impact DA process to generate ensemble, optimize state variables and estimate likelihood 

or weight. A detailed description is required for reproducibility of this study. 
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Regarding this issue, for example, how different particles of distributed hydrologic models are generated in “the sampling 

step” of this DA algorithm? More specifically, how high-dimensional model states are being perturbed to avoid sample 

impoverishment in this step?” 

 

As explained in subsubsection 2.1.4 in the original manuscript, any numerical objective can be used to judge candidate particles 5 

in OPTIMISTS. The likelihood of simulated outputs given the distributions of the corresponding observations is cited as an 

example. In such a case, the user would require specifying how the likelihood is computed based on how the error of the 

observations is being modeled. However, the error metric used in our tests (the mean absolute error, page 12, line 4) is a 

deterministic one. While this constitutes a departure from the Bayesian theoretical framework, the estimation performed in 

OPTIMISTS retains its probabilistic character due to the way in which samples are generated and, especially, due to the 10 

proposed probabilistic interpretation of the resulting Pareto front (page 7). 

 

Uncertainties in the state variables are all captured by the use of kernel density probability distributions, which is the whole 

focus of subsection 2.2. The details of the implementation are not introduced in subsection 2.1 but saved for subsection 2.2 

because OPTIMISTS offers a modular design in which any type of non-parametric (ensemble-based) probabilistic 15 

representation could be used. How new samples are generated from the prior distributions (the core mechanism to “perturb” 

the ensemble) and how the likelihood of samples given these priors is computed is all explained in this part of the manuscript. 

While this arrangement was announced in page 4, lines 12-15, we will add reminders on subsubsections 2.1.2 and 2.1.4 in the 

revised manuscript to make the presentation clearer. 

 20 

“4) Under-simulation or filter degeneracy in assimilation step In the analysis or assimilation step which corresponds the first 

2-weeks in Figs 5 and 8, under-simulation or filter degeneracy (scenario 3 in Fig. 5 and scenario 2 in Fig. 8) is found. Usually, 

whatever filter is used, traces of simulated states (here streamflow) overlap observations in the assimilation step since 

uncertainty of observation is set smaller than that of state variables. It is common that NSE values of the assimilation step or 

the first forecast step are higher than 0.9 – 0.95. However, a large gap between simulation and observation exists even in the 25 

assimilation step, which should be clearly diagnosed and discussed.” 

 

There are several reasons that might explain the relatively low level of agreement seen between the observations and the 

adjusted ensemble during the assimilation period. In the first place, it must be noted that the models do indeed have 

considerable errors, probably mainly in their structures, that prevent them from faithfully replicating the observations at every 30 

time step precisely. This is especially apparent in Scenario 3 for the Blue River and both scenarios for Indiantown Run, in 

which there appears to be conflict between fitting the peaks and fitting the drier inter-peak periods. While both models 

underwent parameter calibration processes, as documented in subsection 3.1 and in Table 3, no attempt was made to optimize 

the models’ structures (e.g., equations, missing phenomena, resolution, connectivity, etc.). The calibration process, similar  to 
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the assimilation, was based on multiple objectives and not only on the maximization of the NSE: we also used the relative 

error which is more sensitive to errors during dry periods than those during peaks. There is also a telescopic effect of the NSE, 

according to which, computing it over long periods of time yields higher values than when computed over short ones: for 

example, if the Indiantown Run model had an overall NSE of 0.81 during the entire calibration period, zooming in on a specific 

month would result, in average, on a reduced rating. This effect is compounded with the relatively short period of time used 5 

for assimilating data and performing forecasts. Finally, a comparably “poor” performance during the assimilation period was 

also observed for the particle filter and the variational algorithm. With these, we do not find the results to be especially 

concerning in this regard and, on the other hand, consider that all the provided contrasts are valid given that these conditions 

were uniform in all cases. In fact, these “defects” reflect the current state-of-the-art challenges in the operational forecasts and 

it is one of the objectives that we all try to improve from different aspects/angles. We will, however, include a few words in 10 

the manuscript regarding these low fitting scores. 

 

“5) Comparison of posteriors of state variables What potential readers want to see in the result section may be not only 

comparison of NSE at the outlet location. The authors need to address why and how their DA method can improve over the 

conventional ones in hydrologic forecasting from perspectives of distributed modelling. A comparison of posterior 15 

distributions of state variables updated by the new and conventional methods may be useful to show how and why the new DA 

works for high dimensional applications. 

Especially, given that the authors urged OPTIMISTS employed essential features from but outperformed particle filters, a 

comparison of posteriors between two methods is also required to demonstrate whether non-Gaussian and multi-modal 

distributions are preserved or not.” 20 

 

We will include probabilistic time series of average soil moisture for forecasts produced both by OPTIMISTS and the particle 

filter and perform the corresponding analysis. However, we plan to perform detailed analyses of OPTIMISTS’ capability of 

estimating soil moisture, and not only aggregated outputs like streamflow, in a later investigation (when such observations are 

available). For this study, due to the data limitations at the test watersheds and the length of the manuscript, the distributed 25 

comparisons won’t be carried. 

 

“6) Evaluation and optimization steps for hydrologic modelling It is not clear how the cost function is formulated for 

distributed hydrologic models. The authors need to show explicitly how multiple spatially-distributed state variables and 

associated uncertainties are taken into account to formulate the cost function in evaluation and optimization steps.” 30 

 

As explained in page 12, lines 4-7 in the original manuscript, one or two objective functions were used for our experiments: 

the mean absolute error given the streamflow observations and the likelihood of the particle given the prior state distribution. 

These objectives can be seen as analogous to the “cost function” used in variational data assimilation, and their equivalence is 
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established in subsubsection 2.1.4. The likelihood is computed using either equation 8 or 9 depending on which type of kernels 

are used for the state variable distribution. These distributions encode the spatial variability and relationships between state 

variables in all cells of the model, so the likelihood is thus a measure of how well a candidate particle conforms to the values 

and (spatial) patterns in the prior distribution. Again due to the limitations of spatial data availability, such evaluations are not 

directly carried out in this study in a spatially distributed fashion, but indirectly evaluated through the integrated quantity of 5 

streamflow.   

 

“7) Tuning hyper-parameters There are numerous hyper-parameters such as time step, objectives, no. particles, optimization, 

Wroot and Kf-class, Psamp and g, related to this DA method which may increase uncertainty and subjectivity of forecasting. 

However, analysis methods and results on hyper-parameters shown in Figs. 3, 6 and7 are still confusing and do not provide 10 

well-organized understandings. A summary or guideline is required for proper range or values of hyper-parameters.” 

 

We acknowledge that using factorial experiments is not a common practice when evaluating the hyper-parameters of these 

kind of methods. We will revise our presentation of the results to attempt to convey their significance in a more understandable 

and clearer way. This will include the suggested summary of guidelines for potential OPTIMISTS users to parameterize the 15 

algorithm to better fit the needs of their specific application. We will possibly remove Figure 4 which introduces a format 

different from the other boxplots but that does not provide many significant insights. 

 

“8) Terms and units In Table 3, use of two different units for one variable (m3/s and l/s) is not recommended.” 

 20 

We will change the table to use unified units to m3/s. 

 

“Throughout the manuscript, the term ‘time step’ is used to represent ‘assimilation time step’ or ‘assimilation window’. Since 

the time step usually stands for a temporal increment for numerical schemes, ‘assimilation window’ or ‘analysis window’ may 

be more appropriate to avoid possible confusion.” 25 

 

It is true that the term “assimilation time step” might be confused with the model time step, but it is still necessary to use it 

because the “assimilation window” or the “analysis window” would refer to the entire period of time in which data is 

assimilated prior to performing a forecast. As explained in the original manuscript, OPTIMISTS allows dividing this time 

window into “time steps” of arbitrary length at which the main loop of the algorithm is executed. These time steps can be as 30 

short as the model time step (“sequential,” like with particle filters) or as long as the assimilation window (like in 4DVar). The 

assimilation or analysis window would correspond to two weeks in most of our examples, and the assimilation time step varies 

from one day to two weeks in the Blue River case or from one hour to four weeks in the Indiantown Run case. We will review 
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the entire manuscript in search for places in which the distinction between model and assimilation time steps could be made 

more apparent to avoid confusion. 

 


