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Abstract. The use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates 

has increased rapidly. However, it is not logistically feasible to monitor all rivers and the transferability of such models has 

not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial 

regression models predict the maximum 7 day rolling mean of daily maximum Tw (Twmax) within and between catchments. 10 

Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape 

covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and 

three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred 

reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when 

mean Twmax differed between catchments. The RNS was needed to characterise and predict finer scale spatially correlated 15 

variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within 

catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape 

covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less 

well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required 

extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships 20 

between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our 

understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing 

new approaches for predicting Tw at unmonitored locations across multiple catchments and larger spatial scales. 
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1 Introduction 

River temperature (Tw) is a key control on the health of aquatic systems (Webb et al., 2008) and is particularly important for 

the growth, survival and demographic characteristics of cold water adapted species such as salmonids (Elliott and Elliott, 

2010; Gurney et al., 2008; Jonsson and Jonsson, 2009; McCullough et al., 2001). Rising Tw will influence fish populations 30 

by altering the thermal suitability of rivers (Comte et al., 2013; Isaak et al., 2010, 2012). Thus models that can; 1) identify 
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areas most affected by thermal extremes, 2) improve understanding of spatio-temporal variability of thermal regimes, 3) 

predict the potential effects of climate change and 4) illustrate opportunities for thermal moderation, such as riparian tree 

planting (Hannah et al., 2008; Hrachowitz et al., 2010), are important for fisheries management. Large-scale models are 

required to provide information at the spatial scales appropriate to management decisions i.e. catchment (Chang and Psaris, 

2013; Hrachowitz et al., 2010; Imholt et al., 2011, 2013; Jackson et al., 2016a; Steel et al., 2016), regional (Hill et al., 2013; 5 

Isaak et al., 2012; Ruesch et al., 2012) and national scales.  

Although process based models provide important mechanistic understanding at small spatial scales, their intensive 

data requirements prohibit their use at larger scales (Jackson et al., 2016b). In contrast, empirical models of Tw rely on Tw 

observations and explanatory covariates (e.g. altitude or air temperature) which can often be derived remotely at relatively 

low cost. The development of affordable, reliable, accurate Tw dataloggers has led to a rapid increase in Tw monitoring 10 

(Sowder and Steel, 2012), to the point that staff time, data storage and quality control are often now the greatest limitations 

on data collection (Jackson et al., 2016b). At the same time, there have been substantial developments in spatial statistical 

modelling approaches (Ver Hoef et al., 2006, 2014; Ver Hoef and Peterson, 2010; Isaak et al., 2014; Jackson et al., 2016a; 

O’Donnell et al., 2014; Peterson et al., 2013; Rushworth et al., 2015), monitoring network design (Dobbie et al., 2008; 

Jackson et al., 2016b; Som et al., 2014), spatial datasets (e.g. shapefiles incorporating covariates such as in “The National 15 

Stream Internet Project” (Isaak et al., 2011) or gridded air temperature datasets (Perry and Hollis, 2005a, b)) and spatial 

analysis tools (Isaak et al., 2011, 2014; Peterson et al., 2013; Peterson and Ver Hoef, 2014).  

Despite these developments, it is still impractical to monitor all rivers and, for management purposes, it is therefore 

often necessary to predict Tw at unmonitored locations, both within (Hrachowitz et al., 2010; Jackson et al., 2016b; Peterson 

and Urquhart, 2006) and between catchments (Isaak et al., 2014). Despite the importance of this issue there has not yet been 20 

an assessment of the transferability of spatial statistical Tw models between catchments; i.e. the ability of a model developed 

in one catchment to predict Tw in another. This paper investigates the ability of spatial statistical Tw models to predict Tw at 

unmonitored locations within and between catchments.  

The principles explored in this paper are likely to be similar across water temperature metrics so, for brevity, this 

study focuses on maximum summer temperature, a metric which is prevalent in the recent literature, reflecting its importance 25 

for the survival of cold water adapted fish (Chang and Psaris, 2013; Hrachowitz et al., 2010; Jackson et al., 2016a; Malcolm 

et al., 2008; Marine and Cech, 2004).  

Models are fitted using two sets of covariates. The first set contains landscape covariates which can be generated 

from readily available spatial datasets and have been the focus of many previous studies of spatial variability in river 

temperature (e.g. Hrachowitz et al., 2010). Due to increasing interest in the use of air temperature (Ta) to predict spatial 30 

variability in water temperature (e.g. Jonkers & Sharkey, 2016), the second set contains a metric of air temperature in 

addition to landscape covariates.  

The paper addresses the following objectives: 
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1. Develop statistical models for predicting maximum summer water temperature from landscape covariates in 

four separate river catchments. 

2. Determine whether models containing an air temperature metric explain more of the variation in maximum 

summer water temperature than those only containing landscape covariates. 

3. Assess the transferability of models containing only landscape covariates or both landscape and air temperature 5 

covariates between catchments 

4. Produce single models of maximum summer water temperature for all four catchments using both sets of 

covariates and consider their potential for transferability at larger (e.g. national) scales. 

2 Methodology 

2.1 Water temperature data and metric 10 

Tw data were obtained from monitoring sites in four catchments; the Bladnoch in Western Scotland and the Dee 

(Aberdeenshire), Spey and Tweed in Eastern Scotland (Fig.1). These catchments are Special Areas of Conservation for 

Atlantic salmon and form part of the Scotland River Temperature Monitoring Network (SRTMN) (Jackson et al., 2016b). 

Details of the network, including design and quality control procedures, are given in Jackson et al. (2016b). The catchments 

all contain an adequate numbers of Tw dataloggers to develop Tw models on a single catchment basis with 59, 34, 25 and 19 15 

sites in the Dee, Tweed, Spey and Bladnoch, respectively. The choice of catchments ensured a broad geographic coverage 

across Scotland with a wide environmental range of landscape covariates (Jackson et al., 2016b).  

Data were collected at 15 minute intervals throughout August 2015. The maximum temperature was calculated for 

each day and used to produce a 7 day rolling mean of maximum temperatures. The metric of maximum temperatures used in 

this study (Twmax) was the maximum value of this 7 day rolling mean. This metric was preferred to a single observation of 20 

Tw as it characterises the occurrence of sustained high temperatures which are thought to be most ecologically damaging.  

2.2 Model covariates and river network basis functions 

Detailed discussion of the landscape covariates and their calculation can be found in (Jackson et al., 2016a). In 

brief, the covariates were: elevation (Elevation), upstream catchment area (UCA), percentage riparian woodland (%RW), 

hillshading / channel illumination (HS), channel width (Width), channel gradient (Gradient), channel orientation 25 

(Orientation), distance to coast (DC) and distance to the sea along the river (RDS). Table 1 summarises how the covariates 

were calculated. Before model fitting, Gradient, UCA and Width were log transformed to reduce skewness and HS was 

centred by subtracting the median value from all observations. 

An air temperature metric (Tamax) was calculated for each site from the gridded UKCP09 Ta dataset (available from 

the UK MET Office). See Perry and Hollis (2005a, 2005b) for details of this dataset. Analogous to the calculation of Twmax, 30 

Tamax was given by the maximum of the 7 day rolling mean of daily maximum air temperatures in August 2015.  
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2.3 Modelling 

Ten models of Twmax were developed: two models for each of the four river catchments using either 1) landscape covariates 

only (LS models) or 2) landscape covariates and Tamax (LS_Ta models) and two models for all four catchments combined, 

again using either 1) landscape covariates only (multi-catchment LS model) or 2) landscape covariates and Tamax (multi-

catchment LS_Ta model). The modelling process differs slightly between the single and multi-catchment models and these 5 

are described in turn. All analysis was done in R version 3.2.3 (R Core Team, 2015).   

2.3.1 Single catchment models 

The set of covariates was first reduced to avoid problems of collinearity. If two covariates were strongly correlated 

(Pearson correlation coefficient >0.8) in any one catchment, one of the covariates was dropped from the set available for 

modelling for all catchments. This ensured all the LS models were based on a common set of covariates (UCA, %RW, HS, 10 

Orientation, DC) as were the LS_Ta models (Tamax, UCA, %RW, HS, Orientation, DC).    

The relationship between Twmax and the covariates was explored using generalised additive models (GAMs) with Gaussian 

errors and an identity link (Wood, 2001). A ‘full’ model was first fitted which included all the available covariates and a 

river network smoother (RNS) (see below): 

 15 

Twmax ~ s(covariate1) + … + s(covariaten) + RNS  

 

Here, n is the number of covariates (n = 5, 6 for LS, LS_Ta models respectively) and s(covariatei) denotes that covariate i 

was fitted as a smoother. The amount of smoothing was estimated from the data (Wood, 2001), with each smoother 

constrained to have at most 2 degrees of freedom (df) based on the expected simplicity of Twmax responses to the covariates. 20 

The RNS is included to account for spatial structure in the data that cannot be explained by the covariates. The RNS is a 

modified version of that developed by O’Donnell et al. (2014), with the amount of smoothness at a confluence controlled by 

the proportional influence of upstream tributaries weighted by Strahler river order (Strahler, 1957) and fitted using a set of 

‘reduced rank’ basis functions. See Jackson et al. (2106a) for full details. The RNS was allowed up to 7 df based on 

knowledge of RNS complexity for the Spey (Jackson et al., 2016a). To ensure the RNS did not account for variability that 25 

would otherwise be explained by covariates, RNS basis functions were excluded if they were strongly correlated (>0.8) with 

any of the covariates. Thus, base 1 was removed from the Spey and Dee RNSs due to correlations with DC. In the LS_Ta 

models, base 2 was also removed from the Spey RNS due to correlation with Tamax. The model was fitted by maximum 

likelihood using the “mgcv” package (Wood, 2016) in R. 

All possible subsets of the full model were then fitted. The final model was that with the lowest Bayesian 30 

Information Criterion (BIC) or Akaike Information Criterion corrected for small sample size (AICc) that contained no terms 

significant at the 5% level. The choice of Information Criterion was based on the desire to penalise more complex models 
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that would be unlikely to transfer well (Millidine et al., 2016). Thus, BIC was used for the Dee and Tweed where there were 

more sites and AICc was used for the Bladnoch and Spey where there were fewer sites. Terms in the final model with 1 df 

were replaced by linear terms.  

In common with similar modelling studies (Hrachowitz et al., 2010; Imholt et al., 2011; Jackson et al., 2016a; 

Ruesch et al., 2012), no interactions were considered between covariates due to data constraints.  5 

2.3.2 Multi-catchment models 

Covariates were excluded if they were strongly correlated (>0.8) across the entire multi-catchment dataset. The reduced set 

of covariates was Elevation, UCA, %RW, HS, Gradient and Orientation for the LS model, and Tamax, UCA, %RW, HS, 

Gradient and Orientation for the LS_Ta model. The RNS basis functions were the same as those included in the single 

catchment models.  10 

A ‘starting’ model was fitted of the form:   

 

Twmax ~ Catchment + s(covariate1) + … + s(covariaten) + RNS:Catchment 

 

where Catchment is a categorical variable allowing a different mean level for each catchment and RNS:Catchment denotes a 15 

separate RNS for each catchment. The covariate smoothers were given a maximum of 2 df and the RNS a maximum of 7 df 

for each catchment. The model was then refined in a backwards and forwards stepwise procedure which considered a) 

replacing smooth covariate effects by linear terms and then dropping them altogether; b) dropping the RNS by Catchment 

term altogether; c) adding interactions between the covariates (either linear or smoothed) and Catchment. An interaction 

between a covariate and Catchment would indicate inter-catchment differences in the relationship between Twmax and the 20 

covariate, suggesting that the model might not transfer well to new catchments. Interactions between the covariates were not 

considered. Model selection was based on BIC. Finally, any non-significant terms (p > 0.05) in the final model were 

removed. 

2.3.4 Model performance and transferability of single-catchment models  

The ability of single-catchment models to predict Twmax within the catchment they were developed (the donor catchment) 25 

was assessed using Leave-One-Out-Cross-Validation. Each site was removed in turn, the final model was refitted, and then 

Twmax was predicted at the missing site using a) using all model terms (i.e. the covariates and the RNS if present) and b) only 

covariates (i.e. excluding the columns in the model matrix relating to the RNS). The prediction using all model terms should 

outperform that using only covariates because it incorporates the extra information about spatial structure that is captured by 

the RNS. However, a RNS from one catchment cannot be used to predict in another because the river networks will differ. 30 

The prediction using only covariates therefore provides a benchmark for assessing the transferability of models between 

catchments, since it measures how well a model will transfer to a catchment that is identical in all but its river network. 
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Transferability to another catchment (the target catchment) was assessed by using the model from the donor 

catchment to predict Twmax at the monitoring sites in the target catchment. As RNSs cannot be transferred, only covariates 

were used in the predictions (i.e. the columns in the model matrix due to the RNS were ignored).   

Three performance metrics were calculated: Root Mean Square Error (RMSE) (Eq.1), which measures overall 

performance (accuracy), Standard Deviation (SD) (Eq.2), which measures how well a model can predict within-catchment 5 

spatial variability (precision), and Bias (Eq.3).   
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where xs and sx̂   are the observed and predicted Twmax at site s, x  and x̂  are the mean observed and predicted Twmax in the 

catchment, and n is the number of sites in the catchment. Standard deviation was used rather than variance, so that all three 

metrics are on the same scale and can be compared. Model performance was also illustrated by plotting observed Twmax 

against predicted values and comparing this to a 1:1 line. Points close to the 1:1 line indicate precise unbiased predictions, 15 

points consistently displaced above or below the line indicate biased predictions, and high scatter about the line indicates 

imprecise predictions. The consequences of predicting outside of the environmental range of a given model was shown by 

coding sites as “in” or “out” of range. 

3 Results   

Across Scotland, August 2015 was wetter than the 1981-2010 mean (MET Office, 2016) and this was reflected in relatively 20 

low Tw. Rainfall in Eastern Scotland (which covers the Spey, Dee and Tweed) was 107% of the 1981-2010 mean, whereas 

rainfall in Western Scotland (which covers the Bladnoch) was only 98% of the 1981-2010 mean (MET Office, 2016). 

Maximum air temperature was the same in Eastern Scotland as the 1981-2010 mean maximum and 0.2°C cooler in Western 

Scotland over the same period (MET Office, 2016).  

Figure 1 shows the spatial variability in Twmax across the four catchments and Figure 2 summarises the distribution 25 

of Twmax by catchment. Median Twmax in the Dee (15.1°C), Tweed (15.6°C) and Spey (15.6°C) were broadly similar, but 

median Twmax in the Bladnoch (16.4°C) was ca. 1°C higher  (Fig. 2). The range of Twmax was 5.7, 5.9, 6.0 and 5.5°C in the 

Bladnoch, Dee, Spey and Tweed, respectively (Fig. 2).  
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3.1 Single catchment models  

All four LS models were simple (Table 2), explained much of the variance in Twmax (76.6-85.6%) and contained similar 

positive relationships between Twmax and UCA (Fig. 3). This relationship was near linear until ca. 100km2 and then levelled 

off in the Bladnoch (Fig. 3d), smooth, but near-linear in the Spey and the Tweed (Fig. 3b, c) and linear in the Dee (Fig. 3a). 

The magnitude of the effect was similar across catchments at ca. 4°C. Three models contained a RNS, which explained much 5 

of the variance; 61.7, 13.9 and 63.7% in the Dee, Tweed and Spey respectively (Table 2). The Tweed model also had a 

negative linear effect of %RW.  

The LS_Ta models always had a better BIC / AICc than the corresponding LS models, but were typically more 

complex, always required more df, and only explained a greater % variance in the Bladnoch and the Tweed (Table 2). For 

the Tweed, the LS_Ta model used only covariates, whereas the LS model required a RNS to account for unexplained spatial 10 

structure. For the Bladnoch, the LS_Ta model included UCA and Tamax, whereas the LS model only included UCA.   

In common with the LS models, UCA was in all the LS_Ta models (Table 2) and the direction, shape and magnitude of the 

effects were consistent with the LS models (Fig. 4, top row). Tamax was in all the LS_Ta models except the Spey (Table 2). 

There was a positive linear relationship between Twmax and Tamax in the Dee and Tweed (Figure 4e, f) and a U shaped 

response in the Bladnoch which is physically implausible, increasingly so when extended beyond the range of Tamax 15 

observed in the Bladnoch (Fig. 4g). Orientation had a small positive effect on Twmax in both the Dee and Tweed (Fig. 4h, i) 

with higher temperatures for a N-S orientation than an E-W orientation. There was also a negative linear effect of %RW and 

a positive smoothed effect of HS in the Tweed, and a positive linear effect of DC in the Spey (Fig. 4j, k, l, respectively).  

3.2 Transferability of single catchment models  

The transferability of the LS and LS_Ta models is summarised by their RMSE, bias and standard deviation in Table 3 and 20 

illustrated in Figs. 5 and 6 respectively. All the models performed well within catchments (i.e. in the catchments where they 

were developed) when all model terms (i.e. both covariates and the RNS) were used in the predictions, with a bias of < 0.1°C 

in absolute value and a RMSE of < 1°C. The LS_Ta models always had a lower RMSE than the LS_models. As expected, 

within-catchment predictions were poorer when only the covariates were used (excluding RNS), with a median RMSE of 

1.2°C and a maximum RMSE of 1.8°C.     25 

The rest of this section focusses on the predictions, both within and between catchments, using only the covariates. 

For the catchments in Eastern Scotland (Dee, Tweed and Spey), the RMSE, bias and standard deviation of any model was 

broadly similar whether it was used to predict for the donor catchment or to the other two target catchments. The RMSE of 

the LS models tended to be lower than that of the LS_Ta models (median 1.3 and 1.7°C respectively). The LS and LS_Ta 

models both had median absolute biases of 0.3°C and median standard deviations of 1.1 and 1.4°C respectively. RMSE is a 30 

combination of bias and standard deviation, so the RMSE of both sets of models was generally dominated by the standard 

deviation.   
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Predictions involving the Bladnoch, either as donor or target catchment, tended to be poor. The Bladnoch is in 

Western Scotland and was warmer than the other catchments (Fig. 2). The Bladnoch models always over-predicted Twmax in 

the other catchments and the Dee, Tweed and Spey models all under-predicted Twmax in the Bladnoch (Fig. 5, 6). This often 

led to substantial bias and hence RMSE. The Bladnoch LS_Ta model had the largest biases, which were also due to the 

implausible relationship with Tamax (Figure 4g). The Dee, Tweed and Spey had reasonable standard deviations when 5 

transferred to the Bladnoch (median 1.0 and 1.1°C for the LS and LS_Ta models respectively) which suggests that, despite 

having poor RMSE, the models still could be used to predict areas of relatively high or low Twmax within the Bladnoch 

(rather than absolute values of Twmax). The same is true of the Bladnoch LS models when transferred to the Dee, Tweed and 

Spey (median standard deviation 1.3°C). However, the Bladnoch LS_Ta model had a high standard deviation (median 

3.3°C) when transferred to the Dee, Tweed and Spey, again due to the implausible relationship with Tamax. 10 

3.3 Multi-catchment models 

The multi-catchment LS model included Catchment, UCA, %RW, Elevation and a RNS for each catchment (Table 4). By 

fitting a single model to all four catchments it was possible to assess whether covariate effects were consistent across 

catchments and thus transferable to new catchments or regions. None of the covariates interacted with catchment. The 

Catchment effect indicates inter-catchment differences in mean Twmax having accounted for the landscape covariates; in 15 

particular, higher Twmax in the Bladnoch (Figure 7d). In common with the single catchment LS models, there was a positive 

smooth relationship between Twmax and UCA with an effect size of ca. 3°C (Figure 7a). There was also a negative linear 

relationship between Twmax and both %RW and Elevation, with effect sizes of ca. 1°C and 2°C respectively. The model 

explained 84.4% of the variance, comparable to the single catchment LS models. The RNSs explain less of the variance than 

in the single catchment models (Tables 3, 4). 20 

The multi-catchment LS_Ta model explained 83.2% of the variance and contained Catchment, UCA, %RW, Tamax 

and a RNS for each catchment (Table 4, Figure 8). None of the landscape covariates interacted with catchment. However, the 

Tamax relationship did interact with catchment, (Fig. 8a-d), with positive relationships in the Dee and Tweed and negative 

(albeit non-significant) relationships in the Spey and Bladnoch. This suggests that relationships with Tamax are non-

transferable and Tamax would not be a good predictor of Twmax in new catchments. 25 

4.0 Discussion  

Even with the introduction of relatively cheap and accurate dataloggers it is not possible to monitor everywhere. 

Consequently, there is a need to develop models to understand and predict river temperatures at large spatial scales to inform 

evidence based management of rivers and fisheries. Spatial statistical models offer great promise in this respect. However, to 

date, the transferability of these models has not been considered. This study fitted separate models of Twmax to data from four 30 

catchments and transferred these models between catchments. Models containing only landscape covariates typically 
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contained similar covariates and covariate responses, and performed better than models containing Tamax when transferred 

between catchments. A physically implausible model transferred particularly poorly. The covariates alone often explained 

much less of the spatial temperature variability than when a RNS was added, but provided the only means of predicting 

temperature in new catchments. Models fitted to all four catchments combined suggested common responses to landscape 

covariates, but inter-catchment differences in mean temperature and in the relationships between Twmax and Tamax. These 5 

findings are discussed in more detail below. 

4.1 Twmax responses to landscape covariates 

The single catchment LS models contained similar covariates with comparable effect sizes and response shapes which 

suggested that transferability between catchments could be reasonably successful. This was confirmed by the lack of 

significant interactions with Catchment in the multi-catchment model. However, when there are inter-catchment differences 10 

in mean temperature, the models might only be good predictors of relative values of Twmax within a new catchment (i.e. 

areas of higher or lower Twmax) rather than absolute values. 

All of the Twmax responses to landscape covariates (across all models) were physically plausible and hence broadly 

transferable (Smith et al., 2016). UCA (which was in all the models) is a proxy for discharge, water volume and thermal 

capacity (Chang and Psaris, 2013; Hannah et al., 2008). Higher UCAs are generally associated with larger water volumes 15 

which have a greater thermal capacity, taking longer to warm but also retaining heat for longer (Chang and Psaris, 2013; 

Imholt et al., 2011). Elevation reflects adiabatic lapse rates which reduces temperatures with increasing altitude (Hrachowitz 

et al., 2010, Jackson et al 2016a). The negative relationship between Twmax and %RW woodland occurs because riparian 

shading reduces the amount of incident shortwave radiation reaching the river during daylight hours (Garner et al., 2014; 

Hannah et al., 2008; Moore et al., 2005). The positive relationship between Tw and HS is consistent with greater Tw in 20 

locations with lower shading effects and greater direct shortwave contributions (illumination). Tw was greatest in channels 

characterised by a north/south orientation which typically experience maximum exposure to incoming radiation (Malcolm et 

al., 2004). Increasing Tw with distance from the coast, reflected continentality and the differing specific heat capacities of 

land and sea, specifically thermal buffering of relatively cooler sea during summer months (Chang and Psaris, 2013; 

Hrachowitz et al., 2010). 25 

4.2 Tw ~ Ta relationships  

In contrast to the LS models, one LS_Ta model included a physically implausible relationship that would not be expected to 

transfer well (Smith et al., 2016). Specifically, an inverse modal relationship between Twmax and Tamax in the Bladnoch 

model transferred particularly poorly. Even where the relationships between Twmax and Tamax relationships were plausible, 

they were inconsistent between catchments in terms of effect size, as indicated by the varying responses in the single 30 

catchment models and the interaction with Catchment in the multi-catchment model. 
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Given the number of previous studies that have predicted Tw from Ta, it may appear surprising that Tamax was such a poor 

predictor of between-catchment temperature variability in this study. However, this study was only concerned with spatial 

variability in a temporally static Tw metric. For Tamax to have been a useful predictor in these models would have required a 

spatially consistent relationship between Twmax and Tamax.  

Many studies have shown that relationships between Tw and Ta can be highly variable (Arismendi et al., 2014; 5 

Arora et al., 2016; Fellman et al., 2014; Mayer, 2012) across a range of spatial scales, with the relationships depending on 

hydrological and landscape controls (Chang and Psaris, 2013). For example, Arismendi et al. (2014) investigated Tw~Ta 

relationships at 25 sites across the Western US using linear regression and reported that the slope of the relationship varied 

between 0.32 and 1.01, while Fellman et al. (2014) observed slopes of between -0.180 and 1.282 across 9 watersheds in 

Alaska depending on glacial influence. Even at smaller spatial scales there can still be considerable inter-site variability in 10 

Tw~Ta relationships. For example, Johnson et al. (2014) developed linear and logistic Tw~Ta models for 36 sites across the 

Manifold and Dove catchments, English Peak District (131 and 75 km2 respectively) and found that parameter estimates 

varied substantially between sites, so the models were effectively site specific. Given the reported spatial variability in 

Tw~Ta relationships it is unsurprising that Tamax does not substantially improve predictions of the spatial variability in Twmax 

without including greater model complexity by allowing for interactions between Tamax and landscape covariates (e.g. 15 

Mayer, 2012).  

4.4 The importance of RNS  

The landscape covariates included in the models in this study explained large (catchment) scale trends in Twmax, but were 

less successful at explaining variability at finer spatial scales. For example, the ca. 20% variance explained by UCA in the 

Spey and Dee models is consistent with the 18-25% of Tw variability explained by discharge in Arora et al. (2016). Smaller 20 

scale variability tends to reflect drivers such as water residence time (and heat advection), water sources (Brown et al., 2006; 

Brown and Hannah, 2008), channel incision, gradient (Jackson et al., 2016a) and land use (Imholt et al., 2013) which are 

harder to accurately characterise from spatial datasets. In the absence of accurate local scale characterisation of landscape 

controls, smaller scale spatial variability is modelled by the RNS. However, whilst the RNS improves predictions within 

catchments, it is not transferable so does nothing to help predictions between catchments.  25 

4.5 Extending predictions  

The inclusion of the Catchment main effect in both multi-catchment models showed differences in mean Twmax between 

catchments (that were not accounted for by the covariates). This sometimes led to substantial bias when transferring single 

catchment models to new catchments. Accounting for between-catchment differences in mean Tw will be necessary to 

improve between-catchment predictions of Tw. The multi-catchment models in this study used a simple categorical variable 30 

to allow the intercept (and hence mean Twmax) to differ between catchments. However, to predict to new catchments, it 

would be necessary to extend the modelling approach so that the intercept can be predicted from surrounding catchments. 
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One approach could be to allow the intercept to vary smoothly between catchments using a Gaussian Markov Random Field 

(Cressie, 1993), so the intercept in unmonitored catchments could be estimated from nearby monitored catchments. This 

approach has been developed in other contexts (Millar et al., 2015, 2016) and offers promise in the context of large-scale Tw 

modelling.  

5 Conclusions and future work   5 

This study demonstrated that landscape covariates can explain broad scale patterns in Twmax and that such relationships are 

transferable between catchments, at least to predict relative levels of Twmax. It was necessary to use a RNS to characterise 

and predict finer scale spatially correlated variation, so predictions of spatial temperature variability were better within 

catchments than between catchments. Tamax was not a transferable predictor of Twmax and could result in poor predictions 

when the relationship was implausible or transferred outside the range observed in the donor catchment. It would be unwise 10 

to use a Tw~Ta relationship to predict spatial variability in Tw without also including meaningful (process relevant) 

interactions between Ta and landscape covariates, something that was not possible in this study due to data constraints.  

Mean Twmax also varied between catchments (having adjusted for the landscape covariates). Future work that looks 

to predict to new catchments should investigate how to understand and predict these between catchment differences. A large 

scale correlated spatial smoother (e.g. regional effect) offers potential in this respect. Finally, some of the local scale 15 

processes represented in this study (e.g. effect of riparian shading) may benefit from improved characterisation using finer 

scale spatial datasets or remotely sensed data. Improved process representation could lead to both better within and between 

catchment model predictions. 

Data availability 

Some map features are based on digital spatial data licensed from the Centre of Ecology and Hydrology, NERC © 20 

Crown Copyright and database right (2016), all rights reserved, Ordnance Survey License number 100024655. Catchment 

boundaries were from SEPA (2009). The digitised river network is from the CEH and includes Scottish Environmental 

Protection Agency (SEPA) coding. Catchment boundaries were from SEPA (2009) and Salmon rivers from Marine Scotland 

(2008). The gridded Ta dataset was from UKCP09: Daily gridded air temperature dataset (2015) UK MET Office. Summary 

Tw data used in the study will be made available on the Marine Scotland Science webpages, upon acceptance of the article.  25 
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Table 1 Covariate calculations. All calculations were in R, version 3.2.3 (R Core Team, 2015) except where specified.    

 

Covariate Process and associated packages Datasets 

Elevation ‘extract’ function in the ‘raster’ package (Hijmans, 2015)   OS. Terrain 10m DTM, CEH 

DRN 

Gradient ‘extract’ function in the ‘raster’ package (Hijmans, 2015)  to get elevations of the 

node and a location 1km upstream. The difference in these elevations divided by 

the length between the two nodes provided Gradient. The length upstream was 

calculated using ‘SpatialLinesLengths’ from ‘sp’ (Pebesma and Bivand, 2005) 

OS. Terrain 10m DTM, CEH 

DRN 

Orientation Standard trigonometry based on the x and y locations of the node and associated 

upstream points 1km upstream lengths. The lengths upstream was calculated 

using ‘SpatialLinesLengths’ from ‘sp’  (Pebesma and Bivand, 2005) 

CEH DRN 

Upstream Catchment 

Area (UCA) 

Arc Hydro Tools (ArcGIS 10.2.1) was used to ‘burn in’ the DRN to the DTM and 

then calculate an UCA raster. 

OS. Terrain 10m Digital Terrain 

Model, DTM; CEH DRN 

Hillshading/ 

Illumination (HS) 

‘terrain’ and ‘hillShade’ functions in the ‘raster’ package (Hijmans, 2015) were 

used to create a hillshade layer for every hour the sun was above the horizon. 

These layers were then summed to create a single layer of maximum potential 

exposure. HS values for the nodes were an average of the raster grid cells in the 

1km river polygon. Raster grid cells were weighted by the proportion of the cell 

within the buffer.  

CEH DRN , OS. Terrain 10m 

DTM; Solar azimuth and 

altitude values from the U.S. 

Naval Observatory  

Astronomical Applications 

Department (Anon, 2001) 

Percentage riparian 

woodland (%RW) 

The percentage of woodland in a buffer 50m wide and 1km long (upstream) 

provided %RW. Areas were calculated using ‘gArea’ from  ‘rgeos’ (Bivand and 

Rundel, 2016) and lengths the ‘SpatialLinesLengths’ from ‘sp’ (Pebesma and 

Bivand, 2005). 

OS MasterMap, CEH DRN 

Width Width was calculated by finding the area classified as water within the 1km 

upstream and dividing this by the distance upstream. Areas were calculated using 

‘gArea’ from  ‘rgeos’ (Bivand and Rundel, 2016) and lengths the 

‘SpatialLinesLengths’ from ‘sp’ (Pebesma and Bivand, 2005). 

OS MasterMap, CEH DRN 

Distance to coast 

(DC) 

gDistance’ from the ‘rgeos’ R package (Bivand and Rundel, 2016). CEH DRN, OS Panorama 

coastline  

River distance to sea 

(RDS) 

“shortest.paths” function from the igraph R package  (Csardi and Nepusz, 2006) CEH DRN, OS Panorama 

coastline 

Highest 7-day 

average maximum 

August Ta (Tamax) 

Take the Ta value, from daily maximum predicted Ta matrix, for each cell 

containing a SRTMN site. Use these daily values to calculate rolling averages 

then select the highest, for each site. 

Gridded UKCP09 predicted Ta 

dataset (UK MET Office) 

 

 

 5 

 

 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2017-43, 2017
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 14 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



18 

 

Table 2 LS model and LS_Ta model for each catchment, with the % variance explained by the model (all terms) and the 

same model but with the RNS omitted (covariates).  

Catchment Model  AICc / BIC df 
% variance 

all terms covariates  

LS model  

Dee UCA + RNS  137.0 8.8 80.0 18.3 

Tweed s(UCA) + %RW + RNS  100.1 7.6 85.6 71.7 

Spey s(UCA) + RNS 69.8 6.8 85.5 21.8 

Bladnoch s(UCA) 55.5 2.9 76.6 76.6 

LS_Ta model   

Dee Tamax + UCA + s(Orientation) + RNS 131.8 11.7 85.1 19.9 

Tweed 
Tamax + s(UCA) + %RW +  s(HS) +  

Orientation 
98.5 7.7 85.3 85.3 

Spey  UCA + DC + RNS 69.3 7.4 85.1 19.9 

Bladnoch Tamax + UCA 53.9 4.8 85.9 85.9 
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Table 3 Transferability of LS and LS_Ta models. The values in normal font are for predictions using only covariates (any 

RNS information is ignored). The values in italics are for predictions when the target and donor catchments are the same and 

all model terms are used (both covariates and the RNS). 

 Donor 

catchment  

Target catchment 

Dee Tweed Spey Bladnoch 

LS models 

RMSE Dee 1.3 (0.8) 1.2 1.3 2.3 

Tweed 1.1 1.1 (0.9) 1.3 1.9 

Spey 1.3 1.3 1.4 (0.9) 2.5 

Bladnoch 2.2 1.9 2.4 0.9 (0.9) 

Bias Dee -0.6 (0.1) -0.6 -0.1 -2.0 

Tweed 0.2 -0.1 (0.0) 0.3 -1.7 

Spey -0.6 -0.8 -0.2 (-0.0) -2.3 

Bladnoch 1.9 1.4 2.0 0.0 (0.0) 

Standard 

Deviation 

Dee 0.8 (0.8) 1.1 1.3 1.2 

Tweed 1.1 1.0 (0.9) 1.2 1.0 

Spey 1.1 1.1 1.4 (0.9) 1.0 

Bladnoch 1.1 1.3 1.3 0.9 (0.9) 

LS_Ta models 

RMSE Dee 1.7 (0.7) 0.9 1.9 1.9 

Tweed 1.2 0.9 (0.9) 2.3 1.5 

Spey 1.5 2.0 1.8 (0.8) 4.2 

Bladnoch 8.4 4.2 5.2 0.9 (0.9) 

Bias Dee -1.1 (0.1) -0.3 0.0 -1.4 

Tweed -0.7 -0.0 (-0.0) -0.1 -1.0 

Spey -0.1 -1.4 -0.7 (0.0) -4.1 

Bladnoch 7.6 3.2 4.1 -0.1 (-0.1) 

Standard 

deviation 

Dee 1.3 (0.7) 0.9 1.9 1.2 

Tweed 1.0 0.9 (0.9) 2.3 1.1 

Spey 1.5 1.4 1.6 (0.8) 1.1 

Bladnoch 3.7 2.7 3.3 0.9 (0.9) 
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Table 4 Multi-catchment LS and LS_Ta model, with the % variance explained by the model (all terms) and when the RNS is 

omitted (covariates). 

Model  BIC df 

% variance  

all terms covariates 

Multi-catchment LS model  

Catchment + s(UCA) + %RW + Elevation + 

RNS:Catchment 
379.3 24.8 84.4 51.9 

Multi-catchment LS_Ta model 

Catchment + Tamax:Catchment + s(UCA) + %RW 

+ RNS:Catchment 
395.4 25.7 83.2 57.2 
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Figure 1. Study catchments and spatial patterns of Twmax for August 2015 a) Catchment positions in Scotland b) River 

Bladnoch catchment, c) River Spey catchment, d) River Dee catchment, e) River Tweed catchment 
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Figure 2. Box and whisker plot of Twmax across sites by catchment for August 2015. 
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Figure 3. LS model effects with pointwise 95% confidence bands: a) Dee UCA, b) Tweed UCA, c) Spey UCA, d) Bladnoch 

UCA, e) Tweed %RW.  
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Figure 4. LS_Ta model effects with pointwise 95% confidence bands. Each column corresponds to a catchment and each 

row to a covariate. a) Dee UCA, b) Tweed UCA, c) Spey UCA, d) Bladnoch UCA, e) Dee Tamax, f) Tweed Tamax, g) 

Bladnoch Tamax, h) Dee Orientation, i) Tweed orientation, j) Tweed %RW, k) Tweed hillshading, l) Spey DC. 
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Figure 5. LS model transferability. Panels a, b, c, d show predicted Twmax when the target catchment is the Dee, Tweed, 

Spey and Bladnoch respectively. The colours and symbols indicate the donor catchment: Dee (red circles), Tweed (orange 

triangles), Spey (dark blue squares) and Bladnoch (light blue diamonds). Filled (open) symbols indicate sites in (out) of the 

environmental range of the donor catchment. When the target and donor catchments are the same, the coloured points are 5 

based on predictions using only covariates; the grey symbols show the corresponding predictions based on the covariates and 

the RNS. The dashed lines are robust regression lines of observed against predicted values. Models which transfer well have 

points falling close to the 1:1 line.  
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Figure 6. LS_Ta model transferability. Panels a, b, c, d show predicted Twmax when the target catchment is the Dee, Tweed, 

Spey and Bladnoch respectively. The colours and symbols indicate the donor catchment: Dee (red circles), Tweed (orange 

triangles), Spey (dark blue squares) and Bladnoch (light blue diamonds). Filled (open) symbols indicate sites in (out) of the 

environmental range of the donor catchment. When the target and donor catchments are the same, the coloured points are 5 

based on predictions using only covariates; the grey symbols show the corresponding predictions based on the covariates and 

the RNS. The dashed lines are robust regression lines of observed against predicted values.  Models which transfer well have 

points falling close to the 1:1 line.    
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Figure 7. Multi-catchment LS model effects with pointwise 95% confidence bands: a) UCA, b) %RW, c) Elevation, d) 

Catchment.  
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Figure 8. Multi-catchment LS_Ta model effects with pointwise 95% confidence bands:  a) Dee Tamax, b) Tweed Tamax, c) 

Spey Tamax, d) Bladnoch Tamax, e) UCA, f) %RW, g) Catchment. 
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