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Abstract. There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from 

landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such 

models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how 10 

well spatial regression models predict the maximum 7 day rolling mean of daily maximum Tw (Twmax) within and between 

catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) 

landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment 

area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models 

transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were 15 

biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer scale spatially 

correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better 

within catchments than between catchments. A single model fitted to all catchments found no interactions between the 

landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models 

transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible 20 

or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific 

relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve 

our understanding of the transferability of spatial statistical river temperature models and provide a foundation for 

developing new approaches for predicting Tw at unmonitored locations across multiple catchments and larger spatial scales. 

 25 
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1 Introduction 

River temperature (Tw) is a key control on the health of aquatic systems (Webb et al., 2008) and is particularly important for 

the growth, survival and demographic characteristics of cold water adapted species such as salmonids (Elliott and Elliott, 30 

2010; Gurney et al., 2008; Jonsson and Jonsson, 2009; McCullough et al., 2001). Rising Tw will influence fish populations 
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by altering the thermal suitability of rivers (Comte et al., 2013; Isaak et al., 2010, 2012). Thus models that can; 1) identify 

areas most affected by thermal extremes, 2) improve understanding of spatio-temporal variability of thermal regimes, 3) 

predict the potential effects of climate change and 4) illustrate opportunities for thermal moderation, such as riparian tree 

planting (Hannah et al., 2008; Hrachowitz et al., 2010), are important for fisheries management. Large-scale models are 

required to provide information at the spatial scales appropriate to management decisions i.e. catchment (Chang and Psaris, 5 

2013; Hrachowitz et al., 2010; Imholt et al., 2011, 2013; Jackson et al., 2017; Steel et al., 2016), regional (Hill et al., 2013; 

Isaak et al., 2012; Ruesch et al., 2012) and national scales.  

Although process based models provide important mechanistic understanding at small spatial scales, their intensive 

data requirements prohibit their use at larger scales (Jackson et al., 2016). In contrast, empirical models of Tw rely on Tw 

observations and explanatory covariates (e.g. altitude or air temperature) which can often be derived remotely at relatively 10 

low cost. The development of affordable, reliable, accurate Tw dataloggers has led to a rapid increase in Tw monitoring 

(Sowder and Steel, 2012), to the point that staff time, data storage and quality control are often now the greatest limitations 

on data collection (Jackson et al., 2016). At the same time, there have been substantial developments in spatial statistical 

modelling approaches (Ver Hoef et al., 2006, 2014; Ver Hoef and Peterson, 2010; Isaak et al., 2014; Jackson et al., 2017; 

O’Donnell et al., 2014; Peterson et al., 2013; Rushworth et al., 2015), monitoring network design (Dobbie et al., 2008; 15 

Jackson et al., 2016; Som et al., 2014), spatial datasets (e.g. shapefiles incorporating covariates such as in “The National 

Stream Internet Project” (Isaak et al., 2011) or gridded air temperature datasets (Perry and Hollis, 2005a, b)) and spatial 

analysis tools (Isaak et al., 2011, 2014; Peterson et al., 2013; Peterson and Ver Hoef, 2014).  

While continuous river temperature data are routinely collected in some areas, resulting in large regional 

temperature datasets and associated models (e.g. Wehrly et al. 2009; Moore et al. 2013), this is far from universal. In many 20 

cases financial and logistical considerations limit data collection making it impractical to monitor all rivers. For example, in 

Scotland there are 16006 river catchments (unique rivers running to the sea), including 629 catchments >10km
2
, but there 

was no systematic nationwide quality controlled river temperature data collection until 2015 (Jackson et al. 2016). For 

management purposes, it is therefore often necessary to predict Tw at unmonitored locations, both within (Hrachowitz et al., 

2010; Jackson et al., 2017; Peterson and Urquhart, 2006) and between catchments (Isaak et al., 2014). In recent years, it has 25 

become increasingly common to develop and apply spatial statistical river network models that incorporate network 

covariance structure to predict spatial variability in river temperature (e.g. Isaak et al., 2014; Jackson et al., 2017). It is 

widely acknowledged that these models can dramatically improve predictions of river temperature where sufficient 

observational data exist, but the covariance component of the predictions cannot typically be transferred between 

catchments. Despite these  important issues, there has not yet been an assessment of the transferability of spatial statistical 30 

Tw models between catchments; i.e. the ability of a model developed in one catchment to predict Tw in another. This paper 

investigates the ability of spatial statistical Tw models to predict Tw at unmonitored locations within and between 

catchments.  
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The principles explored in this paper are likely to be relevant to other water temperature metrics so, for brevity, this 

study focuses on maximum summer temperature, a metric which is prevalent in the recent literature, reflecting its importance 

for the survival of cold water adapted fish (Chang and Psaris, 2013; Hrachowitz et al., 2010; Jackson et al., 2017; Malcolm et 

al., 2008; Marine and Cech, 2004).  

Models are fitted using two sets of covariates. The first set contains landscape covariates which can be generated 5 

from readily available spatial datasets and have been the focus of many previous studies of spatial variability in river 

temperature (e.g. Hrachowitz et al., 2010). Due to increasing interest in the use of air temperature (Ta) to predict spatial 

variability in water temperature (e.g. Jonkers & Sharkey, 2016), the second set contains a metric of air temperature in 

addition to landscape covariates.  

The paper addresses the following objectives: 10 

1. Develop statistical models for predicting maximum summer water temperature from landscape covariates in 

four separate river catchments. 

2. Determine whether models containing an air temperature metric explain more of the variation in maximum 

summer water temperature than those only containing landscape covariates. 

3. Assess the transferability of models containing only landscape covariates or both landscape and air temperature 15 

covariates between catchments 

4. Produce single models of maximum summer water temperature for all four catchments using both sets of 

covariates and consider their potential for transferability at larger (e.g. national) scales. 

2 Methodology 

2.1 Water temperature data and metric 20 

Tw data were obtained from monitoring sites in four catchments; the Bladnoch in Western Scotland and the Dee 

(Aberdeenshire), Spey and Tweed in Eastern Scotland (Fig.1). These catchments are Special Areas of Conservation for 

Atlantic salmon and form part of the Scotland River Temperature Monitoring Network (SRTMN) (Jackson et al., 2016). 

Details of the network, including design and quality control procedures, are given in Jackson et al. (2016). The catchments 

all contain an adequate numbers of Tw dataloggers to develop Tw models on a single catchment basis with 59, 34, 25 and 19 25 

sites in the Dee, Tweed, Spey and Bladnoch, respectively. The choice of catchments ensured a broad geographic coverage 

across Scotland with a wide environmental range of landscape covariates (Jackson et al., 2016).  

Data were collected at 15 minute intervals throughout August 2015. The maximum temperature was calculated for 

each day and used to produce a 7 day rolling mean of maximum temperatures. The metric of maximum temperatures used in 

this study (Twmax) was the maximum value of this 7 day rolling mean. This metric was preferred to a single observation of 30 

Tw as it characterises the occurrence of sustained high temperatures which are thought to be most ecologically damaging.  
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2.2 Model covariates  

Detailed discussion of the landscape covariates and their calculation can be found in (Jackson et al., 2016). In brief, the 

covariates were: elevation (Elevation), upstream catchment area (UCA), percentage riparian woodland (%RW), hillshading / 

channel illumination (HS), channel width (Width), channel gradient (Gradient), channel orientation (Orientation), distance to 

coast (DC) and distance to the sea along the river (RDS). Table 1 summarises how the covariates were calculated. Before 5 

model fitting, Gradient, UCA and Width were log transformed to reduce skewness and HS was centred by subtracting the 

median value from all observations. 

An air temperature metric (Tamax) was calculated for each site from the gridded UKCP09 Ta dataset (available from 

the UK MET Office). See Perry and Hollis (2005a, 2005b) for details of this dataset. Analogous to the calculation of Twmax, 

Tamax was given by the maximum of the 7 day rolling mean of daily maximum air temperatures in August 2015.  10 

Figure 2 illustrates the distribution and correlation among covariates included in the single or multi-catchment 

models (excluding strongly correlated (> 0.8) covariate pairs, see below for details) for each of the four catchments and for 

the global (four catchment) dataset. 

2.3 Modelling 

Ten models of Twmax were developed: two models for each of the four river catchments using either 1) landscape covariates 15 

only (LS models) or 2) landscape covariates and Tamax (LS_Ta models) and two models for all four catchments combined, 

again using either 1) landscape covariates only (multi-catchment LS model) or 2) landscape covariates and Tamax (multi-

catchment LS_Ta model). The modelling process differs slightly between the single and multi-catchment models and these 

are described in turn. All analysis was done in R version 3.2.3 (R Core Team, 2015).   

2.3.1 Single catchment models 20 

The set of covariates was first reduced to avoid problems of collinearity. If two covariates were strongly correlated (Pearson 

correlation coefficient >0.8) in any one catchment, one of the covariates was dropped from the set available for modelling 

for all catchments. This ensured all the LS models were based on a common set of covariates (UCA, %RW, HS, Orientation, 

DC) as were the LS_Ta models (Tamax, UCA, %RW, HS, Orientation, DC).    

The relationship between Twmax and the covariates was explored using generalised additive models (GAMs) with 25 

Gaussian errors and an identity link (Wood, 2001). A ‘full’ model was first fitted which included all the available covariates 

from the reduced dataset and a river network smoother (RNS) (see below). The model can be conveniently written in R 

formula syntax as: 

 

Twmax ~ s(covariate1) + … + s(covariaten) + RNS  30 
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where, n is the number of covariates (n = 5, 6 for LS, LS_Ta models respectively), s(covariatei) denotes that covariate i was 

fitted as a smoother, and an intercept is included by default. The amount of smoothing was estimated from the data (Wood, 

2001), with each smoother constrained to have at most 2 degrees of freedom (df) based on the expected simplicity of Twmax 

responses to the covariates. The RNS is included to account for spatial structure in the data that cannot be explained by the 

covariates. The RNS is a modified version of that developed by O’Donnell et al. (2014), with the amount of smoothness at a 5 

confluence controlled by the proportional influence of upstream tributaries weighted by Strahler river order (Strahler, 1957) 

and fitted using a set of ‘reduced rank’ basis functions. See Jackson et al. (2017) for full details. The RNS was allowed up to 

7 df based on knowledge of RNS complexity for the Spey (Jackson et al., 2017). To ensure the RNS did not account for 

variability that would otherwise be explained by covariates, RNS basis functions were excluded if they were strongly 

correlated (>0.8) with any of the covariates. Thus, base 1 was removed from the Spey and Dee RNSs due to correlations with 10 

DC. In the LS_Ta models, base 2 was also removed from the Spey RNS due to correlation with Tamax. The model was fitted 

by maximum likelihood using the “mgcv” package (Wood, 2016) in R. 

All possible subsets of the full model were then fitted. The final model was that with the lowest Bayesian 

Information Criterion (BIC) or Akaike Information Criterion corrected for small sample size (AICc) that contained no terms 

significant at the 5% level. The choice of Information Criterion was based on the desire to penalise more complex models 15 

that would be unlikely to transfer well (Millidine et al., 2016). Thus, BIC was used for the Dee and Tweed where there were 

more sites and AICc was used for the Bladnoch and Spey where there were fewer sites. Terms in the final model with 1 df 

were replaced by linear terms.  

In common with similar modelling studies (Hrachowitz et al., 2010; Imholt et al., 2011; Jackson et al., 2017; 

Ruesch et al., 2012), no interactions were considered between covariates due to data constraints.  20 

2.3.2 Multi-catchment models 

Covariates were excluded if they were strongly correlated (>0.8) across the entire multi-catchment dataset. The reduced set 

of covariates was Elevation, UCA, %RW, HS, Gradient and Orientation for the LS model, and Tamax, UCA, %RW, HS, 

Gradient and Orientation for the LS_Ta model. The RNS basis functions were the same as those included in the single 

catchment models.  25 

A ‘starting’ model was fitted of the form:   

 

Twmax ~ Catchment + s(covariate1) + … + s(covariaten) + RNS:Catchment 

 

where Catchment is a categorical variable allowing a different mean level for each catchment and RNS:Catchment denotes a 30 

separate RNS for each catchment. The covariate smoothers were given a maximum of 2 df and the RNS a maximum of 7 df 

for each catchment. The model was then refined in a backwards and forwards stepwise procedure which considered a) 

replacing smooth covariate effects by linear terms and then dropping them altogether; b) dropping the RNS by Catchment 
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term altogether; c) adding interactions between the covariates (either linear or smoothed) and Catchment. An interaction 

between a covariate and Catchment would indicate inter-catchment differences in the relationship between Twmax and the 

covariate, suggesting that the model might not transfer well to new catchments. Interactions between the covariates were not 

considered. Model selection was based on BIC. Finally, any non-significant terms (p > 0.05) in the final model were 

removed. 5 

2.3.4 Model performance and transferability of single-catchment models  

The ability of single-catchment models to predict Twmax within the catchment they were developed (the donor catchment) 

was assessed using Leave-One-Out-Cross-Validation. Each site was removed in turn, the final model was refitted, and then 

Twmax was predicted at the missing site using a) using all model terms (i.e. the covariates and the RNS if present) and b) only 

covariates (i.e. excluding the columns in the model matrix relating to the RNS). The prediction using all model terms should 10 

outperform that using only covariates because it incorporates the extra information about spatial structure that is captured by 

the RNS. However, a RNS from one catchment cannot be used to predict in another because the river networks will differ. 

The prediction using only covariates therefore provides a benchmark for assessing the transferability of models between 

catchments, since it measures how well a model will transfer to a catchment that is identical in all but its river network. 

Transferability to another catchment (the target catchment) was assessed by using the model from the donor 15 

catchment to predict Twmax at the monitoring sites in the target catchment. As RNSs cannot be transferred, only covariates 

were used in the predictions (i.e. the columns in the model matrix due to the RNS were ignored).   

Three performance metrics were calculated: Root Mean Square Error (RMSE) (Eq.1), which measures overall 

performance (accuracy), Standard Deviation (SD) (Eq.2), which measures how well a model can predict within-catchment 

spatial variability (precision), and Bias (Eq.3).   20 
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 25 

where xs and sx̂   are the observed and predicted Twmax at site s, x  and x̂  are the mean observed and predicted Twmax in the 

catchment, and n is the number of sites in the catchment. Standard deviation was used rather than variance, so that all three 

metrics are on the same scale and can be compared. Model performance was also illustrated by plotting observed Twmax 

against predicted values and comparing this to a 1:1 line. Points close to the 1:1 line indicate precise unbiased predictions, 
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points consistently displaced above or below the line indicate biased predictions, and high scatter about the line indicates 

imprecise predictions. The consequences of predicting outside of the environmental range of a given model was shown by 

coding sites as “in” or “out” of range. 

3 Results   

Across Scotland, August 2015 was wetter than the 1981-2010 mean (MET Office, 2016) and this was reflected in relatively 5 

low Tw. Rainfall in Eastern Scotland (which covers the Spey, Dee and Tweed) was 107% of the 1981-2010 mean, whereas 

rainfall in Western Scotland (which covers the Bladnoch) was only 98% of the 1981-2010 mean (MET Office, 2016). 

Maximum air temperature was the same in Eastern Scotland as the 1981-2010 mean maximum and 0.2°C cooler in Western 

Scotland over the same period (MET Office, 2016).  

Figure 1 shows the spatial variability in Twmax across the four catchments and Figure 2 summarises the distribution 10 

of Twmax by catchment (bottom left diagonal panel). Median Twmax in the Dee (15.1°C), Tweed (15.6°C) and Spey (15.6°C) 

were broadly similar, but median Twmax in the Bladnoch (16.4°C) was ca. 1°C higher  (Fig. 2). The range of Twmax was 5.7, 

5.9, 6.0 and 5.5°C in the Bladnoch, Dee, Spey and Tweed, respectively (Fig. 2).  

3.1 Single catchment models  

All four LS models were simple (Table 2), explained much of the variance in Twmax (76.6-85.6%) and contained similar 15 

positive relationships between Twmax and UCA (Fig. 3). This relationship was near linear until ca. 100km
2
 and then levelled 

off in the Bladnoch (Fig. 3d), smooth, but near-linear in the Spey and the Tweed (Fig. 3b, c) and linear in the Dee (Fig. 3a). 

The magnitude of the effect was similar across catchments at ca. 4°C. Three models contained a RNS, which explained much 

of the variance; 61.7, 13.9 and 63.7% in the Dee, Tweed and Spey respectively (Table 2). The Tweed model also had a 

negative linear effect of %RW.  20 

The LS_Ta models always had a better BIC / AICc than the corresponding LS models, but were typically more 

complex, always required more df, and only explained a greater % variance in the Bladnoch and the Tweed (Table 2). For 

the Tweed, the LS_Ta model used only covariates, whereas the LS model required a RNS to account for unexplained spatial 

structure. For the Bladnoch, the LS_Ta model included UCA and Tamax, whereas the LS model only included UCA.   

In common with the LS models, UCA was in all the LS_Ta models (Table 2) and the direction, shape and magnitude of the 25 

effects were consistent with the LS models (Fig. 4, top row). Tamax was in all the LS_Ta models except the Spey (Table 2). 

There was a positive linear relationship between Twmax and Tamax in the Dee and Tweed (Figure 4e, f) and a U shaped 

response in the Bladnoch which is physically implausible, increasingly so when extended beyond the range of Tamax 

observed in the Bladnoch (Fig. 4g). Orientation had a small positive effect on Twmax in both the Dee and Tweed (Fig. 4h, i) 

with higher temperatures for a N-S orientation than an E-W orientation. There was also a negative linear effect of %RW and 30 

a positive smoothed effect of HS in the Tweed, and a positive linear effect of DC in the Spey (Fig. 4j, k, l, respectively).  
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3.2 Transferability of single catchment models  

The transferability of the LS and LS_Ta models is summarised by their RMSE, bias and standard deviation in Table 3 and 

illustrated in Figs. 5 and 6 respectively. All the models performed well within catchments (i.e. in the catchments where they 

were developed) when all model terms (i.e. both covariates and the RNS) were used in the predictions, with a bias of < 0.1°C 

in absolute value and a RMSE of < 1°C. The LS_Ta models always had a lower RMSE than the LS_models. As expected, 5 

within-catchment predictions were poorer when only the covariates were used (excluding RNS), with a median RMSE of 

1.2°C and a maximum RMSE of 1.8°C.     

The rest of this section focusses on the predictions, both within and between catchments, using only the covariates. 

For the catchments in Eastern Scotland (Dee, Tweed and Spey), the RMSE, bias and standard deviation of any model was 

broadly similar whether it was used to predict for the donor catchment or to the other two target catchments. The RMSE of 10 

the LS models tended to be lower than that of the LS_Ta models (median 1.3 and 1.7°C respectively). The LS and LS_Ta 

models both had median absolute biases of 0.3°C and median standard deviations of 1.1 and 1.4°C respectively. RMSE is a 

combination of bias and standard deviation, so the RMSE of both sets of models was generally dominated by the standard 

deviation.   

Predictions involving the Bladnoch, either as donor or target catchment, tended to be poor. The Bladnoch is in 15 

Western Scotland and was warmer than the other catchments (Fig. 2). The Bladnoch models always over-predicted Twmax in 

the other catchments and the Dee, Tweed and Spey models all under-predicted Twmax in the Bladnoch (Fig. 5, 6). This often 

led to substantial bias and hence RMSE. The Bladnoch LS_Ta model had the largest biases, which were also due to the 

implausible relationship with Tamax (Figure 4g). The Dee, Tweed and Spey had reasonable standard deviations when 

transferred to the Bladnoch (median 1.0 and 1.1°C for the LS and LS_Ta models respectively) which suggests that, despite 20 

having poor RMSE, the models still could be used to predict areas of relatively high or low Twmax within the Bladnoch 

(rather than absolute values of Twmax). The same is true of the Bladnoch LS models when transferred to the Dee, Tweed and 

Spey (median standard deviation 1.3°C). However, the Bladnoch LS_Ta model had a high standard deviation (median 

3.3°C) when transferred to the Dee, Tweed and Spey, again due to the implausible relationship with Tamax. 

3.3 Multi-catchment models 25 

The multi-catchment LS model included Catchment, UCA, %RW, Elevation and a RNS for each catchment (Table 4). By 

fitting a single model to all four catchments it was possible to assess whether covariate effects were consistent across 

catchments and thus transferable to new catchments or regions. None of the covariates interacted with catchment. The 

Catchment effect indicates inter-catchment differences in mean Twmax having accounted for the landscape covariates; in 

particular, higher Twmax in the Bladnoch (Figure 7d). In common with the single catchment LS models, there was a positive 30 

smooth relationship between Twmax and UCA with an effect size of ca. 3°C (Figure 7a). There was also a negative linear 

relationship between Twmax and both %RW and Elevation, with effect sizes of ca. 1°C and 2°C respectively. The model 



9 

 

explained 84.4% of the variance, comparable to the single catchment LS models. The RNSs explain less of the variance than 

in the single catchment models (Tables 3, 4). 

The multi-catchment LS_Ta model explained 83.2% of the variance and contained Catchment, UCA, %RW, Tamax 

and a RNS for each catchment (Table 4, Figure 8). None of the landscape covariates interacted with catchment. However, the 

Tamax relationship did interact with catchment, (Fig. 8a-d), with positive relationships in the Dee and Tweed and negative 5 

(albeit non-significant) relationships in the Spey and Bladnoch. This suggests that relationships with Tamax are non-

transferable and Tamax would not be a good predictor of Twmax in new catchments. 

4.0 Discussion  

Even with the introduction of relatively cheap and accurate dataloggers it is not financially or logistically possible to monitor 

everywhere. Consequently, there is a need to develop models to understand and predict river temperatures at large spatial 10 

scales to inform evidence based management of rivers and fisheries even where extensive local temperature data collection 

does not exist. Spatial statistical models offer great promise in this respect. However, to date, the transferability of these 

models has not been considered. This study fitted separate models of Twmax to data from four catchments and transferred 

these models between catchments. Models containing only landscape covariates typically contained similar covariates and 

covariate responses, and performed better than models containing Tamax when transferred between catchments. A physically 15 

implausible model transferred particularly poorly. The covariates alone often explained much less of the spatial temperature 

variability than when a RNS was added, but provided the only means of predicting temperature in new catchments with no 

or limited data (a minimum of 19 loggers was required to fit the full models including covariates and RNS). A single model 

fitted to all four catchments suggested common responses to landscape covariates, but inter-catchment differences in mean 

temperature and in the relationships between Twmax and Tamax. These findings are discussed in more detail below. 20 

4.1 Twmax responses to landscape covariates 

The single catchment LS models contained similar covariates with comparable effect sizes and response shapes which 

suggested that transferability between catchments could be reasonably successful. This was confirmed by the lack of 

significant interactions with Catchment in the multi-catchment model. However, when there are inter-catchment differences 

in mean temperature, the models might only be good predictors of relative values of Twmax within a new catchment (i.e. 25 

areas of higher or lower Twmax) rather than absolute values. It is also unclear how well the models would perform in years 

with differing hydro-climatic characteristics. This study was conducted in a single year with relatively low temperatures and 

high flows. In a hotter, drier year it might be expected that between site differences would be greater. Under such 

circumstances the current models may not provide accurate predictions of absolute temperatures or inter-site differences 

without refitting.  30 
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All of the Twmax responses to landscape covariates (across all models) were physically plausible and hence broadly 

transferable (Smith et al., 2016). UCA (which was in all the models) is a proxy for discharge, water volume and thermal 

capacity (Chang and Psaris, 2013; Hannah et al., 2008). Higher UCAs are generally associated with larger water volumes 

which have a greater thermal capacity, taking longer to warm but also retaining heat for longer (Chang and Psaris, 2013; 

Imholt et al., 2011). Elevation reflects adiabatic lapse rates which reduces temperatures with increasing altitude (Hrachowitz 5 

et al., 2010, Jackson et al 2017). The negative relationship between Twmax and %RW woodland occurs because riparian 

shading reduces the amount of incident shortwave radiation reaching the river during daylight hours (Garner et al., 2014; 

Hannah et al., 2008; Moore et al., 2005). The positive relationship between Tw and HS is consistent with greater Tw in 

locations with lower shading effects and greater direct shortwave contributions (illumination). Tw was greatest in channels 

characterised by a north/south orientation which typically experience maximum exposure to incoming radiation (Malcolm et 10 

al., 2004). Increasing Tw with distance from the coast, reflected continentality and the differing specific heat capacities of 

land and sea, specifically thermal buffering of relatively cooler sea during summer months (Chang and Psaris, 2013; 

Hrachowitz et al., 2010). 

4.2 Tw ~ Ta relationships  

In contrast to the LS models, one LS_Ta model included a physically implausible relationship that would not be expected to 15 

transfer well (Smith et al., 2016). Specifically, an inverse modal relationship between Twmax and Tamax in the Bladnoch 

model. This relationship could have arisen  because of spatial variability in local (temporal) Twmax ~ Tamax relationships due 

to controls that were not captured by our covariates, coupled with a relatively small air temperature range (1.7°C) and 

sample size (19 sites). Nevertheless, even where the relationships between Twmax and Tamax were plausible, they were 

inconsistent between catchments in terms of effect size and direction, as indicated by the varying responses in the single 20 

catchment models and the interaction with Catchment in the multi-catchment model. For example, in the latter, the 

relationships were positive in the Dee and Tweed and negative in the Spey and Bladnoch (where the relationship simplifies 

to linear). 

Given the number of previous studies that have predicted Tw from Ta within sites over time (temporal models), 

between sites (spatial models) or both (e.g. two stage spatio-temporal models), it may appear surprising that models 25 

containing Tamax  gave poorer predictions of between-catchment temperature variability than those containing landscape 

covariates alone in this study. However, previous spatial models of Tw incorporating air temperature as a predictor (e.g. 

Wehrly et al., 2009; Moore et al., 2013) have focussed on the ability of these models to predict within the data space 

(interpolate), while this study investigated the ability of models to predict outside of the data space (extrapolate). Indeed, 

within our multi-catchment model it would have been possible to force a single Twmax ~ Tamax relationship that reflected an 30 

average response across catchments. However, this would result in biased estimates of Twmax within individual catchments.    

The ability of Tamax to predict spatial variability in Twmax is likely to degrade where the temporal relationships 

between Tw and Ta vary spatially, within and between catchments (Kelleher et al., 2012; Segura et al., 2015).  It is expected 
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that within catchment (between site) variability in the temporal relationships between Tw and Ta would add noise to any 

spatial relationships making them harder to detect and reducing the overall precision of any predictions. Systematic 

differences in Tw~Ta relationships between catchments would result in biased predictions when models are transferred 

between rivers or regions. 

Many studies have shown that within year temporal relationships between Tw and Ta (often termed thermal or 5 

climate sensitivity) can be highly variable between sites and catchments, and importantly that this variability relates to 

regional, hydrological and landscape controls (Tague, et al., 2007; Kelleher et al., 2012; Krider et al., 2013; Chang and 

Psaris, 2013; Hilderbrand et al., 2014; Segura et al., 2015; Mauger et al., 2017). For example, Fellman et al. (2014) observed 

slopes of between -0.180 and 1.282 across 9 watersheds in Alaska depending on glacial influence, while Mauger et al., 2017 

observed slopes of between 0.32 and 1.51 across 48 non-glacial streams in Alaska which related to mean elevation and 10 

catchment area. Similarly, Tague et al., (2007) observed systematic regional differences in Tw~Ta relationships in Western 

Oregon that depended on local hydrogeology and concluded that under such circumstances air temperature alone (i.e. 

consistent with a single air temperature coefficient) would be unlikely to explain spatial variation in river temperatures. 

Given the reported spatial variability in Tw~Ta relationships and importantly, that these relationships can vary 

systematically within and between catchments depending on other controls (e.g. hydrogeology), it is unsurprising that 15 

models containing Tamax do not substantially improve predictions of the spatial variability in Twmax  than models containing 

landscape variables alone, and that transferred models result in biased Tw predictions. If Ta is to substantially improve 

predictions of Tw in static spatial models (such as those presented in this study), then it is likely that they would need to 

include greater model complexity e.g. allowing for interactions between Tamax and landscape covariates (e.g. Mayer, 2012).  

4.3 The importance of RNS  20 

The performance of the single catchment LS and LS_Ta models in this study compared favourably to regional models of 

Twmax (Moore et al. 2013; Roberts et al. 2013; Wehrly, et al. 2009) when predictions were made for the catchment in which 

the models were developed (i.e. interpolation). For the models that included a RNS, RMSE (0.7-0.9 C) was approximately 

half that reported by previous studies, although it should be noted that these studies were conducted at considerably larger 

spatial scales (Moore et al. 2013; Roberts et al. 2013; Wehrly, et al. 2009). The RMSE of models without a RNS (0.9-1.8 C) 25 

was generally similar or slightly better than reported by other studies. 

The landscape covariates included in the models in this study explained large (catchment) scale trends in Twmax, but 

were less successful at explaining variability at finer spatial scales. For example, the ca. 20% variance explained by UCA in 

the Spey and Dee models is consistent with the 18-25% of Tw variability explained by discharge in Arora et al. (2016). 

Smaller scale variability tends to reflect drivers such as water residence time (and heat advection), water sources (Brown et 30 

al., 2006; Brown and Hannah, 2008), channel incision, gradient (Jackson et al., 2017) and land use (Imholt et al., 2013) 

which are harder to accurately characterise from spatial datasets. In the absence of accurate local scale characterisation of 
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landscape controls, smaller scale spatial variability is modelled by the RNS. However, whilst the RNS improves predictions 

within catchments, it is not transferable so does nothing to help predictions between catchments.  

4.4 Extending predictions  

The inclusion of the Catchment main effect in both multi-catchment models showed differences in mean Twmax between 

catchments (that were not accounted for by the covariates). This sometimes led to substantial bias when transferring single 5 

catchment models to new catchments. Accounting for between-catchment differences in mean Tw will be necessary to 

improve between-catchment predictions of Tw. The multi-catchment models in this study used a simple categorical variable 

to allow the intercept (and hence mean Twmax) to differ between catchments. However, to predict to new catchments, it 

would be necessary to extend the modelling approach so that the intercept can be predicted from surrounding catchments. 

One approach could be to allow the intercept to vary smoothly between catchments using a Gaussian Markov Random Field 10 

(Cressie, 1993), so the intercept in unmonitored catchments could be estimated from nearby monitored catchments. This 

approach has been developed in other contexts (Millar et al., 2015, 2016) and offers promise in the context of large-scale Tw 

modelling.  

An alternative approach could involve modelling Tw as a function of Ta over shorter time periods (days or weeks) 

and then allowing this relationship to interact with landscape covariates or location. Such an approach could have additional 15 

benefits, allowing the inclusion of temporally incomplete data (e.g. Letcher et al., 2016) or data from temporally inconsistent 

locations. Where sufficient resources were available it may be possible to supplement the existing network with sites that are 

monitored for shorter time periods to expand spatial coverage although the consequences of such deployments for assessing 

inter-annual temperature variability would need to be investigated. Finally, the development of spatio-temporal models, 

where temporal variability was driven by Ta or discharge, could potentially allow for fore- or hind-casting of river 20 

temperature which wasn’t possible using the approaches presented in this paper.  

5 Conclusions and future work   

This study demonstrated that landscape covariates can explain broad scale patterns in Twmax and that such relationships are 

transferable between catchments, at least to predict relative levels of Twmax. It was necessary to use a RNS to characterise 

and predict finer scale spatially correlated variation, so predictions of spatial temperature variability were better within 25 

catchments than between catchments. Tamax was not a transferable predictor of Twmax and could result in poor predictions 

when the relationship was implausible or transferred outside the range observed in the donor catchment. It would be unwise 

to use a Tw~Ta relationship to predict spatial variability in Tw without also including meaningful (process relevant) 

interactions between Ta and landscape covariates, something that was not possible in this study due to data constraints.  

Mean Twmax also varied between catchments (having adjusted for the landscape covariates). Future work that looks 30 

to predict to new catchments should investigate how to understand and predict these between catchment differences. A large 
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scale correlated spatial smoother (e.g. regional effect) offers potential in this respect. Finally, some of the local scale 

processes represented in this study (e.g. effect of riparian shading) may benefit from improved characterisation using finer 

scale spatial datasets or remotely sensed data. Improved process representation could lead to both better within and between 

catchment model predictions. 
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Table 1 Covariate calculations. All calculations were in R, version 3.2.3 (R Core Team, 2015) except where specified.    

 

Covariate Process and associated packages Datasets 

Elevation ‘extract’ function in the ‘raster’ package (Hijmans, 2015)   OS. Terrain 10m DTM, CEH 

DRN 

Gradient ‘extract’ function in the ‘raster’ package (Hijmans, 2015)  to get elevations of the 

node and a location 1km upstream. The difference in these elevations divided by 

the length between the two nodes provided Gradient. The length upstream was 

calculated using ‘SpatialLinesLengths’ from ‘sp’ (Pebesma and Bivand, 2005) 

OS. Terrain 10m DTM, CEH 

DRN 

Orientation Standard trigonometry based on the x and y locations of the node and associated 

upstream points 1km upstream lengths. The lengths upstream was calculated 

using ‘SpatialLinesLengths’ from ‘sp’  (Pebesma and Bivand, 2005) 

CEH DRN 

Upstream Catchment 

Area (UCA) 

Arc Hydro Tools (ArcGIS 10.2.1) was used to ‘burn in’ the DRN to the DTM and 

then calculate an UCA raster. 

OS. Terrain 10m Digital Terrain 

Model, DTM; CEH DRN 

Hillshading/ 

Illumination (HS) 

‘terrain’ and ‘hillShade’ functions in the ‘raster’ package (Hijmans, 2015) were 

used to create a hillshade layer for every hour the sun was above the horizon. 

These layers were then summed to create a single layer of maximum potential 

exposure. HS values for the nodes were an average of the raster grid cells in the 

1km river polygon. Raster grid cells were weighted by the proportion of the cell 

within the buffer.  

CEH DRN , OS. Terrain 10m 

DTM; Solar azimuth and 

altitude values from the U.S. 

Naval Observatory  

Astronomical Applications 

Department (Anon, 2001) 

Percentage riparian 

woodland (%RW) 

The percentage of woodland in a buffer 50m wide and 1km long (upstream) 

provided %RW. Areas were calculated using ‘gArea’ from  ‘rgeos’ (Bivand and 

Rundel, 2016) and lengths the ‘SpatialLinesLengths’ from ‘sp’ (Pebesma and 

Bivand, 2005). 

OS MasterMap, CEH DRN 

Width Width was calculated by finding the area classified as water within the 1km 

upstream and dividing this by the distance upstream. Areas were calculated using 

‘gArea’ from  ‘rgeos’ (Bivand and Rundel, 2016) and lengths the 

‘SpatialLinesLengths’ from ‘sp’ (Pebesma and Bivand, 2005). 

OS MasterMap, CEH DRN 

Distance to coast 

(DC) 

gDistance’ from the ‘rgeos’ R package (Bivand and Rundel, 2016). CEH DRN, OS Panorama 

coastline  

River distance to sea 

(RDS) 

“shortest.paths” function from the igraph R package  (Csardi and Nepusz, 2006) CEH DRN, OS Panorama 

coastline 

Highest 7-day 

average maximum 

August Ta (Tamax) 

Take the Ta value, from daily maximum predicted Ta matrix, for each cell 

containing a SRTMN site. Use these daily values to calculate rolling averages 

then select the highest, for each site. 

Gridded UKCP09 predicted Ta 

dataset (UK MET Office) 
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Table 2 LS model and LS_Ta model for each catchment, with the % variance explained by the model (all terms) and the 

same model but with the RNS omitted (covariates).  

Catchment Model  AICc / BIC df 
% variance 

all terms covariates  

LS model  

Dee UCA + RNS  137.0 8.8 80.0 18.3 

Tweed s(UCA) + %RW + RNS  100.1 7.6 85.6 71.7 

Spey s(UCA) + RNS 69.8 6.8 85.5 21.8 

Bladnoch s(UCA) 55.5 2.9 76.6 76.6 

LS_Ta model   

Dee Tamax + UCA + s(Orientation) + RNS 131.8 11.7 85.1 19.9 

Tweed 
Tamax + s(UCA) + %RW +  s(HS) +  

Orientation 
98.5 7.7 85.3 85.3 

Spey  UCA + DC + RNS 69.3 7.4 85.1 19.9 

Bladnoch Tamax + UCA 53.9 4.8 85.9 85.9 
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Table 3 Transferability of LS and LS_Ta models. The values in normal font are for predictions using only covariates (any 

RNS information is ignored). The values in italics are for predictions when the target and donor catchments are the same and 

all model terms are used (both covariates and the RNS). 

 Donor 

catchment  

Target catchment 

Dee Tweed Spey Bladnoch 

LS models 

RMSE Dee 1.3 (0.8) 1.2 1.3 2.3 

Tweed 1.1 1.1 (0.9) 1.3 1.9 

Spey 1.3 1.3 1.4 (0.9) 2.5 

Bladnoch 2.2 1.9 2.4 0.9 (0.9) 

Bias Dee -0.6 (0.1) -0.6 -0.1 -2.0 

Tweed 0.2 -0.1 (0.0) 0.3 -1.7 

Spey -0.6 -0.8 -0.2 (-0.0) -2.3 

Bladnoch 1.9 1.4 2.0 0.0 (0.0) 

Standard 

Deviation 

Dee 0.8 (0.8) 1.1 1.3 1.2 

Tweed 1.1 1.0 (0.9) 1.2 1.0 

Spey 1.1 1.1 1.4 (0.9) 1.0 

Bladnoch 1.1 1.3 1.3 0.9 (0.9) 

LS_Ta models 

RMSE Dee 1.7 (0.7) 0.9 1.9 1.9 

Tweed 1.2 0.9 (0.9) 2.3 1.5 

Spey 1.5 2.0 1.8 (0.8) 4.2 

Bladnoch 8.4 4.2 5.2 0.9 (0.9) 

Bias Dee -1.1 (0.1) -0.3 0.0 -1.4 

Tweed -0.7 -0.0 (-0.0) -0.1 -1.0 

Spey -0.1 -1.4 -0.7 (0.0) -4.1 

Bladnoch 7.6 3.2 4.1 -0.1 (-0.1) 

Standard 

deviation 

Dee 1.3 (0.7) 0.9 1.9 1.2 

Tweed 1.0 0.9 (0.9) 2.3 1.1 

Spey 1.5 1.4 1.6 (0.8) 1.1 

Bladnoch 3.7 2.7 3.3 0.9 (0.9) 

 

 

 5 

 

 

 



22 

 

Table 4 Multi-catchment LS and LS_Ta model, with the % variance explained by the model (all terms) and when the RNS is 

omitted (covariates). 

Model  BIC df 

% variance  

all terms covariates 

Multi-catchment LS model  

Catchment + s(UCA) + %RW + Elevation + 

RNS:Catchment 
379.3 24.8 84.4 51.9 

Multi-catchment LS_Ta model 

Catchment + Tamax:Catchment + s(UCA) + %RW 

+ RNS:Catchment 
395.4 25.7 83.2 57.2 
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Figure 1. Study catchments and spatial patterns of Twmax for August 2015 a) Catchment positions in Scotland b) River 

Bladnoch catchment, c) River Spey catchment, d) River Dee catchment, e) River Tweed catchment 
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Figure 2 Distributions and inter-relationships between Twmax and covariates. Scatter plots of the relationships are shown 

below the diagonal, kernel density plots of the individual covariates in the diagonal (scaled to have the same maximum 

value) and correlation coefficients above the diagonal. Numbers in black indicate the correlation coefficients where data is 

pooled across all catchments. 5 
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Figure 3. LS model effects with pointwise 95% confidence bands: a) Dee UCA, b) Tweed UCA, c) Spey UCA, d) Bladnoch 

UCA, e) Tweed %RW.  
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Figure 4. LS_Ta model effects with pointwise 95% confidence bands. Each column corresponds to a catchment and each 

row to a covariate. a) Dee UCA, b) Tweed UCA, c) Spey UCA, d) Bladnoch UCA, e) Dee Tamax, f) Tweed Tamax, g) 

Bladnoch Tamax, h) Dee Orientation, i) Tweed orientation, j) Tweed %RW, k) Tweed hillshading, l) Spey DC. 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 

 30 

 

 

 



27 

 

Figure 5. LS model transferability. Panels a, b, c, d show predicted Twmax when the target catchment is the Dee, Tweed, 

Spey and Bladnoch respectively. The colours and symbols indicate the donor catchment: Dee (red circles), Tweed (orange 

triangles), Spey (dark blue squares) and Bladnoch (light blue diamonds). Filled (open) symbols indicate sites in (out) of the 

environmental range of the donor catchment. When the target and donor catchments are the same, the coloured points are 

based on predictions using only covariates; the grey symbols show the corresponding predictions based on the covariates and 5 

the RNS. The dashed lines are robust regression lines of observed against predicted values. Models which transfer well have 

points falling close to the 1:1 line.  
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Figure 6. LS_Ta model transferability. Panels a, b, c, d show predicted Twmax when the target catchment is the Dee, Tweed, 

Spey and Bladnoch respectively. The colours and symbols indicate the donor catchment: Dee (red circles), Tweed (orange 

triangles), Spey (dark blue squares) and Bladnoch (light blue diamonds). Filled (open) symbols indicate sites in (out) of the 

environmental range of the donor catchment. When the target and donor catchments are the same, the coloured points are 

based on predictions using only covariates; the grey symbols show the corresponding predictions based on the covariates and 5 

the RNS. The dashed lines are robust regression lines of observed against predicted values.  Models which transfer well have 

points falling close to the 1:1 line.    
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Figure 7. Multi-catchment LS model effects with pointwise 95% confidence bands: a) UCA, b) %RW, c) Elevation, d) 

Catchment.  
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Figure 8. Multi-catchment LS_Ta model effects with pointwise 95% confidence bands:  a) Dee Tamax, b) Tweed Tamax, c) 

Spey Tamax, d) Bladnoch Tamax, e) UCA, f) %RW, g) Catchment. 
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