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Abstract

Decision making on water resources management at ungauged, especially large-scale
watersheds relies on hydrological modeling. Physically-based distributed hydrological
models require complicated setup, calibration, and validation processes, which may delay
their acceptance among decision makers. This study presents an approach to develop a
simple decision support tool (DST) for decision makers and economists to evaluate multi-
year impacts of land use change and BMPs on water quantity and quality for ungauged
watersheds. The example DST developed in the present study was based on statistical
equations derived from Soil and Water Assessment Tool (SWAT) simulations applied to
a small experimental watershed in northwest New Brunswick. The DST was
subsequently tested against field measurements and SWAT simulations for a larger
watershed. Results from DST could reproduce both field data and model simulations of
annual stream discharge and sediment and nutrient loadings. The relative error of mean
annual discharge and sediment, nitrate-nitrogen, and soluble-phosphorus loadings were -6,
-52, 27, and -16%, respectively, for long-term simulation. Compared with SWAT, DST
has fewer input requirements and can be applied to multiple watersheds without
additional calibration. Also, scenario analyses with DST can be directly conducted for
different combinations of land use and BMPs without complex model setup procedures.
The approach in developing DST can be applied to other regions of the world because of

its flexible structure.

Keywords: multiple regression; hydrological model; erosion; nitrate leaching;

geographic information system
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1. Introduction

Pollution from nonpoint sources poses a significant threat to ecosystems and plant and
animal communities (V&&marty et al., 2010). Nonpoint sources of sediment, nutrients,
and pesticides, primarily from agricultural lands, have been identified as major
contributors to water quality degradation (Zhang et al., 2004;0ngley et al., 2010). These
pollutants are difficult to control because they come from many sources (Quan and Yan,
2001). Practices such as strip cropping, terracing, crop rotation, and nutrient management
can be developed to prevent soil erosion and reduce the movement of nutrients and
pesticides from agricultural lands to aquatic ecosystems (D'Arcy and Frost, 2001). These
pollution-prevention methods, known as best management practices (BMPs), are
intended to minimize the negative environmental impact of agricultural activities, while
maintaining land productivity. Reliable information on the impacts of land use change
and BMPs on water quantity and quality is critical to watershed management
(Panagopoulos et al., 2011).

Many studies have been conducted to evaluate the impact of land use change and
BMPs on water quality based on field experiments (Novara et al., 2011;Pimentel and
Krummel, 1987;Sadeghi et al., 2012; Turkelboom et al., 1997;Urbonas, 1994). Monitoring
systems have been established to assess the impact of land use change and BMPs on
water resources in order to capture the spatial and temporal variation in soil, climate, and
topographic conditions in watersheds (Veldkamp and Lambin, 2001). Statistical models
developed from field data from small watersheds are usually assumed to apply to large
watersheds (Bl&schl and Sivapalan, 1995;Bloschl and Grayson, 2001). Although it is not

difficult to quantify soil erosion and chemical loadings in experimental plots, it is time-
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consuming and expensive (Mostaghimi et al., 1997). Clearly, it is not practical to conduct
field experiments for every possible combination of land use and BMPs, under different
biophysical conditions. As a result, it is unlikely sufficient field data could be obtained to
develop management plans and conduct cost-benefit analyses. In addition, statistical
models could be potentially derived from experiments; however, it is difficult to establish
cause-and-effect relationships between BMPs and water quality variables under varied
biophysical conditions or to quantify the impact of combined land use and BMPs on
water quality at the watershed scale (Renschler and Lee, 2005).

Process-based models of hydrology can be used to extrapolate field data to fill data
gaps (Borah and Bera, 2004;Borah and Bera, 2003;Singh, 1995;Singh and Woolhiser,
2002;Singh and Frevert, 2005). These process-based models provide quantitative
information that is usually difficult to obtain from field experiments (Borah et al., 2002).
For example, ANSWERS (Beasley et al., 1980), CREAMS (Knisel, 1980), GLEAMS
(Leonard et al., 1987), AGNPS (Young et al., 1989), EPIC (Sharpley and Williams,
1990), and SWAT (Arnold et al., 1998) have been used to understand surface runoff, soil
erosion, nutrient leaching, and pollutant-transport processes. However, these process-
based models require extensive input data and complex calibration procedures (Liu et al.,
2015); watersheds with sufficient data to calibrate and validate these models are normally
small, resulting in lack of representation at large spatial scales. Furthermore, once a
model is calibrated, parameters become watershed-specific, which cannot be easily
extended to other watersheds. In addition, these models require specialized expertise,
which prevents non-expert decision makers and economists to use them (Viavattene et al.,

2008).
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A decision support tool could be developed by combining “decision rules” with
geographic information systems (GIS) for water quality assessment in large ungauged
watersheds. The “decision rules” could be based on regression equations derived from
field experiments (Renschler and Harbor, 2002), or they could be defined simply as
constants based on expert knowledge. Alternatively, simulations from a well-calibrated
hydrological model could be used to develop statistical equation-based “decision rules”.
Apart from defining “decision rules” at each grid cell, to assess water quantity and
quality in streams or at subbasin/watershed outlets, the decision support tool should
consider discharge, sediment, and nutrient routing within the watershed. For example, a
commonly used routing mothed for sediments is the sediment-delivery ratio (SDR)
method, which is widely employed in many GIS-based erosion models (May and Place,
2010;Wilson et al., 2001;Zhao et al., 2010). For discharge, a simple summation routing at
the outlet produces acceptable accuracy for small- and medium-sized watersheds,
considering that there is negligible water losses from surface runoff and stream flow. For
large watersheds, water losses are generally greater. These water losses can be estimated
using simple linear equations. The annual export of nutrients from watersheds (via the
nutrient-delivery ratio) has been studied empirically in many studies as nutrient loading
per land area (Endreny and Wood, 2003;Beaulac and Reckhow, 1982;Reckhow and
Simpson, 1980).

A decision support tool developed based on “decision rules” is generally flexible and
easy for decision makers and economists to use (Endreny and Wood, 2003). However,
their practicality in normal circumstances, particularly with respect to their level of

accuracy, needs to be evaluated. In addition, to provide sufficient “decision rules” with
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reasonable accuracy, fully validated hydrological models are required to be able to fill
data gaps in field experiments. The present study used the Soil and Water Assessment
Tool (SWAT) to provide modelled data in the development of the decision support tool.
The main objective of the present study is to develop a simple decision support tool with
the intent to evaluate the impact of land use change and BMPs on water resources in a
large ungauged watershed in New Brunswick, Canada. This paper presents the
development and testing of a decision support tool using data from two watersheds in the
potato-belt of New Brunswick; one small experimental watershed, with extensive
monitoring and field survey data, and a larger watershed containing the smaller
watershed. Specifically, this involves: (1) setting up, calibrating, and validating SWAT
for a small experimental watershed; (2) developing statistical equations relating water
quality and quantity variables with weather, soil, land use information based on SWAT
simulations for different combinations of land use and BMPs; (3) integrating the
statistical equations into a decision support tool with the aid of ArcGIS; and (4) testing
the decision support tool against field measurements and model simulations of stream

discharge, sediment, and nutrient loadings for a large watershed.

2. Materials and Methods
2.1 Study Sites and Data Collection

The large watershed of this study is the Little River Watershed (LRW), located in the
Upper Saint John River Valley of northwestern New Brunswick, Canada (Fig. 1). It
covers an area approximately 380 km? with a mixture of agricultural (16.2%), forest
(77%), and residential (6.8%) land uses (Xing et al., 2013). Elevation in the watershed

ranges from 127 to 432 m above mean sea level (Fig. 1). The soil in the study sites is
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classified as mineral, derived from various parent materials. The major associations are
Caribou, Carleton, Glassville, Grandfalls, Holmesville, McGee, Muniac, Siegas, Thibault,
Undine, Victoria, Waasis, and one organic soil (Fig. 2). The study site belongs to the
Upper Saint John River Valley Ecoregion in the Atlantic Maritime Ecozone (Marshall et
al., 1999). The climate of the region is considered to be moderately cool boreal with
approximately 120 frost-free days, annually (Yang et al., 2009). Daily maximum and
minimum temperate are 24 (in July) and -18.1°C (in January) based on Canadian Climate

Normal station data at St. Leonard (http://climate.weather.gc.ca/climate normals). The

average temperature is 3.7°C and annual precipitation is 1037.4 mm (Zhao et al., 2008).
About one-third of the precipitation is in the form of snow. Snowmelt leads to major
surface runoff and groundwater recharge events from March to May (Chow and Rees,
2006). The land use and soil maps in the setup of SWAT for LRW were derived from
publicly available data [Energy and Resource Development (ERD), New Brunswick; Fig.

2],
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138  Ranging)-based DEM (Digital Elevation Model), soil and land use maps, and land use

139  IDs in SWAT (see Table 2 for land use ID meaning).
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The small experimental watershed of the study is the Black Brook Watershed (BBW),
a subbasin of LRW (Fig. 1). The BBW has been studied extensively for more than 20
years to evaluate the impact of agriculture on soil erosion and water quality (Li et al.,
2014;Chow and Rees, 2006). The watershed covers an area of 14.5 km?, with 65% being
agriculture land, 21% forest land, and 14% residential areas and wetlands. Slopes vary
from 1-6% in the upper basin to 4-9% in the central area. In the lower portion of the
watershed, slopes are more strongly rolling at 5-16%. Soil surveys (1:10,000 scale)
identified six mineral soils, namely Grandfalls, Holmesville, Interval, Muniac, Siegas,
and Undine, and one organic soil, St. Quentin (Mellerowicz, 1993).

A water-monitoring station was established at the outlet of BBW in 1992 (MS#01; Fig.
1) and another (MS#12) at the outlet of LRW in 2001. At these stations, V-notch weirs
were installed, and the stage height of the water was recorded using a Campbell-
Scientific CR10X data logger. Stage height values were converted to total flow rates with
a calibration curve function (Chow et al., 2011). Water samples were collected with an
ISCO automatic sampler. Sampling frequency was set at one sample every 72 hours when
runoff was absent. During runoff events, sampling frequency was increased to one
sample every 5-cm change in stage height. Samples were analyzed for concentration of
suspended solids, nitrate-nitrogen (NOz-N), and soluble-phosphorus (Sol-P). Detailed
description of data collection procedures and sample analyses can be found in Chow et al.
(2011). Weather data including daily precipitation, air temperature, relative humidity, and
wind speed were acquired from the St. Leonard Environment Canada weather station
(http://climate.weather.gc.ca), located approximately 5 km northwest of BBW (Fig. 1).

The daily average relative humidity and wind speed were calculated based on averaging

10
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hourly values. Since this weather station did not monitor daily solar radiation, the study
used solar radiation collected from a weather station located approximately 10 km

southeast of BBW (WS#08; Fig. 1).

2.2 SWAT Setup, Calibration, and Validation for BBW and LRW

A modified version of SWAT has been developed for cold regions (Qi et al.,
2017a;Qi et al., 20164, b;Qi et al., 2017b), and it was used for the BBW and LRW in this
study. Detailed model setup, calibration, and validation for BBW can be found in Qi et al.
(2017b). Specific model inputs for both watersheds are provided in Table 1. The same
weather data were used for both watersheds (Table 1). The Digital Elevation Model
(DEM) for LRW and BBW were both based on high resolution LiDAR (Light Detection
and Ranging) data, the first was created at 10-m and the second, at 1-m resolution. The
LRW was delineated into 32 subbasins from which their topographic characteristics were
defined (Fig. 1). The soil types and slopes, which were classified into five separate
classes, are illustrated in Fig. 2 for LRW. After combining the soil, slope, and land use
maps through the ArcSWAT-interface function, 362 HRUs were subsequently created for

LRW (based on thresholds: 10, 15, and 20% for land use, soil, and slope).

11
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Table 1 Datasets in SWAT setup, calibration, and validation for BBW and LRW.

Dataset BBW LRW

LiDAR DEM resolution 1-m 10-m

Soil map Survey (1993) ERD

Land use maps Survey (1992-2011) ERD (one map)

Precipitation, temperature, St. Leonard (1992- St. Leonard (2001-

relative humidity & wind speed 2011) 2010)

Solar radiation WS#08 (1992-2011) WS#08 (2001-2010)

Contour tillage operation Survey (1992-2011) Only for potato and

(spring and fall) barley (2001-2010)

Fertilizer application Survey (1992-2011) Estimated from BBW
(2001)

Crop rotation Survey (1992-2011) Potato-barley (2001-
2010)

Terraces and grassed waterways Survey (1992-2011) Negligible

Discharge, sediment, NOs-N and Sol-P  MS#01 (1992-2011) MS#12 (2001-2010)

Since only one land use map was available for LRW (Table 1), assumptions were
made based on information available on land use and management records for BBW to
adjust the SWAT-management files for LRW as follows:

(1) Potato-barley rotations were assigned to the land use ID POTA (Table 2); for other
land use IDs, a single crop was considered,;

(2) Fertilizers were applied only to potato and barley fields, and fertilizer amounts and
N:P (nitrogen-to-phosphorus) ratios were averaged for potato and barley fields over the
entire watershed, based on 2001 survey data from BBW;

(3) Contour tillage was applied only to potato and barley fields;

(4) Flow diversion terraces (FDT) and grassed waterways in LRW were assumed not
used. It is worth noting that these four assumptions serve as a baseline scenario for the
assessment of FDT in LRW.

To evaluate the global performance of the decision support tool for LRW, related

land use and management files were prepared and accessed by SWAT. For purpose of

12
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comparison, simulations with SWAT were produced in an initial application by setting
the adjustable parameters of the model to their default values, and in a second application
by setting the parameters according to values produced with a watershed-specific model
calibration to BBW. This approach with model parameterization is widely accepted when

applying SWAT to large ungauged watersheds (Panagopoulos et al., 2011).

2.3 Decision Rules

The decision support tool was designed to use the “decision rules” to estimate annual
discharge and sediment and nutrient loadings from individual grid cells:
A=Y" DR; A, 1)
where A is the annual discharge or sediment and nutrient loadings at the outlet of the
watershed, DR; and Ai are the delivery ratios and annual discharge or loadings,
respectively, for grid cell i. For the present study, statistical equations derived from
simulations of the calibrated version of SWAT for BBW were defined as the “decision

rules” in the decision support tool.

2.3.1 Land Use Groups and BMP Scenarios

In statistical equation development, land use in BBW (24, in total) was first classified
into five land use classes according to their influences on hydrological processes (Table
2). Note that WATR was not used due to its small overall coverage (Fig. 2). As for
watershed management, we considered three main BMPs, i.e.,

(1) FDT + contour tillage;
(2) Contour tillage; and

(3) No-BMP (without FDT and contour tillage).

13
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Table 2 Land use and land use groups (LUGP) for BBW and LRW.

LUGP Land use ID in SWAT Land use type
AGRL AGRL Agricultural Land-Generic
(General crops) CANA Canola

CRON Corn

FPEA Field peas

POTA Potato
GRAN BARL Barley
(Grains) OATS Oats

PMIL Millet

RYE Rye

SWHT Spring wheat

WWHT Winter wheat
GRAS BERM Bermuda grass
(Grasses) CLVR Clover

HAY Hay

PAST Past

RYEG Ryegrass

TIMO Timothy
FORT FRSD Forest-Deciduous
(Forestry) FRSE Forest-Evergreen

FRST Forest-Mixed

RNGB Range-Bush

WETF Wetlands-Forested

WETN* Wetlands-No-Forest
NOCR URMD Residential
(Non-vegetated UTRN Transportation
lands) ulDU* Industrial

Note: “*” indicates unique land use types to LRW not present in BBW and, therefore,
unaccounted for in the development of the decision support tool.

The calibrated version of the enhanced SWAT for BBW was used to generate annual

outputs based on HRUs from 1992 to 2011. The model was run three times to generate

the BMP-specific data for statistical equation development.

2.3.2 Explanatory Variables Selection

14
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Explanatory candidate variables must be physically-meaningful in hydrological and
biochemical processes. It is worth noting that both continuous and categorical variables
were included in the regression equation. The land use group (LUGP) was the only
categorical variable, and the remaining were all continuous variables. To detect
significant predictors, the analysis of covariance (ANCOVA) was used. It requires at
least one continuous and one categorical explanatory variable and is used to identify the
major and interaction of predictor variables. By including continuous variables, the
method can reduce the variance of error to increase the statistical power and precision in
estimating categorical variables (Keselman et al., 1998;Li et al., 2014). Inclusion of
interaction terms in these regression models dramatically increased model performance.

In the present study, we only considered interactions between two explanatory variables
at a time. Student t-tests were conducted to examine the statistical significance of each
level of LUGP and their interaction with the various continuous variables. When one
level of LUGP (e.g., GRAN; Table 2) did not significantly correlate with water quality or
quantity, or there were nominal interactions between a given level and other explanatory
variables, this particular level of LUGP would be combined with other levels of LUGP
until all new levels of LUGP were statistically significant.

Multiple linear regression analyses were used to relate annual total discharge (mm) and
sediment (t hat), NOs-N (kg ha?), and Sol-P (kg ha?) loadings to the explanatory
variables. These work was conducted in R (lhaka and Gentleman, 1996). Only six
continuous explanatory variables were determined for the specification of the statistical
models. Annual precipitation (PCP), annual mean air temperature (TMP), and mean

saturated hydraulic conductivity of soil (SOL_K) were common to the dependent

15
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variables (i.e., total discharge and sediment, NOs-N, and Sol-P loadings). The LS-factor
(USLE_LS) and annual N and P application rates (N_APP and P_APP) were unique to

the equations addressing sediment, NOs-N, and Sol-P loading.

2.3.3 Delivery Ratio Definition

The LS-factor of the universal soil loss equation (USLE) was determined by slope

gradient (slp) and slope length (L) of individual HRUs:

USLE_LS = {L}m . (65.41 - sin?(a) + 4.56 - sin(a) + 0.065) @)

22.1

where m is the equation exponent and a is the angle of the slope (in degrees). The
exponent m is calculated by,

m = 0.6 (1 — exp[—35.835 - slp]) 3)
where slp is in units of m m™*. For the decision support tool, slope length L equals to the
length of the grid side and slope gradient was determined by the Slope tool in ArcGIS.
The sediment-delivery ratio was not considered in the decision support tool application to
BBW. We assumed that annual sediment loadings from grid cells in decision support tool
were all exported to the outlet of BBW. However, when the decision support tool was
applied to LRW, the sediment-delivery ratio was used to correct estimates of sediment
loading at the watershed outlet. The sediment loadings at the outlet of LRW (sed) were
determined by

sed = SDR - sed™ 4)
where sed” is the sediment loading calculated with the sediment loading equation (one for
each BMP and land use group), and SDR is determined by (Vanoni, 1975)

SDR = 0.37 - D7%125 (5)
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where D (km?) is the drainage area. For annual discharge and nutrient loadings, we

assumed their delivery ratios equal to 1.0 for all grid cells in LRW.

2.4 Decision Support Tool Assessment

Inputs to the decision support tool included the six continuous explanatory variables
and LUGP as well as information on management practices, e.g., contour tillage and FDT
implementation. Simulations from each grid cells were summarized at the outlet of the
study watersheds. We first tested the impact of cell size on simulations of water quantity
and quality at the outlet of BBW. The cell size range was determined by considering
different farmland sizes in the watershed. We assumed that farmland-based grid cells can
sufficiently represent basic hydrological processes, land use change, and management
practice implementations for hydrological modeling. Simulated annual water flow and
sediment and nutrient loadings with the decision support tool were compared with those
produced with the calibrated version of the enhanced SWAT. Subsequently, the decision
support tool was applied to LRW, and the simulations were compared with the results of
the uncalibrated and calibrated versions of SWAT. The purpose of this was to test if the
decision support tool (i.e., land use and BMP assessment tool; LBAT) performed better,
or at least as well, as both the uncalibrated and calibrated version of SWAT.

Model performance in terms of water quantity and quality at the outlet of the study

watersheds was assessed based on the coefficient of determination (R?) and relative error

(Re), i.e.,
2
2?: 0i—=0Oqyg)\Pi—Pay
. G L ©
[Z?=1(Oi_olwg) 'Z?=1(Pi_Pavg) ]
Re = (Pavg—Oavg) -100% (7)

Oavg
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where Oj, Pi, Oavg, and Payg are the observed and predicted and averages of the observed

and predicted values, respectively.

2.5 FDT Assessment in LRW

A series of FDT-implementation scenarios were set up for LBAT based on six slope

classes to assess the impact of FDT on water quantity and quality on agricultural lands in

LRW (Fig. 3; Table 3). From scenarios one (S1) to six (S6), total area protected by FDT

gradually increased until all agricultural lands were protected (Table 3). Mean annual

simulations of total discharge and sediment, NOz-N, and Sol-P loadings from LRW from

2001 to 2010 were compared with those of the baseline scenario (FDT = 0%) for each

scenario using two performance indicators, i.e., mean difference (MD) and % relative

difference (PRD), given as:

(1) MD = output with FDT — output without FDT, and

(2) PRD (%) = MD/output without FDT > 100.

Table 3 Slope classes and corresponding areas in the agricultural land of LRW.

Scenario Slope Area protected by FDT Agricultural lands

(ha) (%)
S1 >5% 624 10
S2 >4% 1328 22
S3 >3% 2224 37
S4 >2% 3680 61
S5 >1% 5360 89
S6 =0 6048 100

18
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3. Results and Discussion
3.1 Statistical Equations (Decision Rules)
3.1.1 Model Structure and Coefficients

Linear regression equations and their explanatory variables for annual discharge and
sediment, NOs-N, and Sol-P loadings under different combinations of land use groups
and BMP scenarios are provided in Tables 4 and 5. In total, three discharge models (Dis1,
Dis2, and Dis3) and five sediment (Sed1 1, Sedl 2, Sedl 3, Sed2, and Sed3), NO3-N
(N1_1, N1 2, N1_3, N2, and N3), and Sol-P (P1_1, P1 2, P1 3, P2, and P3) loading
models were developed. Data transformations (via logarithm and power transformations)
were applied to sediment, NOs-N, and Sol-P loadings to meet the assumption of
normality in multiple regression analysis (Table 4). The contour tillage and FDT were
applied only to agricultural lands, including land use groups AGRL, GRAN, and GRAS
(Table 4). For the no-BMP scenario, three separate sediment, NOs-N, and Sol-P loading
models were developed for agricultural lands (AGRL, GRAN, and GRAS), non-
vegetated lands (NOCR), and forest lands (FORT), and one discharge model (Dis1) for
all land use groups (Table 4). It is worth noting that the sediment loading model, Sed3,
was a modified version of Sed1 1 (multiplied by TERR_P) for the FDT + contour tillage
scenario (Table 4), and the values of TERR_P (Qi et al., 2017b) used for Sed3 were the
same as the calibrated values in SWAT for BBW (Qi et al., 2017b). Also, NO3-N and
Sol-P loadings (N1 2 and P1_2) for non-vegetated lands (NOCR) were determined as
constants, which were equal to the calculated means of NO3z-N and Sol-P loadings

determined by SWAT (i.e., 24 and 0.61 kg ha, respectively; Table 4).
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As for LUGP (including AGRL, GRAN, GRAS, FORT, and NOCR; Table 2), three
new land use groups (i.e., LUGP1, LUGP2, and LUGP3) were formulated by combining
agricultural lands AGRL, GRAN, and GRAS during model development (Tables 4 and 5).
For example, LUGP2 was derived by combining AGRL, GRAN, and GRAS on total
discharge (i.e., Dis1 model). Individual model structures are shown in Table 4, whereas
the explanatory variables for these models appear in Appendix A. The coefficients
estimated for the explanatory variables and their interactions, and their t-test results are
also shown in Appendix A. Most of the p-values for these explanatory variables were <
0.001, except for several that were between 0.001 and 0.08, which were also taken as

acceptable.
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Table 4 Statistical models based on land use groups (LUGP) and BMPs.

BMPs LUGP” Model  Structure
No-BMP CRGP2,NOCR,FORT Disl Discharge = f (PCP, TMP, SOL_K, LUGP2)
Contour tillage AGRL,GRAN,GRAS Dis2 =f(PCP, TMP, SOL_K)
FDT+Contour tillage AGRL,GRAN,GRAS Dis3 =f(PCP, TMP, SOL K)
No-BMP CRGP1,GRAS Sedl 1  Sediment®19 =f (USLE_LS, PCP, TMP, SOL_K, LUGP1)
NOCR Sedl 2 =f (USLE_LS, PCP)
FORT Sedl 3 =f(USLE_LS, PCP, SOL K)
Contour tillage CRGP1,GRAS Sed?2 Sediment9 = f (USLE,_LS, PCP, TMP, SOL_K, LUGP1)
FDT+Contour tillage AGRL,GRAN,GRAS Sed3 Sediment = Sedl 1 xTERR P
No-BMP AGRL,GRAN,GRAS N1 1 Log(NOs-N) = f (N_APP, PCP, TMP, SOL_K, LUGP)
NOCR N1_2™  NOs-N=24 kg ha*
FORT N1 3 Log(NOs-N) = f (PCP, TMP, SOL_K)
Contour tillage AGRL,GRAN,GRAS N2 Log(NOs-N) = f (N_APP, PCP, TMP, SOL_K, LUGP)
FDT+Contour tillage CRGP3,GRAN N3 =f(N_APP, PCP, TMP, SOL K, LUGP3)
No-BMP CRGP1,GRAS P11 Log(Sol-P) = f (P_APP, PCP, TMP, SOL K, LUGP1)
NOCR P1 2™  Sol-P=0.61kgha?
FORT P13 Log(Sol-P) = f (PCP, TMP, SOL_K)
Contour tillage CRGP1,GRAS P2 Log(Sol-P) = f (P_APP, PCP, TMP, SOL_K, LUGP1)
FDT+Contour tillage AGRL,GRAN,GRAS P3 =f(P_APP, PCP, TMP, SOL K, LUGP)

“AGRL and GRAN are combined into one group, namely CRGP1 in LUGP1; AGRL, GRAN and GRAS are combined into one group, namely

CRGP2 in LUGP2; AGRL and GRAS are combined into one group, namely CRGP3 in LUGP3; ™ variable is set constant.
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Table 5 Explanatory variables determined for statistical analysis.

Variable  Unit Meaning

LUGP — Land use groups including AGRL, GRAN, GRAS, FORT, and NOCR
LUGP1 — AGRL and GRAN are combined into a new group, CRGP1

LUGP2 — AGRL, GRAN, and GRAS are combined into a new group, CRGP2
LUGP3 — AGRL and GRAS are combined into a new group, CRGP3

N_APP kg ha®  Annual N application rate
P_APP kgha!  Annual P application rate

PCP mm Annual precipitation

SOL K mm h?  Mean saturated hydraulic conductivity of soil
TERR P — P-factor for FDT

TMP T Annual mean air temperature

USLE LS — LS-factor of USLE

3.1.2 Statistical Equation Assessment

Simulations based on the statistical equations and the calculated outputs from
individual HRUs for the different BMPs are compared in Table 6. In general, discharge
models were able to reproduce SWAT simulations for the three BMPs; R? ranging from
0.86 to 0.9. Mean discharge simulated with the statistical equations was equal to that of
SWAT (Table 6). Mean discharge (636 mm) for the no-BMP-case (BMP 3) was greater
than that for BMPs using contour tillage and FDTs (619 and 628 mm for BMP 1 and 2,
respectively), suggesting that contour tillage and FDTs can cause evapotranspiration to
increase.

Models Sed1 2 and Sedl 3 were able to reproduce simulations with SWAT (yielding
R2 = 0.71 and 0.57, respectively), and simulated mean sediment loadings were close to
that of SWAT (Table 6). Models Sed1 1 and Sed2 tended to underestimate results from
SWAT (Table 6), with an overall lower mean sediment loading of 10.78 vs. 12.84 and
8.31 vs. 9.4 t ha?, respectively. Mean sediment loading with Sed3 (0.89 t ha) was

slightly greater than that of SWAT (0.84 t ha), because Sed3 only took into account
22
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TERR_P, whereas SWAT took into account TERR_CN and the impact of grassed
waterways. Results from the statistical equations showed that the mean sediment loading
for BMP 2 (8.31 t ha*) was significantly different than that for BMPs 1 and 3, with mean
loading of 0.89 and 10.78 t ha'* (Table 6). The smallest mean sediment loading (0.09 t ha
1y was found to occur with the FORT land use grouping (Table 6).

The four NO3-N and Sol-P loading equations explained ~50% of the variation in the
SWAT simulations for the same variables, with R? ranging from 0.33 to 0.59 (Table 6).
Mean NOs-N and Sol-P loadings with the statistical equations were all slightly less than
the values produced with SWAT for the different BMPs (Table 6). Mean NOs-N loadings
were greater for BMP 1 (44 kg hal) than those for BMPs 2 and 3 with both giving 39 kg
hal (Table 6), due to increased infiltration with FDT. Mean Sol-P loading (0.8 kg ha?)
was less for BMP 3 than for BMP 2 (0.89 kg ha!), whereas much greater than for BMP 1
(0.43 kg hal). Although contour tillage can help reduce sediment loading by modifying
micro-topography and reducing erosion runoff (the reason we set USLE P < 1), Sol-P
transported with surface runoff increased due to reduced residue cover protecting the soil
surface during winter and during the snowmelt season. When FDT was implemented with
tillage, however, less surface runoff was generated due to increased infiltration leading to
a reduction in Sol-P loading. Mean NOs-N and Sol-P loadings for the FORT land
grouping (10 vs. 0.06 kg ha!) were much less than those of the CRGP land grouping, 39

vs. 0.8 kg ha* (Table 6).
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392  Table 6 Comparisons of simulations of statistical models and outputs from SWAT for different land use groups and BMPs based on

393  mean and standard deviation for the entire simulation period (1992-2011).

No-BMP Tillage FDT + Tillage
Variable Index CRGP NOCR FORT CRGP CRGP
SWAT Fitted SWAT Fitted SWAT Fitted SWAT Fitted SWAT Fitted
Discharge Mean - - 636 636 — — 619 619 628 628
(mm) SD R N 144 133 — — 140 132 151 143
R2 - - 0.86 (Dis1) — — 0.88 (Dis?2) 0.90 (Dis3)
Sediment Mean 12.84 1078 180 171 010 0.09 | 940 831 084  0.89
(tha') SD 1186 944 194 195 014 016 | 828 738 272 118
R2 0.48 (Sedl 1)  0.71(Sedl 2)  0.57 (Sedl 3) 0.56 (Sed?) —
NOs-N Mean 43 39 24 — 10 10 43 39 47 44
N (kgha')  sp 24 14 16 — 6 3 24 14 29 21
R2 0.40 (N1 1) — 0.33 (N1_3) 0.39 (N2) 0.59 (N3)
Sol-P Mean 088 080 061 — 008 006 | 098 089 049 043
(kgha')  sp 049 032 046 — 006 003 | 059 038 033 023
R? 0.47 (P1 1) — 0.38 (P1_3) 0.48 (P2) 0.52 (P3)
394 Note: CRGP refers to crop groups including AGRL, GRAN, and GRAS; the statistics for discharge in no-BMP scenario are

395 based on CRGP, NOCR, and FORT.
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3.2 LBAT Assessment
3.2.1 Impact of Grid Cell Size on LBAT Simulation

Simulations of water quantity and quality by LBAT with different grid-cell sizes (i.e.,
25, 50, 100, 200, and 400 m) for BBW are shown in Fig. 3. Statistical tests indicated that
grid-cell size had a significant effect on sediment loading (p-value < 0.01), with no effect
observed for discharge and NOs-N and Sol-P loadings (p-values > 0.99). Increasing cell
size (i.e., slope length) increased sediment loading. However, the mean slope gradient
was reduced. As a result, the mean sediment loadings were correlated non-linearly with
cell size as shown in Fig. 4. The highest mean sediment loading was found with a cell
size of 100 m (5.86 t ha), whereas the lowest was found to occur with a cell size of 25
and 400 m (3.37 t ha). The LBAT with a cell size of 25 and 400 m was able to generate
sediment loadings consistent with field measurements. Considering computational
efficiency, we chose a grid-cell size of 400 m as the basic LBAT-simulation unit for

LRW.
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Fig. 3 LBAT-produced simulations of annual stream discharge and sediment, NOs-N, and

411

P loadings determined for different DEM grid-cell sizes (i.e., 25, 50, 100, 200, and

Sol

412

400 m).

413
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416  sediment loadings and standard errors (vertical bars) from 1992 to 2011 are indicated.
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3.2.2 LBAT vs. SWAT in LRW

Simulations of water quantity and quality with LBAT and the uncalibrated and
calibrated versions of SWAT are compared with field measurements for LRW (Fig. 5).
Model assessments for different simulation periods (depending on measurement
availability) are shown in Table 7. It is worth noting that, to eliminate unrealistic results,

USLE_LS was constrained in Sed1_ 2 to the NOCR land use group:

Eq.6-1 USLE_LS < 1.28 @®
1.28 USLE_LS > 1.28

USLE_LS = {
where 1.28 is the maximum USLE_LS for BBW.

In general, the two versions of SWAT and LBAT slightly underestimated annual
stream discharge, capturing its variation reasonably well (R?>0.54; Fig. 5a). The
uncalibrated and calibrated versions of SWAT had the least and largest absolute values of
Re (Re = -2 and -9), whereas LBAT Re = -6 (Table 7). The uncalibrated version of
SWAT severely overestimated annual sediment and NOs-N loading (Re = 212 and 87,
respectively; Figs. 5b and c), whereas the calibrated version of SWAT and LBAT
underestimated sediment loading (Re = -32 and -52, respectively) and overestimated
NOs-N loading (Re = 22 and 27, respectively; Table 7). In general, the calibrated version
of SWAT and LBAT captured the variation in annual NOs-N loadings reasonably well
(R%>0.35; Fig. 5¢). However, the two versions of SWAT and LBAT failed to capture the
variation in annual sediment and Sol-P loadings (low R?; Figs. 5b and d). The LBAT had
the smallest absolute value of Re (i.e., Re = -16), while the uncalibrated and calibrated
versions of SWAT had larger values (Re = -59 and -55, respectively). These results

suggested that the LBAT and the calibrated version of SWAT performed fairly

equivalently in simulating annual stream flow and sediment and NO3-N loadings, with
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440  LBAT performing slightly better for annual Sol-P loading. LBAT performed noticeably
441  better than the uncalibrated version of SWAT, especially for annual sediment and NO3-N
442  loadings. Poor performance for both versions of SWAT and LBAT on simulation of
443  annual sediment and Sol-P loadings in LRW might attribute to lack of detailed
444  management practice and fertilizer application information from agricultural lands. We
445  only had one-year data for LRW and made assumptions about rotation and management
446  practices for other years based on information from BBW, which could introduce major
447  input uncertainty.

448

449  Table 7 Statistical assessments of LBAT and SWAT for annual stream discharge and

450  sediment, NO3-N, and Sol-P loadings at the outlet of LRW for different simulation

451  periods
Period Variable Index Measurement .SWAT .SWAT Lélg\gr
-Uncalibrated -Calibrated
01-07 Discharge Mean 704 691 638 4564
(mm) Re (%) — -2 -9 -6
R? — 0.63 069 B3H
01-10  Sediment Mean 0.95 2.95 0.65 045
(tha')  Re (%) _ 212 32 %
R? — 0.01 001 004
03-10 NOs-N  Mean 12 22 14 15
(kgha')  Re (%) — 87 22 47
R? — 0.59 045  0.35
03-10  Sol-P Mean 0.31 0.13 014  085%
(kgha')  Re (%) — -59 -55 -16
R? — 0.02 011 &%
460
461
462
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Since LBAT is based on decision rules (statistical equations in this study) which
were derived from SWAT simulations for BBW, its usage should be constrained to areas
with soil, landscape, and land use characteristics similar to BBW. Input characteristics
exceeding the range of SWAT data could lead to large errors in predictions. LBAT is
flexible in its structure, and with thoughtful development of decision rules, it can be

applied to diverse environments.
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470  Fig. 5 Simulations of annual stream discharge and sediment, NOs-N, and Sol-P loadings

471 with LBAT and SWAT compared with field measurements at the outlet of LRW.
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3.2.3 FDT Assessment in LRW

Mean annual water quantity and quality simulated with LBAT for agricultural lands of
LRW are shown in Table 8. The mean annual discharge for the baseline scenario was 626
mm greater than that for the six FDT scenarios (Table 8). When all agricultural lands
were protected (S6), there was a 2% reduction in discharge (equivalent to 11 mm; Table
8). With the steepest areas protected (accounting for 10% of the total land base; S1), the
mean annual sediment loading was reduced by as much as 43% (equivalent to 4.5 t ha?;
Table 8) and by as much as 81% (i.e., 8.57 t ha) with all agricultural lands protected (S6;
Table 8). Mean annual Sol-P loading was reduced by 51% (equivalent to 0.47 kg ha’;
Table 8). In contrast, increased usage of FDT tended to increase the mean annual loading

of NOs-N, by about 6% when used across all agricultural lands (equivalent to 1.73 kg ha’

1).
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Table 8 Impact of FDT on mean annual discharge and sediment, NO3-N, and Sol-P

loadings simulated with LBAT under different FDT, provided in Table 3.

Variable Index Baseline S1 S2 S3 S4 S5 S6

Discharge Mean 626 625 623 622 619 616 615
(mm) MD _ 1 -2 -4 7 <10 11
PRD (%) _ 0 0 -1 -1 -2 -2
Sediment  Mean 1054 6.04 494 402 304 226 197
(tha') MD — 450 -5.60 -652 -7.50 -8.28 -8.57
PRD (%) — 43 53 62 71 79 81
NOs-N Mean 29.70 29.86 30.02 30.34 30.82 31.22 31.42
(kgha')  MD — 016 032 064 113 152 173
PRD (%) — 1 1 2 4 5 6
Sol-P Mean 094 089 083 076 065 052 046
(kgha')  MD — -0.05 -011 -017 -0.28 -042 -0.47
PRD (%) — 5 11 19 -30 45 51

Percentage change (based on PRD) of water quantity and quality were plotted against
percentage area of FDT for potato and barley in Fig. 6. Increasing the usage of FDT
helped to reduce discharge and sediment and Sol-P loadings for both crop types (Figs. 6a,
b, and c). It is worth noting that sediment loading decreased with increasing usage of
FDT (Fig. 6b). An opposite trend was observed for potato and barley with respect to the
impact of FDT on NOs-N loading. With the increased usage of FDT, NOs-N loadings
increased linearly for potato, while it decreased for barley. The increased for potato was
nearly twice as much as the reduction for barley (Fig. 6d). Seemingly the interaction
between barley and FDT had positive impacts on nitrate retention in soils, whereas the
interaction between potato and FDT had an opposite effect.

These results are consistent with the results from previous studies (Yang et al.,
2012;Yang et al., 2010), which used SWAT to assess the impact of FDT on water

quantity and quality within BBW. When using SWAT, greater efforts are needed to
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prepare basic inputs, such as daily weather records, to proceed with its calibration and
validation, involving complex scenario setup and analysis. For every new watershed,
SWAT needs dedicated effort and time for its setup. LBAT, in contrast, can be used for
multiple watersheds as long as they have similar environmental conditions. Scenario
analysis can be directly conducted with different combinations of land use and BMPs

using fewer inputs than what is required by SWAT. Also, once developed, LBAT does

not require additional calibration.
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4. Conclusion

The present study addresses the development of a decision support tool to assess the
impact of land use change and BMPs on water quantity and quality for ungauged
watersheds. An enhanced version of SWAT was calibrated and validated for an small
experimental watershed. Multiple regression analyses were used to develop statistical
equations based on simulations from SWAT. In total, three discharge and five sediment,
NOs-N, and Sol-P loading models were developed for different combinations of land use
groups and BMP scenarios. Only four common predictors (i.e., annual precipitation,
annual mean air temperature, mean saturated hydraulic conductivity of soil, and land use
groups) and three unique predictors (LS-factor and annual nitrogen and phosphorus
application rates for sediment, NO3z-N, and Sol-P loading models, respectively) are
required.

With the aid of ArcGIS, statistical equations were integrated into the decision support
tool, i.e., the land use and BMPs assessment tool (LBAT), whose basic simulation units
are the DEM-grid cell. The LBAT was used to simulate annual water flow and sediment
and nutrient loadings at the outlet of a larger watershed, i.e., Little River Watershed
(LRW). These simulations were compared with those of SWAT. Results indicated that
LBAT and the calibrated version of SWAT performed equivalently with respect to annual
stream discharge and sediment and NO3-N loadings. LBAT performed slightly better,
when Sol-P loading was considered. Compared with the uncalibrated version of SWAT,
LBAT performed better. The impact of FDT on water quantity and quality was evaluated
with LBAT for LRW; its results were consistent with the results generated with SWAT

for the same region in previous studies. LBAT has fewer input requirements than SWAT,
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and can be applied to multiple watersheds without additional calibration. Also, scenario
analyses can be directly conducted with LBAT without complex setup procedures. We
recommend using LBAT for economic analysis and management decision making for
watersheds with similar environmental conditions of New Brunswick. The LBAT
developed in this study may not be directly applied to other regions; however, the
approach in developing LBAT can be applied to other regions of the world because of its

flexible structure.
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Appendix A

Table Al Coefficient values for the three discharge models.

Model variable Estimate Std. Error t-value p-value
Disl
Intercept -1565 24.04 -65.089 <0.001
PCP 1.933 0.02176 88.837  <0.001
TMP 282.7 6.091 46.402 <0.001
SOL_K 0.06338 0.00992 6.389 <0.001
FORT 30.79 14.16 2.175 0.030
NOCR 162.2 1451 11.181 <0.001
PCP:TMP -0.2488  0.005487 -45.352  <0.001
PCP:FORT 0.04684 0.01191 3.934 <0.001
PCP:NOCR -0.0535 0.01224 -4.37 <0.001
TMP:FORT 9.723 1.684 5.775 <0.001
TMP:NOCR 4.506 1.731 2.603 0.009
SOL_K:FORT -0.3769 0.03403 -11.076  <0.001
SOL_K:NOCR -0.2959 0.032 -9.248 <0.001
Dis2
Intercept -1633 2729 -59.84 <0.001
PCP 1.995 0.02472 80.69 <0.001
TMP 302.2 6.87 43.98 <0.001
SOL_K 0.08696 0.01167 7.45 <0.001
PCP:TMP -0.2662  0.006199 -42.94 <0.001
Dis3
Intercept -1666 36.58 -4554 <0.001
PCP 2.007 0.03305 60.713  <0.001
TMP 298 9.351 31.865 <0.001
SOL_K 0.09353 0.01573 5.946 <0.001
PCP:TMP -0.2606  0.008406 -31.004 <0.001
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Table A2 Coefficient values for the four sediment loading models.

Model variable Estimate Std. Error t-value p-value
Sedl 1
Intercept 0.2749 0.06125 4488 <0.001
USLE_LS 0.1201 0.02224  54.018 <0.001
PCP 0.000788 554E-05 14.218 <0.001
TMP 0.1117 0.01528 7.307 <0.001
SOL_K 0.000568 0.00022 2.585 0.010
GRAS -0.0353 0.00881 -4.007  <0.001
USLE_LS:SOL_K -0.00014 4.69E-05 -3.045 0.002
USLE_LS:GRAS -0.02623 0.006826 -3.842  <0.001
PCP:TMP -0.00011 1.38E-05 -7.967  <0.001
PCP:SOL_K -4.6E-07 1.91E-07 -2.406 0.016
Sedl_2
Intercept 0.8575 0.008826 97.15 <0.001
PCP 0.000123 7.82E-06 15.67 <0.001
PCP:USLE_LS 0.000209 5.02E-06 41.65 <0.001
Sedl_3
(Intercept) 0.3992 0.02267  17.613  <0.001
USLE_LS 0.07935 0.01967 4.034  <0.001
PCP 0.000204 1.96E-05 10.371  <0.001
SOL_K 0.000545 5.71E-05 9.534  <0.001
USLE_LS:PCP 4.94E-05 1.71E-05 2.9 0.004
USLE_LS:SOL_K -0.00067 4.89E-05 -13.718 <0.001
Sed2
Intercept 0.2591 0.05228 4956  <0.001
USLE_LS 0.12 0.001898  63.218 <0.001
PCP 0.000767 473E-05 16.212 <0.001
TMP 0.1162 0.01304 8.907 <0.001
SOL_K 0.000746 0.000188 3.981 <0.001
GRAS -0.06937 0.01648 -4.211  <0.001
USLE_LS:SOL_K -0.00013 4E-05 -3.137 0.002
USLE_LS:GRAS -0.02662 0.005829 -4.567  <0.001
PCP:TMP -0.00011 1.18E-05 -9.522  <0.001
PCP:SOL_K -6.3E-07 1.63E-07 -3.846  <0.001
TMP:GRAS 0.007415 0.003664 2.024 0.043
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579  Table A3 Coefficient values for the four NO3-N loading models corresponding to land

580 use and BMPs described in Table 4.

Model variable Estimate Std. Error t-value p-value
N1 1
Intercept 144 0.1753 8.213  <0.001
N_APP -0.00862 0.000699 -12.325  <0.001
PCP 0.000543 0.00016 3.4 <0.001
TMP 0.1363 0.03357 4059  <0.001
SOL_K -0.00344 9.78E-05 -35.163  <0.001
GRAN -1.117 0.1021 -10.937  <0.001
GRAS -1.97 0.1562 -12.611  <0.001
N_APP:PCP 5.31E-06 6.45E-07 8.233  <0.001
N_APP:TMP 0.000963 7.45E-05 12929  <0.001
N_APP:SOL_K 9.6E-06 6.4E-07  15.024  <0.001
PCP:GRAN 0.000677 9.38E-05 7.215 <0.001
PCP:GRAS 0.001029 0.000143 7.201  <0.001
PCP:TMP -0.00025 2.64E-05 -9.467  <0.001
TMP:GRAN 0.1 0.01134 8.817  <0.001
TMP:GRAS 0.2132 0.01651  12.912  <0.001
N1 3
Intercept -1.411 0.3087 -4.573 <0.001
PCP 0.001875 0.000279 6.710  <0.001
TMP 0.4437 0.07831 5.666  <0.001
SOL_K -0.00104 0.000116 -8.979  <0.001
PCP:TMP -0.00032 7.06E-05 -4.484  <0.001
N2
Intercept 1.429 0.1757 8.134 <0.001
N_APP -0.00858 0.000701 -12.233  <0.001
PCP 0.000548 0.00016 3.425  <0.001
TMP 0.1376 0.03365 4,089  <0.001
SOL_K -0.00345 9.8E-05 -35.223 <0.001
GRAN -1.11 0.1023 -10.849  <0.001
GRAS -1.962 0.1566 -12.526  <0.001
N_APP:PCP 5.3E-06 6.47E-07 8.187 <0.001
N_APP:TMP 0.000957 7.46E-05 12.82  <0.001
N_APP:SOL_K 9.65E-06 6.4E-07 15.067 <0.001
PCP:GRAN 0.000674 9.41E-05 7.167  <0.001
PCP:GRAS 0.001026 0.000143 7.162  <0.001
PCP:TMP -0.00025 2.64E-05 -9.456  <0.001
TMP:GRAN 0.09934 0.01137 8.738  <0.001
TMP:GRAS 0.2122 0.01655 12.821  <0.001
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582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

N3
Intercept
N_APP
PCP
TMP
SOL_K
GRAN
N_APP:PCP
N_APP:TMP
N_APP:GRAN
PCP:TMP
PCP:SOL_K
PCP:GRAN
TMP:GRAN

-0.3595
-0.00131
0.001621

0.3977
-0.00386

-0.2133
1.65E-06
0.000281
0.000716
-0.00035
1.21E-06
0.000267
-0.04685

0.1718
0.000435
0.00015
0.03857
0.000505
0.07504
3.59E-07
4.74E-05
0.000292
3.32E-05
4.36E-07
5.82E-05
0.008004

-2.092
-3.011
10.806
10.312
-7.641
-2.842
4.61
5.939
2.453
-10.506
2.781
4577
-5.853

0.037
0.003
<0.001
<0.001
<0.001
0.005
<0.001
<0.001
0.014
<0.001
0.005
<0.001
<0.001
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597

Table A4 Coefficient values for four Sol-P models.

Model variable Estimate Std. Error  t-value p-value
P11
Intercept -3.711 0.1306 -28.416 <0.001
P_APP 0.002341 0.000623 3.757 <0.001
PCP 0.003195 0.000117  27.286 <0.001
TMP 0.5542 0.03197  17.337 <0.001
SOL_K 0.00298 0.000472 6.305 <0.001
GRAS -0.4321 0.0382 -11.312 <0.001
P_APP:PCP -2.4E-06 5.2E-07 -4.64 <0.001
P_APP:TMP 0.000829 7.7E-05  10.797 <0.001
PCP:TMP -0.00052 2.9E-05 -18.297 <0.001
PCP:SOL_K -1.2E-06 3. 97E-07 -3.095 0.002
TMP:SOL_K -0.00026 5.7E-05 -4.526 <0.001
TMP:GRAS 0.03787 0.00941 4.024 <0.001
P13
Intercept -4.43817 0.589848 -7.512 <0.001
PCP 0.002509 0.000534 4.701 <0.001
TMP 0.417306  0.1496445 2.789 0.005
SOL_K 0.001247 0.000222 5.622 <0.001
PCP:TMP -0.0003 0.000135 -2.253 0.024
P2
Intercept -3.667 0.1357 -27.017 <0.001
P_APP 0.003461 0.000663 5.218 <0.001
PCP 0.003017 0.000122  24.783 <0.001
TMP 0.5149 0.03304  15.584 <0.001
SOL_K 0.003531 0.000488 7.233 <0.001
GRAS -0.2039 0.09001 -2.265 0.024
P_APP:PCP -2.4E-06 5.54E-07 -4.305 <0.001
P_APP:TMP 0.000432 7.93E-05 5.445 <0.001
P_APP:GRAS -0.03304 0.007019 -4.707 <0.001
PCP:TMP -0.00044 2.95E-05 -14.952 <0.001
PCP:SOL_K -1.4E-06 4.1E-07 -3.446 <0.001
PCP:GRAS -0.00025 7.66E-05 -3.25 0.001
TMP:SOL_K -0.00025 5.87E-05 -4.184 <0.001
TMP:GRAS 0.05117 0.009839 5.201 <0.001
P3
Intercept -2.817 0.2548 -11.054 <0.001
P_APP -0.01363 0.001854 -7.352 <0.001
PCP 0.002778 0.000178  15.609 <0.001
TMP 0.1406 0.06523 2.155 0.031
SOL_K 0.00651 0.000702 9.279 <0.001
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599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

GRAN -0.9386 0.1378 -6.812 <0.001

GRAS -0.9931 0.1813 -5.478 <0.001
P_APP:TMP 0.003562 0.000491 7.252 <0.001
P_APP:GRAN 0.007736 0.002179 3.549 <0.001
P_APP:GRAS -0.05489 0.01295 -4.24 <0.001
PCP:TMP -0.0003 4,42E-05 -6.763 <0.001
PCP:SOL_K -3.7E-06 5.78E-07 -6.359 <0.001
PCP:GRAN 0.000112 5.1E-05 2.192 0.028
PCP:GRAS -0.00019 0.000109 -1.74 0.082
TMP:SOL_K -0.00021 8.8E-05 -2.4 0.016
TMP:GRAN 0.1798 0.03332 5.397 <0.001
TMP:GRAS 0.247 0.03581 6.898 <0.001
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