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Reply to Reviewer 

 

We made substantial revisions based on suggestions from two reviewers. The title 

was modified to precisely reflect the purpose and method used in this study. We 

eliminated a large trunk of materials that were redundant in method and result 

sections; Figures were modified, and several tables were placed in Appendix A. 

Detailed answers to reviewer’s equations are: 

 

Reviewer#1 

 

The manuscript entitled “Developing a Decision Support Tool for Assessing Land 

UseChange and BMPs in Large Ungauged Watersheds” presents development of 

decision support tool to estimate the impacts of land use change and best management 

practices on both water quantity and quality related issues of ungauged watersheds 

from Canada. The authors are putting their great efforts in this study. This type of 

research can help for making better informed decisions regarding future watershed 

management strategies. 

Thank you for your kind comment.  

 

Since calibration and validation of process-based models are crucial steps for further 

model simulation studies I suggest the authors to provide more details of these 

processes. I expect to have some text about model parameters’ sensitivity analysis and 

model prediction uncertainties. 

We replied these comments along with several related topics in detail below. 

  

I suggest to include more concrete outputs of the research in “Abstract” section, not 

the general statements. 

We revised the abstract part according to your suggestion. 

 

Title: The term “Large Ungauged Watersheds” in the title is confusing to me because 

the larger watershed taken for this study is only 380 km2 and I don’t find any 

statement to define a criteria whether a watershed is large or small in size. 

Compared with the small experimental watershed, the LRW is considered large. 

We accepted your suggestion and remove “large’ from the tile to reduce 

confusion.   

 

Abstract section, line 3: The term “water resources” should have some specifics 

We revised that 

 

Materials and Methods section, line 104: “statistical equations”. This should be 

clearly defined. 

We revised that. 

 

Materials and Methods section, line 107: “water quantity and quality”. These should 
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be defined. 

We revised that. 

 

Study Sites and Data Collection section, lines 123-124: I also want to include both 

minimum and maximum temperature and precipitation. 

We revised that. 

 

Figure 3: I suggest making topographic slope in degrees. 

We follow the setup of SWAT using percentage which is commonly used in 

SWAT papers. 

 

Study Sites and Data Collection section, lines 159-161: I suggest either to include 

website of data source or citation. 

We added website link. 

 

Study Sites and Data Collection section, lines 161-162: I suggest to include more 

details. 

We revised that. 

 

Modification of SWAT section, lines 176-177: Include some supportive document for 

this. 

We added references. 

  

SWAT Setup, Calibration, and Validation section, lines 197-198: Need more details 

of this SWAT Setup, Calibration, and Validation section, lines 202-203: What are 

threshold values of 

land use, soil, and slope categories to define 32 sub-basins in the watershed? Need to 

explain. 

 

We understand your suggestion on this part. However, we do not think adding 

more details regarding calibrated and validation SWAT for BBW and sensitivity 

analysis is necessary in the present paper as those processes can be find in a 

published paper (Qi et al. 2017b). Also, reviewer#2 has already pointed out that 

the paper needs to be shorten and more materials (which can be found easily in 

another paper) would not be helpful. The most important reason why we cannot 

easily detail those processes in the present paper is that the SWAT model was 

not just set up, calibrated, and validated for BBW. We modified several modules 

in SWAT and tested them in separate papers and set up SWAT using field-

boundary based HRU configuration. We think too much detail would divert 

readers attention from the objective of this paper.  
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Reviewer# 2 

  

This study is a very interesting and important question for water resources 

management. 

Thank you for your comments. 

 

Major suggestions: 

(1) The decision support tool should be established with readily available and 

measured variables only. Or, some advantages claimed in this study are not realistic. 

For instance, (a) anyone want to apply this method/framework to another catchment, 

they have to set up and calibrate the SWAT model first; (b) some of the explanatory 

variables might be catchment (sub-basin, or HRU) scale values and are un-observable, 

e.g. SOL_K, so regressed equation depends on the performance of the calibrated 

SWAT model. I suggest authors to set up the tool independently with the SWAT 

model. Then, using the SWAT model to support the validity and to identify the 

advantages/disadvantages of the established tool. I think this is the way we usually do 

in operation, i.e. regressed and physically-based models are complementary and 

independent with each other for decision making. 

In general, we agree with your comments. We do want to develop a decision 

support tool based on measured variables only and then tested it by comparison 

with SWAT simulations. However, as we stated in the manuscript, it is almost 

impossible to get those measured data from field experiments (at least under the 

budget we have). Probably we could get a few regression equations from our 

limited field measurements, but they are insufficient to develop a watershed scale 

decision support tool which contains many land use and soil types and 

management practices and their combinations. To your specified questions: a) 

once a decision support tool was developed and validated under a specific 

climate, vegetation and soil conditions, the decision support tool could be used in 

many watersheds in that region. We do not need to setup and calibrate a SWAT 

model for each watershed we are interested in. This is one of advantages of DST 

over SWAT. For example, the decision support tool developed in the present 

study could be applied to many similar watersheds in New Brunswick. Without 

the DST, we probably have to setup SWAT model (or other watershed models) 

for each of them and then take long time to calibrate and validate models, which 

is not possible for ungauged watersheds (there are so many ungauged watersheds 

in New Brunswick); b) when we were developing the decision support tool we 

chose physical meaningful variables. Sol_K is saturated hydraulic conductivity 

which is a standard measurement in many soil survey and maps. We do insist 

that SWAT simulation could provide information that are not available from 

field experiments. So, a well calibrated and validated SWAT model could 

provide more reliable information.    

 

(2) I don’t agree with the conclusion “DST and SWAT are equally well”. 

The performance of DST and SWAT are “equally”, which is not surprise as they are 
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dependent, but not “well”, which should be concluded on comparison with 

observations. 

Results did not well support “well”. For the applications in the whole watershed, it is 

hard to say model was well established (or, it is just a numeric modelling experiment). 

We agree with your comment. Both DST and SWAT were not performing very 

well compared with measurements. However, when it comes to ungauged 

watersheds, we do not even have measurements to validate the model. SWAT 

model has been used in many cases without calibration and decision makers still 

put some trust in its simulations because there is nothing else to consult to. The 

main purpose of present study it to provide a decision support tool for decision 

makers. At least, we could conclude that the DST performed equivalently as 

SWAT for the ungauged watershed and it is much easier to use than SWAT for 

decision makers. 

   

(3) What is relationship of this study with four published studies of Qi et al. in term of 

modelling results of SWAT? If there is no new modification, set-up and calibration of 

the SWAT model, that is fine. But you have to say it explicitly and reduce the length 

of model introduction significantly. 

To apply SWAT in Atlantic Canada region, modification of soil temperature, 

snowmelt and soil erosion modules are necessary to improve simulations of 

SWAT to develop DST for New Brunswick. We have revised this section to 

shorten the manuscript.  

 

Many abbreviations were used without full names where it was appeared firstly. 

Language should be edited carefully.  

We revised those issues. Thanks 

 

Length should be reduced significantly (too many tables and figures). 

We put some results into appendix and delete several figures accordingly. 

  

Suggest to separate the results and discussions 

We understand your suggestion however we would like to keep results and 

discussion together to reduce manuscript length.  

 

Subplots of all the figures should be labelled in order of (a), (b), : : : consistently 

We revise them accordingly.  

 

Specific suggestions: 

(1) Line 111: too many abbreviations in this flow chart. Consider move down to end 

of this section, or provide more specific information, or extend the caption 

We removed the figure as it is confusing and not necessary in the manuscript. 

Thanks 

 

2) Line 131: Provide information of all the abbreviations used in the figure in the 
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captions 

We revised them accordingly. 

 

(2) Line 132: name of weather station should be consistent in form rather than one is 

“#08” and another one is “St. Leonard”. 

St. Leonard station is a national station while other stations are all local 

managed stations without a proper name. What they have is just a number ID.  

 

(4) Line 139: The word “used by SWAT” is misleading. Land use and soil classes 

used by the SWAT model are much lesser (section 2.3) than these shown in this figure 

as many small patches of land cover and soil types are dissolved during the generation 

of HRUs. 

We revised this part.  

 

(5) I suggest authors to provide the “real” and relevant information used by the 

SWAT (including information in table 3) rather than these maps/values based on raw 

datasets. 

The slope, soil and landuse maps are used to set up SWAT. Thanks 

 

 (5) Line 148: what does “St. Quentin” mean? A type of soil? 

Yes, it is a type of soil.  

 

(6) Line 176-177: “It is believed that : : : even without calibration”. How do I believe 

it?  

We revised it.  

 

(7) Line 180: These two references are not the most relevant ones 

We revised it. 

 

(8) Line 193: whether freeze-thaw cycles are considered here? Results said modelling 

error of sediment load was resulted from not considering freeze-thaw cycles in winter 

(line 507). 

Freeze-thaw cycles were considered by using modified version of SWAT in BBW 

and LRW. However, the modified K-factor could not fully account for those 

processes. As mentioned in Qi et al. 2017b, more studies are needed to address 

this issue in cold regions.  

 

(9) Line 193-194: what are “following changes”? How do I know the accuracy was 

improved? 

We revised the sentence. SWAT model Improvements could be referred to the 

four papers of Qi et al.  

 

(10) Line 209: use four digital for the year consistently. 

We revised that. 
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(11) Line 313: delete“(LBAT)”. 

Yes. 

 

(12) Line 350: what is (3)? 

We revised it. 

 

(13) Line 484: In this section: it seems that results do not well support “increasing cell 

size increased sediment loading”. Additionally, more explanations/discussions should 

be provided. 

Those three sentences should be combined to understand the fig 4. “Increasing 

cell size (i.e., slope length) increased sediment loading. However, the mean slope 

gradient was reduced. As a result, the mean sediment loadings were correlated 

non-linearly with cell size as shown in fig 4“. 

 

(14) Line 486: Figure 13, where it is? 

Typo. We revised it. 

 

(15) Line 508: “48” should be “48%”. 

Yes.  

 

(16) Line 556: R2 should be included in this table 

We revised the table and added discussion about the results. 
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Abstract  1 

A simple decision support tool (DST) was developed to evaluate impacts of land use 2 

change and best management practices (BMPs) on water resources for large ungauged 3 

watersheds in New Brunswick, Canada. It was developedDecision making on water 4 

resources management at ungauged, especially large-scale watersheds relies on 5 

hydrological modeling. Physically-based distributed hydrological models require 6 

complicated setup, calibration, and validation processes, which may delay their acceptance 7 

among decision makers. This study presents an approach to develop a simple decision 8 

support tool (DST) for decision makers and economists to evaluate multi-year impacts of 9 

land use change and BMPs on water quantity and quality for ungauged watersheds. The 10 

example DST developed in the present study was based on statistical equations derived 11 

from Soil and Water Assessment Tool (SWAT) simulations applied to a small experimental 12 

watershed in northwest New Brunswick. The DST was subsequently tested against field 13 

measurements and SWAT-model simulations for a larger watershed. Results from DST 14 

reproducedcould reproduce both field data and model simulations of annual stream 15 
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discharge and sediment and nutrient loadings fairly well. The relative error of mean annual 16 

discharge and sediment, nitrate-nitrogen, and nutrient loadingsoluble-phosphorus loadings 17 

were within-6, -52 to +, 27%., and -16%, respectively, for long-term simulation.  Compared 18 

with SWAT, DST has fewer input requirements and can be applied to multiple watersheds 19 

without additional calibration. Also, scenario analyses with DST can be directly conducted 20 

for different combinations of land use and BMPs without complex model setup procedures. 21 

The approach in developing DST can be applied to other regions of the world because of 22 

its flexible structure.  23 

Keywords: multiple regression; hydrological model; erosion; nitrate leaching; geographic 24 

information system 25 

 26 

 27 

 28 

 29 

 30 

1. Introduction 31 

    Pollution from nonpoint sources poses a significant threat to ecosystems and plant and 32 

animal communities (Vörösmarty et al., 2010). Nonpoint sources of sediment, nutrients, 33 

and pesticides, primarily from agricultural lands, have been identified as major contributors 34 

to water quality degradation (Ongley et al., 2010; Zhang et al., 2004). These pollutants are 35 

difficult to control because they come from many sources (Quan and Yan, 2001). Practices 36 

such as strip cropping, terracing, crop rotation, and nutrient management can be developed 37 

to prevent soil erosion and reduce the movement of nutrients and pesticides from 38 
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agricultural lands to aquatic ecosystems (D'Arcy and Frost, 2001). These pollution-39 

prevention methods, known as best management practices (BMPs), are intended to 40 

minimize the negative environmental impact of agricultural activities, while maintaining 41 

land productivity. Reliable information on the impacts of land use change and BMPs on 42 

water quantity and quality is critical to watershed management (Panagopoulos et al., 2011). 43 

    Pollution from nonpoint sources poses a significant threat to ecosystems and plant and 44 

animal communities (Vörösmarty et al., 2010). Nonpoint sources of sediment, nutrients, 45 

and pesticides, primarily from agricultural lands, have been identified as major contributors 46 

to water quality degradation (Zhang et al., 2004;Ongley et al., 2010). These pollutants are 47 

difficult to control because they come from many sources (Quan and Yan, 2001). Practices 48 

such as strip cropping, terracing, crop rotation, and nutrient management can be developed 49 

to prevent soil erosion and reduce the movement of nutrients and pesticides from 50 

agricultural lands to aquatic ecosystems (D'Arcy and Frost, 2001). These pollution-51 

prevention methods, known as best management practices (BMPs), are intended to 52 

minimize the negative environmental impact of agricultural activities, while maintaining 53 

land productivity. Reliable information on the impacts of land use change and BMPs on 54 

water quantity and quality is critical to watershed management (Panagopoulos et al., 2011). 55 

 Many studies have been conducted to evaluate the impact of land use change and BMPs 56 

on water quality based on field experiments (Novara et al., 2011; Pimentel and Krummel, 57 

1987; Sadeghi et al., 2012; Turkelboom et al., 1997; Urbonas, 1994).(Novara et al., 58 

2011;Pimentel and Krummel, 1987;Sadeghi et al., 2012;Turkelboom et al., 1997;Urbonas, 59 

1994). Monitoring systems have been established to assess the impact of land use change 60 

and BMPs on water resources in order to capture the spatial and temporal variation in soil, 61 
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climate, and topographic conditions in watersheds (Veldkamp and Lambin, 62 

2001).(Veldkamp and Lambin, 2001). Statistical models developed from field data from 63 

small watersheds are usually assumed to apply to large watersheds (Bloschl and Grayson, 64 

2001; Blöschl and Sivapalan, 1995).(Blöschl and Sivapalan, 1995;Bloschl and Grayson, 65 

2001). Although it is not difficult to quantify soil erosion and chemical loadings in 66 

experimental plots, it is time-consuming and expensive (Mostaghimi et al., 67 

1997).(Mostaghimi et al., 1997). Clearly, it is not practical to conduct field experiments for 68 

every possible combination of land use and BMPs, under different biophysical conditions. 69 

As a result, it is unlikely sufficient field data could be obtained to develop management 70 

plans and conduct cost-benefit analyses. In addition, statistical models could be potentially 71 

derived from experiments; however, it is difficult to establish cause-and-effect 72 

relationships between BMPs and water quality variables under varied biophysical 73 

conditions or to quantify the impact of combined land use and BMPs on water quality at 74 

the watershed scale (Renschler and Lee, 2005).(Renschler and Lee, 2005).  75 

Process-based models of hydrology can be used to extrapolate field data to fill data gaps 76 

(Borah and Bera, 2003; Borah and Bera, 2004; Singh, 1995; Singh and Frevert, 2005; Singh 77 

and Woolhiser, 2002).  These process-based models provide quantitative information that 78 

is usually difficult to obtain from field experiments (Borah et al., 2002). For example, 79 

ANSWERS (Beasley et al., 1980), CREAMS (Knisel, 1980), GLEAMS (Leonard et al., 80 

1987), AGNPS (Young et al., 1989), EPIC (Sharpley and Williams, 1990), and SWAT 81 

(Arnold et al., 1998) have been used to understand surface runoff, soil erosion, nutrient 82 

leaching, and pollutant-transport processes. However, these process-based models require 83 

extensive input data and complex calibration procedures (Liu et al., 2015); watersheds with 84 
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sufficient data to calibrate and validate these models are normally small, resulting in lack 85 

of representation at large spatial scales. Furthermore, once a model is calibrated, 86 

parameters become watershed-specific, which cannot be easily extended to other 87 

watersheds. In addition, these models require specialized expertise, which prevents non-88 

expert decision makers and economists to use them (Viavattene et al., 2008).(Borah and 89 

Bera, 2004;Borah and Bera, 2003;Singh, 1995;Singh and Woolhiser, 2002;Singh and 90 

Frevert, 2005).  These process-based models provide quantitative information that is 91 

usually difficult to obtain from field experiments (Borah et al., 2002). For example, 92 

ANSWERS (Beasley et al., 1980), CREAMS (Knisel, 1980), GLEAMS (Leonard et al., 93 

1987), AGNPS (Young et al., 1989), EPIC (Sharpley and Williams, 1990), and SWAT 94 

(Arnold et al., 1998) have been used to understand surface runoff, soil erosion, nutrient 95 

leaching, and pollutant-transport processes. However, these process-based models require 96 

extensive input data and complex calibration procedures (Liu et al., 2015); watersheds with 97 

sufficient data to calibrate and validate these models are normally small, resulting in lack 98 

of representation at large spatial scales. Furthermore, once a model is calibrated, 99 

parameters become watershed-specific, which cannot be easily extended to other 100 

watersheds. In addition, these models require specialized expertise, which prevents non-101 

expert decision makers and economists to use them (Viavattene et al., 2008).  102 

A decision support tool could be developed by combining “decision rules” with 103 

geographic information systems (GIS) for water quality assessment in large ungauged 104 

watersheds. The “decision rules” could be based on regression equations derived from field 105 

experiments (Renschler and Harbor, 2002),(Renschler and Harbor, 2002), or they could be 106 

defined simply as constants based on expert knowledge. Alternatively, simulations from a 107 
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well-calibrated hydrological model could be used to develop statistical equation-based 108 

“decision rules”.  Apart from defining “decision rules” at each grid cell, to assess water 109 

quantity and quality in streams or at subbasin/watershed outlets, the decision support tool 110 

should consider discharge, sediment, and nutrient routing within the watershed. For 111 

example, a commonly used routing mothed for sediments is the sediment-delivery ratio 112 

(SDR) method, which is widely employed in many GIS-based erosion models (May and 113 

Place, 2010; Wilson et al., 2001; Zhao et al., 2010).(May and Place, 2010;Wilson et al., 114 

2001;Zhao et al., 2010). For discharge, a simple summation routing at the outlet produces 115 

acceptable accuracy for small- and medium-sized watersheds, considering that there is 116 

negligible water losses from surface runoff and stream flow. For large watersheds, water 117 

losses are generally greater. These water losses can be estimated using simple linear 118 

equations. The annual export of nutrients from watersheds (via the nutrient-delivery ratio) 119 

has been studied empirically in many studies as nutrient loading per land area (Beaulac and 120 

Reckhow, 1982; Endreny and Wood, 2003; Reckhow and Simpson, 1980).(Endreny and 121 

Wood, 2003;Beaulac and Reckhow, 1982;Reckhow and Simpson, 1980).  122 

 A decision support tool developed based on “decision rules” is generally flexible and 123 

easy for decision makers and economists to use (Endreny and Wood, 2003).(Endreny and 124 

Wood, 2003). However, their practicality in normal circumstances, particularly with 125 

respect to their level of accuracy, needs to be evaluated. In addition, in order to provide 126 

sufficient “decision rules” with reasonable accuracy, fully validated hydrological models 127 

are required to be able to fill data gaps in field experiments. The present study used the 128 

Soil and Water Assessment Tool (SWAT) to provide modelled data in the development of 129 

the decision support tool. The main objective of the present study is to develop a simple 130 
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decision support tool with the intent to evaluate the impact of land use change and BMPs 131 

on water resources in a large ungauged watershed in New Brunswick, Canada. This paper 132 

presents the development and testing of a decision support tool using data from two 133 

watersheds in the potato-belt of New Brunswick; one small experimental watershed, with 134 

extensive monitoring and field survey data, and a larger watershed containing the smaller 135 

watershed.  136 

2.1.Materials and Methods 137 

    The general framework of the study is illustrated in Fig. 1. Specifically, this involves: 138 

(1) setting up, calibrating, and validating SWAT for a small experimental watershed; (2) 139 

developing statistical equations based on SWAT-modelrelating water quality and quantity 140 

variables with weather, soil, land use information  based on SWAT simulations for 141 

different combinations of land use and BMPs; (3) integrating the statistical equations into 142 

a decision support tool with the aid of ArcGIS; and (4) testing the decision support tool 143 

against field measurements and model simulations of water quantitystream discharge, 144 

sediment, and qualitynutrient loadings for a large watershed.    145 

带格式的: 英语(美国)

带格式的: 缩进: 首行缩进:  0.42 厘米

带格式的: 英语(加拿大)
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2. Materials and Methods 146 

 147 

 148 

Fig. 1 Information flow in development of the decision support tool. 149 
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2.1 Study Sites and Data Collection  150 

    The large watershed of this study is the Little River Watershed (LRW), located in the 151 

Upper Saint John River Valley of northwestern New Brunswick, Canada (Fig. 21). It 152 

covers an area approximately 380 km2 with a mixture of agricultural (16.2%), forest (77%), 153 

and residential (6.8%) land uses (Xing et al., 2013).  Elevation in the watershed ranges 154 

from 127 to 432 m above mean sea level (Fig. 2(Xing et al., 2013).  Elevation in the 155 

watershed ranges from 127 to 432 m above mean sea level (Fig. 1). The soil in the study 156 

sites is classified as mineral, derived from various parent materials. The major associations 157 

are Caribou, Carleton, Glassville, Grandfalls, Holmesville, McGee, Muniac, Siegas, 158 

Thibault, Undine, Victoria, Waasis, and one organic soil (Fig. 32). The study site belongs 159 

to the Upper Saint John River Valley Ecoregion in the Atlantic Maritime Ecozone 160 

(Marshall et al., 1999).(Marshall et al., 1999). The climate of the region is considered to be 161 

moderately cool boreal with approximately 120 frost-free days, annually (Yang et al., 162 

2009).(Yang et al., 2009). Daily maximum and minimum temperate are 24 (in July) and -163 

18.1˚C (in January) based on Canadian Climate Normal station data at St. Leonard 164 

(http://climate.weather.gc.ca/climate_normals). The average temperature is 3.7˚C and 165 

annual precipitation is 1037.4 mm (Zhao et al., 2008).(Zhao et al., 2008). About one-third 166 

of the precipitation is in the form of snow. Snowmelt leads to major surface runoff and 167 

groundwater recharge events from March to May (Chow and Rees, 2006).(Chow and Rees, 168 

2006). The land use and soil maps in the setup of SWAT for LRW were derived from 169 

publicly available data [Energy and Resource Development (ERD), New Brunswick; Fig. 170 

32]. 171 

http://climate.weather.gc.ca/climate_normals
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 172 

 173 

Fig. 21 Location of the Little River Watershed (LRW) and Black Brook Watershed 174 

(BBW) in New Brunswick (NB), Canada and water-monitoring stations #01 and #12 as 175 

well as weather stations #08 and St. Leonard. Elevations and subbasins are also shown 176 

for LRW.  177 

 178 



12 
 

 179 

Soil Type 
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 181 

Fig. 32 Slope classes created using a 10-m resolution LiDAR (Light Detection and 182 

Ranging)-based DEM (Digital Elevation Model), soil and land use maps, and land use 183 

IDs used byin SWAT (see Table 2 for land use ID meaning). 184 
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    The small experimental watershed of the study is the Black Brook Watershed (BBW), a 185 

subbasin of LRW (Fig. 21). The BBW has been studied extensively for more than 20 years 186 

to evaluate the impact of agriculture on soil erosion and water quality (Chow and Rees, 187 

2006; Li et al., 2014).(Li et al., 2014;Chow and Rees, 2006). The watershed covers an area 188 

of 14.5 km2, with 65% being agriculture land, 21% forest land, and 14% residential areas 189 

and wetlands. Slopes vary from 1-6% in the upper basin to 4-9% in the central area. In the 190 

lower portion of the watershed, slopes are more strongly rolling at 5-16%. Soil surveys 191 

(1:10,000 scale) identified six mineral soils, namely Grandfalls, Holmesville, Interval, 192 

Muniac, Siegas, and Undine, and one organic soil, St. Quentin (Mellerowicz, 193 

1993).(Mellerowicz, 1993).  194 

A water-monitoring station was established at the outlet of BBW in 1992 (MS#01; Fig. 195 

21) and another (MS#12) at the outlet of LRW in 2001. At these stations, V-notch weirs 196 

were installed, and the stage height of the water was recorded using a Campbell-Scientific 197 

CR10X data logger. Stage height values were converted to total flow rates with a 198 

calibration curve function (Chow et al., 2011).(Chow et al., 2011). Water samples were 199 

collected with an ISCO automatic sampler. Sampling frequency was set at one sample 200 

every 72 hours when runoff was absent. During runoff events, sampling frequency was 201 

increased to one sample every 5-cm change in stage height. Samples were analyzed for 202 

concentration of suspended solids, nitrate-nitrogen (NO3-N), and soluble-phosphorus (Sol-203 

P). Detailed description of data collection procedures and sample analyses can be found in 204 

Chow et al. (2011).Chow et al. (2011). Weather data including daily precipitation, air 205 

temperature, relative humidity, and wind speed were acquired from the St. Leonard 206 

Environment Canada weather station, (http://climate.weather.gc.ca), located 207 



16 
 

approximately 5 km northwest of BBW (Fig. 21). The daily average relative humidity and 208 

wind speed were calculated based on averaging hourly values. Since this weather station 209 

did not monitor daily solar radiation, the study used solar radiation collected from a weather 210 

station located approximately 10 km southeast of BBW (WS#08; Fig. 21).  211 

2.2 Modification of SWAT 212 

As a process-based semi-distributed watershed model, SWAT is designed to simulate 213 

hydrological processes and predict water quantity and quality as affected by land use, land 214 

management practices, and climate change (Arnold et al., 1998). It provides a flexible 215 

framework that allows for simulations of the impact of a broad range of BMPs, such as 216 

crop cover, filter strips, conservation tillage, irrigation, and flood-prevention structures 217 

(Gassman et al., 2005; Ullrich and Volk, 2009). The SWAT-model is currently one of the 218 

most commonly used hydrological models to study nonpoint source pollution problems 219 

(Behera and Panda, 2006) and evaluate the impact of BMPs on water quantity and quality 220 

at various spatial scales (Gassman et al., 2005).  221 

Many studies have used SWAT as a decision support tool to evaluate water resources in 222 

large ungauged watersheds. It is believed that SWAT is able to provide reliable evaluations 223 

even without calibration. SWAT analyzes hydrological processes for watersheds by 224 

discretizing them into subbasins, which are then themselves subdivided into hydrological 225 

response units (HRUs) of homogeneous land use, soil properties, and slope (Yan et al., 226 

2013; Yang et al., 2009). The model calculates the water balance, crop growth, nutrient 227 

cycling, and pesticide movement at the HRU level. Water flow and sediment and nutrient 228 

transport from each HRU are summed and the resulting loadings are then routed by means 229 

of channels, ponds, and reservoirs to the watershed outlet. Model outputs include HRU-, 230 
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subbasin-, and watershed-level values of surface, lateral, and base flows, as well as 231 

sediment and nutrient loadings. 232 

In Atlantic Canada, where substantial snow accumulates, SWAT-predicted soil 233 

temperatures have been found to disagree with field measurements (Yang et al., 2009), 234 

especially in winter. To address this discrepancy new physically-based soil-temperature 235 

and snowmelt modules were previously developed for SWAT to account for snow-236 

insulation effects (Qi et al., 2016a, b) and rain-on-snow events (Qi et al., 2017a). Further 237 

modification to SWAT included a modification to the universal soil loss equation (MUSLE) 238 

by introducing a variable soil erodibility coefficient (K-factor) to address effects of freeze-239 

thaw cycles on erosion in cold regions (Qi et al. 2017b). The following changes to SWAT 240 

have improved the overall accuracy of the simulations when tested against field 241 

measurements.  242 

2.32.2 SWAT Setup, Calibration, and Validation for BBW and LRW 243 

     The new SWAT model has been subsequently set up, calibrated, and validated for BBW 244 

as reported in Qi et al.      A modified version of SWAT has been developed for cold regions 245 

(Qi et al., 2017a;Qi et al., 2016a, b;Qi et al., 2017b), and it was used for the BBW and 246 

LRW in this study. Detailed model setup, calibration, and validation for BBW can be found 247 

in Qi et al. (2017b). Specific model inputs for both watersheds are provided in Table 1. 248 

The same weather data were used for both watersheds (Table 1). The Digital Elevation 249 

Model (DEM) for LRW and BBW (Qi et al., 2017b) were both based on high resolution 250 

LiDAR (Light Detection and Ranging) data, the first was created at 10-m and the second, 251 

at 1-m resolution (Qi et al., 2017b).. The LRW was delineated into 32 subbasins from 252 

which their topographic characteristics were defined (Fig. 21). The soil types and slopes, 253 



18 
 

which were classified into five separate classes, are illustrated in Fig. 32 for LRW. After 254 

combining the soil, slope, and land use maps through the ArcSWAT-interface function, 255 

362 HRUs were subsequently created for LRW. (based on thresholds: 10, 15, and 20% for 256 

land use, soil, and slope). 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

Table 1 Datasets in SWAT setup, calibration, and validation for BBW and LRW. 265 

    266 

 267 

Dataset BBW LRW 

LiDAR DEM resolution 1-m 10-m  

Soil map Survey (1993) ERD  

Land use maps Survey (92-111992-

2011) 

ERD (one map) 

Precipitation, temperature,  

relative humidity & wind speed 

St. Leonard (92-

111992-2011) 

St. Leonard (01-

102001-2010) 

Solar radiation WS#08 (92-111992-

2011) 

WS#08 (01-102001-

2010) 

Contour tillage operation  

(spring and fall) 

Survey (92-111992-

2011) 

Only for potato and 

barley (01-102001-

2010) 

Fertilizer application Survey (92-111992-

2011) 

Estimated from BBW 

(2001)   

Crop rotation Survey (92-111992-

2011) 

Potato-barley (01-

102001-2010) 

Terraces and grassed waterways Survey (92-111992-

2011)  
Negligible 

Discharge, sediment, NO3-N and Sol-P  MS#01 (92-111992-

2011) 

MS#12 (01-102001-

2010) 
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    Since only one land use map was available for LRW (Table 1), assumptions were made 268 

based on information available on land use and management records for BBW to adjust the 269 

SWAT-management files for LRW as follows: 270 

    (1) Potato-barley rotations were assigned to the land use ID POTA (Table 2); for other 271 

land use IDs, a single crop was considered;  272 

    (2) Fertilizers were applied only to potato and barley fields, and fertilizer amounts and 273 

N:P (nitrogen-to-phosphorus) ratios were averaged for potato and barley fields over the 274 

entire watershed, based on 2001 survey data from BBW; 275 

    (3) Contour tillage was applied only to potato and barley fields; 276 

(4) Flow diversion terraces (FDT) and grassed waterways in LRW were assumed not 277 

used. It is worth noting that these four assumptions serve as a baseline scenario for the 278 

assessment of FDT in LRW at a later time. 279 

    In order toTo evaluate the global performance of the decision support tool for LRW, 280 

related land use and management files were prepared and accessed by SWAT. For purpose 281 

of comparison, simulations with SWAT were produced in an initial application by setting 282 

the adjustable parameters of the model to their default values, and in a second application 283 

by setting the parameters according to values produced with a watershed-specific model 284 

calibration to BBW. This approach with model parameterization is widely accepted when 285 

applying SWAT to large ungauged watersheds (Panagopoulos et al., 2011).  286 

2.42.3 Decision Rules  287 

    The decision support tool was designed to use the “decision rules” to estimate annual 288 

discharge and sediment and nutrient loadings from individual grid cells: 289 

 290 
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𝐴 = ∑ 𝐷𝑅𝑖 ∙ 𝐴𝑖
𝑛
𝑖=1 ,                                                                                                            (1) 291 

 292 

where A is the annual discharge or sediment and nutrient loadings at the outlet of the 293 

watershed, DRi and Ai are the delivery ratios and annual discharge or loadings, respectively, 294 

for grid cell i. For the present study, statistical equations derived from simulations of the 295 

calibrated version of the enhanced SWAT-model for BBW (Qi et al., 2017b) were defined 296 

as the “decision rules” in the decision support tool.  297 

2.4.12.3.1 Land Use Groups and BMP Scenarios  298 

    In statistical equation development, land use in BBW (24, in total) was first classified 299 

into five land use classes according to their influences on hydrological processes (Table 2). 300 

Note that WATR was not used due to its small overall coverage (Fig. 32). As for watershed 301 

management, we considered three main BMPs, i.e., 302 

(1) FDT + contour tillage;  303 

(2) Contour tillage; and 304 

(3) No-BMP (without FDT and contour tillage). 305 

 306 

Table 2 Land use and land use groups (LUGP) for BBW and LRW. 307 

LUGP Land use ID in SWAT Land use type 

AGRL 

(General crops) 

AGRL Agricultural Land-Generic 

CANA Canola 

CRON Corn 

FPEA Field peas 

POTA Potato 

GRAN 

(Grains) 

BARL Barley 

OATS Oats 

PMIL Millet 

RYE Rye 

SWHT Spring wheat 

WWHT Winter wheat 

带格式的: 居中
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GRAS 

(Grasses) 

BERM Bermuda grass 

CLVR Clover 

HAY Hay 

PAST Past 

RYEG Ryegrass 

TIMO Timothy 

FORT 

(Forestry) 

FRSD Forest-Deciduous 

FRSE Forest-Evergreen 

FRST Forest-Mixed 

RNGB Range-Bush 

WETF  Wetlands-Forested 

WETN* Wetlands-No-Forest 

NOCR 

(Non-vegetated 

lands) 

URMD Residential 

UTRN Transportation 

UIDU* Industrial 
Note: “*” indicates unique land use types to LRW not present in BBW and, therefore, 

unaccounted for in the development of the decision support tool. 

 

 

      308 

    The calibrated version of the enhanced SWAT-model for BBW was used to generate 309 

annual outputs based on HRUs from 1992 to 2011. The model was ranrun three times to 310 

generate the BMP-specific data for statistical equation development. 311 

 312 

2.4.22.3.2 Explanatory Variables Selection 313 

     Explanatory candidate variables must be physically-meaningful in hydrological and 314 

biochemical processes. It is worth noting that both continuous and categorical variables 315 

were included in the regression equation. The land use group (LUGP) was the only 316 

categorical variable, and the remaining were all continuous variables. To detect significant 317 

predictors, the analysis of covariance (ANCOVA) was used. It requires at least one 318 

continuous and one categorical explanatory variable and is used to identify the major and 319 

interaction of predictor variables. By including continuous variables, the method can 320 

reduce the variance of error to increase the statistical power and precision in estimating 321 
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categorical variables (Keselman et al., 1998; Li et al., 2014).(Keselman et al., 1998;Li et 322 

al., 2014). Inclusion of interaction terms in these regression models dramatically increased 323 

model performance.  324 

In the present study, we only considered interactions between two explanatory variables 325 

at a time. Student t-tests were conducted to examine the statistical significance of each 326 

level of LUGP and their interaction with the various continuous variables. When one level 327 

of LUGP (e.g., GRAN; Table 2) did not significantly correlate with water quality or 328 

quantity, or there were nominal interactions between a given level and other explanatory 329 

variables, this particular level of LUGP would be combined with other levels of LUGP 330 

until all new levels of LUGP were statistically significant.  331 

Multiple linear regression analyses were used to relate annual total discharge (mm) and 332 

sediment (t ha-1), NO3-N (kg ha-1), and Sol-P (kg ha-1) loadings to the explanatory variables. 333 

These work was conducted in R (Ihaka and Gentleman, 1996).These work was conducted 334 

in R (Ihaka and Gentleman, 1996). Only six continuous explanatory variables were 335 

determined for the specification of the statistical models. Annual precipitation (PCP), 336 

annual mean air temperature (TMP), and mean saturated hydraulic conductivity of soil 337 

(SOL_K) were common to the dependent variables (i.e., total discharge and sediment, 338 

NO3-N, and Sol-P loadings). The LS-factor (USLE_LS) and annual N and P application 339 

rates (N_APP and P_APP) were unique to the equations addressing sediment, NO3-N, and 340 

Sol-P loading. 341 

2.4.32.3.3 Delivery Ratio Definition  342 

    The LS-factor of the universal soil loss equation (USLE) was determined by slope 343 

gradient (slp) and slope length (L) of individual HRUs: 344 
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 345 

USLE_LS = {
𝐿

22.1
}

𝑚

∙ (65.41 ∙ 𝑠𝑖𝑛2(𝑎) + 4.56 ∙ sin(𝑎) + 0.065)                                (2) 346 

 347 

where m is the equation exponent and a is the angle of the slope (in degrees). The exponent 348 

m is calculated by, 349 

 350 

𝑚 = 0.6 ∙ (1 − exp[−35.835 ∙ 𝑠𝑙𝑝])                                                                             (3) 351 

 352 

where slp is in units of m m-1. For the decision support tool, slope length L equals to the 353 

length of the grid side and slope gradient was determined by the Slope tool in ArcGIS. The 354 

sediment-delivery ratio was not considered in the decision support tool application to BBW. 355 

We assumed that annual sediment loadings from grid cells in decision support tool were 356 

all exported to the outlet of BBW. However, when the decision support tool was applied to 357 

LRW, the sediment-delivery ratio was used to correct estimates of sediment loading at the 358 

watershed outlet. The sediment loadings at the outlet of LRW (sed) were determined by 359 

  360 

𝑠𝑒𝑑 = 𝑆𝐷𝑅 ∙ 𝑠𝑒𝑑~                                                                                                          (4) 361 

 362 

where sed~ is the sediment loading calculated with the sediment loading equation (one for 363 

each BMP and land use group), and SDR is determined by (Vanoni, 1975)(Vanoni, 1975) 364 

 365 

𝑆𝐷𝑅 = 0.37 ∙ 𝐷−0.125                                                                                                     (5) 366 

 367 
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where D (km-2) is the drainage area. For annual discharge and nutrient loadings, we 368 

assumed their delivery ratios equal to 1.0 for all grid cells in LRW. 369 

2.52.4 Decision Support Tool Assessment (LBAT)  370 

Inputs to the decision support tool included the six continuous explanatory variables and 371 

LUGP as well as information on management practices, e.g., contour tillage and FDT 372 

implementation. Simulations from each grid cells were summarized at the outlet of the 373 

study watersheds. We first tested the impact of cell size on simulations of water quantity 374 

and quality at the outlet of BBW. The cell size range was determined by considering 375 

different farmland sizes in the watershed. We assumed that farmland-based grid cells can 376 

sufficiently represent basic hydrological processes, land use change, and management 377 

practice implementations for hydrological modeling. Simulated annual water flow and 378 

sediment and nutrient loadings with the decision support tool were compared with those 379 

produced with the calibrated version of the enhanced SWAT-model. Subsequently, the 380 

decision support tool was applied to LRW, and the simulations were compared with the 381 

results of the uncalibrated and calibrated versions of SWAT. The purpose of this was to 382 

test if the decision support tool (i.e., land use and BMP assessment tool; LBAT) performed 383 

better, or at least as well, as both the uncalibrated and calibrated version of SWAT.  384 

    Model performance in terms of water quantity and quality at the outlet of the study 385 

watersheds was assessed based on the coefficient of determination (R2) and relative error 386 

(Re), i.e.,  387 

 388 

𝑅2 = (
∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)∙(𝑃𝑖−𝑃𝑎𝑣𝑔)𝑛

𝑖=1

[∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)𝑛
𝑖=1

2
∙∑ (𝑃𝑖−𝑃𝑎𝑣𝑔)𝑛

𝑖=1
2

]
0.5)

2

                                                                               (6) 389 
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 390 

𝑅𝑒 =
(𝑃𝑎𝑣𝑔−𝑂𝑎𝑣𝑔)

𝑂𝑎𝑣𝑔
∙ 100%                                                                                                             (7) 391 

 392 

where Oi, Pi, Oavg, and Pavg are the observed and predicted and averages of the observed 393 

and predicted values, respectively. 394 

 395 

2.62.5 FDT Assessment in LRW 396 

      A series of FDT-implementation scenarios were set up for LBAT based on six slope 397 

classes to assess the impact of FDT on water quantity and quality on agricultural lands in 398 

LRW (Fig. 3; Table 3).  From scenarios one (S1) to six (S6), total area protected by FDT 399 

gradually increased until all agricultural lands were protected (Table 3). Mean annual 400 

simulations of total discharge and sediment, NO3-N, and Sol-P loadings from LRW from 401 

2001 to 2010 were compared with those of the baseline scenario (FDT = 0%) for each 402 

scenario using two performance indicators, i.e., mean difference (MD) and % relative 403 

difference (PRD), given as: 404 

(1) MD = output with FDT – output without FDT, and 405 

(2) PRD (%) = MD/output without FDT × 100. 406 

(3)  407 

Table 3 Slope classes and corresponding areas in the agricultural land of LRW. 408 

Scenario Slope  Area protected by FDT 

(ha) 

Agricultural lands  

(%) 

S1 ≥5% 624 10 

S2 ≥4% 1328 22 

S3 ≥3% 2224 37 

S4 ≥2% 3680 61 

S5 ≥1% 5360 89 
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S6 ≥0 6048 100 

 409 

 410 

3. Results and Discussion  411 

3.1   Statistical Equations (Decision Rules)  412 

3.1.1 Model Structure and Coefficients 413 

    Linear regression equations and their explanatory variables for annual discharge and 414 

sediment, NO3-N, and Sol-P loadings under different combinations of land use groups and 415 

BMP scenarios are provided in Tables 4 and 5. In total, three discharge models (Dis1, Dis2, 416 

and Dis3) and five sediment (Sed1_1, Sed1_2, Sed1_3, Sed2, and Sed3), NO3-N (N1_1, 417 

N1_2, N1_3, N2, and N3), and Sol-P (P1_1, P1_2, P1_3, P2, and P3) loading models were 418 

developed. Data transformations (via logarithm and power transformations) were applied 419 

to sediment, NO3-N, and Sol-P loadings to meet the assumption of normality in multiple 420 

regression analysis (Table 4). The contour tillage and FDT were applied only to agricultural 421 

lands, including land use groups AGRL, GRAN, and GRAS (Table 4). For the no-BMP 422 

scenario, three separate sediment, NO3-N, and Sol-P loading models were developed for 423 

agricultural lands (AGRL, GRAN, and GRAS), non-vegetated lands (NOCR), and forest 424 

lands (FORT), and one discharge model (Dis1) for all land use groups (Table 4). It is worth 425 

noting that the sediment loading model, Sed3, was a modified version of Sed1_1 426 

(multiplied by TERR_P) for the FDT + contour tillage scenario (Table 4), and the values 427 

of TERR_P (Qi et al., 2017b) used for Sed3 were the same as the calibrated values in 428 

SWAT for BBW (Qi et al., 2017b). Also, NO3-N and Sol-P loadings (N1_2 and P1_2) for 429 

non-vegetated lands (NOCR) were determined as constants, which were equal to the 430 

带格式的: 字体: 非加粗
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calculated means of NO3-N and Sol-P loadings determined by SWAT (i.e., 24 and 0.61 kg 431 

ha-1, respectively; Table 4).  432 

    As for LUGP (including AGRL, GRAN, GRAS, FORT, and NOCR; Table 2), three 433 

new land use groups (i.e., LUGP1, LUGP2, and LUGP3) were formulated by combining 434 

agricultural lands AGRL, GRAN, and GRAS during model development (Tables 4 and 5). 435 

For example, LUGP2 was derived by combining AGRL, GRAN, and GRAS on total 436 

discharge (i.e., Dis1 model). Individual model structures are shown in Table 4, whereas the 437 

explanatory variables for these models appear in Tables 6, 7, 8 and 9.Appendix A. The 438 

coefficients estimated for the explanatory variables and their interactions, and their t-test 439 

results are also shown. in Appendix A. Most of the p-values for these explanatory variables 440 

were < 0.001, except for several that were between 0.001 and 0.08, which were also taken 441 

as acceptable.   442 

 443 

 444 
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 445 

Table 44 Statistical models based on land use groups (LUGP) and BMPs. 446 

BMPs LUGP* Model Structure  

No-BMP CRGP2,NOCR,FORT Dis1 Discharge = f (PCP, TMP, SOL_K, LUGP2) 

Contour tillage AGRL,GRAN,GRAS Dis2                  = f (PCP, TMP, SOL_K) 

FDT+Contour tillage AGRL,GRAN,GRAS Dis3                  = f (PCP, TMP, SOL_K) 

No-BMP CRGP1,GRAS Sed1_1 Sediment(1/10) = f (USLE_LS, PCP, TMP, SOL_K, LUGP1) 

NOCR Sed1_2                       = f (USLE_LS, PCP) 

FORT Sed1_3                       = f (USLE_LS, PCP, SOL_K) 

Contour tillage CRGP1,GRAS Sed2 Sediment(1/10) = f (USLE,_LS, PCP, TMP, SOL_K, LUGP1) 

FDT+Contour tillage AGRL,GRAN,GRAS Sed3 Sediment = Sed1_1 × TERR_P 

No-BMP AGRL,GRAN,GRAS N1_1 Log(NO3-N) = f (N_APP, PCP, TMP, SOL_K, LUGP) 

NOCR N1_2** NO3-N= 24 kg ha-1 

FORT N1_3 Log(NO3-N) = f (PCP, TMP,  SOL_K) 

Contour tillage AGRL,GRAN,GRAS N2 Log(NO3-N) = f (N_APP, PCP, TMP, SOL_K, LUGP) 

FDT+Contour tillage CRGP3,GRAN N3                      = f (N_APP, PCP, TMP, SOL_K, LUGP3) 

No-BMP CRGP1,GRAS P1_1 Log(Sol-P) = f (P_APP, PCP, TMP, SOL_K, LUGP1) 

NOCR P1_2** Sol-P = 0.61 kg ha-1 

FORT P1_3 Log(Sol-P) = f (PCP, TMP, SOL_K) 

Contour tillage CRGP1,GRAS P2 Log(Sol-P) = f (P_APP, PCP, TMP, SOL_K, LUGP1) 

FDT+Contour tillage AGRL,GRAN,GRAS P3                    = f (P_APP, PCP, TMP, SOL_K, LUGP) 
*AGRL and GRAN are combined into one group, namely CRGP1 in LUGP1; AGRL, GRAN and GRAS are combined into one group, namely 447 

CRGP2 in LUGP2; AGRL and GRAS are combined into one group, namely CRGP3 in LUGP3; ** variable is set constant.448 
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Table 55 Explanatory variables determined for statistical analysis. 449 

Variable Unit Meaning 

LUGP — Land use groups including AGRL, GRAN, GRAS, FORT, and NOCR 

LUGP1 — AGRL and GRAN are combined into a new group, CRGP1 

LUGP2 — AGRL, GRAN, and GRAS are combined into a new group, CRGP2 

LUGP3 — AGRL and GRAS are combined into a new group, CRGP3 

N_APP  kg ha-1 Annual N application rate 

P_APP  kg ha-1 Annual P application rate 

PCP mm Annual precipitation  

SOL_K  mm h-1 Mean saturated hydraulic conductivity of soil  

TERR_P — P-factor for FDT 

TMP ℃ Annual mean air temperature 

USLE_LS  — LS-factor of USLE  

 450 

 451 

 452 

 453 

 454 

 455 
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 458 

 459 

 460 

 461 
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 466 

Table 6 Coefficient values for the three discharge models corresponding to land use and 467 

BMPs described in Table 4.  468 

Model variable Estimate Std. Error t-value p-value 

Dis1     

Intercept -1565 24.04 -65.089 <0.001 

PCP 1.933 0.02176 88.837 <0.001 

TMP 282.7 6.091 46.402 <0.001 

SOL_K 0.06338 0.00992 6.389 <0.001 

FORT 30.79 14.16 2.175 0.030 

NOCR 162.2 14.51 11.181 <0.001 

PCP:TMP -0.2488 0.005487 -45.352 <0.001 

PCP:FORT 0.04684 0.01191 3.934 <0.001 

PCP:NOCR -0.0535 0.01224 -4.37 <0.001 

TMP:FORT 9.723 1.684 5.775 <0.001 

TMP:NOCR 4.506 1.731 2.603 0.009 

SOL_K:FORT -0.3769 0.03403 -11.076 <0.001 

SOL_K:NOCR -0.2959 0.032 -9.248 <0.001 

Dis2     

Intercept -1633 27.29 -59.84 <0.001 

PCP 1.995 0.02472 80.69 <0.001 

TMP 302.2 6.87 43.98 <0.001 

SOL_K 0.08696 0.01167 7.45 <0.001 

PCP:TMP -0.2662 0.006199 -42.94 <0.001 

Dis3     

Intercept -1666 36.58 -45.54 <0.001 

PCP 2.007 0.03305 60.713 <0.001 

TMP 298 9.351 31.865 <0.001 

SOL_K 0.09353 0.01573 5.946 <0.001 

PCP:TMP -0.2606 0.008406 -31.004 <0.001 

 469 

 470 

 471 

 472 

 473 

 474 
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Table 7 Coefficient values for the four sediment loading models corresponding to land 475 

use and BMPs described in Table 4. 476 

Model variable Estimate Std. Error t-value p-value 

Sed1_1     

Intercept 0.2749 0.06125 4.488 <0.001 

USLE_LS 0.1201 0.02224 54.018 <0.001 

PCP 0.000788 5.54E-05 14.218 <0.001 

TMP 0.1117 0.01528 7.307 <0.001 

SOL_K 0.000568 0.00022 2.585 0.010 

GRAS -0.0353 0.00881 -4.007 <0.001 

USLE_LS:SOL_K -0.00014 4.69E-05 -3.045 0.002 

USLE_LS:GRAS -0.02623 0.006826 -3.842 <0.001 

PCP:TMP -0.00011 1.38E-05 -7.967 <0.001 

PCP:SOL_K -4.6E-07 1.91E-07 -2.406 0.016 

Sed1_2     

Intercept 0.8575 0.008826 97.15 <0.001 

PCP 0.000123 7.82E-06 15.67 <0.001 

PCP:USLE_LS 0.000209 5.02E-06 41.65 <0.001 

Sed1_3     

(Intercept) 0.3992 0.02267 17.613 <0.001 

USLE_LS 0.07935 0.01967 4.034 <0.001 

PCP 0.000204 1.96E-05 10.371 <0.001 

SOL_K 0.000545 5.71E-05 9.534 <0.001 

USLE_LS:PCP 4.94E-05 1.71E-05 2.9 0.004 

USLE_LS:SOL_K -0.00067 4.89E-05 -13.718 <0.001 

Sed2     

Intercept 0.2591 0.05228 4.956 <0.001 

USLE_LS 0.12 0.001898 63.218 <0.001 

PCP 0.000767 4.73E-05 16.212 <0.001 

TMP 0.1162 0.01304 8.907 <0.001 

SOL_K 0.000746 0.000188 3.981 <0.001 

GRAS -0.06937 0.01648 -4.211 <0.001 

USLE_LS:SOL_K -0.00013 4E-05 -3.137 0.002 

USLE_LS:GRAS -0.02662 0.005829 -4.567 <0.001 

PCP:TMP -0.00011 1.18E-05 -9.522 <0.001 

PCP:SOL_K -6.3E-07 1.63E-07 -3.846 <0.001 

TMP:GRAS 0.007415 0.003664 2.024 0.043 

 477 

 478 
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 479 

Table 8 Coefficient values for the four NO3-N loading models corresponding to land use 480 

and BMPs described in Table 4. 481 

Model variable Estimate Std. Error t-value p-value 

N1_1     

Intercept 1.44 0.1753 8.213 <0.001 

N_APP -0.00862 0.000699 -12.325 <0.001 

PCP 0.000543 0.00016 3.4 <0.001 

TMP 0.1363 0.03357 4.059 <0.001 

SOL_K -0.00344 9.78E-05 -35.163 <0.001 

GRAN -1.117 0.1021 -10.937 <0.001 

GRAS -1.97 0.1562 -12.611 <0.001 

N_APP:PCP 5.31E-06 6.45E-07 8.233 <0.001 

N_APP:TMP 0.000963 7.45E-05 12.929 <0.001 

N_APP:SOL_K 9.6E-06 6.4E-07 15.024 <0.001 

PCP:GRAN 0.000677 9.38E-05 7.215 <0.001 

PCP:GRAS 0.001029 0.000143 7.201 <0.001 

PCP:TMP -0.00025 2.64E-05 -9.467 <0.001 

TMP:GRAN 0.1 0.01134 8.817 <0.001 

TMP:GRAS 0.2132 0.01651 12.912 <0.001 

N1_3     

Intercept -1.411 0.3087 -4.573 <0.001 

PCP 0.001875 0.000279 6.710 <0.001 

TMP 0.4437 0.07831 5.666 <0.001 

SOL_K -0.00104 0.000116 -8.979 <0.001 

PCP:TMP -0.00032 7.06E-05 -4.484 <0.001 

N2     

Intercept 1.429 0.1757 8.134 <0.001 

N_APP -0.00858 0.000701 -12.233 <0.001 

PCP 0.000548 0.00016 3.425 <0.001 

TMP 0.1376 0.03365 4.089 <0.001 

SOL_K -0.00345 9.8E-05 -35.223 <0.001 

GRAN -1.11 0.1023 -10.849 <0.001 

GRAS -1.962 0.1566 -12.526 <0.001 

N_APP:PCP 5.3E-06 6.47E-07 8.187 <0.001 

N_APP:TMP 0.000957 7.46E-05 12.82 <0.001 

N_APP:SOL_K 9.65E-06 6.4E-07 15.067 <0.001 

PCP:GRAN 0.000674 9.41E-05 7.167 <0.001 

PCP:GRAS 0.001026 0.000143 7.162 <0.001 

PCP:TMP -0.00025 2.64E-05 -9.456 <0.001 
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TMP:GRAN 0.09934 0.01137 8.738 <0.001 

TMP:GRAS 0.2122 0.01655 12.821 <0.001 

N3     

Intercept -0.3595 0.1718 -2.092 0.037 

N_APP -0.00131 0.000435 -3.011 0.003 

PCP 0.001621 0.00015 10.806 <0.001 

TMP 0.3977 0.03857 10.312 <0.001 

SOL_K -0.00386 0.000505 -7.641 <0.001 

GRAN -0.2133 0.07504 -2.842 0.005 

N_APP:PCP 1.65E-06 3.59E-07 4.61 <0.001 

N_APP:TMP 0.000281 4.74E-05 5.939 <0.001 

N_APP:GRAN 0.000716 0.000292 2.453 0.014 

PCP:TMP -0.00035 3.32E-05 -10.506 <0.001 

PCP:SOL_K 1.21E-06 4.36E-07 2.781 0.005 

PCP:GRAN 0.000267 5.82E-05 4.577 <0.001 

TMP:GRAN -0.04685 0.008004 -5.853 <0.001 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 
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Table 9 Coefficient values for four Sol-P models corresponding to land use and BMPs 497 

described in Table 4. 498 

Model variable Estimate Std. Error t-value p-value 

P1_1     

Intercept -3.711 0.1306 -28.416 <0.001 

P_APP 0.002341 0.000623 3.757 <0.001 

PCP 0.003195 0.000117 27.286 <0.001 

TMP 0.5542 0.03197 17.337 <0.001 

SOL_K 0.00298 0.000472 6.305 <0.001 

GRAS -0.4321 0.0382 -11.312 <0.001 

P_APP:PCP -2.4E-06 5.2E-07 -4.64 <0.001 

P_APP:TMP 0.000829 7.7E-05 10.797 <0.001 

PCP:TMP -0.00052 2.9E-05 -18.297 <0.001 

PCP:SOL_K -1.2E-06 3. 97E-07 -3.095 0.002 

TMP:SOL_K -0.00026 5.7E-05 -4.526 <0.001 

TMP:GRAS 0.03787 0.00941 4.024 <0.001 

P1_3     

Intercept -4.43817 0.589848 -7.512 <0.001 

PCP 0.002509 0.000534 4.701 <0.001 

TMP 0.417306 0.1496445 2.789 0.005 

SOL_K 0.001247 0.000222 5.622 <0.001 

PCP:TMP -0.0003 0.000135 -2.253 0.024 

P2     

Intercept -3.667 0.1357 -27.017 <0.001 

P_APP 0.003461 0.000663 5.218 <0.001 

PCP 0.003017 0.000122 24.783 <0.001 

TMP 0.5149 0.03304 15.584 <0.001 

SOL_K 0.003531 0.000488 7.233 <0.001 

GRAS -0.2039 0.09001 -2.265 0.024 

P_APP:PCP -2.4E-06 5.54E-07 -4.305 <0.001 

P_APP:TMP 0.000432 7.93E-05 5.445 <0.001 

P_APP:GRAS -0.03304 0.007019 -4.707 <0.001 

PCP:TMP -0.00044 2.95E-05 -14.952 <0.001 

PCP:SOL_K -1.4E-06 4.1E-07 -3.446 <0.001 

PCP:GRAS -0.00025 7.66E-05 -3.25 0.001 

TMP:SOL_K -0.00025 5.87E-05 -4.184 <0.001 

TMP:GRAS 0.05117 0.009839 5.201 <0.001 

P3     

Intercept -2.817 0.2548 -11.054 <0.001 

P_APP -0.01363 0.001854 -7.352 <0.001 

PCP 0.002778 0.000178 15.609 <0.001 
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TMP 0.1406 0.06523 2.155 0.031 

SOL_K 0.00651 0.000702 9.279 <0.001 

GRAN -0.9386 0.1378 -6.812 <0.001 

GRAS -0.9931 0.1813 -5.478 <0.001 

P_APP:TMP 0.003562 0.000491 7.252 <0.001 

P_APP:GRAN 0.007736 0.002179 3.549 <0.001 

P_APP:GRAS -0.05489 0.01295 -4.24 <0.001 

PCP:TMP -0.0003 4.42E-05 -6.763 <0.001 

PCP:SOL_K -3.7E-06 5.78E-07 -6.359 <0.001 

PCP:GRAN 0.000112 5.1E-05 2.192 0.028 

PCP:GRAS -0.00019 0.000109 -1.74 0.082 

TMP:SOL_K -0.00021 8.8E-05 -2.4 0.016 

TMP:GRAN 0.1798 0.03332 5.397 <0.001 

TMP:GRAS 0.247 0.03581 6.898 <0.001 

 499 

3.1.2 Statistical Equation Assessment 500 

    Simulations based on the statistical equations and the calculated outputs from individual 501 

HRUs for the different BMPs are compared in Table 106. In general, discharge models 502 

were able to reproduce SWAT simulations for the three BMPs; R2 ranging from 0.86 to 503 

0.9. Mean discharge simulated with the statistical equations was equal to that of SWAT 504 

(Table 106). Mean discharge (636 mm) for the no-BMP-case (BMP 3) was greater than 505 

that for BMPs using contour tillage and FDTs (619 and 628 mm for BMP 1 and 2, 506 

respectively), suggesting that contour tillage and FDTs can cause evapotranspiration to 507 

increase.  508 

    Models Sed1_2 and Sed1_3 were able to reproduce simulations with SWAT (yielding 509 

R2 = 0.71 and 0.57, respectively), and simulated mean sediment loadings were close to that 510 

of SWAT (Table 106). Models Sed1_1 and Sed2 tended to underestimate results from 511 

SWAT (Table 106), with an overall lower mean sediment loading of 10.78 vs. 12.84 and 512 

8.31 vs. 9.4 t ha-1, respectively. Mean sediment loading with Sed3 (0.89 t ha-1) was slightly 513 

greater than that of SWAT (0.84 t ha-1), due to the fact thatbecause Sed3 only took into 514 
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account TERR_P, whereas SWAT took into account TERR_CN and the impact of grassed 515 

waterways. Results from the statistical equations showed that the mean sediment loading 516 

for BMP 2 (8.31 t ha-1) was significantly different than that for BMPs 1 and 3, with mean 517 

loading of 0.89 and 10.78 t ha-1 (Table 106). The smallest mean sediment loading (0.09 t 518 

ha-1) was found to occur with the FORT land use grouping (Table 106).  519 

    The four NO3-N and Sol-P loading equations explained ~50% of the variation in the 520 

SWAT simulations for the same variables, with R2 ranging from 0.33 to 0.59 (Table 106). 521 

Mean NO3-N and Sol-P loadings with the statistical equations were all slightly less than 522 

the values produced with SWAT for the different BMPs (Table 106). Mean NO3-N 523 

loadings were greater for BMP 1 (44 kg ha-1) than those for BMPs 2 and 3 with both giving 524 

39 kg ha-1 (Table 106), due to increased infiltration with FDT. Mean Sol-P loading (0.8 kg 525 

ha-1) was less for BMP 3 than for BMP 2 (0.89 kg ha-1), whereas much greater than for 526 

BMP 1 (0.43 kg ha-1). Although contour tillage can help reduce sediment loading by 527 

modifying micro-topography and reducing erosion runoff (the reason we set USLE_P < 1), 528 

Sol-P transported with surface runoff increased due to reduced residue cover protecting the 529 

soil surface during winter and during the snowmelt season. When FDT was implemented 530 

with tillage, however, less surface runoff was generated due to increased infiltration 531 

leading to a reduction in Sol-P loading. Mean NO3-N and Sol-P loadings for the FORT 532 

land grouping (10 vs. 0.06 kg ha-1) were much less than those of the CRGP land grouping, 533 

39 vs. 0.8 kg ha-1 (Table 106). 534 
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Table 106 Comparisons of simulations of statistical models and outputs from SWAT for different land use groups and BMPs based on 535 

mean and standard deviation for the entire simulation period (1992-2011). 536 

  No-BMP Tillage FDT + Tillage 

Variable Index CRGP NOCR FORT CRGP CRGP 

  SWAT Fitted SWAT Fitted SWAT Fitted SWAT Fitted SWAT Fitted 

Discharge 

(mm) 

Mean → → 636 636 ← ← 619 619 628 628 

SD → → 144 133 ← ← 140 132 151 143 

 R2 → → 0.86 (Dis1) ← ← 0.88 (Dis2) 0.90 (Dis3) 

Sediment 

(t ha-1) 

Mean 12.84 10.78 1.80 1.71 0.10 0.09 9.40 8.31 0.84 0.89 

SD 11.86 9.44 1.94 1.95 0.14 0.16 8.28 7.38 2.72 1.18 

 R2 0.48 (Sed1_1) 0.71 (Sed1_2) 0.57 (Sed1_3) 0.56 (Sed2) — 

NO3-N 

(kg ha-1) 

Mean 43 39 24 — 10 10 43 39 47 44 

SD 24 14 16 — 6 3 24 14 29 21 

 R2 0.40 (N1_1) — 0.33 (N1_3) 0.39 (N2) 0.59 (N3) 

Sol-P 

(kg ha-1) 

Mean 0.88 0.80 0.61 — 0.08 0.06 0.98 0.89 0.49 0.43 

SD 0.49 0.32 0.46 — 0.06 0.03 0.59 0.38 0.33 0.23 

 R2 0.47 (P1_1) — 0.38 (P1_3) 0.48 (P2) 0.52 (P3) 
Note: CRGP refers to crop groups including AGRL, GRAN, and GRAS; the statistics for discharge in no-BMP scenario are  537 

based on CRGP, NOCR, and FORT.538 
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3.2   LBAT Assessment  539 

3.2.1 Impact of Grid Cell Size on LBAT Simulation 540 

     Simulations of water quantity and quality by LBAT with different grid-cell sizes (i.e., 541 

25, 50, 100, 200, and 400 m) for BBW are shown in Fig. 43. Statistical tests indicated that 542 

grid-cell size had a significant effect on sediment loading (p-value < 0.01), with no effect 543 

observed for discharge and NO3-N and Sol-P loadings (p-values > 0.99). Increasing cell 544 

size (i.e., slope length) increased sediment loading. However, the mean slope gradient was 545 

reduced. As a result, the mean sediment loadings were correlated non-linearly with cell 546 

size (as shown in Fig. 13).4. The highest mean sediment loading was found with a cell size 547 

of 100 m (5.86 t ha-1), whereas the lowest was found to occur with a cell size of 25 and 400 548 

m (3.37 t ha-1). The LBAT with a cell size of 25 and 400 m was able to generate sediment 549 

loadings consistent with field measurements. Considering computational efficiency, we 550 

chose a grid-cell size of 400 m as the basic LBAT-simulation unit for LRW.  551 
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 553 

Fig. 43 LBAT-produced simulations of annual stream discharge and sediment, NO3-N, 554 

and Sol-P loadings determined for different DEM grid-cell sizes (i.e., 25, 50, 100, 200, 555 

and 400 m).  556 
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 557 

Fig. 54 Impact of grid-cell size on LBAT-simulation of sediment loading. Mean annual 558 

sediment loadings and standard errors (vertical bars) from 1992 to 2011 are indicated. 559 

 560 



 

42 
 

 561 

3.2.2 LBAT vs. SWAT Applications to BBW 562 

    Simulations of water quantity and quality with LBAT and SWAT are compared with 563 

field measurements from BBW (Fig. 6). Model assessments are shown in Table 11. Both 564 

LBAT and SWAT were able to capture a significant portion of the variation in measured 565 

annual stream discharge (R2 = 0.48 and 0.56, respectively) and NO3-N and Sol-P loadings 566 

(R2 = 0.25, 0.32, 0.23, and 0.38, respectively); however, this was not the case when annual 567 

sediment loading was considered (Table 11; Fig. 6) due to the fact that the current version 568 

of SWAT does not address soil erosion caused by freeze-thaw cycles (Qi et al., 2017b). 569 

Absolute values of Re with LBAT were less than 48 for these four variables (Table 11). 570 

The mean discharge and sediment loading with LBAT were slightly less than those of 571 

SWAT and field measurements, while the mean Sol-P loading (0.5 kg ha-1) was greater; 572 

0.33 and 0.34 kg ha-1 for SWAT and field measurements, respectively (Table 11). The 573 

mean NO3-N loading (30 kg ha-1) with LBAT was equal to the mean based on field 574 

measurements, whereas it was slightly greater than that of SWAT (29 kg ha-1). These 575 

results indicated that LBAT and SWAT performed equally well in reproducing estimates 576 

of water quantity and quality at the outlet of BBW. 577 
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 578 

Fig. 6 Simulations of annual stream discharge and sediment, NO3-N, and Sol-P loadings 579 

with LBAT and SWAT compared with field measurements at the outlet of BBW. 580 
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 581 

Table 11 Statistical assessments of LBAT and SWAT in simulations of annual stream 582 

discharge and sediment, NO3-N, and Sol-P loadings at the outlet of BBW for the 583 

simulation period of 1992-2011. 584 

 585 

Variable Index Measured SWAT LBAT 

Discharge 

(mm) 
Mean 696 706 655 

Re (%) — 2 -6 

R2 — 0.56 0.48 

Sediment 

(t ha-1) 
Mean 3.77 3.34 3.31 

Re (%) — -12 -12 

R2 — 0.02 0.02 

NO3-N 

(kg ha-1) 
Mean 30 29 30 

Re (%) — -3 0 

R2 — 0.32 0.25 

Sol-P 

(kg ha-1) 
Mean 0.34 0.33 0.50 

Re (%) — -3 48 

R2 — 0.38 0.23 

 586 

 587 
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3.2.33.2.2 LBAT vs. SWAT in LRW 588 

    Simulations of water quantity and quality with LBAT and the uncalibrated and calibrated 589 

versions of SWAT are compared with field measurements for LRW (Fig. 75). Model 590 

assessments for different simulation periods (depending on measurement availability) are 591 

shown in Table 127. It is worth noting that, to eliminate unrealistic results, USLE_LS was 592 

constrained in Sed1_2 to the NOCR land use group: 593 

 594 

USLE_LS = {
𝐸𝑞. 6‐ 1                𝑈𝑆𝐿𝐸_𝐿𝑆 ≤ 1.28
1.28                      𝑈𝑆𝐿𝐸_𝐿𝑆 > 1.28

                                                            (8)  595 

  596 

where 1.28 is the maximum USLE_LS for BBW. 597 

In general, the two versions of SWAT and LBAT slightly underestimated annual stream 598 

discharge, capturing its variation reasonably well (R2>0.54; Fig. 7a5a). The uncalibrated 599 

and calibrated versions of SWAT had the least and largest absolute values of Re (Re = -2 600 

and -9), whereas LBAT Re = -6 (Table 127). The uncalibrated version of SWAT severely 601 

overestimated annual sediment and NO3-N loading (Re = 212 and 87, respectively; Figs. 602 

7b5b and c), whereas the calibrated version of SWAT and LBAT underestimated sediment 603 

loading (Re = -32 and -52, respectively) and overestimated NO3-N loading (Re = 22 and 604 

27, respectively; Table 127). In general, the calibrated version of SWAT and LBAT 605 

captured the variation in annual sediment and NO3-N loadings reasonably well (Figs. 7b 606 

and cR2>0.35; Fig. 5c). However, the two versions of SWAT and LBAT failed to capture 607 

the variation in annual sediment and Sol-P loadings (Fig. 7dlow R2; Figs. 5b and d). The 608 

LBAT had the smallest absolute value of Re (i.e., Re = -16), while the uncalibrated and 609 

calibrated versions of SWAT had larger values (Re = -59 and -55, respectively). These 610 
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results suggested that the LBAT and the calibrated version of SWAT performed equally 611 

wellfairly equivalently in simulating annual stream flow and sediment and NO3-N loadings, 612 

with LBAT performing slightly better for annual Sol-P loading. LBAT performed 613 

noticablynoticeably better than the uncalibrated version of SWAT, especially for annual 614 

sediment and NO3-N loadings. Poor performance for both versions of SWAT and LBAT 615 

on simulation of annual sediment and Sol-P loadings in LRW might attribute to lack of 616 

detailed management practice and fertilizer application information from agricultural lands. 617 

We only had one-year data for LRW and made assumptions about rotation and 618 

management practices for other years based on information from BBW, which could 619 

introduce major input uncertainty.  620 

 621 

 622 

 623 

Table 127 Statistical assessments of LBAT and SWAT for annual stream discharge and 624 

sediment, NO3-N, and Sol-P loadings at the outlet of LRW for different simulation 625 

periods 626 

 627 

 628 

 629 

 630 

 631 

 632 

  633 

Period Variable Index Measurement 
SWAT 

-Uncalibrated 

SWAT 

-Calibrated 
LBAT 

01-07 Discharge  

(mm) 

Mean 704 691 638 664 

Re (%) — -2 -9 -6 

  R2 — 0.63 0.69 0.54 

01-10 Sediment 

 (t ha-1) 

Mean 0.95 2.95 0.65 0.45 

Re (%) — 212 -32 -52 

  R2 — 0.01 0.01 0.04 

03-10 NO3-N  

(kg ha-1) 

Mean 12 22 14 15 

Re (%) — 87 22 27 

  R2 — 0.59 0.45 0.35 

03-10 Sol-P  

(kg ha-1) 

Mean 0.31 0.13 0.14 0.26 

Re (%) — -59 -55 -16 
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 634 

 635 

 636 

 637 

 638 

 639 

  640 

         641 

 642 

 643 

 644 

Since LBAT is based on decision rules (statistical equations in this study) which were 645 

derived from SWAT simulations for BBW, its usage should be constrained to areas with 646 

soil, landscape, and land use characteristics similar to BBW. Input characteristics 647 

exceeding the range of SWAT data considered could lead to large errors in predictions. 648 

LBAT is flexible in its structure, and with thoughtful development of internaldecision rules, 649 

it can be applied to diverse environments.  650 

      R2 — 0.02 0.11 0.01 
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 651 

Fig. 75 Simulations of annual stream discharge and sediment, NO3-N, and Sol-P loadings 652 

with LBAT and SWAT compared with field measurements at the outlet of LRW. 653 
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 654 

3.2.43.2.3 FDT Assessment in LRW 655 

    Mean annual water quantity and quality simulated with LBAT for agricultural lands of 656 

LRW are shown in Table 138. The mean annual discharge for the baseline scenario was 657 

626 mm greater than that for the six FDT scenarios (Table 138). When all agricultural lands 658 

were protected (S6), there was a 2% reduction in discharge (equivalent to 11 mm; Table 659 

138). With the steepest areas protected (accounting for 10% of the total land base; S1), the 660 

mean annual sediment loading was reduced by as much as 43% (equivalent to 4.5 t ha-1; 661 

Table 138) and by as much as 81% (i.e., 8.57 t ha-1) with all agricultural lands protected 662 

(S6; Table 138). Mean annual Sol-P loading was reduced by 51% (equivalent to 0.47 kg 663 

ha-1; Table 138). In contrast, increased usage of FDT tended to increase the mean annual 664 

loading of NO3-N, by about 6% when used across all agricultural lands (equivalent to 1.73 665 

kg ha-1).  666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 
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Table 6.138 Impact of FDT on mean annual discharge and sediment, NO3-N, and Sol-P 676 

loadings simulated with LBAT under different FDT, provided in Table 3. 677 

Variable Index Baseline S1 S2 S3 S4 S5 S6 

Discharge 

(mm) 

Mean 626 625 623 622 619 616 615 

MD — -1 -2 -4 -7 -10 -11 

PRD (%) — 0 0 -1 -1 -2 -2 

Sediment 

(t ha-1) 

Mean 10.54 6.04 4.94 4.02 3.04 2.26 1.97 

MD — -4.50 -5.60 -6.52 -7.50 -8.28 -8.57 

PRD (%) — -43 -53 -62 -71 -79 -81 

NO3-N 

(kg ha-1) 

Mean 29.70 29.86 30.02 30.34 30.82 31.22 31.42 

MD — 0.16 0.32 0.64 1.13 1.52 1.73 

PRD (%) — 1 1 2 4 5 6 

Sol-P 

(kg ha-1) 

Mean 0.94 0.89 0.83 0.76 0.65 0.52 0.46 

MD — -0.05 -0.11 -0.17 -0.28 -0.42 -0.47 

PRD (%) — -5 -11 -19 -30 -45 -51 

    678 

Percentage change (based on PRD) of water quantity and quality were plotted against 679 

percentage area of FDT for potato and barley in Fig. 86. Increasing the usage of FDT helped 680 

to reduce discharge and sediment and Sol-P loadings for both crop types (Figs. 8a6a, b, 681 

and c). It is worth noting that sediment loading decreased with increasing usage of FDT 682 

(Fig. 16b6b). An opposite trend was observed for potato and barley with respect to the 683 

impact of FDT on NO3-N loading. With the increased usage of FDT, NO3-N loadings 684 

increased linearly for potato, while it decreased for barley. The increased for potato was 685 

nearly twice as much as the reduction for barley (Fig. 16d6d). Seemingly the interaction 686 

between barley and FDT had positive impacts on nitrate retention in soils, whereas the 687 

interaction between potato and FDT had an opposite effect.    688 

These results are consistent with the results from previous studies (Yang et al., 2012; 689 

Yang et al., 2010),(Yang et al., 2012;Yang et al., 2010), which used SWAT to assess the 690 

impact of FDT on water quantity and quality within BBW. When using SWAT, greater 691 
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efforts are needed to prepare basic inputs, such as daily weather records, to proceed with 692 

its calibration and validation, involving complex scenario setup and analysis. For every 693 

new watershed, SWAT needs dedicated effort and time for its setup. LBAT, in contrast, 694 

can be used for multiple watersheds as long as they have similar environmental conditions. 695 

Scenario analysis can be directly conducted with different combinations of land use and 696 

BMPs using fewer inputs than what is required by SWAT. Also, once developed, LBAT 697 

does not require additional calibration. 698 

 699 

Fig. 86 Percentage change in discharge and sediment, NO3-N, and Sol-P loadings as a 700 

function of % area, where FDT’s were used. 701 
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4. Conclusion  702 

     The present study addresses the development of a decision support tool to assess the 703 

impact of land use change and BMPs on water quantity and quality for large ungauged 704 

watersheds. An enhanced version of SWAT was calibrated and validated for an small 705 

experimental watershed. Multiple regression analyses were used to develop statistical 706 

equations based on simulations from SWAT. In total, three discharge and five sediment, 707 

NO3-N, and Sol-P loading models were developed for different combinations of land use 708 

groups and BMP scenarios. Only four common predictors (i.e., annual precipitation, annual 709 

mean air temperature, mean saturated hydraulic conductivity of soil, and land use groups) 710 

and three unique predictors (LS-factor and annual nitrogen and phosphorus application 711 

rates for sediment, NO3-N, and Sol-P loading models, respectively) are required.  712 

With the aid of ArcGIS, statistical equations were integrated into the decision support 713 

tool, i.e., the land use and BMPs assessment tool (LBAT), whose basic simulation units 714 

are the DEM-grid cell. The LBAT was used to simulate annual water flow and sediment 715 

and nutrient loadings at the outlet of BBW. a larger watershed, i.e., Little River Watershed 716 

(LRW). These simulations were compared with those of SWAT. LBAT and SWAT 717 

perform equally well. LBAT was subsequently applied to a large watershed (LRW). 718 

Results indicateindicated that LBAT and the calibrated version of SWAT perform 719 

wellperformed equivalently with respect to annual stream discharge and sediment and 720 

NO3-N loadings. LBAT performed slightly better, when Sol-P loading was considered. 721 

Compared with the uncalibrated version of SWAT, LBAT performed better. The impact of 722 

FDT on water quantity and quality was evaluated with LBAT for LRW; its results were 723 

consistent with the results generated with SWAT for the same region in previous studies. 724 
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LBAT has fewer input requirements than SWAT, and can be applied to multiple 725 

watersheds without additional calibration. Also, scenario analyses can be directly 726 

conducted with LBAT without complex setup procedures. We recommend using LBAT 727 

for economic analysis and management decision making for watersheds with similar 728 

environmental conditions of New Brunswick. The LBAT developed in this study may not 729 

be directly applied to other regions; however, the approach in developing LBAT can be 730 

applied to other regions of the world because of its flexible structure. 731 
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Appendix A 748 

Table A1 Coefficient values for the three discharge models. 749 

Model variable Estimate Std. Error t-value p-value 

Dis1     

Intercept -1565 24.04 -65.089 <0.001 

PCP 1.933 0.02176 88.837 <0.001 

TMP 282.7 6.091 46.402 <0.001 

SOL_K 0.06338 0.00992 6.389 <0.001 

FORT 30.79 14.16 2.175 0.030 

NOCR 162.2 14.51 11.181 <0.001 

PCP:TMP -0.2488 0.005487 -45.352 <0.001 

PCP:FORT 0.04684 0.01191 3.934 <0.001 

PCP:NOCR -0.0535 0.01224 -4.37 <0.001 

TMP:FORT 9.723 1.684 5.775 <0.001 

TMP:NOCR 4.506 1.731 2.603 0.009 

SOL_K:FORT -0.3769 0.03403 -11.076 <0.001 

SOL_K:NOCR -0.2959 0.032 -9.248 <0.001 

Dis2     

Intercept -1633 27.29 -59.84 <0.001 

PCP 1.995 0.02472 80.69 <0.001 

TMP 302.2 6.87 43.98 <0.001 

SOL_K 0.08696 0.01167 7.45 <0.001 

PCP:TMP -0.2662 0.006199 -42.94 <0.001 

Dis3     

Intercept -1666 36.58 -45.54 <0.001 

PCP 2.007 0.03305 60.713 <0.001 

TMP 298 9.351 31.865 <0.001 

SOL_K 0.09353 0.01573 5.946 <0.001 

PCP:TMP -0.2606 0.008406 -31.004 <0.001 

 750 
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Table A2 Coefficient values for the four sediment loading models. 757 

Model variable Estimate Std. Error t-value p-value 

Sed1_1     

Intercept 0.2749 0.06125 4.488 <0.001 

USLE_LS 0.1201 0.02224 54.018 <0.001 

PCP 0.000788 5.54E-05 14.218 <0.001 

TMP 0.1117 0.01528 7.307 <0.001 

SOL_K 0.000568 0.00022 2.585 0.010 

GRAS -0.0353 0.00881 -4.007 <0.001 

USLE_LS:SOL_K -0.00014 4.69E-05 -3.045 0.002 

USLE_LS:GRAS -0.02623 0.006826 -3.842 <0.001 

PCP:TMP -0.00011 1.38E-05 -7.967 <0.001 

PCP:SOL_K -4.6E-07 1.91E-07 -2.406 0.016 

Sed1_2     

Intercept 0.8575 0.008826 97.15 <0.001 

PCP 0.000123 7.82E-06 15.67 <0.001 

PCP:USLE_LS 0.000209 5.02E-06 41.65 <0.001 

Sed1_3     

(Intercept) 0.3992 0.02267 17.613 <0.001 

USLE_LS 0.07935 0.01967 4.034 <0.001 

PCP 0.000204 1.96E-05 10.371 <0.001 

SOL_K 0.000545 5.71E-05 9.534 <0.001 

USLE_LS:PCP 4.94E-05 1.71E-05 2.9 0.004 

USLE_LS:SOL_K -0.00067 4.89E-05 -13.718 <0.001 

Sed2     

Intercept 0.2591 0.05228 4.956 <0.001 

USLE_LS 0.12 0.001898 63.218 <0.001 

PCP 0.000767 4.73E-05 16.212 <0.001 

TMP 0.1162 0.01304 8.907 <0.001 

SOL_K 0.000746 0.000188 3.981 <0.001 

GRAS -0.06937 0.01648 -4.211 <0.001 

USLE_LS:SOL_K -0.00013 4E-05 -3.137 0.002 

USLE_LS:GRAS -0.02662 0.005829 -4.567 <0.001 

PCP:TMP -0.00011 1.18E-05 -9.522 <0.001 

PCP:SOL_K -6.3E-07 1.63E-07 -3.846 <0.001 

TMP:GRAS 0.007415 0.003664 2.024 0.043 
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Table A3 Coefficient values for the four NO3-N loading models corresponding to land 761 

use and BMPs described in Table 4. 762 

Model variable Estimate Std. Error t-value p-value 

N1_1     

Intercept 1.44 0.1753 8.213 <0.001 

N_APP -0.00862 0.000699 -12.325 <0.001 

PCP 0.000543 0.00016 3.4 <0.001 

TMP 0.1363 0.03357 4.059 <0.001 

SOL_K -0.00344 9.78E-05 -35.163 <0.001 

GRAN -1.117 0.1021 -10.937 <0.001 

GRAS -1.97 0.1562 -12.611 <0.001 

N_APP:PCP 5.31E-06 6.45E-07 8.233 <0.001 

N_APP:TMP 0.000963 7.45E-05 12.929 <0.001 

N_APP:SOL_K 9.6E-06 6.4E-07 15.024 <0.001 

PCP:GRAN 0.000677 9.38E-05 7.215 <0.001 

PCP:GRAS 0.001029 0.000143 7.201 <0.001 

PCP:TMP -0.00025 2.64E-05 -9.467 <0.001 

TMP:GRAN 0.1 0.01134 8.817 <0.001 

TMP:GRAS 0.2132 0.01651 12.912 <0.001 

N1_3     

Intercept -1.411 0.3087 -4.573 <0.001 

PCP 0.001875 0.000279 6.710 <0.001 

TMP 0.4437 0.07831 5.666 <0.001 

SOL_K -0.00104 0.000116 -8.979 <0.001 

PCP:TMP -0.00032 7.06E-05 -4.484 <0.001 

N2     

Intercept 1.429 0.1757 8.134 <0.001 

N_APP -0.00858 0.000701 -12.233 <0.001 

PCP 0.000548 0.00016 3.425 <0.001 

TMP 0.1376 0.03365 4.089 <0.001 

SOL_K -0.00345 9.8E-05 -35.223 <0.001 

GRAN -1.11 0.1023 -10.849 <0.001 

GRAS -1.962 0.1566 -12.526 <0.001 

N_APP:PCP 5.3E-06 6.47E-07 8.187 <0.001 

N_APP:TMP 0.000957 7.46E-05 12.82 <0.001 

N_APP:SOL_K 9.65E-06 6.4E-07 15.067 <0.001 

PCP:GRAN 0.000674 9.41E-05 7.167 <0.001 

PCP:GRAS 0.001026 0.000143 7.162 <0.001 

PCP:TMP -0.00025 2.64E-05 -9.456 <0.001 

TMP:GRAN 0.09934 0.01137 8.738 <0.001 

TMP:GRAS 0.2122 0.01655 12.821 <0.001 
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N3     

Intercept -0.3595 0.1718 -2.092 0.037 

N_APP -0.00131 0.000435 -3.011 0.003 

PCP 0.001621 0.00015 10.806 <0.001 

TMP 0.3977 0.03857 10.312 <0.001 

SOL_K -0.00386 0.000505 -7.641 <0.001 

GRAN -0.2133 0.07504 -2.842 0.005 

N_APP:PCP 1.65E-06 3.59E-07 4.61 <0.001 

N_APP:TMP 0.000281 4.74E-05 5.939 <0.001 

N_APP:GRAN 0.000716 0.000292 2.453 0.014 

PCP:TMP -0.00035 3.32E-05 -10.506 <0.001 

PCP:SOL_K 1.21E-06 4.36E-07 2.781 0.005 

PCP:GRAN 0.000267 5.82E-05 4.577 <0.001 

TMP:GRAN -0.04685 0.008004 -5.853 <0.001 
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Table A4 Coefficient values for four Sol-P models. 779 

Model variable Estimate Std. Error t-value p-value 

P1_1     

Intercept -3.711 0.1306 -28.416 <0.001 

P_APP 0.002341 0.000623 3.757 <0.001 

PCP 0.003195 0.000117 27.286 <0.001 

TMP 0.5542 0.03197 17.337 <0.001 

SOL_K 0.00298 0.000472 6.305 <0.001 

GRAS -0.4321 0.0382 -11.312 <0.001 

P_APP:PCP -2.4E-06 5.2E-07 -4.64 <0.001 

P_APP:TMP 0.000829 7.7E-05 10.797 <0.001 

PCP:TMP -0.00052 2.9E-05 -18.297 <0.001 

PCP:SOL_K -1.2E-06 3. 97E-07 -3.095 0.002 

TMP:SOL_K -0.00026 5.7E-05 -4.526 <0.001 

TMP:GRAS 0.03787 0.00941 4.024 <0.001 

P1_3     

Intercept -4.43817 0.589848 -7.512 <0.001 

PCP 0.002509 0.000534 4.701 <0.001 

TMP 0.417306 0.1496445 2.789 0.005 

SOL_K 0.001247 0.000222 5.622 <0.001 

PCP:TMP -0.0003 0.000135 -2.253 0.024 

P2     

Intercept -3.667 0.1357 -27.017 <0.001 

P_APP 0.003461 0.000663 5.218 <0.001 

PCP 0.003017 0.000122 24.783 <0.001 

TMP 0.5149 0.03304 15.584 <0.001 

SOL_K 0.003531 0.000488 7.233 <0.001 

GRAS -0.2039 0.09001 -2.265 0.024 

P_APP:PCP -2.4E-06 5.54E-07 -4.305 <0.001 

P_APP:TMP 0.000432 7.93E-05 5.445 <0.001 

P_APP:GRAS -0.03304 0.007019 -4.707 <0.001 

PCP:TMP -0.00044 2.95E-05 -14.952 <0.001 

PCP:SOL_K -1.4E-06 4.1E-07 -3.446 <0.001 

PCP:GRAS -0.00025 7.66E-05 -3.25 0.001 

TMP:SOL_K -0.00025 5.87E-05 -4.184 <0.001 

TMP:GRAS 0.05117 0.009839 5.201 <0.001 

P3     

Intercept -2.817 0.2548 -11.054 <0.001 

P_APP -0.01363 0.001854 -7.352 <0.001 

PCP 0.002778 0.000178 15.609 <0.001 

TMP 0.1406 0.06523 2.155 0.031 

SOL_K 0.00651 0.000702 9.279 <0.001 
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GRAN -0.9386 0.1378 -6.812 <0.001 

GRAS -0.9931 0.1813 -5.478 <0.001 

P_APP:TMP 0.003562 0.000491 7.252 <0.001 

P_APP:GRAN 0.007736 0.002179 3.549 <0.001 

P_APP:GRAS -0.05489 0.01295 -4.24 <0.001 

PCP:TMP -0.0003 4.42E-05 -6.763 <0.001 

PCP:SOL_K -3.7E-06 5.78E-07 -6.359 <0.001 

PCP:GRAN 0.000112 5.1E-05 2.192 0.028 

PCP:GRAS -0.00019 0.000109 -1.74 0.082 

TMP:SOL_K -0.00021 8.8E-05 -2.4 0.016 

TMP:GRAN 0.1798 0.03332 5.397 <0.001 

TMP:GRAS 0.247 0.03581 6.898 <0.001 
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