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Abstract  1 

Decision making on water resources management at ungauged, especially large-scale 2 

watersheds relies on hydrological modeling. Physically-based distributed hydrological 3 

models require complicated setup, calibration and validation processes, which may delay 4 

their acceptance among decision makers. This study presents an approach to develop a 5 

simple decision support tool (DST) for decision makers and economists to evaluate multi-6 

year impacts of land use change and BMPs on water quantity and quality for ungauged 7 

watersheds. The example DST developed in the present study was based on statistical 8 

equations derived from Soil and Water Assessment Tool (SWAT) simulations applied to 9 

a small experimental watershed in northwest New Brunswick. The DST was 10 

subsequently tested against field measurements and SWAT-model simulations for a 11 

larger watershed. Results from DST could reproduce both field data and model 12 

simulations of annual stream discharge and sediment and nutrient loadings. The relative 13 

error of mean annual discharge and sediment, nitrate-nitrogen, and soluble-phosphorus 14 

loadings were -6, -52, 27, and -16%, respectively, for long-term simulation.  Compared 15 

with SWAT, DST has fewer input requirements and can be applied to multiple 16 

watersheds without additional calibration. Also, scenario analyses with DST can be 17 

directly conducted for different combinations of land use and BMPs without complex 18 

model setup procedures. The approach in developing DST can be applied to other regions 19 

of the world because of its flexible structure.  20 

Keywords: multiple regression; hydrological model; erosion; nitrate leaching; 21 

geographic information system 22 

 23 
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1. Introduction 24 

    Pollution from nonpoint sources poses a significant threat to ecosystems and plant and 25 

animal communities (Vörösmarty et al., 2010). Nonpoint sources of sediment, nutrients, 26 

and pesticides, primarily from agricultural lands, have been identified as major 27 

contributors to water quality degradation (Ongley et al., 2010; Zhang et al., 2004). These 28 

pollutants are difficult to control because they come from many sources (Quan and Yan, 29 

2001). Practices such as strip cropping, terracing, crop rotation, and nutrient management 30 

can be developed to prevent soil erosion and reduce the movement of nutrients and 31 

pesticides from agricultural lands to aquatic ecosystems (D'Arcy and Frost, 2001). These 32 

pollution-prevention methods, known as best management practices (BMPs), are 33 

intended to minimize the negative environmental impact of agricultural activities, while 34 

maintaining land productivity. Reliable information on the impacts of land use change 35 

and BMPs on water quantity and quality is critical to watershed management 36 

(Panagopoulos et al., 2011). 37 

 Many studies have been conducted to evaluate the impact of land use change and 38 

BMPs on water quality based on field experiments (Novara et al., 2011; Pimentel and 39 

Krummel, 1987; Sadeghi et al., 2012; Turkelboom et al., 1997; Urbonas, 1994). 40 

Monitoring systems have been established to assess the impact of land use change and 41 

BMPs on water resources in order to capture the spatial and temporal variation in soil, 42 

climate, and topographic conditions in watersheds (Veldkamp and Lambin, 2001). 43 

Statistical models developed from field data from small watersheds are usually assumed 44 

to apply to large watersheds (Blöschl and Sivapalan, 1995; Bloschl and Grayson, 2001). 45 

Although it is not difficult to quantify soil erosion and chemical loadings in experimental 46 
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plots, it is time-consuming and expensive (Mostaghimi et al., 1997). Clearly, it is not 47 

practical to conduct field experiments for every possible combination of land use and 48 

BMPs, under different biophysical conditions. As a result, it is unlikely sufficient field 49 

data could be obtained to develop management plans and conduct cost-benefit analyses. 50 

In addition, statistical models could be potentially derived from experiments; however, it 51 

is difficult to establish cause-and-effect relationships between BMPs and water quality 52 

variables under varied biophysical conditions or to quantify the impact of combined land 53 

use and BMPs on water quality at the watershed scale (Renschler and Lee, 2005).  54 

Process-based models of hydrology can be used to extrapolate field data to fill data 55 

gaps (Borah and Bera, 2003; Borah and Bera, 2004; Singh, 1995; Singh and Frevert, 56 

2005; Singh and Woolhiser, 2002).  These process-based models provide quantitative 57 

information that is usually difficult to obtain from field experiments (Borah et al., 2002). 58 

For example, ANSWERS (Beasley et al., 1980), CREAMS (Knisel, 1980), GLEAMS 59 

(Leonard et al., 1987), AGNPS (Young et al., 1989), EPIC (Sharpley and Williams, 60 

1990), and SWAT (Arnold et al., 1998) have been used to understand surface runoff, soil 61 

erosion, nutrient leaching, and pollutant-transport processes. However, these process-62 

based models require extensive input data and complex calibration procedures (Liu et al., 63 

2015); watersheds with sufficient data to calibrate and validate these models are normally 64 

small, resulting in lack of representation at large spatial scales. Furthermore, once a 65 

model is calibrated, parameters become watershed-specific, which cannot be easily 66 

extended to other watersheds. In addition, these models require specialized expertise, 67 

which prevents non-expert decision makers and economists to use them (Viavattene et al., 68 

2008).  69 
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A decision support tool could be developed by combining “decision rules” with 70 

geographic information systems (GIS) for water quality assessment in large ungauged 71 

watersheds. The “decision rules” could be based on regression equations derived from 72 

field experiments (Renschler and Harbor, 2002), or they could be defined simply as 73 

constants based on expert knowledge. Alternatively, simulations from a well-calibrated 74 

hydrological model could be used to develop statistical equation-based “decision rules”.  75 

Apart from defining “decision rules” at each grid cell, to assess water quantity and 76 

quality in streams or at subbasin/watershed outlets, the decision support tool should 77 

consider discharge, sediment, and nutrient routing within the watershed. For example, a 78 

commonly used routing mothed for sediments is the sediment-delivery ratio (SDR) 79 

method, which is widely employed in many GIS-based erosion models (May and Place, 80 

2010; Wilson et al., 2001; Zhao et al., 2010). For discharge, a simple summation routing 81 

at the outlet produces acceptable accuracy for small- and medium-sized watersheds, 82 

considering that there is negligible water losses from surface runoff and stream flow. For 83 

large watersheds, water losses are generally greater. These water losses can be estimated 84 

using simple linear equations. The annual export of nutrients from watersheds (via the 85 

nutrient-delivery ratio) has been studied empirically in many studies as nutrient loading 86 

per land area (Beaulac and Reckhow, 1982; Endreny and Wood, 2003; Reckhow and 87 

Simpson, 1980).  88 

 A decision support tool developed based on “decision rules” is generally flexible and 89 

easy for decision makers and economists to use (Endreny and Wood, 2003). However, 90 

their practicality in normal circumstances, particularly with respect to their level of 91 

accuracy, needs to be evaluated. In addition, in order to provide sufficient “decision rules” 92 
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with reasonable accuracy, fully validated hydrological models are required to be able to 93 

fill data gaps in field experiments. The present study used the Soil and Water Assessment 94 

Tool (SWAT) to provide modelled data in the development of the decision support tool. 95 

The main objective of the present study is to develop a simple decision support tool with 96 

the intent to evaluate the impact of land use change and BMPs on water resources in a 97 

large ungauged watershed in New Brunswick, Canada. This paper presents the 98 

development and testing of a decision support tool using data from two watersheds in the 99 

potato-belt of New Brunswick; one small experimental watershed, with extensive 100 

monitoring and field survey data, and a larger watershed containing the smaller 101 

watershed. Specifically, this involves: (1) setting up, calibrating, and validating SWAT 102 

for a small experimental watershed; (2) developing statistical equations relating water 103 

quality and quantity variables with weather, soil, land use information  based on SWAT-104 

model simulations for different combinations of land use and BMPs; (3) integrating the 105 

statistical equations into a decision support tool with the aid of ArcGIS; and (4) testing 106 

the decision support tool against field measurements and model simulations of stream 107 

discharge, sediment, and nutrient loadings for a large watershed.    108 

2. Materials and Methods 109 

2.1 Study Sites and Data Collection  110 

    The large watershed of this study is the Little River Watershed (LRW), located in the 111 

Upper Saint John River Valley of northwestern New Brunswick, Canada (Fig. 1). It 112 

covers an area approximately 380 km2 with a mixture of agricultural (16.2%), forest 113 

(77%), and residential (6.8%) land uses (Xing et al., 2013).  Elevation in the watershed 114 

ranges from 127 to 432 m above mean sea level (Fig. 1). The soil in the study sites is 115 
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classified as mineral, derived from various parent materials. The major associations are 116 

Caribou, Carleton, Glassville, Grandfalls, Holmesville, McGee, Muniac, Siegas, Thibault, 117 

Undine, Victoria, Waasis, and one organic soil (Fig. 2). The study site belongs to the 118 

Upper Saint John River Valley Ecoregion in the Atlantic Maritime Ecozone (Marshall et 119 

al., 1999). The climate of the region is considered to be moderately cool boreal with 120 

approximately 120 frost-free days, annually (Yang et al., 2009). Daily maximum and 121 

minimum temperate are 24 (in July) and -18.1˚C (in January) based on Canadian Climate 122 

Normals station data at St. Leonard (http://climate.weather.gc.ca/climate_normals). The 123 

average temperature is 3.7˚C and annual precipitation is 1037.4 mm (Zhao et al., 2008). 124 

About one-third of the precipitation is in the form of snow. Snowmelt leads to major 125 

surface runoff and groundwater recharge events from March to May (Chow and Rees, 126 

2006). The land use and soil maps in the setup of SWAT for LRW were derived from 127 

publicly available data [Energy and Resource Development (ERD), New Brunswick; Fig. 128 

2]. 129 

http://climate.weather.gc.ca/climate_normals
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 130 

 131 

Fig. 1 Location of the Little River Watershed (LRW) and Black Brook Watershed (BBW) 132 

in New Brunswick (NB), Canada and water-monitoring stations #01 and #12 as well as 133 

weather stations #08 and St. Leonard. Elevations and subbasins are also shown for LRW.  134 

 135 
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 136 

Fig. 2 Slope classes created using a 10-m resolution LiDAR (Light Detection and 137 

Ranging)-based DEM (Digital Elevation Model), soil and land use maps, and land use 138 

IDs in SWAT (see Table 2 for land use ID meaning). 139 
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    The small experimental watershed of the study is the Black Brook Watershed (BBW), 140 

a subbasin of LRW (Fig. 1). The BBW has been studied extensively for more than 20 141 

years to evaluate the impact of agriculture on soil erosion and water quality (Chow and 142 

Rees, 2006; Li et al., 2014). The watershed covers an area of 14.5 km2, with 65% being 143 

agriculture land, 21% forest land, and 14% residential areas and wetlands. Slopes vary 144 

from 1-6% in the upper basin to 4-9% in the central area. In the lower portion of the 145 

watershed, slopes are more strongly rolling at 5-16%. Soil surveys (1:10,000 scale) 146 

identified six mineral soils, namely Grandfalls, Holmesville, Interval, Muniac, Siegas, 147 

and Undine, and one organic soil, St. Quentin (Mellerowicz, 1993).  148 

A water-monitoring station was established at the outlet of BBW in 1992 (MS#01; Fig. 149 

1) and another (MS#12) at the outlet of LRW in 2001. At these stations, V-notch weirs 150 

were installed, and the stage height of the water was recorded using a Campbell-151 

Scientific CR10X data logger. Stage height values were converted to total flow rates with 152 

a calibration curve function (Chow et al., 2011). Water samples were collected with an 153 

ISCO automatic sampler. Sampling frequency was set at one sample every 72 hours when 154 

runoff was absent. During runoff events, sampling frequency was increased to one 155 

sample every 5-cm change in stage height. Samples were analyzed for concentration of 156 

suspended solids, nitrate-nitrogen (NO3-N), and soluble-phosphorus (Sol-P). Detailed 157 

description of data collection procedures and sample analyses can be found in Chow et al. 158 

(2011). Weather data including daily precipitation, air temperature, relative humidity, and 159 

wind speed were acquired from the St. Leonard Environment Canada weather station 160 

(http://climate.weather.gc.ca), located approximately 5 km northwest of BBW (Fig. 1). 161 

The daily average relative humidity and wind speed were calculated based on averaging 162 
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hourly values. Since this weather station did not monitor daily solar radiation, the study 163 

used solar radiation collected from a weather station located approximately 10 km 164 

southeast of BBW (WS#08; Fig. 1).  165 

2.2 SWAT Setup, Calibration, and Validation for BBW and LRW 166 

      A modified version of SWAT has been developed for cold regions (Qi et al., 2017a; 167 

Qi et al., 2016a; Qi et al., 2016b; Qi et al., 2017b), and it was used for BBW and LRW in 168 

present study. Detailed model setup, calibration, and validation for BBW can be found in 169 

Qi et al. (2017b). Specific model inputs for both watersheds are provided in Table 1. The 170 

same weather data were used for both watersheds (Table 1). The Digital Elevation Model 171 

(DEM) for LRW and BBW were both based on high resolution LiDAR (Light Detection 172 

and Ranging) data, the first was created at 10-m and the second, at 1-m resolution. The 173 

LRW was delineated into 32 subbasins from which their topographic characteristics were 174 

defined (Fig. 1). The soil types and slopes, which were classified into five separate 175 

classes, are illustrated in Fig. 2 for LRW. After combining the soil, slope, and land use 176 

maps through the ArcSWAT-interface function, 362 HRUs were subsequently created for 177 

LRW (based on thresholds: 10, 15, and 20% for land use, soil, and slope). 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 
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Table 1 Datasets in SWAT setup, calibration, and validation for BBW and LRW. 186 

    187 

    Since only one land use map was available for LRW (Table 1), assumptions were 188 

made based on information available on land use and management records for BBW to 189 

adjust the SWAT-management files for LRW as follows: 190 

    (1) Potato-barley rotations were assigned to the land use ID POTA (Table 2); for other 191 

land use IDs, a single crop was considered;  192 

    (2) Fertilizers were applied only to potato and barley fields, and fertilizer amounts and 193 

N:P (nitrogen-to-phosphorus) ratios were averaged for potato and barley fields over the 194 

entire watershed, based on 2001 survey data from BBW; 195 

    (3) Contour tillage was applied only to potato and barley fields; 196 

(4) Flow diversion terraces (FDT) and grassed waterways in LRW were assumed not 197 

used. It is worth noting that these four assumptions serve as a baseline scenario for the 198 

assessment of FDT in LRW at a later time. 199 

    In order to evaluate the global performance of the decision support tool for LRW, 200 

related land use and management files were prepared and accessed by SWAT. For 201 

Dataset BBW LRW 

LiDAR DEM resolution 1-m 10-m  

Soil map Survey (1993) ERD  

Land use maps Survey (1992-2011) ERD (one map) 

Precipitation, temperature,  

relative humidity & wind speed 

St. Leonard (1992-

2011) 

St. Leonard (2001-

2010) 

Solar radiation WS#08 (1992-2011) WS#08 (2001-2010) 

Contour tillage operation  

(spring and fall) 

Survey (1992-2011) Only for potato and 

barley (2001-2010) 

Fertilizer application Survey (1992-2011) Estimated from BBW 

(2001)   

Crop rotation Survey (1992-2011) Potato-barley (2001-

2010) 

Terraces and grassed waterways Survey (1992-2011)  Negligible 

Discharge, sediment, NO3-N and Sol-P  MS#01 (1992-2011) MS#12 (2001-2010) 
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purpose of comparison, simulations with SWAT were produced in an initial application 202 

by setting the adjustable parameters of the model to their default values, and in a second 203 

application by setting the parameters according to values produced with a watershed-204 

specific model calibration to BBW. This approach with model parameterization is widely 205 

accepted when applying SWAT to large ungauged watersheds (Panagopoulos et al., 206 

2011).  207 

2.3 Decision Rules  208 

    The decision support tool was designed to use the “decision rules” to estimate annual 209 

discharge and sediment and nutrient loadings from individual grid cells: 210 

𝐴 = ∑ 𝐷𝑅𝑖 ∙ 𝐴𝑖
𝑛
𝑖=1 ,                                                                                                            (1) 211 

where A is the annual discharge or sediment and nutrient loadings at the outlet of the 212 

watershed, DRi and Ai are the delivery ratios and annual discharge or loadings, 213 

respectively, for grid cell i. For the present study, statistical equations derived from 214 

simulations of the calibrated version of SWAT-model for BBW were defined as the 215 

“decision rules” in the decision support tool.  216 

2.3.1 Land Use Groups and BMP Scenarios  217 

    In statistical equation development, land use in BBW (24, in total) was first classified 218 

into five land use classes according to their influences on hydrological processes (Table 219 

2). Note that WATR was not used due to its small overall coverage (Fig. 2). As for 220 

watershed management, we considered three main BMPs, i.e., 221 

(1) FDT + contour tillage;  222 

(2) Contour tillage; and 223 
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(3) No-BMP (without FDT and contour tillage). 224 

 225 

Table 2 Land use and land use groups (LUGP) for BBW and LRW. 226 

LUGP Land use ID in SWAT Land use type 

AGRL 

(General crops) 

AGRL Agricultural Land-Generic 

CANA Canola 

CRON Corn 

FPEA Field peas 

POTA Potato 

GRAN 

(Grains) 

BARL Barley 

OATS Oats 

PMIL Millet 

RYE Rye 

SWHT Spring wheat 

WWHT Winter wheat 

GRAS 

(Grasses) 

BERM Bermuda grass 

CLVR Clover 

HAY Hay 

PAST Past 

RYEG Ryegrass 

TIMO Timothy 

FORT 

(Forestry) 

FRSD Forest-Deciduous 

FRSE Forest-Evergreen 

FRST Forest-Mixed 

RNGB Range-Bush 

WETF  Wetlands-Forested 

WETN* Wetlands-No-Forest 

NOCR 

(Non-vegetated 

lands) 

URMD Residential 

UTRN Transportation 

UIDU* Industrial 
Note: “*” indicates unique land use types to LRW not present in BBW and, therefore, 

unaccounted for in the development of the decision support tool. 

 

 

      227 

The calibrated version of the enhanced SWAT-model for BBW was used to generate 228 

annual outputs based on HRUs from 1992 to 2011. The model was ran three times to 229 

generate the BMP-specific data for statistical equation development. 230 

 231 

 232 
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2.3.2 Explanatory Variables Selection 233 

     Explanatory candidate variables must be physically-meaningful in hydrological and 234 

biochemical processes. It is worth noting that both continuous and categorical variables 235 

were included in the regression equation. The land use group (LUGP) was the only 236 

categorical variable, and the remaining were all continuous variables. To detect 237 

significant predictors, the analysis of covariance (ANCOVA) was used. It requires at 238 

least one continuous and one categorical explanatory variable and is used to identify the 239 

major and interaction of predictor variables. By including continuous variables, the 240 

method can reduce the variance of error to increase the statistical power and precision in 241 

estimating categorical variables (Keselman et al., 1998; Li et al., 2014). Inclusion of 242 

interaction terms in these regression models dramatically increased model performance.  243 

In the present study, we only considered interactions between two explanatory variables 244 

at a time. Student t-tests were conducted to examine the statistical significance of each 245 

level of LUGP and their interaction with the various continuous variables. When one 246 

level of LUGP (e.g., GRAN; Table 2) did not significantly correlate with water quality or 247 

quantity, or there were nominal interactions between a given level and other explanatory 248 

variables, this particular level of LUGP would be combined with other levels of LUGP 249 

until all new levels of LUGP were statistically significant.  250 

Multiple linear regression analyses were used to relate annual total discharge (mm) and 251 

sediment (t ha-1), NO3-N (kg ha-1), and Sol-P (kg ha-1) loadings to the explanatory 252 

variables. These work was conducted in R (Ihaka and Gentleman, 1996). Only six 253 

continuous explanatory variables were determined for the specification of the statistical 254 

models. Annual precipitation (PCP), annual mean air temperature (TMP), and mean 255 
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saturated hydraulic conductivity of soil (SOL_K) were common to the dependent 256 

variables (i.e., total discharge and sediment, NO3-N, and Sol-P loadings). The LS-factor 257 

(USLE_LS) and annual N and P application rates (N_APP and P_APP) were unique to 258 

the equations addressing sediment, NO3-N, and Sol-P loading. 259 

2.3.3 Delivery Ratio Definition  260 

    The LS-factor of the universal soil loss equation (USLE) was determined by slope 261 

gradient (slp) and slope length (L) of individual HRUs: 262 

USLE_LS = {
𝐿

22.1
}

𝑚

∙ (65.41 ∙ 𝑠𝑖𝑛2(𝑎) + 4.56 ∙ sin(𝑎) + 0.065)                                (2) 263 

where m is the equation exponent and a is the angle of the slope (in degrees). The 264 

exponent m is calculated by, 265 

𝑚 = 0.6 ∙ (1 − exp[−35.835 ∙ 𝑠𝑙𝑝])                                                                             (3) 266 

where slp is in units of m m-1. For the decision support tool, slope length L equals to the 267 

length of the grid side and slope gradient was determined by the Slope tool in ArcGIS. 268 

The sediment-delivery ratio was not considered in the decision support tool application to 269 

BBW. We assumed that annual sediment loadings from grid cells in decision support tool 270 

were all exported to the outlet of BBW. However, when the decision support tool was 271 

applied to LRW, the sediment-delivery ratio was used to correct estimates of sediment 272 

loading at the watershed outlet. The sediment loadings at the outlet of LRW (sed) were 273 

determined by 274 

𝑠𝑒𝑑 = 𝑆𝐷𝑅 ∙ 𝑠𝑒𝑑~                                                                                                          (4) 275 

where sed~ is the sediment loading calculated with the sediment loading equation (one for 276 

each BMP and land use group), and SDR is determined by (Vanoni, 1975) 277 

𝑆𝐷𝑅 = 0.37 ∙ 𝐷−0.125                                                                                                     (5) 278 
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where D (km-2) is the drainage area. For annual discharge and nutrient loadings, we 279 

assumed their delivery ratios equal to 1.0 for all grid cells in LRW. 280 

2.4 Decision Support Tool Assessment   281 

Inputs to the decision support tool included the six continuous explanatory variables 282 

and LUGP as well as information on management practices, e.g., contour tillage and FDT 283 

implementation. Simulations from each grid cells were summarized at the outlet of the 284 

study watersheds. We first tested the impact of cell size on simulations of water quantity 285 

and quality at the outlet of BBW. The cell size range was determined by considering 286 

different farmland sizes in the watershed. We assumed that farmland-based grid cells can 287 

sufficiently represent basic hydrological processes, land use change, and management 288 

practice implementations for hydrological modeling. Simulated annual water flow and 289 

sediment and nutrient loadings with the decision support tool were compared with those 290 

produced with the calibrated version of the enhanced SWAT-model. Subsequently, the 291 

decision support tool was applied to LRW, and the simulations were compared with the 292 

results of the uncalibrated and calibrated versions of SWAT. The purpose of this was to 293 

test if the decision support tool (i.e., land use and BMP assessment tool; LBAT) 294 

performed better, or at least as well, as both the uncalibrated and calibrated version of 295 

SWAT.  296 

    Model performance in terms of water quantity and quality at the outlet of the study 297 

watersheds was assessed based on the coefficient of determination (R2) and relative error 298 

(Re), i.e.,  299 

𝑅2 = (
∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)∙(𝑃𝑖−𝑃𝑎𝑣𝑔)𝑛

𝑖=1

[∑ (𝑂𝑖−𝑂𝑎𝑣𝑔)𝑛
𝑖=1

2
∙∑ (𝑃𝑖−𝑃𝑎𝑣𝑔)𝑛

𝑖=1
2

]
0.5)

2

                                                                               (6) 300 
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𝑅𝑒 =
(𝑃𝑎𝑣𝑔−𝑂𝑎𝑣𝑔)

𝑂𝑎𝑣𝑔
∙ 100%                                                                                                             (7) 301 

where Oi, Pi, Oavg, and Pavg are the observed and predicted and averages of the observed 302 

and predicted values, respectively. 303 

 304 

2.5 FDT Assessment in LRW 305 

      A series of FDT-implementation scenarios were set up for LBAT based on six slope 306 

classes to assess the impact of FDT on water quantity and quality on agricultural lands in 307 

LRW (Fig. 3; Table 3).  From scenarios one (S1) to six (S6), total area protected by FDT 308 

gradually increased until all agricultural lands were protected (Table 3). Mean annual 309 

simulations of total discharge and sediment, NO3-N, and Sol-P loadings from LRW from 310 

2001 to 2010 were compared with those of the baseline scenario (FDT = 0%) for each 311 

scenario using two performance indicators, i.e., mean difference (MD) and % relative 312 

difference (PRD), given as: 313 

(1) MD = output with FDT – output without FDT, and 314 

(2) PRD (%) = MD/output without FDT × 100. 315 

 316 

Table 3 Slope classes and corresponding areas in the agricultural land of LRW. 317 

Scenario Slope  Area protected by FDT 

(ha) 

Agricultural lands  

(%) 

S1 ≥5% 624 10 

S2 ≥4% 1328 22 

S3 ≥3% 2224 37 

S4 ≥2% 3680 61 

S5 ≥1% 5360 89 

S6 ≥0 6048 100 

 318 

 319 
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3. Results and Discussion  320 

3.1   Statistical Equations (Decision Rules)  321 

3.1.1 Model Structure and Coefficients 322 

    Linear regression equations and their explanatory variables for annual discharge and 323 

sediment, NO3-N, and Sol-P loadings under different combinations of land use groups 324 

and BMP scenarios are provided in Tables 4 and 5. In total, three discharge models (Dis1, 325 

Dis2, and Dis3) and five sediment (Sed1_1, Sed1_2, Sed1_3, Sed2, and Sed3), NO3-N 326 

(N1_1, N1_2, N1_3, N2, and N3), and Sol-P (P1_1, P1_2, P1_3, P2, and P3) loading 327 

models were developed. Data transformations (via logarithm and power transformations) 328 

were applied to sediment, NO3-N, and Sol-P loadings to meet the assumption of 329 

normality in multiple regression analysis (Table 4). The contour tillage and FDT were 330 

applied only to agricultural lands, including land use groups AGRL, GRAN, and GRAS 331 

(Table 4). For the no-BMP scenario, three separate sediment, NO3-N, and Sol-P loading 332 

models were developed for agricultural lands (AGRL, GRAN, and GRAS), non-333 

vegetated lands (NOCR), and forest lands (FORT), and one discharge model (Dis1) for 334 

all land use groups (Table 4). It is worth noting that the sediment loading model, Sed3, 335 

was a modified version of Sed1_1 (multiplied by TERR_P) for the FDT + contour tillage 336 

scenario (Table 4), and the values of TERR_P (Qi et al., 2017b) used for Sed3 were the 337 

same as the calibrated values in SWAT for BBW (Qi et al., 2017b). Also, NO3-N and 338 

Sol-P loadings (N1_2 and P1_2) for non-vegetated lands (NOCR) were determined as 339 

constants, which were equal to the calculated means of NO3-N and Sol-P loadings 340 

determined by SWAT (i.e., 24 and 0.61 kg ha-1, respectively; Table 4).  341 
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As for LUGP (including AGRL, GRAN, GRAS, FORT, and NOCR; Table 2), three 342 

new land use groups (i.e., LUGP1, LUGP2, and LUGP3) were formulated by combining 343 

agricultural lands AGRL, GRAN, and GRAS during model development (Tables 4 and 5). 344 

For example, LUGP2 was derived by combining AGRL, GRAN, and GRAS on total 345 

discharge (i.e., Dis1 model). Individual model structures are shown in Table 4, whereas 346 

the explanatory variables for these models appear in Appendix. The coefficients 347 

estimated for the explanatory variables and their interactions, and their t-test results are 348 

also shown in Appendix. Most of the p-values for these explanatory variables were < 349 

0.001, except for several that were between 0.001 and 0.08, which were also taken as 350 

acceptable.   351 

 352 

 353 
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 354 

Table 4 Statistical models based on land use groups (LUGP) and BMPs. 355 

BMPs LUGP* Model Structure  

No-BMP CRGP2,NOCR,FORT Dis1 Discharge = f (PCP, TMP, SOL_K, LUGP2) 

Contour tillage AGRL,GRAN,GRAS Dis2                  = f (PCP, TMP, SOL_K) 

FDT+Contour tillage AGRL,GRAN,GRAS Dis3                  = f (PCP, TMP, SOL_K) 

No-BMP CRGP1,GRAS Sed1_1 Sediment(1/10) = f (USLE_LS, PCP, TMP, SOL_K, LUGP1) 

NOCR Sed1_2                       = f (USLE_LS, PCP) 

FORT Sed1_3                       = f (USLE_LS, PCP, SOL_K) 

Contour tillage CRGP1,GRAS Sed2 Sediment(1/10) = f (USLE,_LS, PCP, TMP, SOL_K, LUGP1) 

FDT+Contour tillage AGRL,GRAN,GRAS Sed3 Sediment = Sed1_1 × TERR_P 

No-BMP AGRL,GRAN,GRAS N1_1 Log(NO3-N) = f (N_APP, PCP, TMP, SOL_K, LUGP) 

NOCR N1_2** NO3-N= 24 kg ha-1 

FORT N1_3 Log(NO3-N) = f (PCP, TMP,  SOL_K) 

Contour tillage AGRL,GRAN,GRAS N2 Log(NO3-N) = f (N_APP, PCP, TMP, SOL_K, LUGP) 

FDT+Contour tillage CRGP3,GRAN N3                      = f (N_APP, PCP, TMP, SOL_K, LUGP3) 

No-BMP CRGP1,GRAS P1_1 Log(Sol-P) = f (P_APP, PCP, TMP, SOL_K, LUGP1) 

NOCR P1_2** Sol-P = 0.61 kg ha-1 

FORT P1_3 Log(Sol-P) = f (PCP, TMP, SOL_K) 

Contour tillage CRGP1,GRAS P2 Log(Sol-P) = f (P_APP, PCP, TMP, SOL_K, LUGP1) 

FDT+Contour tillage AGRL,GRAN,GRAS P3                    = f (P_APP, PCP, TMP, SOL_K, LUGP) 
*AGRL and GRAN are combined into one group, namely CRGP1 in LUGP1; AGRL, GRAN and GRAS are combined into one group, namely 356 

CRGP2 in LUGP2; AGRL and GRAS are combined into one group, namely CRGP3 in LUGP3; ** variable is set constant.357 
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Table 5 Explanatory variables determined for statistical analysis. 358 

Variable Unit Meaning 

LUGP — Land use groups including AGRL, GRAN, GRAS, FORT, and NOCR 

LUGP1 — AGRL and GRAN are combined into a new group, CRGP1 

LUGP2 — AGRL, GRAN, and GRAS are combined into a new group, CRGP2 

LUGP3 — AGRL and GRAS are combined into a new group, CRGP3 

N_APP  kg ha-1 Annual N application rate 

P_APP  kg ha-1 Annual P application rate 

PCP mm Annual precipitation  

SOL_K  mm h-1 Mean saturated hydraulic conductivity of soil  

TERR_P — P-factor for FDT 

TMP ℃ Annual mean air temperature 

USLE_LS  — LS-factor of USLE  

 359 

3.1.2 Statistical Equation Assessment 360 

    Simulations based on the statistical equations and the calculated outputs from 361 

individual HRUs for the different BMPs are compared in Table 6. In general, discharge 362 

models were able to reproduce SWAT simulations for the three BMPs; R2 ranging from 363 

0.86 to 0.9. Mean discharge simulated with the statistical equations was equal to that of 364 

SWAT (Table 6). Mean discharge (636 mm) for the no-BMP-case (BMP 3) was greater 365 

than that for BMPs using contour tillage and FDTs (619 and 628 mm for BMP 1 and 2, 366 

respectively), suggesting that contour tillage and FDTs can cause evapotranspiration to 367 

increase.  368 

    Models Sed1_2 and Sed1_3 were able to reproduce simulations with SWAT (yielding 369 

R2 = 0.71 and 0.57, respectively), and simulated mean sediment loadings were close to 370 

that of SWAT (Table 6). Models Sed1_1 and Sed2 tended to underestimate results from 371 

SWAT (Table 6), with an overall lower mean sediment loading of 10.78 vs. 12.84 and 372 

8.31 vs. 9.4 t ha-1, respectively. Mean sediment loading with Sed3 (0.89 t ha-1) was 373 

slightly greater than that of SWAT (0.84 t ha-1), due to the fact that Sed3 only took into 374 
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account TERR_P, whereas SWAT took into account TERR_CN and the impact of 375 

grassed waterways. Results from the statistical equations showed that the mean sediment 376 

loading for BMP 2 (8.31 t ha-1) was significantly different than that for BMPs 1 and 3, 377 

with mean loading of 0.89 and 10.78 t ha-1 (Table 6). The smallest mean sediment 378 

loading (0.09 t ha-1) was found to occur with the FORT land use grouping (Table 6).  379 

    The four NO3-N and Sol-P loading equations explained ~50% of the variation in the 380 

SWAT simulations for the same variables, with R2 ranging from 0.33 to 0.59 (Table 6). 381 

Mean NO3-N and Sol-P loadings with the statistical equations were all slightly less than 382 

the values produced with SWAT for the different BMPs (Table 6). Mean NO3-N loadings 383 

were greater for BMP 1 (44 kg ha-1) than those for BMPs 2 and 3 with both giving 39 kg 384 

ha-1 (Table 6), due to increased infiltration with FDT. Mean Sol-P loading (0.8 kg ha-1) 385 

was less for BMP 3 than for BMP 2 (0.89 kg ha-1), whereas much greater than for BMP 1 386 

(0.43 kg ha-1). Although contour tillage can help reduce sediment loading by modifying 387 

micro-topography and reducing erosion runoff (the reason we set USLE_P < 1), Sol-P 388 

transported with surface runoff increased due to reduced residue cover protecting the soil 389 

surface during winter and during the snowmelt season. When FDT was implemented with 390 

tillage, however, less surface runoff was generated due to increased infiltration leading to 391 

a reduction in Sol-P loading. Mean NO3-N and Sol-P loadings for the FORT land 392 

grouping (10 vs. 0.06 kg ha-1) were much less than those of the CRGP land grouping, 39 393 

vs. 0.8 kg ha-1 (Table 6). 394 
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Table 6 Comparisons of simulations of statistical models and outputs from SWAT for different land use groups and BMPs based on 395 

mean and standard deviation for the entire simulation period (1992-2011). 396 

  

No-BMP Tillage FDT + Tillage 

Variable Index CRGP NOCR FORT CRGP CRGP 

  

SWAT Fitted SWAT Fitted SWAT Fitted SWAT Fitted SWAT Fitted 

Discharge 

(mm) 

Mean → → 636 636 ← ← 619 619 628 628 

SD → → 144 133 ← ← 140 132 151 143 

 R2 → → 0.86 (Dis1) ← ← 0.88 (Dis2) 0.90 (Dis3) 

Sediment 

(t ha-1) 

Mean 12.84 10.78 1.80 1.71 0.10 0.09 9.40 8.31 0.84 0.89 

SD 11.86 9.44 1.94 1.95 0.14 0.16 8.28 7.38 2.72 1.18 

 R2 0.48 (Sed1_1) 0.71 (Sed1_2) 0.57 (Sed1_3) 0.56 (Sed2) — 

NO3-N 

(kg ha-1) 

Mean 43 39 24 — 10 10 43 39 47 44 

SD 24 14 16 — 6 3 24 14 29 21 

 R2 0.40 (N1_1) — 0.33 (N1_3) 0.39 (N2) 0.59 (N3) 

Sol-P 

(kg ha-1) 

Mean 0.88 0.80 0.61 — 0.08 0.06 0.98 0.89 0.49 0.43 

SD 0.49 0.32 0.46 — 0.06 0.03 0.59 0.38 0.33 0.23 

 R2 0.47 (P1_1) — 0.38 (P1_3) 0.48 (P2) 0.52 (P3) 
Note: CRGP refers to crop groups including AGRL, GRAN, and GRAS; the statistics for discharge in no-BMP scenario are  397 

based on CRGP, NOCR, and FORT.398 
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3.2   LBAT Assessment  399 

3.2.1 Impact of Grid Cell Size on LBAT Simulation 400 

     Simulations of water quantity and quality by LBAT with different grid-cell sizes (i.e., 401 

25, 50, 100, 200, and 400 m) for BBW are shown in Fig. 3. Statistical tests indicated that 402 

grid-cell size had a significant effect on sediment loading (p-value < 0.01), with no effect 403 

observed for discharge and NO3-N and Sol-P loadings (p-values > 0.99). Increasing cell 404 

size (i.e., slope length) increased sediment loading. However, the mean slope gradient 405 

was reduced. As a result, the mean sediment loadings were correlated non-linearly with 406 

cell size as shown in Fig. 4. The highest mean sediment loading was found with a cell 407 

size of 100 m (5.86 t ha-1), whereas the lowest was found to occur with a cell size of 25 408 

and 400 m (3.37 t ha-1). The LBAT with a cell size of 25 and 400 m was able to generate 409 

sediment loadings consistent with field measurements. Considering computational 410 

efficiency, we chose a grid-cell size of 400 m as the basic LBAT-simulation unit for 411 

LRW.  412 
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 413 

Fig. 3 LBAT-produced simulations of annual stream discharge and sediment, NO3-N, and 414 

Sol-P loadings determined for different DEM grid-cell sizes (i.e., 25, 50, 100, 200, and 415 

400 m).  416 
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 417 

Fig. 4 Impact of grid-cell size on LBAT-simulation of sediment loading. Mean annual 418 

sediment loadings and standard errors (vertical bars) from 1992 to 2011 are indicated.419 
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3.2.2 LBAT vs. SWAT in LRW 420 

    Simulations of water quantity and quality with LBAT and the uncalibrated and 421 

calibrated versions of SWAT are compared with field measurements for LRW (Fig. 5). 422 

Model assessments for different simulation periods (depending on measurement 423 

availability) are shown in Table 7. It is worth noting that, to eliminate unrealistic results, 424 

USLE_LS was constrained in Sed1_2 to the NOCR land use group: 425 

USLE_LS = {
𝐸𝑞. 6‐ 1                𝑈𝑆𝐿𝐸_𝐿𝑆 ≤ 1.28
1.28                      𝑈𝑆𝐿𝐸_𝐿𝑆 > 1.28

                                                            (8)  426 

where 1.28 is the maximum USLE_LS for BBW. 427 

In general, the two versions of SWAT and LBAT slightly underestimated annual 428 

stream discharge, capturing its variation reasonably well (R2>0.54; Fig. 5a). The 429 

uncalibrated and calibrated versions of SWAT had the least and largest absolute values of 430 

Re (Re = -2 and -9), whereas LBAT Re = -6 (Table 7). The uncalibrated version of 431 

SWAT severely overestimated annual sediment and NO3-N loading (Re = 212 and 87, 432 

respectively; Figs. 5b and c), whereas the calibrated version of SWAT and LBAT 433 

underestimated sediment loading (Re = -32 and -52, respectively) and overestimated 434 

NO3-N loading (Re = 22 and 27, respectively; Table 7). In general, the calibrated version 435 

of SWAT and LBAT captured the variation in annual NO3-N loadings reasonably well 436 

(R2>0.35; Fig. 5c). However, the two versions of SWAT and LBAT failed to capture the 437 

variation in annual sediment and Sol-P loadings (low R2; Figs. 5b and d). The LBAT had 438 

the smallest absolute value of Re (i.e., Re = -16), while the uncalibrated and calibrated 439 

versions of SWAT had larger values (Re = -59 and -55, respectively). These results 440 

suggested that the LBAT and the calibrated version of SWAT performed fairly 441 

equivalently in simulating annual stream flow and sediment and NO3-N loadings, with 442 
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LBAT performing slightly better for annual Sol-P loading. LBAT performed noticeably 443 

better than the uncalibrated version of SWAT, especially for annual sediment and NO3-N 444 

loadings. Poor performance for both versions of SWAT and LBAT on simulation of 445 

annual sediment and Sol-P loadings in LRW might attribute to lack of detailed 446 

management practice and fertilizer application information from agricultural lands. We 447 

only had one year data for LRW and made assumptions about rotation and management 448 

practices for other years based on information from BBW, which could introduce major 449 

input uncertainty.  450 

 451 

Table 7 Statistical assessments of LBAT and SWAT for annual stream discharge and 452 

sediment, NO3-N, and Sol-P loadings at the outlet of LRW for different simulation 453 

periods 454 

 455 

 456 

 457 

 458 

 459 

 460 

  461 

         462 

 463 

 464 

 465 

Period Variable Index Measurement 
SWAT 

-Uncalibrated 

SWAT 

-Calibrated 
LBAT 

01-07 Discharge  

(mm) 

Mean 704 691 638 664 

Re (%) — -2 -9 -6 

  R2 — 0.63 0.69 0.54 

01-10 Sediment 

 (t ha-1) 

Mean 0.95 2.95 0.65 0.45 

Re (%) — 212 -32 -52 

  R2 — 0.01 0.01 0.04 

03-10 NO3-N  

(kg ha-1) 

Mean 12 22 14 15 

Re (%) — 87 22 27 

  R2 — 0.59 0.45 0.35 

03-10 Sol-P  

(kg ha-1) 

Mean 0.31 0.13 0.14 0.26 

Re (%) — -59 -55 -16 

  R2 — 0.02 0.11 0.01 
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 466 

Since LBAT is based on decision rules (statistical equations in this study) which 467 

were derived from SWAT simulations for BBW, its usage should be constrained to areas 468 

with soil, landscape, and land use characteristics similar to BBW. Input characteristics 469 

exceeding the range of SWAT data considered could lead to large errors in predictions. 470 

LBAT is flexible in its structure, and with thoughtful development of internal rules, it can 471 

be applied to diverse environments.  472 
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 473 

Fig. 5 Simulations of annual stream discharge and sediment, NO3-N, and Sol-P loadings 474 

with LBAT and SWAT compared with field measurements at the outlet of LRW. 475 
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 476 

3.2.3 FDT Assessment in LRW 477 

    Mean annual water quantity and quality simulated with LBAT for agricultural lands of 478 

LRW are shown in Table 8. The mean annual discharge for the baseline scenario was 626 479 

mm greater than that for the six FDT scenarios (Table 8). When all agricultural lands 480 

were protected (S6), there was a 2% reduction in discharge (equivalent to 11 mm; Table 481 

8). With the steepest areas protected (accounting for 10% of the total land base; S1), the 482 

mean annual sediment loading was reduced by as much as 43% (equivalent to 4.5 t ha-1; 483 

Table 8) and by as much as 81% (i.e., 8.57 t ha-1) with all agricultural lands protected (S6; 484 

Table 8). Mean annual Sol-P loading was reduced by 51% (equivalent to 0.47 kg ha-1; 485 

Table 8). In contrast, increased usage of FDT tended to increase the mean annual loading 486 

of NO3-N, by about 6% when used across all agricultural lands (equivalent to 1.73 kg ha-487 

1).  488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 
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Table 8 Impact of FDT on mean annual discharge and sediment, NO3-N, and Sol-P 498 

loadings simulated with LBAT under different FDT, provided in Table 3. 499 

Variable Index Baseline S1 S2 S3 S4 S5 S6 

Discharge 

(mm) 

Mean 626 625 623 622 619 616 615 

MD — -1 -2 -4 -7 -10 -11 

PRD (%) — 0 0 -1 -1 -2 -2 

Sediment 

(t ha-1) 

Mean 10.54 6.04 4.94 4.02 3.04 2.26 1.97 

MD — -4.50 -5.60 -6.52 -7.50 -8.28 -8.57 

PRD (%) — -43 -53 -62 -71 -79 -81 

NO3-N 

(kg ha-1) 

Mean 29.70 29.86 30.02 30.34 30.82 31.22 31.42 

MD — 0.16 0.32 0.64 1.13 1.52 1.73 

PRD (%) — 1 1 2 4 5 6 

Sol-P 

(kg ha-1) 

Mean 0.94 0.89 0.83 0.76 0.65 0.52 0.46 

MD — -0.05 -0.11 -0.17 -0.28 -0.42 -0.47 

PRD (%) — -5 -11 -19 -30 -45 -51 

    500 

Percentage change (based on PRD) of water quantity and quality were plotted against 501 

percentage area of FDT for potato and barley in Fig. 6. Increasing the usage of FDT 502 

helped to reduce discharge and sediment and Sol-P loadings for both crop types (Figs. 6a, 503 

b, and c). It is worth noting that sediment loading decreased with increasing usage of 504 

FDT (Fig. 6b). An opposite trend was observed for potato and barley with respect to the 505 

impact of FDT on NO3-N loading. With the increased usage of FDT, NO3-N loadings 506 

increased linearly for potato, while it decreased for barley. The increased for potato was 507 

nearly twice as much as the reduction for barley (Fig. 6d). Seemingly the interaction 508 

between barley and FDT had positive impacts on nitrate retention in soils, whereas the 509 

interaction between potato and FDT had an opposite effect.    510 

These results are consistent with the results from previous studies (Yang et al., 2012; 511 

Yang et al., 2010), which used SWAT to assess the impact of FDT on water quantity and 512 

quality within BBW. When using SWAT, greater efforts are needed to prepare basic 513 
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inputs, such as daily weather records, to proceed with its calibration and validation, 514 

involving complex scenario setup and analysis. For every new watershed, SWAT needs 515 

dedicated effort and time for its setup. LBAT, in contrast, can be used for multiple 516 

watersheds as long as they have similar environmental conditions. Scenario analysis can 517 

be directly conducted with different combinations of land use and BMPs using fewer 518 

inputs than what is required by SWAT. Also, once developed, LBAT does not require 519 

additional calibration. 520 

 521 

Fig. 6 Percentage change in discharge and sediment, NO3-N, and Sol-P loadings as a 522 

function of % area, where FDT’s were used. 523 
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4. Conclusion  524 

     The present study addresses the development of a decision support tool to assess the 525 

impact of land use change and BMPs on water quantity and quality for ungauged 526 

watersheds. An enhanced version of SWAT was calibrated and validated for an small 527 

experimental watershed. Multiple regression analyses were used to develop statistical 528 

equations based on simulations from SWAT. In total, three discharge and five sediment, 529 

NO3-N, and Sol-P loading models were developed for different combinations of land use 530 

groups and BMP scenarios. Only four common predictors (i.e., annual precipitation, 531 

annual mean air temperature, mean saturated hydraulic conductivity of soil, and land use 532 

groups) and three unique predictors (LS-factor and annual nitrogen and phosphorus 533 

application rates for sediment, NO3-N, and Sol-P loading models, respectively) are 534 

required.  535 

With the aid of ArcGIS, statistical equations were integrated into the decision support 536 

tool, i.e., the land use and BMPs assessment tool (LBAT), whose basic simulation units 537 

are the DEM-grid cell. The LBAT was used to simulate annual water flow and sediment 538 

and nutrient loadings at the outlet of a larger watershed, i.e., Little River Watershed 539 

(LRW). These simulations were compared with those of SWAT. Results indicated that 540 

LBAT and the calibrated version of SWAT performed equivalently with respect to annual 541 

stream discharge and sediment and NO3-N loadings. LBAT performed slightly better, 542 

when Sol-P loading was considered. Compared with the uncalibrated version of SWAT, 543 

LBAT performed better. The impact of FDT on water quantity and quality was evaluated 544 

with LBAT for LRW; its results were consistent with the results generated with SWAT 545 

for the same region in previous studies. LBAT has fewer input requirements than SWAT, 546 
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and can be applied to multiple watersheds without additional calibration. Also, scenario 547 

analyses can be directly conducted with LBAT without complex setup procedures. We 548 

recommend using LBAT for economic analysis and management decision making for 549 

watersheds with similar environmental conditions of New Brunswick. The LBAT 550 

developed in this study may not be directly applied to other regions; however, the 551 

approach in developing LBAT can be applied to other regions of the world because of its 552 

flexible structure. 553 

 554 
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Appendix  570 

Table 1 Coefficient values for the three discharge models. 571 

Model variable Estimate Std. Error t-value p-value 

Dis1     

Intercept -1565 24.04 -65.089 <0.001 

PCP 1.933 0.02176 88.837 <0.001 

TMP 282.7 6.091 46.402 <0.001 

SOL_K 0.06338 0.00992 6.389 <0.001 

FORT 30.79 14.16 2.175 0.030 

NOCR 162.2 14.51 11.181 <0.001 

PCP:TMP -0.2488 0.005487 -45.352 <0.001 

PCP:FORT 0.04684 0.01191 3.934 <0.001 

PCP:NOCR -0.0535 0.01224 -4.37 <0.001 

TMP:FORT 9.723 1.684 5.775 <0.001 

TMP:NOCR 4.506 1.731 2.603 0.009 

SOL_K:FORT -0.3769 0.03403 -11.076 <0.001 

SOL_K:NOCR -0.2959 0.032 -9.248 <0.001 

Dis2 

    Intercept -1633 27.29 -59.84 <0.001 

PCP 1.995 0.02472 80.69 <0.001 

TMP 302.2 6.87 43.98 <0.001 

SOL_K 0.08696 0.01167 7.45 <0.001 

PCP:TMP -0.2662 0.006199 -42.94 <0.001 

Dis3 

    Intercept -1666 36.58 -45.54 <0.001 

PCP 2.007 0.03305 60.713 <0.001 

TMP 298 9.351 31.865 <0.001 

SOL_K 0.09353 0.01573 5.946 <0.001 

PCP:TMP -0.2606 0.008406 -31.004 <0.001 

 572 

 573 

 574 

 575 

 576 

 577 

 578 
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Table 2 Coefficient values for the four sediment loading models. 579 

Model variable Estimate Std. Error t-value p-value 

Sed1_1 

    Intercept 0.2749 0.06125 4.488 <0.001 

USLE_LS 0.1201 0.02224 54.018 <0.001 

PCP 0.000788 5.54E-05 14.218 <0.001 

TMP 0.1117 0.01528 7.307 <0.001 

SOL_K 0.000568 0.00022 2.585 0.010 

GRAS -0.0353 0.00881 -4.007 <0.001 

USLE_LS:SOL_K -0.00014 4.69E-05 -3.045 0.002 

USLE_LS:GRAS -0.02623 0.006826 -3.842 <0.001 

PCP:TMP -0.00011 1.38E-05 -7.967 <0.001 

PCP:SOL_K -4.6E-07 1.91E-07 -2.406 0.016 

Sed1_2     

Intercept 0.8575 0.008826 97.15 <0.001 

PCP 0.000123 7.82E-06 15.67 <0.001 

PCP:USLE_LS 0.000209 5.02E-06 41.65 <0.001 

Sed1_3 

    (Intercept) 0.3992 0.02267 17.613 <0.001 

USLE_LS 0.07935 0.01967 4.034 <0.001 

PCP 0.000204 1.96E-05 10.371 <0.001 

SOL_K 0.000545 5.71E-05 9.534 <0.001 

USLE_LS:PCP 4.94E-05 1.71E-05 2.9 0.004 

USLE_LS:SOL_K -0.00067 4.89E-05 -13.718 <0.001 

Sed2 

    Intercept 0.2591 0.05228 4.956 <0.001 

USLE_LS 0.12 0.001898 63.218 <0.001 

PCP 0.000767 4.73E-05 16.212 <0.001 

TMP 0.1162 0.01304 8.907 <0.001 

SOL_K 0.000746 0.000188 3.981 <0.001 

GRAS -0.06937 0.01648 -4.211 <0.001 

USLE_LS:SOL_K -0.00013 4E-05 -3.137 0.002 

USLE_LS:GRAS -0.02662 0.005829 -4.567 <0.001 

PCP:TMP -0.00011 1.18E-05 -9.522 <0.001 

PCP:SOL_K -6.3E-07 1.63E-07 -3.846 <0.001 

TMP:GRAS 0.007415 0.003664 2.024 0.043 

 580 

 581 

 582 
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Table 3 Coefficient values for the four NO3-N loading models corresponding to land use 583 

and BMPs described in Table 4. 584 

Model variable Estimate Std. Error t-value p-value 

N1_1     

Intercept 1.44 0.1753 8.213 <0.001 

N_APP -0.00862 0.000699 -12.325 <0.001 

PCP 0.000543 0.00016 3.4 <0.001 

TMP 0.1363 0.03357 4.059 <0.001 

SOL_K -0.00344 9.78E-05 -35.163 <0.001 

GRAN -1.117 0.1021 -10.937 <0.001 

GRAS -1.97 0.1562 -12.611 <0.001 

N_APP:PCP 5.31E-06 6.45E-07 8.233 <0.001 

N_APP:TMP 0.000963 7.45E-05 12.929 <0.001 

N_APP:SOL_K 9.6E-06 6.4E-07 15.024 <0.001 

PCP:GRAN 0.000677 9.38E-05 7.215 <0.001 

PCP:GRAS 0.001029 0.000143 7.201 <0.001 

PCP:TMP -0.00025 2.64E-05 -9.467 <0.001 

TMP:GRAN 0.1 0.01134 8.817 <0.001 

TMP:GRAS 0.2132 0.01651 12.912 <0.001 

N1_3 

    Intercept -1.411 0.3087 -4.573 <0.001 

PCP 0.001875 0.000279 6.710 <0.001 

TMP 0.4437 0.07831 5.666 <0.001 

SOL_K -0.00104 0.000116 -8.979 <0.001 

PCP:TMP -0.00032 7.06E-05 -4.484 <0.001 

N2 

    Intercept 1.429 0.1757 8.134 <0.001 

N_APP -0.00858 0.000701 -12.233 <0.001 

PCP 0.000548 0.00016 3.425 <0.001 

TMP 0.1376 0.03365 4.089 <0.001 

SOL_K -0.00345 9.8E-05 -35.223 <0.001 

GRAN -1.11 0.1023 -10.849 <0.001 

GRAS -1.962 0.1566 -12.526 <0.001 

N_APP:PCP 5.3E-06 6.47E-07 8.187 <0.001 

N_APP:TMP 0.000957 7.46E-05 12.82 <0.001 

N_APP:SOL_K 9.65E-06 6.4E-07 15.067 <0.001 

PCP:GRAN 0.000674 9.41E-05 7.167 <0.001 

PCP:GRAS 0.001026 0.000143 7.162 <0.001 

PCP:TMP -0.00025 2.64E-05 -9.456 <0.001 

TMP:GRAN 0.09934 0.01137 8.738 <0.001 

TMP:GRAS 0.2122 0.01655 12.821 <0.001 
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N3 

    Intercept -0.3595 0.1718 -2.092 0.037 

N_APP -0.00131 0.000435 -3.011 0.003 

PCP 0.001621 0.00015 10.806 <0.001 

TMP 0.3977 0.03857 10.312 <0.001 

SOL_K -0.00386 0.000505 -7.641 <0.001 

GRAN -0.2133 0.07504 -2.842 0.005 

N_APP:PCP 1.65E-06 3.59E-07 4.61 <0.001 

N_APP:TMP 0.000281 4.74E-05 5.939 <0.001 

N_APP:GRAN 0.000716 0.000292 2.453 0.014 

PCP:TMP -0.00035 3.32E-05 -10.506 <0.001 

PCP:SOL_K 1.21E-06 4.36E-07 2.781 0.005 

PCP:GRAN 0.000267 5.82E-05 4.577 <0.001 

TMP:GRAN -0.04685 0.008004 -5.853 <0.001 
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Table 4 Coefficient values for four Sol-P models. 601 

Model variable Estimate Std. Error t-value p-value 

P1_1     

Intercept -3.711 0.1306 -28.416 <0.001 

P_APP 0.002341 0.000623 3.757 <0.001 

PCP 0.003195 0.000117 27.286 <0.001 

TMP 0.5542 0.03197 17.337 <0.001 

SOL_K 0.00298 0.000472 6.305 <0.001 

GRAS -0.4321 0.0382 -11.312 <0.001 

P_APP:PCP -2.4E-06 5.2E-07 -4.64 <0.001 

P_APP:TMP 0.000829 7.7E-05 10.797 <0.001 

PCP:TMP -0.00052 2.9E-05 -18.297 <0.001 

PCP:SOL_K -1.2E-06 3. 97E-07 -3.095 0.002 

TMP:SOL_K -0.00026 5.7E-05 -4.526 <0.001 

TMP:GRAS 0.03787 0.00941 4.024 <0.001 

P1_3 

    Intercept -4.43817 0.589848 -7.512 <0.001 

PCP 0.002509 0.000534 4.701 <0.001 

TMP 0.417306 0.1496445 2.789 0.005 

SOL_K 0.001247 0.000222 5.622 <0.001 

PCP:TMP -0.0003 0.000135 -2.253 0.024 

P2 

    Intercept -3.667 0.1357 -27.017 <0.001 

P_APP 0.003461 0.000663 5.218 <0.001 

PCP 0.003017 0.000122 24.783 <0.001 

TMP 0.5149 0.03304 15.584 <0.001 

SOL_K 0.003531 0.000488 7.233 <0.001 

GRAS -0.2039 0.09001 -2.265 0.024 

P_APP:PCP -2.4E-06 5.54E-07 -4.305 <0.001 

P_APP:TMP 0.000432 7.93E-05 5.445 <0.001 

P_APP:GRAS -0.03304 0.007019 -4.707 <0.001 

PCP:TMP -0.00044 2.95E-05 -14.952 <0.001 

PCP:SOL_K -1.4E-06 4.1E-07 -3.446 <0.001 

PCP:GRAS -0.00025 7.66E-05 -3.25 0.001 

TMP:SOL_K -0.00025 5.87E-05 -4.184 <0.001 

TMP:GRAS 0.05117 0.009839 5.201 <0.001 

P3 

    Intercept -2.817 0.2548 -11.054 <0.001 

P_APP -0.01363 0.001854 -7.352 <0.001 

PCP 0.002778 0.000178 15.609 <0.001 

TMP 0.1406 0.06523 2.155 0.031 

SOL_K 0.00651 0.000702 9.279 <0.001 
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GRAN -0.9386 0.1378 -6.812 <0.001 

GRAS -0.9931 0.1813 -5.478 <0.001 

P_APP:TMP 0.003562 0.000491 7.252 <0.001 

P_APP:GRAN 0.007736 0.002179 3.549 <0.001 

P_APP:GRAS -0.05489 0.01295 -4.24 <0.001 

PCP:TMP -0.0003 4.42E-05 -6.763 <0.001 

PCP:SOL_K -3.7E-06 5.78E-07 -6.359 <0.001 

PCP:GRAN 0.000112 5.1E-05 2.192 0.028 

PCP:GRAS -0.00019 0.000109 -1.74 0.082 

TMP:SOL_K -0.00021 8.8E-05 -2.4 0.016 

TMP:GRAN 0.1798 0.03332 5.397 <0.001 

TMP:GRAS 0.247 0.03581 6.898 <0.001 
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