
Dear Mrs. Riva, 
 

We have decided to revise the paper according to the comments from the two anonymous reviewers. 

It should be mentioned that the author list has been rearranged so the degree of contribution of the different 
co-authors is reflected accordingly, which was not previously the case. 

In particular, the paper has been revised in regards to both referees mentioning their interest in expanding the 
section related to the section 4.3. Emphasis on the significance of the test case has been increased, while the 

issue related to reducing the size of the TI are described in the discussion. A list of miscellaneous corrections 
has also been composed and can be found in the “point-by-point reply“ found below. Regarding the 

considerations of implementing a new figure with the ensemble averages of each of the 51 realizations for the 

different MPS methods, we chose to not include this figure since it did not change the conclusions of the paper.  
 

Kind regards, 
Adrian A.S. Barfod  



Point-by-point reply, hess-2017-413 
 

 
Firstly, the authors would like to thank the two anonymous referees for taking 

their time to read the manuscript and providing detailed and constructive 
comments. The comments, questions and suggestions are addressed in the 

following sections. 

 

 
*AC: Author Comments 
*RC: Referee Comments 
 
NOTE: All of the line numbers in this document refer to the revised manuscript and not the “manuscript changes” document 

 

Response to anonymous referee #1 
 

General comments: 
‘The paper applies and compares three multiple point statistics (MPS) methods (snesim, DS and iqsim) for 
hydrostratigraphic modelling using geological and geophysical data. This research is very relevant as (1) three 
MPS methods, including very recent methods, are compared to evaluate the advantages and disadvantages of 
each method which is very useful for users that want to select one of the different available MPS methods and 
(2) since these methods are all applied on a real-world case with realistic geological complexity and data 
availability.’ 
 
RC1: ‘The authors first apply the three MPS methods on their case study where the training image is actually 
identical to the model they want to simulate. This part is very extensive: the three MPS methods are used and 
different ways of validating the results are compared. The results of this part are according to me not so 
interesting since in a real case you never have the model you want to simulate but only one or more training 
images depicting some general geological concepts of the area. The results are also not surprising: iqsim better 
reproduces the TI which is logical since iqsim uses relatively large patches instead of pixels. In real cases, 
however, you don’t want an exact reproduction of the TI but you want to simulate another area with similar 
patterns.’ 
 

AC1: We disagree that from a practical point of view the first set of tests are not as interesting since the model 
we wish to simulate is usually not available. Instead, we consider this case a “pseudo synthetic test case” where 

the TI provides an accurate rendition of the 3D patterns relevant to the given model. 
Regarding the concern that you would never have the model you wish to simulate available to use as a TI, this 

is simply a case where the TI, synthetic or an actual real-world model, is a precise rendition of the expected 

hydrostratigraphic architecture. 
Some of the authors have recently submitted a research paper to HESS, which is currently in open discussion. 

The paper focuses on the uncertainty related to the MPS setup, as well as a presentation of a more practical 
application, where a 3D geological model from another area is used as TI to simulate a hydrostratigraphic model 

using SkyTEM data and lithology logs (hess-2017-734; https://doi.org/10.5194/hess-2017-734). 

 
AC2: Regarding the iqsim results, we were actually quite surprised that they performed the best in resembling 

the cognitive geological model based on the Modified Hausddorff distance (DMH). If the individual iqsim 
realizations are studied (FIGURE 8D) it is seen that the overall placement of the hydrostratigraphic units are not 

very precise, compared to snesim and DS (FIGURE 8B&C). In fact by looking at the vertical cross-sections the 
sporadic nature of the upper part of the realizations becomes clear, where the valleys (filled with ‘sand & gravel’ 

https://doi.org/10.5194/hess-2017-734


and ‘glacial clay’ can be covered by ‘hemipelagic clay’, which is not possible in the TI. Looking at the borehole 
distance results, iqsim has the highest average borehole distances for ‘sand & gravel’ and ‘glacial clay’ units. 

 

Resulting corrections: 
Line 18-19: The main case is introduced as a “synthetic test case”, so that it is made clear that it is a controlled 

environment in which we can test the different MPS methods against each other 

Line 116: the halfsim case is no longer referred to as a “practical example” 
Line 120-122: The main case is introduced as a “synthetic test case” 

Line 128: the halfsim case is no longer referred to as a practical example, but instead just as an example 
Table 4 – “row average” column added which relates to the borehole distances, and describes the trade-off 
relationship between the borehole distances respective of the individual hydrostratigraphic units. 

Line 639: The “row average” column of Table 4 is referred to in the text 
 

 

RC2: ‘In the last part of their paper, the left half of the existing geological model is used as a TI to simulate the 
right half of the model. For me, this second part is much more interesting. However, this part is very short: only 
one MPS method is used and different aspects of validation (such as comparison with boreholes) are not shown 
or discussed. I would like to see an application of the three MPS methods here and a more thorough description 
and discussion of the results as for the first part where the TI is equal to the result you want to obtain. For 
clarity and compactness of the paper, I would even propose to only do the full analysis on the second problem 
where another area is modeled and to remove the part where the TI is identical to the model.’ 
 
AC3: As stated above in AC1, we disagree with the statement that the second part is “more” interesting than 

the first part. Again, we consider the first case a “pretend case” where the TI contains the actual 3D patterns of 
the target model and is therefore a “best case scenario”. 
Furthermore, focusing on the second case, the half-sim case, a problem occurs since the TI is cut in half. 
Cutting the TI in half, results in a reduction of the patterns contained in the TI, and, as discussed by e.g. Emery 

and Lantuéjoul (2014), if the size of the patterns contained in the TI are too small we do not properly reproduce 
the desired patterns. If they become too small the information is simply not available. In this case some of the 

valleys are cut in half and only part of the valley structures are present in the half TI. Therefore, although the 

second half sim case is interesting from a practical point of view, it is simply not an ideal setup for making such 
tests. The discussion text has been edited to reflect these issues. 

A recent paper has been submitted to HESS (hess-2017-734; https://doi.org/10.5194/hess-2017-734) and is 
currently in the public discussion phase. In the paper, snesim is used to test if it is possible to use a 3D 

hydrostratigraphic models from a different survey area to create 3D hydrostratigraphic models. 

The exact same half sim case, with the exact same data, was also presented for iqsim by Hoffimann et al. 
(2017). We will add a reference to Hoffimann et al. (2017) in the section describing the half-sim case and 

include the results by Hoffimann et al. (2017) in the discussion of the half-sim case.  
 

Resulting corrections: 
Line 777-782: The issue related to cutting patterns from the TI is addressed.  

Line 680-681: The Hoffimann et al. (2017) study is mentioned 

 
 

RC3: ‘Abstract, line 13 + introduction, lines 32-37: I would replace “hydrological” models by “hydrogeological 
models” or “groundwater models” as “hydrological” models could also refer to surface water modelling, rainfall-
runoff modelling or river modelling which do not involve inclusion of geological and/or geophysical data.’ 
 
AC4: Good point, this has been edited 

 
Resulting corrections: 

https://doi.org/10.5194/hess-2017-734


Line 13: “hydrological models” has been replaced with “groundwater models” 
Line 34: “hydrological modeling” has been replaced with groundwater modeling 

Line 35: “hydrological modeling” has been replaced with groundwater modeling 

 
 

Response to anonymous referee #2 
 

General comments: 
‘This paper provides an exhaustive comparison of three Multiple-Point-Statistics (MPS) methodologies - namely, 
Single normal equation simulation (snesim), Direct Sampling Simulation (DS) and Image quilting simulation 
(iqsim) - for the generation of random distributions of hydrofacies on a specific field site. For each methodology, 
the diverse realizations of hydrostratigraphic categories are obtained on the basis of 51 stochastically-
reconstructed resistivity grids, to include the effect of uncertain conditioning (soft) data. The generated 
hydrostratigraphic models are compared against each other and against the Training Image (TI) (i) by visual 
inspection, (ii) in terms of the modified Hausdorff distance and (iii) in terms of the distance from borehole (hard) 
data. The paper is clearly written and the results will have wide application in the con-text of field-scale 
stochastic facies reconstruction. I recommend the paper for publication in HESS, after that the authors address 
the questions/comments in the following itemized list.’ 
 
RC1: ‘Advantages and disadvantages of each methodology are extensively discussed, and can be summarized 
as follows: 

(i) snesim is the best one in conditioning the simulations with soft data, thanks to the implicit Resistivity 
Atlas histograms. This methodology provides the best results in borehole distance for 2 out of 3 
hydrostratigraphic categories. However, the resulting stochastics models are affected by unrealistic small 
scale variability, which implies a larger distance from the TI. 
(ii) iqsim is the fastest algorithm amongst the three. It provides the smallest distance from the TI and the 
largest variability between realizations. On the other hand, it suffers from an improper conditioning from 
soft-data grids, as indicated by poor borehole distance results. 
(iii) DS is the most computationally expensive, it suffers from small-scale variability (line 56) and 
hydrostratigraphic units are not conditioned properly (line 753). It provides intermediate results in terms 
of all comparison metrics considered. 

 
So, why did the authors choose DS as the unique methodology in the "Hydrostratigraphic modelling of new 
surveys", in Sect. 4.3? I would recommend to integrate this section also with the results of the other two 
methodologies for the simulation of "Area B".’ 
 
AC1: The choice of method was not crucial here since the "Hydrostratigraphic modelling of new surveys" was 
only meant as an experiment to portray the practical applications of MPS in relation to 3D hydrostratigraphic 

voxel modelling. Since the DS method is easy to parameterize and easy to setup for running in parallel on a 

computer cluster it was chosen over using the SGeMS implementation of snesim. This is now reflected in the 
paper. 

Regarding integrating the other methods in Sect. 4.3, see author comment 3 and 4 in the response to 
anonymous referee #1. 
 

Resulting corrections: 
Line 678-681: the choice of the DS method for the halfsim case is elaborated 

 
 

RC2: ‘The absence of small-scale variability in single realization (iqsim) is regarded as an advantage. But, (1) as 
discussed in lines 733-741, this reconstructions can be regarded as the most realistic only if the TI is actually 
reproducing the correct scale of variability; (2) it is the model ensemble, and not the individual random 



realization, that is supposed to reflect the behavior of the whole system. Small-scale variations effect seem 
indeed to be reduced when evaluating the mode over the 10 realizations in sect. 4.3. The ensemble modes 
evaluated over each one of the three sets of 51 simulations analyzed in the first part of the study should be also 
reported.’ 
 

AC2: The absence of small-scale variability of a single realization seems to be part of the reason for the smaller 
MHDcog-distances in the iqsim realizations. So, in comparison with the TI, which does not contain small-scale 

variability, the iqsim realizations are the most similar, not realistic. The text has been revised to make it clear 

that small-scale variability does not mean less realistic realizations. Furthermore, a new figure presenting the 
ensemble modes for each of the three algorithms will be considered strongly for the final draft. 
 

Resulting corrections: 
Line 550, 551, 562, 563, 688 and 756: The usage of the word “unrealistic” in tandem with “short scale 

variability” is avoided 

The ensemble modes for each of the three algorithms was not implemented since it did not change the results 
and conclusions of the paper. 

 
 

RC3: ‘It is not explored in this context how the three algorithms behave when generating random simulations 
with fixed conditioning data. What are the effects of the methods themselves on, e.g., the variability between 
realizations?’’ 

 
AC3: We are not sure what the referee means by “generating random realizations with fixed conditioning data”. 

We assume what is meant is to run realizations with borehole data as hard conditioning data. The usage of hard 
borehole data for conditioning was not important for the goal of this paper, which was focused on comparing 

MPS algorithms using an extensive soft SkyTEM data set. However, a recent paper has been submitted to HESS 

(hess-2017-734), where snesim realizations are conditioned to both soft SkyTEM data and hard borehole data. 
 

 
RC4: ‘line 458: "Here, sand & gravel and glacial clay were categorized into a single category, and hemipelagic 
clay was used as a background variable". The Modified Hausdorff distance is evaluated on binary images. Did 
the authors try to evaluate a MHD array separately for each category (similarly to what it is done for AEBD)?’’ 
 

AC4: This is a good observation, and in the revised paper it is stated more clearly why we make an evaluation 
based on binary images. The reason for this was the computational overhead of computing the Modified 

Hausdorff Distance for 51 models containing 1,187,823 cells (229x133x39). Even after representing the 
geometric objects of each realization as outlines only, the computational burden was still too large for 

computing the DMH for each separate category.  
 
Resulting corrections: 

Line 454-457: computational burden related to DMH is mentioned 
Line 594-595: The combining of glacial clay and sand & gravel units is mentioned 

Line 599: The binary classification of the realizations is emphasized 

Line 602: The fact that the DMH simply measures the location of the valleys due to the binary classification of the 
realizations is emphasized 

 
RC5: ‘line 726: "The borehole distances of the iqsim realizations revealed exceedingly small hemipelagic clay 
distances, with average of 0.2 m"; line 730: "(...) the ample near surface hemipelagic clay decreases the 
hemipelagic clay borehole distance". If the presence of near-surface hemipelagic clay is an artifact of the 
algorithm (i.e. is not consistent with borehole data), why should it results in a decrease of the borehole 
distance?’’ 



 
AC5: The text has been revised and now reflects that if hemipelagic clay is present at the surface then the 

average DMH increases, and the reason for the low hemipelagic clay distances should be found elsewhere. 

Instead, in the revised paper, it is made clear that there is a trade-off relationship between the borehole 
distances of each of the three lithological categories. In the iqsim case the average distance is low for 

hemipelagic clay (0.2 m) while increased for the glacial clay (3.5 m) and sand & gravel (5.8 m) categories. The 
row average of the three lithological categories is therefore 9.5 m for iqsim, while the summed distance for DS is 

8.5 m and for snesim the distance is 7.5 m. 
 

 

Resulting corrections: 
Table 4 – “row average” column added 

Line 748-756: The trade-off relationship is elaborated upon 
 

 

RC6: ‘Figure 2: the figure caption and the references to the figure in the manuscript are not consistent with the 
letters (a-g) indicating the diverse frames of the picture.’ 
 
AC6: This is not intended and the figure caption has been edited so it corresponds to the actual figure. 

 
Resulting corrections: 

Figure 2: caption has been edited 

 
 

RC7: ‘Eq. 2: Symbols a_i and b_i represent position vectors, but they are written as scalar quantities.’ 
 

AC7: The symbols are now italic to indicate that they are vectors in the revised version. 

 
Resulting corrections: 

Equation 2: corrected 
 

 

RC8: ‘line 536: "where binlog_i is the ith cell in the binary log grid" should be changed into "where binlog_i is 
the ith ACTIVE cell in the binary log grid".’ 
 
AC8: Noted, the text has been edited 

 
Resulting corrections: 

Line 531: The word “active” has been inserted 

 
 

Miscellaneous corrections: 
 The author list has been changed, since the order was previously not representative of the degree of 

contribution of the different co-authors 

 The Høyer et al. 2016 reference has been updated since the paper has now official been published 

 An additional reference to the cognitive modeling approach has been added (Line 44) 

  “Modelling” has been corrected to “modeling” throughout the revised paper to correspond with 

grammar rules related to writing English (United Stated) 

 MHD has been changed to DMH throughout the revised paper in accordance with the HESS guidelines 
 AEBD has been changed to DAEB throughout the revised paper in accordance with the HESS guidelines 

 The following words are no longer written in Italics: snesim, DS and iqsim. 



 In Figure 7 the reference to meltwater silt has been corrected to meltwater sand 

 The final paragraph of the discussion was removed since it did not really discuss anything in particular 

 The discussion of short scale variability and the usage of post-processing has been removed from the 

last paragraph of section 4.3, since post-processing is generally not considered in this paper. 
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Correspondence to: Adrian A.S. Barfod (adrian.s.barfod@gmail.com) 

Abstract. Creating increasingly realistic hydrologicalgroundwater models involves the inclusion of additional geological and 

geophysical data in the hydrostratigraphic modellingmodeling procedure. Using Multiple Point Statistics (MPS) for stochastic 

hydrostratigraphic modellingmodeling provides a degree of flexibility that allows the incorporation of elaborate datasets and 15 

provides a framework for stochastic hydrostratigraphic modellingmodeling. This paper focuses on comparing three MPS 

methods: snesim, DS and iqsim. The MPS methods are tested and compared on a real-world hydrogeophysical survey from 

Kasted in Denmark, which covers an area of 45 km2. A controlled test environment, similar to a synthetic test case, is 

constructed from the Kasted survey and is used to compare the modeling results of the three aforementioned MPS methods. 

The comparison of the stochastic hydrostratigraphic MPS models is carried out in an elaborate scheme of visual inspection, 20 

mathematical similarity and consistency with boreholes. Using the Kasted survey data, a practicalan example for 

modellingmodeling new survey areas is presented. A cognitive hydrostratigraphic model of one area is used as Training Image 

to create a suite of stochastic hydrostratigraphic models in a new survey area. The advantage of stochastic modellingmodeling 

is that detailed multiple point information from one area can be easily transferred to another area considering uncertainty. 

The presented MPS methods each have their own set of advantages and disadvantages. The DS method had average 25 

computation times of 6-7 h, which is large, compared to iqsim with average computation times of 10-12 min. However, iqsim 

generally did not properly constrain the near-surface part of the spatially dense soft data variable. The computation time of 2-

3 h for snesim was in between DS and iqsim. The snesim implementation used here is part of the Stanford Geostatistical 

Modeling Software, or SGeMS. The snesim setup was not trivial, with numerous parameter settings, usage of multiple grids 

and a search tree database. However, once the parameters had been set it yielded comparable results to the other methods. 30 

Both, iqsim and DS, are easy to script and run in parallel on a server, which is not the case for the snesim implementation in 

SGeMS. 

1 Introduction 

Recent advances in hydrologygroundwater modeling have shown the importance of accurate hydrologichydrogeologic models 

for management of increasingly sparse groundwater resources. Hydrologic modellingGroundwater modeling predictions are 35 

sensitive to geologic heterogeneity (e.g. Freeze 1975, Gelhar 1984, Fogg et al. 1998, LaBolle and Fogg 2001, Zheng and 

Gorelick 2003, Feyen and Caers 2006, Fleckenstein et al. 2006, Zhao and Illman 2017). However, geological units include 

complexities not directly related to hydrofacies (Klingbeil et al. 1999). Instead, the concept of hydrostratigraphic units is used 

throughout this study, which effectively combines geological units and reduces the total number of units resulting in a closer 

relation to the hydrologic units. Improving the realism and quantification of uncertainty around hydrostratigraphic models is 40 
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therefore an important step towards accurate groundwater modellingmodeling predictions. Hydrostratigraphic models are 

created using several approaches. A common approach is a manual co-interpretation of available geophysical, geological 

and/or hydrologic data. The geoscientist cognitively uses his/her refined knowledge of geological processes combined with 

the provided datasets to create a detailed cognitive geological model (e.g. Jørgensen et al. 2013).(e.g. Jørgensen et al. 2013, 

Royse 2010). The cognitive geological model is then simplified to a hydrostratigraphic model. Even though the 45 

hydrostratigraphic model encapsulates the complexities related to geologic architecture, it does not reflect the 

hydrostratigraphic uncertainty. It is a so-called deterministic model, i.e. one version of the hydrostratigraphic subsurface. An 

alternative to cognitive modellingmodeling is stochastic modellingmodeling using geostatistical methods. The field of 

geostatistical modellingmodeling focuses on creating models depicting subsurface hydrogeology and/or reservoir properties. 

Geostatistics is currently applied in a number of geoscience fields, such as petrology (e.g. Okabe and Blunt 2005), petroleum 50 

reservoir modellingmodeling (e.g. Journel and Zhang 2006, Strebelle et al. 2002), hydrogeology (e.g. Huysmans and 

Dassargues 2009), hydrology (e.g. Michaelides and Chappell 2009). Overall geostatistical methods provide a framework in 

which multiple equiprobable hydrostratigraphic models can be created in a semi-automated fashion. The individual stochastic 

models do not reflect the modellingmodeling uncertainty, but the model ensemble does. The multiple hydrostratigraphic 

models can be used as a set of input parameters for the groundwater model. By running the groundwater model several times 55 

with different hydrostratigraphic models, multiple predictions can be made, yielding an estimate of the prediction uncertainty. 

The ability to understand how the hydrostratigraphic uncertainty is related to the prediction uncertainty will help in 

understanding where to improve the hydrostratigraphic models in order to reduce the prediction uncertainty. This study will 

however not focus on groundwater modellingmodeling predictions, but on the presentation of a stochastic modellingmodeling 

framework for reconstructing subsurface hydrostratigraphic architecture.  60 

Today state-of-the-art geostatistical tools are readily available to geoscientists. Traditional two-point statistics, or variogram 

based methods, e.g. sisim (Journel 1983) and sgsim (Deutsch and Journel 1998), have been widely used in both research and 

in practice (e.g. Seifert and Jensen 1999, Caers 2000, Juang et al. 2004, Delbari et al. 2009). However, variogram based 

techniques depend on two-point statistics for simulation of complex geological features. Depending on the complexity of the 

geological setting, such two-point statistical methods cannot re-create complex curvilinear geological features of the 65 

subsurface which are common in fluvial and glaciofluvial environments (e.g. Arpat and Caers 2005, Hu and Chugunova 2008, 

Journel and Zhang 2006, Journel 1993, Liu 2006, Sánchez-Vila et al. 1996, Strebelle and Journel 2001). An additional 

geostatistical modellingmodeling tool which should be mentioned is T-PROGS (Carle 1999). T-PROGS is based on transition 

probabilities between categories and generates geostatistical realizations based on such constraints. In comparison with 

indicator method, sisim, it allows for better integration of these transition probabilities and hence, the spatial cross-correlations 70 

of soil/rock type architecture into the groundwater models. However, T-PROGS also has difficulties in re-constructing 

curvilinear geological features. Kessler et al. (2013) made a detailed comparison between T-PROGS realizations and real-

world cross-sections in a gravel pit in Denmark. The result reveals a suboptimal pattern reproduction, in comparison to other 

simulation tools such as Multiple-Point statistics (MPS) (Mariethoz and Caers 2014b). MPS is a recent alternative to classic 

two-point statistics. Here, additional multiple-point (MP) information from a training image (TI) is used to condition the 75 

simulations. The usage of MP information allows for reconstruction of more complex geological features, such as curvilinear 

features (Strebelle 2002). A TI is any 2D/3D image containing geometrical information relevant to the hydrostratigraphic 

model. The crux of the MPS approach is finding a relevant TI. Some examples of 2D/3D TIs are: categorical images of outcrops 

(2D), categorical drawings of a geological system created by a geoscientist (2D), cognitive geological or hydrostratigraphic 

voxel models (3D) (e.g. Høyer et al. 2015a) etc. Today, MPS techniques are widely used in geoscientific research and studies, 80 

a few examples are: Maharaja (2005), Meerschman et al. (2013), Hermans et al. (2014). The MPS framework allows for 
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conditioning of geological architecture/patterns, a stochastic framework and spatially constraining to both soft data and hard 

data (Arpat and Caers 2005, Guardiano and Srivastava 1993, Journel 1993, Strebelle and Journel 2001). 

Within the geostatistics framework the creation of hydrostratigraphic models requires the inclusion of data from multiple 

sources, often geophysical models (soft data), borehole data (hard data) and a TI. The different data sources each provide 85 

relevant information. Geophysical models provide information regarding the large-scale hydrostratigraphic architecture. 

Boreholes, on the other hand, provide detailed yet usually sparse information regarding hydrostratigraphic units. Each data 

source is a piece of the puzzle, combining the individual pieces improves the resulting hydrostratigraphic models. The inclusion 

of several types of data is, however, not trivial since information regarding their mutual relationships, e.g. the 

hydrostratigraphic-petrophysical relationship, is required. An important source of information which helps to combine the 90 

different sources of data is geologic knowledge. Geologic knowledge can be defined as information regarding geologic 

processes, geomorphologic patterns, structural geology etc. Incorporating geological knowledge into hydrostratigraphic 

models is often difficult and done ad-hoc. Geologic information, as described above, complements the soft data and helps to 

create more realistic hydrostratigraphic models. However, within the MPS framework this type of information can be 

implemented via the TI. 95 

This study focuses on comparing and testing three MPS methods on a real-world dataset from a groundwater survey in Kasted, 

Denmark. An important part of the dataset is the airborne geophysical survey, providing a set of resistivity models containing 

information regarding the large-scale hydrostratigraphic architecture of the area. The MPS tools are used to reconstruct an 

intricate system of interconnected buried valleys. The end result is an ensemble of hydrostratigraphic models. A 3D 

hydrostratigraphic voxel model of the area is used as a TI, containing detailed MP information regarding the hydrostratigraphic 100 

features of the survey area. Information regarding the geological architecture and the relationship between hydrostratigraphy 

and petrophysical properties are contained in the TI. The hydrostratigraphic-petrophysical relationship is explicitly known 

since the hydrostratigraphic model spatially overlaps with the geophysical and borehole lithology logs. Spatially constraining 

the simulation to the soft data, consisting of the resistivity models, ensures that simulated geological patterns are placed 

concurrently to the real-world. However, such geophysical soft data have several types of related uncertainty, e.g. spatial 105 

uncertainty related to incomplete datasets, resolution capabilities, signal-to-noise ratio decrease with depth etc. Incomplete 

geophysical datasets is a common problem and are typically reconstructed using geostatistics; often in a deterministic fashion. 

A common approach is to use variogram based geostatistics, such as Kriging interpolation, to reconstruct the incomplete 

resistivity grid (Isaaks and Srivastava 1989). We have used the stochastic direct sampling (DS) grid reconstruction routine 

proposed by Mariethoz and Renard (2010). Here, the grid reconstruction uncertainty is reflected by multiple resistivity grids, 110 

yielding variable patterns in the multiple reconstructed grids. The reconstructed grids are then used in conjunction with the 

hydrostratigraphic TI to create a set of stochastic hydrostratigraphic realizations of the hydrostratigraphy of the modeled area.  

In relation to the Danish Groundwater mapping campaign (Thomsen et al. 2004) detailed geophysical datasets (Møller et al. 

2009) and hydrostratigraphic models exist. A selection of the 3D geologic and hydrostratigraphic voxel models are reported 

in the literature, e.g. Høyer et al. (2015a), Høyer et al. (2015b) and Jørgensen et al. (2015). Additionally, the study by Høyer 115 

et al. (2016) presents a framework for making large-scale MPS models based on geological 3D voxel models, and seismic and 

borehole data. In this study, we will show a practical application where anhow MPS methods can be utilized to model a new 

survey area. An existing cognitive model from anone area is used as a TI for simulating a newanother survey area with similar 

geological characteristics. 

To our knowledge, no vigorous studies comparing multiple MPS methods have been carried out on real-world 120 

hydrogeophysical datasets. By applying several measures to assess and compare the modeling results, the selected MPS tools 

are tried, tested and compared on real-world data. The MPS methods are tested in a pseudo synthetic environment, where an 
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actual 3D hydrostratigraphic model of the Kasted survey area is used as a TI. This guarantees a controlled modeling 

environment in which the TI contains highly relevant hydrostratigraphic architecture. The main contributions of this study are: 

1) a practical real-world example of stochastic reconstruction of incomplete geophysical datasets, 2) Comparison of three MPS 125 

methods for integrating geophysical data: snesim (Liu 2006, Strébelle and Journel 2000), direct sampling (DS) (Mariethoz et 

al. 2010) and image quilting (iqsim) (Hoffimann et al. 2017, Mahmud et al. 2014), 3) validation of the comparison results by: 

a) visual inspection, b) a mathematical comparison method called the “analysis of distance” (ANODI) (Tan et al. 2014), c) 

comparison of the simulation results against the borehole lithology logs, 4) to show the strengths/weaknesses of a stochastic 

hydrostratigraphic modellingmodeling framework, and 5) a practicalan  example using the direct sampling method and 130 

showing how to use the cognitive hydrostratigraphic interpretation of one area to directly generate hydrostratigraphic models 

of new areas, using only the soft data from the new area. 

2 Study area and data 

The Kasted survey area is located in Denmark, in the eastern part of Jutland, close to the city of Aarhus (Figure 1a). The 45 

km2 area has been surveyed in detail and contains 453 boreholes; as well as a SkyTEM survey of 333 line km. A detailed 135 

geologic model of the area has been created by Høyer et al. (2015a). The dataset was collected and compiled in relation to the 

HyGEM project. The local geology consists of an intricate system of interconnected Quaternary buried valleys, infilled with 

till and meltwater deposits. The buried valleys are incised into thick hemipelagic Paleogene clay, which dominates the area 

(Høyer et al. 2015a). Many such pre-glaciated areas are dominated by buried valleys, which have proven important subsurface 

features in regard to groundwater flow (Jørgensen and Sandersen 2006, Seifert et al. 2008). These noteworthy geological 140 

features have received a lot of attention in research through the years (e.g. Destombes et al. 1975, Jørgensen and Sandersen 

2009, Kehew et al. 2012, Ritzi et al. 1994). 

 

Figure 1: An overview map of the Kasted survey area; a) shows the geographic location of the survey area, which is marked as a 

black box, and b) shows a close-up view of the Kasted survey area with the related datasets and infrastructure overlay. 145 

The dataset used in this study consists of a dense airborne geophysical SkyTEM survey, near-surface boreholes from the 

Danish borehole database, and a cognitive geologic model created by an experienced geoscientist. In the following we will 

summarize the key features of these datasets. 

The SkyTEM system (Sørensen and Auken 2004), is a helicopter Transient Electromagnetic system allowing for rapid 

collection of large geophysical datasets, with high spatial density. The Kasted SkyTEM survey contains 333 line km with a 150 
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line spacing of roughly 100 m (Figure 1b). The SkyTEM data are inverted and modeled according to the scheme described by 

Viezzoli et al. (2008), the end result being a collection of spatially constrained inversion models. In Denmark it is standard 

protocol to calibrate the SkyTEM system at an official calibration site, as described by Foged et al. (2013), ensuring data of 

high-quality and reproducible results. Therefore, the resistivity values from a calibrated SkyTEM survey are comparable to 

other calibrated SkyTEM surveys. The SkyTEM system is sensitive towards large-scale conductive trends in the subsurface, 155 

especially when a significant contrast between a conductive and a resistive feature exists. In the eastern part of Jutland it is 

common that the lower confining boundaries of the buried valleys are well resolved since these buried valleys are often quite 

resistive and are eroded into conductive hemipelagic Paleogene clays. 

The Danish borehole database, JUPITER (Hansen and Pjetursson 2011), contains about 280.000 shallow boreholes which have 

been drilled for a variety of purposes, mainly in relation to drinking water, and raw materials exploration, but also in relation 160 

to research, and geotechnical studies. The JUPITER database contains information on location, drilling method, lithology, 

geologic age, filter position, water chemistry, etc. 

The cognitive geologic model was created using all available data, including the 333 line km of SkyTEM data, information 

from 435 boreholes and prior geological knowledge of the area. The model was created using the cognitive modellingmodeling 

scheme, which is introduced by Jørgensen et al. (2013). The geological model is described in great detail by Høyer et al. 165 

(2015a). The geologic model is detailed and contains a set of 21 interconnected buried valleys. The final 3D voxel model 

contains 42 unique geological units, which are simplified into three overall hydrostratigraphic units in this study. The three 

hydrostratigraphic units are chosen for the purpose of covering the overall hydrologicalhydrogeological features of the 

groundwater modellingmodeling area. The cognitive hydrostratigraphic model will act as the TI as well as a base-line for 

assessing the performance of the three MPS methods, and the stochastic modeling results will be compared against the 170 

cognitive model. 

3 Methods 

MPS provides a degree of flexibility, which assists the modeler in creating geologically realistic hydrostratigraphic models. 

The idea is to create a suite of hydrostratigraphic models, which span a realistic subset of possible model architectures, as 

opposed to a deterministic model, which spans a single possible model architecture. The term realistic refers to models, which 175 

comply with the underlying data sets mentioned above, i.e. borehole lithological logs, geophysical resistivity models, and the 

cognitive geological model. The underlying datasets have associated uncertainties describing ranges of possible models. The 

suite of equiprobable hydrostratigraphic models can be used as input to a groundwater model, making it straightforward to test 

the sensitivity of specific groundwater model predictions. 

3.1 MPS methodologies  180 

MPS methods use a training image (TI) to condition a model simulation to a prior geological conceptualization. As opposed 

to two-point statistics, the joint variabilities of multiple-points (MP) are assessed at the same time during simulation. The MP 

joint variabilities cannot be inferred from sparse data and are therefore taken from a relevant exhaustive TI. The justification 

that a given TI can be used to infer the joint variability of MPs heavily lies on the choice of a relevant TI. A TI should always 

contain geologically realistic and relevant information (Journel and Zhang 2006). Finding and/or creating a realistic TI is thus 185 

important to the MPS methodology. A TI is essentially any categorical or continuous image. which contains the geological 

conceptualization of the target variable (Mariethoz and Caers 2014a). It is not a subsurface model itself, but a quantitative 

conceptual depiction of it. The user chooses the TI based on his/her prior understanding of the local hydrogeological system. 

The TI does not need to carry any locally accurate information, i.e. it does not need to contain the actual geographical positions 
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of the hydrostratigraphic architecture, just the general patterns. It needs to reflect a prior geological- or structural concept 190 

(Strebelle and Journel 2001). 

The MPS methods chosen in this study have been selected to reflect recent advances in MPS methods. The MPS methods in 

this study include: the “single normal equation simulation” (snesim) (Strébelle and Journel 2000) implemented in the Stanford 

Geostatistical Modeling Software (SGeMS), “direct sampling simulation” (DS) (Mariethoz et al. 2010) implemented in DeeSse 

(Straubhaar 2011), and “image quilting simulation” (iqsim) (Hoffimann et al. 2017) implemented in ImageQuilting.jl. 195 

3.1.1 Single normal equation simulation - snesim 

The snesim method is a traditional MPS method. It fits into the so-called “probability framework” where geophysical models 

(not data) are considered soft information, and as such needs to be converted into probabilities. Suppose we have a categorical 

random variable S which has 𝐾 possible states (𝑠𝑘 , 𝑘 = 1, … , 𝐾), i.e. there are 𝐾 hydrostratigraphic units. For each cell in the 

target sampling grid a probability 𝑝𝑟𝑜𝑏{𝑠𝑘} is defined for each of the 𝐾 states, so that for a given grid cell, denoted 𝑐𝑒𝑙𝑙𝑖: 200 

𝑝𝑟𝑜𝑏{𝑐𝑒𝑙𝑙𝑖} = ∑ 𝑝𝑟𝑜𝑏{𝑠𝑘} = 1𝐾
𝑘=1 ,          (1) 

where 𝑖 ∈ {1, … , 𝑁}, and the sampling grid has a total of N cells. The crux is then to translate the geophysical data into the 

probabilities described in equation (1). The collection of all probabilities for the entire sampling grid is also referred to as a 

probability map (2D) or probability grid (3D). The translation of the soft data is usually carried out based on a prior 

understanding of the petrophysical-hydrostratigraphic relationship, and will be discussed further later in the paper. For a 205 

detailed description of the more general petrophysical-lithological relationship, the reader is referred to e.g. Barfod et al. (2016) 

and Beamish (2013). The probability grids are used to constrain the simulation using the so-called tau model (Journel 2002). 

The probability grid approach is intuitive, and allows the modeler to incorporate any desired datasets or variables into the 

probability map. Examples of soft data are any type of geophysical soft data and/or prior information, which can be translated 

into probabilities. 210 

In snesim, the TI is stored in a dynamic data structure called a search tree. The search tree is a database and can be seen as a 

condensed summary of the full TI. It contains the spatial information to which the simulation is conditioned; for more detail 

see Strebelle (2002). To avoid repetitive scanning of the TI, which is computationally expensive, the TI is stored in a search 

tree database ahead of the simulation (Roberts 1998). This is done once. TI patterns can then be retrieved from the database 

without scanning the entire TI. Depending on the amount of detail stored in the search-tree this can be quite CPU intensive, 215 

since the entire search tree is stored in memory, and therefore there is an upper limit to the size of the search-tree pattern 

database. However, advances in computers have increased the upper limit for available CPU.  

Another caveat of snesim is the usage of multiple-grids (Tran 1994). Due to limitations in relation to the search neighborhood, 

the simulation of structures on all scales requires the usage of multiple grids. The simulation is carried out on a series of 

multiple simulation grids with varying density, ensuring pattern reproduction at all scales. The search tree formulation and 220 

multiple grid approach add to the overall complexity of parameterization in snesim, but at the same time ensure stable and 

reliable MPS modeling results. The increased number of user -defined parameters makes it less intuitive, since it is relatively 

difficult to determine the optimal parameter values for a given dataset. 

3.1.2 Direct sampling simulation - DS 

The Direct Sampling Simulation (DS) method consists, for the simulation of each cell, in randomly scanning the TI until a 225 

pattern similar to the pattern centered at the simulated cell is found, and then in copying the value in the center of the pattern 

from the TI to the simulation grid. As a consequenceConsequently, contrary to snesim, no probability is explicitly computed 

to draw a value at a simulation grid cell. In this paper, we use the DeeSse implementation of DS, presented by Straubhaar 
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(2011). This bypasses the necessity of saving spatial patterns in a search tree database; instead, spatial patterns are conditioned 

by directly scanning the TI.  230 

One issue which needs to be solved is how to constrain a soft data variable. In DS, this is accomplished by introducing an 

auxiliary variable. The auxiliary variable is roughly a translation of the TI into a soft data variable. Suppose a forward operator, 

denoted by 𝐺, represents the physical model, which translates the subsurface hydrostratigraphic units into the continuous soft 

data variable, as when scanning the near surface with a geophysical instrument and subsequently process and interpret the data 

into the actual petrophysical parameter. Then we can define an approximate forward operator G* (Mariethoz and Caers 2014b). 235 

The G* operator is an operator which is used to translate the TI into a spatially overlapping soft data variable. However, in 

practice creating a G* operator requires several steps. Based on the modeling setup of this study, we will briefly review the 

required steps. Firstly, the TI needs to be populated with relevant resistivity values. The resulting populated resistivity grid 

does, however, not reflect the physical model, G, which translates the subsurface hydrostratigraphic units into subsurface bulk 

resistivity. To properly reflect the G operator additional complexity needs to added, such as: smooth layer boundaries, loss of 240 

resolution with depth, limited resolution capabilities, the instrument footprint etc. This can be achieved by using either an 

approximate 1D or a full 3D forward modeling code to translate the populated resistivity models into synthetic data reflecting 

actually measured field data. These data, the forward responses then need to be processed and inverted back to resistivity 

models, which now constitute an auxiliary variable, which reflects the complexities involved with the SkyTEM system. The 

auxiliary variable and the categorical hydrostratigraphic variable are combined to create a multivariate, or bivariate TI. The 245 

bivariate TI consists of a categorical variable, e.g. the three hydrostratigraphic units, and the geographically overlapping 

continuous auxiliary variable, representing the soft data variable. The setup used in this paper, avoids the usage of the G* 

operator to create the auxiliary variable, since the reconstructed resistivity grids and cognitive hydrostratigraphic model grids 

geographically overlap. The reconstructed resistivity grids can thus directly be used as an auxiliary variable for the cognitive 

hydrostratigraphic model TI. The bivariate TI constituted of collocated categorical hydrostratigraphic units (cognitive model / 250 

primary variable) and resistivity values (auxiliary variable) contains information regarding the relationship between these 

variables. The simulation is then conditioned against the bivariate TI by using a so-called distance measure. Distance measures 

are designed to compare the similarity of two sets of spatial patterns to each other. The idea is that similar patterns have 

relatively small distances, while dissimilar patterns have relatively large distance values. Conditioning against the MP 

information contained in the bivariate TI enables the ability to find probable spatial patterns, which also agree with the soft 255 

data variable.  

DS is more flexible than traditional MPS methods, such as snesim. As no search-tree database is required, the multiple grid 

formulation used in snesim is not required in DS, which effectively reduces the number of parameters and makes the 

parametrization relatively simple. Furthermore, one can simulate continuous variables, and/or discrete variables with no 

limitation to the maximum number of categories (e.g. hydrostratigraphic units). In our case, any number of geophysical datasets 260 

collocated or not, can be included as long as a corresponding auxiliary variable is added to the multivariate TI. However, it 

can be a cumbersome process generating the auxiliary variable. Furthermore, it is even possible to use probability grids in 

place of the actual soft data variable, as in snesim, if desired (Mariethoz et al. 2015). Depending on the setup and dataset, DS 

can be computationally as fast as snesim. Moreover, the DS implementation used in this work is amenable to scripting yielding 

the possibility of improving computation times on computer clusters or servers, if available. 265 

3.1.3 Image quilting simulation - iqsim 

The image quilting simulation (iqsim) method has been borrowed from the computer vision literature (Efros and Freeman 

2001). The algorithm is originally designed to synthesize and/or replicate patterns from 2D images, but has since been modified 

to accommodate conditioning data and 3D geoscience problems (Mahmud et al. 2014). The concept of the iqsim method is 
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straightforward. In essence, iqsim cuts the TI into user defined patches or blocks, and then reassembles the patches to create a 270 

simulation. The difficult part is how to re-assemble the patches, to create meaningful and seamless realization results, which 

can be constrained to a soft data variable. These difficulties have been solved, and for more detail see e.g. Hoffimann et al. 

(2017)1. A great advantage of the iqsim method is its computation time. It has a similar setup to DS, regarding the usage of 

auxiliary variables. The iqsim method is new within the field of groundwater and environmental modellingmodeling, and for 

this paper the open-source Julia implementation by Hoffimann et al. (2017) is utilized. So far, this code contains the ability to 275 

use masked grids, i.e. grids where only specified grid cells are simulated, conditioning hard and soft data, and running 

simulations on the computer Graphics Processing Unit (GPU), yielding computationally fast simulation of hydrostratigraphic 

models on a personal computer. As with DS, there are no limitations to the number of data events, since the search-tree structure 

is avoided, no multiple-grids are required, effectively making for a simple parameterization. 

3.2 Reconstructing incomplete dense geophysical datasets 280 

A common problem in hydrogeophysics is that datasets, albeit spatially dense, do not cover the entire modellingmodeling grid. 

In electromagnetic methods human infrastructure causes electromagnetic interference with the signal. Such noisy soundings, 

referred to as coupled soundings, are removed during processing, as presented by Auken et al. (2009), resulting in an 

incomplete dataset with gaps scattered throughout the survey area (Figure 1b). Several approaches to manage with incomplete 

datasets exist. One approach is to leave the incomplete dataset as is; meaning gaps are reconstructed during simulation of the 285 

hydrostratigraphic model without spatially constraining the simulation gaps. The gaps are filled out solely by conditioning to 

the TI. Alternatively, dataset gaps can be filled prior to simulation, which is primarily done if the dataset has a high spatial 

density and/or the underlying random variables describing the data are not assumed to be especially complicated. The soft data 

utilized for constraining in this study are SkyTEM models. The raw SkyTEM data undergo processing and inversion (Auken 

et al. 2009), resulting in a series of spatially constrained 1D resistivity models at the sounding locations (Viezzoli et al. 2008) 290 

(Figure 1b). The SkyTEM resistivity models are then assigned to the nearest sampling grid cells by Simple Kriging with a 50 

m search radius. The end result is a spatially dense incomplete 3D resistivity grid (Figure 2a). The high spatial density makes 

it possible to reconstruct the dataset using geostatistical tools, such as pixel based Kriging techniques, a so-called two-point 

statistical tool, for reconstructing incomplete datasets (Goovaerts 1997). Another approach for reconstruction of incomplete 

datasets is the method using DS presented by Mariethoz & Renard (2010). Since the density of the data points is sufficiently 295 

large, the resistivity grid itself can be used as both a TI and soft data variable to stochastically simulate the missing values in 

the resistivity grid, i.e. the gaps in Figure 2a. The MPS dataset reconstruction approach (Figure 2c) is advantageous over the 

variogram based Kriging estimation (Figure 2b) since it only requires setting up a few parameters. Furthermore, the DS 

approach uses MP information to condition the reconstruction of the dataset. Here, it is important to note that the Kriging 

method is an estimation method, while the DS approach is a simulation method. An estimation method estimates a “best” 300 

value, while a simulation method makes a stochastic ensemble of equiprobable guesses. The end result of the DS reconstruction 

approach is an ensemble of stochastic resistivity grids, of which one realization is compared against a corresponding Kriging 

reconstructed grid in Figure 2b and c. The close ups of Figure 2b and c reveal some key differences in the reconstruction of 

gaps using Kriging and DS. The resistive peak fringing the border of the gap in the westernmost resistive buried valley is 

smeared into the gap in the Kriging reconstructed grid; see close up in Figure 2b. However, the single DS reconstruction 305 

presented here does not smear the resistive peak into the gap; see close up in Figure 2c. The usage of MP information in DS 

allows the possibility that the resistive peak is not part of the gap. 

                                                           

1 Software is available at https://github.com/juliohm/ImageQuilting.jl. 
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The uncertainty related to the stochastic resistivity grids is different from the Kriging resistivity grid uncertainty. The standard 

deviation (STD) related to the Kriging reconstructed grid is closely related to the distance to the nearest data point (Figure 2d), 

whereas the uncertainty on the stochastic resistivity grids reveals values much more correlated to the patterns of the geophysical 310 

information. 

 

Figure 2: Comparison of the deterministic Kriging and stochastic DS resistivity grid reconstruction and their corresponding 

standard deviation. The presented horizontal slice is centered on 20 mbsl. a) shows the incomplete resistivity grid using simple 

Kriging with a Kriging radius of 50m, b) shows a close-up of the reconstructed resistivity grid using Kriging with a close-up of a 315 
reconstructed resistive valley, cc) shows the reconstructed resistivity grid using DS, d) shows the full reconstructed resistivity grid 

using Kriging, e) a single realization of the reconstructed resistivity grid using DS with the same close-up df) the standard deviation 

from the reconstructed resistivity grid ingrids of b) & d) using Kriging, and eg) the standard deviation calculated from an ensemble 

of 51 stochastic reconstructed resistivity grids using DS. 

It is important to note that the resistivity parameter uncertainty has neither been included in the Kriging nor the DS 320 

reconstruction, enabling the comparison of the STD maps. As an example, a gap present in the homogeneous conductive units 

with resistivity values between ~2-8 Ωm, has a low STD. According to the TI there is a high probability of finding a conductive 

unit in a gap surrounded by only conductive units due to the homogeneity of such conductive units. However, gaps fringing 

the border of two contrasting resistivities have large STD values, since information regarding the exact location of the boundary 

is missing in the TI; e.g. the large STD value at the eastern border of the survey area seen in Figure 2e. 325 

In summary, the uncertainty of the DS reconstruction provides additional information regarding the reconstructed resistivity 

patterns over for instance a kriging approach. Also, the MPS reconstruction of the incomplete dataset is less smooth, easier to 

parameterize, stochastic, and the uncertainty is related to pattern reconstruction and not the distance to the nearest data point.  

3.3 Hydrostratigraphic modellingmodeling setup 

The MPS grid reconstruction procedure is used to generate an ensemble of resistivity grids without gaps (Mariethoz and Renard 330 

2010). The reconstructed resistivity grids are used as soft data for constraining the simulation of the hydrostratigraphic models, 

with the cognitive 3D hydrostratigraphic model used as a TI. The full cognitive geological model contains a total of 42 different 
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geological units (Høyer et al. 2015a), which have been grouped together to form three key hydrostratigraphic categories. The 

three categories are as follows: 

1. sand & gravel: Miocene sand, Quaternary meltwater sand and sand till, within and above the Quaternary buried 335 

valleys. 

2. glacial clay: Quaternary clay till and, meltwater clay within and above the buried valleys. 

3. hemipelagic clay: Hemipelagic, fine grained Paleogene and Oligocene clays.  

The simplified cognitive hydrostratigraphic model is used as a TI, and contains the most significant hydrostratigraphic units. 

Such 3D voxel TIs are usually not readily available, and in most cases 3D TIs are fabricated ad-hoc, and are merely conceptual. 340 

However, in this case the TI is actually the model we wish to simulate. The justification for this choice of TI lies in that this 

study is a proof-of-concept study, where three different MPS methods are compared against each other. Using a detailed TI 

containing the desired hydrostratigraphic concepts showcases how well the MPS methods perform in a stochastic 

hydrostratigraphic modellingmodeling workflow with a relevant TI. 

The overall workflow can be seen in Figure 3. In detail, the steps are: 345 

1) The SkyTEM resistivity grids are reconstructed using the methodology of Mariethoz & Renard (2010) as 

described in section 3.2 “Reconstructing incomplete dense geophysical datasets”.  

2) The ensemble of reconstructed SkyTEM resistivity grids is used as soft data for constraining the three MPS 

methods: 

a. A reconstructed resistivity grid and the TI are used in the snesim framework: 350 

i. Using histograms created using the Resistivity Atlas approach presented by Barfod et al. 

(2016) (Figure 4c and d) a single reconstructed resistivity grid is translated into a set of 

probability maps (Figure 5) 

ii. The TI is used for conditioning in conjunction with the probability maps, which are used for 

spatially constraining the snesim simulations using the tau model (Journel 2002). The end 355 

result is a realization of a hydrostratigraphic model 

b. A reconstructed resistivity grid is selected and used in combination with the TI for running DS: 

i. The soft data variable (the resistivity grid) is used for both constraining and as the auxiliary 

variable. The soft data grid is directly available as an auxiliary variable since it geographically 

overlaps with the categorical TI variable. The combination of the cognitive hydrostratigraphic 360 

model and auxiliary variable create a bivariate TI 

ii. The bivariate TI is used together with the soft data grid to simulate a realization of the 

hydrostratigraphic model 

c. A reconstructed resistivity grid is used together with the TI for running iqsim: 

i. As with DS, the soft data grid is used as an auxiliary variable, and for spatially constraining 365 

the simulations. The TI and auxiliary variable are combined into a bivariate TI. 

ii. The bivariate TI is used to create a simulation of the hydrostratigraphic model. 

Steps 2a-c are repeated N times, once for each reconstructed resistivity grid. In this study N=51. For each of the 51 

reconstructed soft data grids three simulations have been run, one simulation per MPS methods: snesim, DS and iqsim, yielding 

a total of 153 hydrostratigraphic realizations. 370 
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Figure 3: Workflow diagram showing the stochastic modellingmodeling procedure for a single realization. Each simulation is run 

with snesim, DS and iqsim. 

3.4 The hydrostratigraphic-resistivity relationship 

Spatially constraining the simulations to the soft data requires information regarding the relationship between 375 

hydrostratigraphic units and, in this case, resistivity values. In DS and iqsim the information is contained in the bivariate TI, 

which in this case consists of a categorical and a continuous auxiliary variable. As discussed in section 3.1.2 Direct sampling 

simulation - DS, the setup used in this paper avoids using the G* operator due to the geographically overlapping resistivity and 

cognitive hydrostratigraphic model grids. This also enables summarizing the hydrostratigraphic-resistivity relationship as a set 

of histograms (Figure 4a and b). The histograms summarizing the hydrostratigraphic-resistivity relations used in DS and iqsim 380 

are seen in Figure 4a, and the corresponding summary statistics are found in Table 1. These histograms are created by selecting 

one of the reconstructed resistivity grids and combining it with the TI. The same relationship is seen in Figure 4b, however, 

instead of using the DS reconstructed resistivity grid the Kriging reconstructed grid is used instead. The main difference 

between the two sets of histograms are a slightly larger separation of the sand & gravel and the glacial clay for the Kriging 

reconstructed grid (Figure 4a and b) (Table 1). For the DS reconstructed grid the median values for sand & gravel and glacial 385 

clay histograms are 48 Ωm and 32 Ωm, respectively. While for the Kriging reconstructed grid the median values are 46 Ωm 

and 27 Ωm, respectively. Furthermore, the Kriging sand & gravel histogram is wider with an interquartile range of 38 Ωm, 

which for the DS grid was 31 Ωm. 

 

Figure 4: The hydrostratigraphic-resistivity relation shown as a series of histograms; a) shows the histograms created by categorizing 390 
the DS reconstructed resistivity grid according to the simplified hydrostratigraphic model created by Høyer et al. (2015a), b) the 

histograms created by categorizing a resistivity grid which has been reconstructed using Kriging, c) the histograms resulting from 

the Resistivity Atlas approach presented by Barfod et al. (2016), and d) the Resistivity Atlas histograms have been reproduced based 

on the summary statistics from c) to create a set of lognormal histograms. 
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In the snesim framework constraining to the soft data requires a translation of the soft resistivity data into a set of probability 395 

maps, one for each of the hydrostratigraphic units. This is achieved by using prior information regarding the hydrostratigraphic-

resistivity relationship. Often this information is difficult to obtain, unless a large number of boreholes are available. If 

boreholes are readily available the Resistivity Atlas framework (Barfod et al. 2016) can be utilized. The raw Resistivity Atlas 

histograms are seen in Figure 4c. Due to the general coarse nature of the histograms the mean and interquartile range from the 

coarse histograms (Figure 4c) were computed and used to create a set of smooth histograms with identical summary statistics 400 

(Figure 4d). By comparison the Resistivity Atlas histograms are quite similar to the Kriging grid histograms (Figure 4b). 

However, the separation between the sand & gravel and glacial clay histograms is even larger in the Resistivity Atlas 

histograms. The respective median values are 59 Ωm and 34 Ωm. The sand & gravel histogram also has a quite large spread 

with an interquartile range of 43 Ωm (Figure 4c and d) (Table 1). 

Table 1: The summary statistics table for the histograms in Figure 4. The first section, named DS, shows summary statistics for the 405 
three histograms seen in Figure 4a. The second section, named Kriging, shows the summary statistics for the histograms in Figure 

4b. The last section, labelled Resistivity Atlas, shows the summary statistics for the Resistivity Atlas histograms Figure 4c and d. All 

the values presented in the table are resistivities [Ωm]. 

 25th percentile Median 75th percentile IQR 

DS -- -- -- -- 

Sand & gravel 34.2 47.6 65.5 31.3 

Glacial clay 21.1 31.8 42.9 21.8 

Hemipelagic clay 2.2 2.6 3.7 1.5 

Kriging -- -- -- -- 

Sand & gravel 29.7 46.4 67.9 38.2 

Glacial clay 17.2 26.6 38.2 21.0 

Hemipelagic clay 1.9 2.4 3.6 1.8 

Resistivity Atlas -- -- -- -- 

Sand & gravel 38.4 59.2 81.4 43.0 

Glacial clay 24.2 33.9 46.7 22.5 

Hemipelagic clay 2.1 2.5 3.4 1.3 

The hemipelagic clays have unique properties. They are aquitards with low hydraulic conductivity and often used as a 

hydraulically confining no-flow boundary at the bottom of a groundwater model in parts of Denmark. When hemipelagic clay 410 

is encountered during drilling, the drilling is halted and generally hemipelagic clay is sparse in Danish borehole lithology logs. 

For this reason the Resistivity Atlas based on Transient Electromagnetic data does not provide a lot of information on 

hemipelagic clays. However, the hemipelagic clays are regionally extensive and homogeneous. From wireline resistivity logs 

in eastern Jutland they are found to be conductive, with median resistivities ranging between 4-7 Ωm. Based on this knowledge 

the hemipelagic clay histograms in Figure 4c and d are created. 415 

The model setup is different for the three MPS methods. When running DS and iqsim the hydrostratigraphic-resistivity 

relationship is explicitly given due to the geographically overlapping resistivity grid and hydrostratigraphic TI. Normally the 

auxiliary variable has to be created for the given TI using the G* operator. The full G* approach has been elaborated in section 

3.1.2 Direct sampling simulation - DS, and requires prior knowledge regarding the hydrostratigraphic-resistivity relationship, 

much like when creating the probability grid for snesim. The snesim setup, however, avoids using the G* operator approach, 420 

and in place the Resistivity Atlas histograms (Figure 4c and d) can be used to directly translate the resistivity grid into 

probability grids (Figure 5). 
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Figure 5: The SkyTEM soft data grids are translated into three sets of probability grids, one for each lithological category to be 

simulated; a) shows one of the reconstructed SkyTEM grids, the top frame is a horizontal slice in the 3D grid at 20 mbsl, the second 425 
frame is a horizontal slice of the grid layer at 60 mbsl and the bottom frame shows the vertical cross-section intersecting at UTMY 

coordinate 6230150 m, b) shows the sand & gravel probability grid, c) shows the glacial clay probability grid, and d) shows the 

hemipelagic clay probability grid. The horizontal slices and the vertical cross sections of b), c) and d) are the same as the ones 

presented in a). 

3.5 The modified Hausdorff Distance – a measure for similarity 430 

Comparing 153 3D models each with 1,187,823 grid cells is not trivial. Visual comparison is used mainly to check if the results 

are geologically realistic, but a detailed visual comparison would be time consuming and subjective. Therefore, a set of tools 

are used to compare how similar the simulation results are to each other, and how different they are from the TI. 

In this study, a distance measure is used as a measure of similarity between 3D model simulations. The chosen distance measure 

is the modified Hausdorff Distance (MHDDMH), which is a measure for similarity between two binary images, i.e. dissimilar 435 

images have relatively large distances (Figure 6e), while similar images have relatively small distances (Figure 6c). Identical 

images have a distance of exactly zero (Figure 6b). Firstly, the images we wish to study are summarized as binary images. The 

pixels for each object we wish to compare are set to one, while the remaining pixels are disregarded as a background variable 

and set to zero. For a pair of images, ImA and ImB, to be compared, two point sets are defined: Α = {𝑎1, 𝑎2, … , 𝑎𝑁𝑎
} and Β =

{𝑏1, 𝑏2, … , 𝑏𝑁𝑏
}, where 𝑎𝑖, 𝑖 ∈ {1,2, … , 𝑁𝑎} and 𝑏𝑗 , 𝑗 ∈ {1,2, … , 𝑁𝑏} are positional vectors containing the x, y and z positional 440 

coordinates in ImA and ImB for the binary object pixels only, i.e. the background variable positions are not included in the 

point sets. Then the MHDDMH between point sets A and B is defined as follows: 
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𝑀𝐻𝐷(Α, Β) = 𝑚𝑎𝑥 (
1

𝑁𝑎
∑ 𝑚𝑖𝑛𝑏𝜖Β‖𝑎 − 𝑏‖𝑎𝜖Α ,

1

𝑁𝑏
∑ 𝑚𝑖𝑛𝑎𝜖Α‖𝑏 − 𝑎‖𝑏𝜖Β ) DMH(Α, Β) = max (

1

Na
∑ minbϵΒ‖a −aϵΑ

b‖ ,
1

Nb
∑ minaϵΑ‖b − a‖bϵΒ ) ,     (2) 

where 𝑁𝑎 and 𝑁𝑏 is the total number of points in point sets A and B, respectively. In the context of this paper, 𝐴 and 𝐵 are our 445 

3D voxel models containing the objects we wish to compare. The Euclidian distances between a given point, 𝑎 from point 

set 𝐴, and all points in point set 𝐵 are computed, and 𝑚𝑖𝑛(… ) selects the smallest of these distances. This is repeated for all 

points in point set 𝐴, and the average is computed. The same operations are performed for point set B. The maximum value of 

these two results is then returned. 

Dubuisson and Jain (1994) found that the MHDDMH was the best performing distance measure out of 24 different Hausdorff 450 

based distance measures in relation to objects matching of images. In order to make the pairwise MHDDMH computation 

tractable in 3D, we approximate the MHDDMH between solid geobodies by the MHDDMH between their boundaries. In short, 

the boundary is the selection of the edges or outlines of the geometric objects, such that the objects are now represented by 

their outlines instead of the entire objects; see Figure 6b-e. The Roberts Cross Operator (Roberts 1998, Senthilkumaran and 

Rajesh 2009) is used to select the boundary. Instead of defining the point sets based on the geometric objects themselves, only 455 

their outlines are included in the point sets. The point sets containing the outline of the geometric objects are then compared 

using the MHDDMH. 

A 2D example is presented to illustrate the overall MHDDMH concept in Figure 6. The 3D hydrostratigraphic model and the 

DS modellingmodeling results are simplified into 2D horizontal cross-sections from the modellingmodeling grid layer centered 

on 20 mbsl. The initial step is to create a binary version of the hydrostratigraphic simulation model (Figure 6a and b). 460 

Here,Ideally, it would be optimal to compute the DMH between each of the hydrostratigraphic categories of the model. 

However, due to computational limitations of the utilized DMH implementation, the valley categories, i.e. sand & gravel and 

glacial clay, were re-categorized intoas a single categoryunit, and hemipelagic clay was used as the background variable. After 

categorization, the Roberts cross operator is used to find the boundary of the objects (Figure 6b). The procedure of creating 

the binary image and outlines is carried out for all the 51 DS simulations. For illustration purposes, this example is only 465 

computed for the horizontal cross-section centered on 20 mbsl. The MHDDMH is calculated between each of the 51 horizontal 

binary maps, representing the DS simulations, and the binary hydrostratigraphic model. The resulting MHDsDMH are then 

sorted in ascending order and the binary version of the realizations corresponding to the 1st, 25th, and 51st MHDDMH values are 

presented in Figure 6c-e. 

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Subscript

Formatted: Font: Not Italic



 

15 

 

 470 

Figure 6: A 2D example of the binary categorization of the hydrostratigraphic models and example of the Roberts cross operator 

for edge-tracing; a) a horizontal slice of the hydrostratigraphic model at elevation interval centered on 20 mbsl, b) the result of the 

binary categorization of the hydrostratigraphic model into two categories: 1) Non hemipelagic clay (black) and 2) hemipelagic clay 

(white). The boundary of the objects in the binary image is shown in red. c) shows the object and boundary of the objects for the DS 

simulation which has the smallest Modified Hausdorff Distance (MHDDMH), i.e. is the most similar to b). The MHDDMH value is 475 
shown in d) shows the DS simulation, which has the 25th largest MHDDMH and e) shows the DS simulation with the largest MHDDMH 

and therefore is least similar to the hydrostratigraphic model in b). 

From here on, we leave the 2D example, and consider the entire 3D model. In this study, the MHDDMH is used as a global 

distance measure. A more in-depth analysis of the MHDDMH results is gained by using the “analysis of distance” (ANODI) 

method (Tan et al. 2014). The overall goal of ANODI is to provide a framework for comparing realizations from different 480 

stochastic MPS methods. The framework presented by Tan et al. (2014) uses the following definition of ‘best’: “one algorithm 

A is better than an algorithm B if the training image statistics are reproduced better while at the same time the space of 

uncertainty (the variability between realizations) is larger“. In the particular MPS setup used in this study, the TI is a relevant 

cognitive hydrostratigraphic model and geographically overlaps with the hydrostratigraphic MPS realization grids. Hence, the 

MPS realizations should portray similarity to the cognitive model. In this study, a further complexity to the definition of best 485 

is added. An algorithm with a large space of uncertainty is not necessarily better, if the resulting models do not reflect the 

underlying datasets. 

The initial step is to create a matrix containing all MHDDMH values between all 153 realizations, and between the individual 

realizations and the cognitive model. It is similar to a covariance matrix, but instead of containing covariance values, it contains 

MHDDMH values. The usage of bold letters refers to a matrix. The full 𝑴𝑯𝑫𝐃MH is definedcomputed as follows: 490 

𝑴𝑯𝑫𝒊,𝒋 = 𝑀𝐻𝐷(𝑟𝑒𝑎𝑙𝑖 , 𝑟𝑒𝑎𝑙𝑗), 𝑤ℎ𝑒𝑟𝑒 {
𝑖 = 1, … , (𝑁𝑟𝑒𝑎𝑙𝑠 + 1)
𝑗 = 1, … , (𝑁𝑟𝑒𝑎𝑙𝑠 + 1)

      (3) 

WhereDMH
(i,j)

= DMH(reali, realj), where {
i = 1, … , (Nreals + 1)
j = 1, … , (Nreals + 1)

      (3) 

Where DMH
(i,j)

 denotes the DMH at position (i,j) of the DMH-matrix, 𝑟𝑒𝑎𝑙𝑖  and 𝑟𝑒𝑎𝑙𝑗  denotes the individual hydrostratigraphic 

realizations, 𝑁𝑟𝑒𝑎𝑙𝑠 is the total number of realizations, in this case 𝑁𝑟𝑒𝑎𝑙𝑠 = 153, and last row and column of 𝑴𝑯𝑫DMH 
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contains the distances between the realizations and the cognitive model, i.e. 𝑟𝑒𝑎𝑙𝑁𝑟𝑒𝑎𝑙𝑠+1 represents the cognitive model. One 495 

𝑴𝑯𝑫DMH matrix is created for all three MPS methods. For each of the three MPS methods, the 𝑴𝑯𝑫DMH can be evaluated 

by itself by calculating the MHDDMH variability,  𝑀𝐻𝐷𝑣𝑎𝑟  𝐷MH,var: 

𝑀𝐻𝐷𝑣𝑎𝑟 =
1

(𝑁𝑟𝑒𝑎𝑙𝑠/3)2
∑ ∑ (𝑴𝑯𝑫𝐢,𝐣)

𝑀𝑃𝑆𝑒𝑛𝑑,𝑗

𝑗=𝑀𝑃𝑆𝑠𝑡𝑎𝑟𝑡,𝑗

𝑀𝑃𝑆𝑒𝑛𝑑,𝑖

𝑖=𝑀𝑃𝑆𝑠𝑡𝑎𝑟𝑡,𝑖
       (4) 

𝐷MH,var =
1

(𝑁reals/3)2
∑ ∑ (𝐃MH

(i,j)
)

𝑀𝑃𝑆end,𝑗

𝑗=𝑀𝑃𝑆start,𝑗

𝑀𝑃𝑆end,𝑖

𝑖=𝑀𝑃𝑆start,𝑖
       (4) 

where 𝑁𝑟𝑒𝑎𝑙𝑠𝑁reals is the size of 𝑴𝑯𝑫DMH, in this study 𝑁𝑟𝑒𝑎𝑙𝑠 = 3 ∗ 51 = 153, 𝑀𝑃𝑆𝑠𝑡𝑎𝑟𝑡,𝑖𝑀𝑃𝑆start,𝑖 and 𝑀𝑃𝑆𝑒𝑛𝑑,𝑖𝑀𝑃𝑆end,𝑖 500 

are the start and end indexes for the entries related to the given MPS method, 𝑴𝑯𝑫𝐢,𝐣DMH
(i,j)

 

is 𝑀𝐻𝐷(𝑟𝑒𝑎𝑙𝑖 , 𝑟𝑒𝑎𝑙𝑗)𝐷𝑀𝐻(𝑟𝑒𝑎𝑙𝑖 , 𝑟𝑒𝑎𝑙𝑗). Note that the distances between the individual realizations and the cognitive model 

are not included in the 𝑀𝐻𝐷𝑣𝑎𝑟 . DMH,var. The 𝑀𝐻𝐷𝑣𝑎𝑟  DMH,var equates to computing the average of the MHDDMH values 

between the realizations of a single MPS method. The larger the 𝑀𝐻𝐷𝑣𝑎𝑟𝐷MH,var the more dissimilar the simulation results, 

meaning they portray a large set of possible hydrostratigraphic architectures. Using equation (4) it is also possible to compute 505 

the distances between the realizations of different MPS methods, e.g. the average MHDDMH between snesim and DS. 

The other evaluation measure, which can be calculated from 𝑴𝑯𝑫 DMH, is the distance between the realizations and the 

cognitive hydrostratigraphic model, or TI, which is summarized by the 𝑀𝐻𝐷𝑐𝑜𝑔, DMH,cog, which is computed as follows: 

𝑀𝐻𝐷𝑐𝑜𝑔𝐷𝑀𝐻,𝑐𝑜𝑔 =
1

𝑁𝑟𝑒𝑎𝑙𝑠/3
∑ (𝑴𝑯𝑫𝐢,𝐍𝒓𝒆𝒂𝒍+𝟏)

𝑀𝑃𝑆𝑒𝑛𝑑,𝑖

𝑖=𝑀𝑃𝑆𝑠𝑡𝑎𝑟𝑡,𝑖

1

𝑁reals/3
∑ (𝐃MH

(i,Nreal+𝟏)
)

𝑀𝑃𝑆end,𝑖

𝑖=𝑀𝑃𝑆start,𝑖
   

     (5) 510 

where, again, 𝑁𝑟𝑒𝑎𝑙𝑠𝑁reals = 153, 𝑀𝑃𝑆𝑠𝑡𝑎𝑟𝑡,𝑖𝑀𝑃𝑆start,𝑖  and 𝑀𝑃𝑆𝑒𝑛𝑑,𝑖𝑀𝑃𝑆end,𝑖  are the start and end indexes for the entries 

related to the given MPS method and 𝑴𝑯𝑫i,N𝑟𝑒𝑎𝑙+1  𝐃MH
(i,Nreal+1)

is the 𝑀𝐻𝐷(𝑟𝑒𝑎𝑙𝑖 , 𝑐𝑜𝑔. 𝑚𝑜𝑑𝑒𝑙).𝐷MH(𝑟𝑒𝑎𝑙𝑖 , cog. model). 

The 𝑀𝐻𝐷𝑐𝑜𝑔  DMH,cog is the average MHDDMH between each individual realization and the cognitive hydrostratigraphic model. 

The larger the average MHDDMH the more dissimilar the hydrostratigraphic realizations are from the cognitive 

hydrostratigraphic model. The reason we wish to compare the distance to the cognitive model, is that the cognitive model, 515 

geographically overlaps with the hydrostratigraphic MPS realizations. 

It is also possible to evaluate the 𝑴𝑯𝑫DMH using dimensional reduction techniques. Such techniques help us view the high 

dimensional 𝑴𝑯𝑫DMH in a 2D and/or 3D map. Such a plot gives us a visual representation of the most significant structures 

of the 𝑴𝑯𝑫DMH. For dimensional reduction we use a variation of so-called Stochastic Neighbor Embedding (SNE) (Hinton 

and Roweis 2002). The technique is called t-distributed Stochastic Neighbor Embedding, or t-SNE (Maaten and Hinton 2008). 520 

The t-SNE method is advantageous over other SNE techniques, since it is easier to optimize and produces better visualizations. 

The idea is to visualize the level of similarity of individual entries, or distances in the 𝑴𝑯𝑫DMH. The overall goal is to place 

each MHDDMH value as a point in a 2D space where the relative distances between the point values reflect the degree of 

similarity. Similar points are close to each other, while dissimilar points are far from each other. This is achieved by t-SNE. 

3.6 Distance to boreholes 525 

In reservoir modellingmodeling, boreholes are considered to be hard information, due to their overall high quality. However, 

in many surveys related to groundwater modellingmodeling, boreholes cannot be considered as reliable hard data due to 

variable quality. Such as seen in Barfod et al. (2016) and He et al. (2014) where boreholes were divided into quality groups. 

Therefore, the simulations are run without constraining against boreholes, and then the realizations are compared against the 

boreholes as an independent measure of geological realism. A method for comparing similarity between the simulated 530 

hydrostratigraphic models and the boreholes was developed. The method does not use the MHDDMH, which has previously 
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been used for measuring distances. Instead, the simple Euclidean distance is used to measure the average distance between 

each individual hydrostratigraphic realization and the borehole dataset. The first step is to sort the borehole lithology logs 

according to the respective hydrostratigraphic units, to create a hydrostratigraphic log; see left half of Figure 7. Once this has 

been carried out three sets of binary and regularized logs are created from the hydrostratigraphic log; see right half of Figure 535 

7. For each sampling grid interval, the presence of the given hydrostratigraphic category, say sand & gravel, is saved in the 

binary log. The end result is a log which states whether or not sand & gravel is present within the given sampling grid interval; 

active if present and inactive if not present. Three such binary logs are created, one for each of the hydrostratigraphic categories, 

i.e. sand & gravel, glacial clay and hemipelagic clay (Figure 7). A binary log grid is created by simply assigning the binary 

active values to the grid cell in which they are present. The Average Euclidian Borehole Distance, AEBDDAEB, between the 540 

binary logs and a given realization,  𝑟𝑒𝑎𝑙  real, for a given hydrostratigraphic category,   ℎ𝑦𝑑𝑟𝑜.  𝑐𝑎𝑡𝑗  where 𝑗 ∈

{1, . . . , 𝑁ℎ𝑦𝑑𝑟𝑜.  𝑐𝑎𝑡𝑠}, is calculated as follows: 

𝐴𝐸𝐵𝐷(ℎ𝑦𝑑𝑟𝑜.  𝑐𝑎𝑡𝑗) =
1

𝑁𝑎𝑐𝑡𝑖𝑣𝑒
∑ min(‖𝑏𝑖𝑛𝑙𝑜𝑔𝑖 − 𝑟𝑒𝑎𝑙(ℎ𝑦𝑑𝑟𝑜.  𝑢𝑛𝑖𝑡𝑗)‖)

𝑁𝑎𝑐𝑡𝑖𝑣𝑒
𝑖=1     (6) 

𝐷𝐴𝐸𝐵(hydro.  cat𝑗) =
1

𝑁active
∑ min(‖𝑏𝑖𝑛𝑙𝑜𝑔𝑖 − 𝑟𝑒𝑎𝑙(hydro.  unit𝑗)‖)

𝑁active
𝑖=1     (6) 

where 𝑏𝑖𝑛𝑙𝑜𝑔𝑖 is ith active cell in the binary log grid, 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 is the number of active cells in the binary log grid, ED is the 545 

Euclidian Distance, and 𝑟𝑒𝑎𝑙(ℎ𝑦𝑑𝑟𝑜.  𝑢𝑛𝑖𝑡𝑗) is the binary realization grid containing only the jth hydrostratigraphic unit, where 

in this case 𝑁ℎ𝑦𝑑𝑟𝑜.  𝑐𝑎𝑡𝑠 = 3. 

The end result is three arrays, one for each hydrostratigraphic unit, each containing one average distance per realization for the 

given MPS method. The distance arrays for each individual MPS method can then be compared to the distance arrays of the 

other MPS methods. 550 
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Figure 7: An example of how a single lithology log is categorized and sorted for the purpose of calculating the borehole distance. 

The first step is to translate the raw lithology log into a hydrostratigraphic log, which is achieved by categorizing the multiple 

lithological categories into a subset of three hydrostratigraphic categories corresponding to the target categories we wish to model. 

Note that some categories do not fit into the overall hydrostratigraphic categories and are therefore not translated, e.g. the meltwater 555 
siltsand category in this example. The final step is then to assign the hydrostratigraphic logs to the regularized sampling grid and 

create one binary log for each of the three target modellingmodeling categories. This is done by simply asking whether or not the 

given hydrostratigraphic category is present (True) or not (False) for the given sampling grid interval. 

4 Results 

The hydrostratigraphic simulation results include 153 3D hydrostratigraphic realizations, each containing 1,187,823 grid cells. 560 

The models can be subdivided into 51 snesim realizations, 51 DS realizations and 51 iqsim realizations. A visual presentation 

of the hydrostratigraphic model or TI, and two realizations for each of the three different MPS methods is seen in Figure 8. 

The cognitive hydrostratigraphic model (Figure 8a) shows clear-cut and smooth buried valley architecture with almost no 

unrealistic short scale variability. Comparing the cognitive hydrostratigraphic model to the stochastic MPS hydrostratigraphic 

models reveals the more erratic nature of both snesim and DS, i.e. both MPS methods yield models containing unrealistic short 565 

scale variability (Figure 8b and c). 

Overall snesim (Figure 8b) and DS (Figure 8c) realizations are similar in nature. In the example provided, Figure 8c, the West-

Northwest - East-Southeast trending glacial clay valley (see box in Figure 8a) is uninterrupted in one realization, but intersected 

by hemipelagic clay in the other realization. In 47 of the 51 snesim realizations, the glacial clay valley is uninterrupted, in the 

remaining 4 realizations the valley is intersected by hemipelagic clay. The presented soft data grid in Figure 5d shows a small 570 

probability of approximately 10% for hemipelagic clay at the position of the valley gap. The 4 realizations which yielded an 

interrupted glacial clay valley amount to 8% of the 51 realizations, which is close to the probability found in the probability 

grids. The DS realizations shows valley architecture with less resemblance to the soft data, i.e. the valleys are not conditioned 

in accordance to the soft data grids. In 11 of the 51 simulation results the valley is intersected by hemipelagic clay, amounting 

to 22% of the 51 realizations. 575 

The iqsim results are the most similar to the cognitive hydrostratigraphic model with regards to unrealistic short scale 

variability, which is generally non-existent. Generally, realizations will reflect the TI, and unrealistic short scale variability is 

only introduced if present in the TI. This is due to the nature of iqsim, which is not a pixel based algorithm, like snesim and 

DS. Instead, iqsim cuts the TI into patches and then reassembles the patches, which means that noise patterns which are smaller 

than the patch size cannot be fabricated, unless actually present in the TI. The iqsim realizations show smooth and clear-cut 580 

valley architecture. The main issue with the iqsim realizations is that artifacts are introduced near the surface of the model, 

evident if the vertical iqsim cross-sections (Figure 8d) are compared to the remaining vertical cross-sections of the TI, snesim 

and DS (Figure 8a-c). This is neither reflected in the resistivity grid (Figure 5) nor in the TI (Figure 8a). Close to terrain 

hydrostratigraphic layers consist of either glacial clays or sand & gravel, and conductive hemipelagic clays are not evident. 

Since the soft data does not support the presence of the hemipelagic clays in the upper part of the hydrostratigraphic model, 585 

the soft data can be concluded to being improperly constrained with this specific setup. Another observation is that in 43 out 

of the 51 realizations, amounting to 84%, the referenced glacial clay valley is intersected by hemipelagic clay. 
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Figure 8: The hydrostratigraphic MPS realizations are presented as horizontal slices centered on 20 mbsl and vertical cross-sections 

intersecting at UTMY 6230150m; a) shows the cognitive hydrostratigraphic model, with a West-Northwest - East-Southeast trending 590 
glacial clay valley marked by a box, b) shows two snesim realizations, c) shows two DS realizations, and d) shows two iqsim 

realizations. 

 

An advantage of the iqsim implementation used (Hoffimann et al. 2017)(Hoffimann et al. 2017) is the favorable computation 

time. On an Intel® HD Graphics Skylake ULT GT2 GPU of a Dell XPS 13 laptop, iqsim runs with an average simulation time 595 

of 10-12 min per realization with the attempted setup. On a different laptop running a 64bit64-bit Windows system, with 8GB 

RAM, an SSD hard disk, with an Intel core i7-3520 M CPU at 2.9 GHz, the computation times for snesim were on average 

between ½-1 h. Since the DS computation times were significantly larger at 6 h 15 min per realization, the DS simulations 

were run on a 64 bit Windows server with 64 AMD Opteron processor 5376 at 2.3 GHz each, with a total of 128 GB RAM 

and a SSD hard disk. The implementation of DS used in this paper is called DeeSse (Straubhaar 2011) and is easy to script and 600 

run in parallel on a server or computer cluster. The total time required for 51 simulations running in parallel was approximately 
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32h, without enabling parallelization, which is available in DeeSse. One DS simulation took between 6-7 h. For more detailed 

information see Table 2 which summarizes the computation timetimes for the three MPS methods. 

Table 2: A table presenting the average computation times per realization for each of the three MPS methods and the approximated 

computation times needed for running 51 realizations with the setup used in this study. *indicates that the given realizations were 605 
run in parallel on a server; other realizations were generated on a personal laptop. 

 snesim DS iqsim 

Comp. times pr. realization ½-1 h 6-7 h* 10-12 min 

Approx. comp. times  51 realizations 38 h 15 min 32 h* 9 h 21 min 

4.1 Modified Hausdorff distance results 

The full MHDThe DMH is computed for a binary case where the glacial clay and sand & gravel have been combined into one 

category. Therefore, the DMH measures differences in the overall buried valley architecture. The full DMH matrix is presented 

in Figure 9a and b. Using eq. (4) and (5) the MHDDMH is summarized in Table 3, without the usage of dimensional reduction 610 

techniques. The method with the largest variability, i.e. least similar hydrostratigraphic realizations, is iqsim with a 𝑀𝐻𝐷𝑣𝑎𝑟   

DMH,var of 1.79. The snesim and DS models show generally lower 𝑀𝐻𝐷𝑣𝑎𝑟DMH,var values of 0.48 and 0.78, respectively. This 

means that the iqsim results span the largest set of possible models., when measuring on the binary classification in hemipelagic 

clay and not hemipelagic clay. The iqsim realizations also have the smallest average MHDDMH between the individual 

realizations and the cognitive hydrostratigraphic model, with a  𝑀𝐻𝐷𝑐𝑜𝑔   DMH,cog of 2.65, meaning on average iqsim 615 

realizations resemble the cognitive hydrostratigraphic model the most., when it comes to the location of the valleys. The snesim 

and DS 𝑀𝐻𝐷𝑐𝑜𝑔DMH,cog are 3.01 and 2.80, respectively. On average, the DS realizations are more similar to the cognitive 

hydrostratigraphic model in comparison to the snesim realizations, while both are more dissimilar than the iqsim realizations.; 

again, when it comes to the location of the valleys. The two MPS methods which had the smallest distances, and therefore 

were most similar, were snesim and DS with an inter MHDDMH distance of 1.05. The distance between DS and iqsim was 620 

larger, with a value of 2.19, while the largest inter MHDDMH distance was between snesim and iqsim with a MHDDMH value 

2.37. 

 

 

Table 3: Summary of the Modified Hausdorff Distance (MHDDMH) matrix portraying the MHDDMH results.  625 
𝑴𝑯𝑫𝒗𝒂𝒓 representsDMH,var presents the variability of the given MPS method or between the different MPS methods, e.g.  the value 

in the 𝑴𝑯𝑫𝒗𝒂𝒓DMH,var column and the 𝒔𝒏𝒆𝒔𝒊𝒎 →  𝑫𝑺 row represents the average distance between the snesim and DS realizations. 

The MHDcogDMH,cog is the average distance from the simulation results to the cognitive model. 

 𝑀𝐻𝐷𝑣𝑎𝑟DMH,var 𝑀𝐻𝐷𝑐𝑜𝑔DMH,cog 

snesim 0.48 3.01 

DS 0.78 2.80 

iqsim 1.79 2.65 

𝑠𝑛𝑒𝑠𝑖𝑚 →  𝐷𝑆snesim

→  DS 

1.05 --- 

𝑠𝑛𝑒𝑠𝑖𝑚

→ 𝑖𝑞𝑠𝑖𝑚snesim

→ iqsim 

2.37 --- 
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𝐷𝑆 → 𝑖𝑞𝑠𝑖𝑚DS

→ iqsim 

2.19 --- 

 

 630 

Figure 9: The MHDDMH results presented without and with dimensional reduction. a) the full Modified Hausdorff Distance 

(MHDDMH) matrix showing the distances between individual realizations, and between individual realizations and the cognitive 

hydrostratigraphic model. The last column and row of the distance matrix of a) represent the distances between the realizations and 

the cognitive model. b) shows a scatter plot of these distances between the realizations and the cognitive model, revealing greater 

detail than can be seen with naked eye from the MHDDMH matrix itself. c) shows the 2D t-SNE plot of the MHDDMH matrix. 635 

The 𝑴𝑯𝑫DMH can also be evaluated by applying the aforementioned t-SNE method. Here, each realization is visually 

represented as a point in 2D space. Similar values, with small MHDDMH values, are closely spaced, while dissimilar values, 

with large MHDDMH values, are separated from each other. Firstly, the t-SNE results show snesim and DS point clouds, which 

are closer to each other relative to the iqsim point cloud (Figure 9c). This means that they are similar in nature;, as reflected in 

Table 3. The iqsim point cloud is isolated in the 2D space since the iqsim realizations are significantly different from the 640 

snesim and DS results. Furthermore, the iqsim point cloud is also the largest, which reflects the larger dissimilarity of the 

output realizations. On average, the iqsim point cloud is closer to the cognitive model, which is also reflected in Figure 9b and 

Table 3.  

4.2 Borehole validation results 

The final comparison of the MPS methods regards the average Euclidean distance between the simulation results and the 645 

regularized binary hydrostratigraphic logs. The sorted average distances between each individual simulation and the boreholes 

are seen in Figure 10.  
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Figure 10: The borehole distance results are presented for each of the three MPS methods: snesim, DS, and iqsim; a) shows the 

snesim borehole distance results for the three hydrostratigraphic units, b) shows the DS borehole distance results for the three 650 
hydrostratigraphic units, and c) shows the iqsim borehole distance results for the three hydrostratigraphic units 

The average distance between the simulated hydrostratigraphic models and the boreholes are presented according to the three 

key hydrostratigraphic units. The average distance between sand & gravel units in the hydrostratigraphic realizations and sand 

& gravel units in the boreholes seems to be the largest for the modellingmodeling results of all three MPS methods (Figure 

10), i.e. the red curve is always on top. The average values of the individual curves in Figure 10 are computed and presented 655 

in Table 4. An overall borehole distance average for each of the three MPS methods is computed as the average of each row 

in Table 4. The sand & gravel average in Table 4 reflects the large distances between resistive sand & gravel units in the 

realizations and the hydrostratigraphic logs. By comparing the individual frames of Figure 10 it is seen that the average value 

for the hydrostratigraphic models created using iqsim have a higher average distance. The iqsim averages for sand & gravel is 

centered on 5.8 m, while for snesim and DS it is centered on 3.8 m and 4.9 m, respectively. The iqsim average distance to 660 

glacial clay is centered on a relatively large value of 3.5 m, as opposed to 2.1 m and 2.8 m for snesim and DS, respectively. 

The hemipelagic clay units show a different pattern where iqsim has the lowest average distance of 0.2 m, while the snesim 

and DS distances are 1.6 m and 0.8 m, respectively. The snesim method has the smallest borehole distance row average of 2.5 

m, while DS and iqsim have row averages of 2.8 m and 3.2 m, respectively. 

Table 4: The borehole distance results are summarized in this table. The borehole distances are the 3D Euclidean distances calculated 665 
using the concept presented in section 3.6 “Distance to Boreholes”. The presented distance values are the averages of the cur ves 

shown in Figure 10, one average for each of the individual hydrostratigraphic units for each of the presented methods: snesim, DS 

and iqsim realizations. The last column shows the average distances for each of the three MPS methods. 

 sand & gravel 

[m] 

glacial clay 

[m] 

hemipelagic clay 

[m] 

row average 

[m] 

snesim 3.8 2.1 1.6 2.5 

DS 4.9 2.8 0.8 2.8 

iqsim 5.8 3.5 0.2 3.2 
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4.3 Hydrostratigraphic modellingmodeling of new surveys 

In areas of groundwater interest, the initial step is to collect different types of data relevant to the hydrologicalhydrogeological 670 

properties of the subsurface. Among these data are dense geophysical datasets, e.g. SkyTEM, which can be collected quickly 

and usually cover a significant part of the survey area. The different datasets are processed and modeled, and used in 

conjunction with the borehole lithology logs to create a single geological and/or hydrostratigraphic model. This model is only 

one version of the subsurface, encasing only part of the complexity related to the given hydrological system. We present a 

practicalan example of stochastic simulation of hydrostratigraphic models. The end result isconsists of multiple 675 

hydrostratigraphic realizations, covering a larger span of possible models. Using the cognitive hydrostratigraphic model from 

area A as a TI, another hydrostratigraphic model from survey area B is simulated, using only the geophysical data in area B 

for spatial constraining. An important assumption is that the geological settings of area A and B are similar, since the 

hydrostratigraphic information is shared through the TI from area A. Furthermore, the hydrostratigraphic-resistivity 

relationship needs to be stationary so that it can be assumed that the hydrostratigraphic-resistivity relationships are statistically 680 

comparable. 

The example presented in this study is synthesized from the Kasted dataset. The dataset is divided in two along the UTMX 

coordinate 569025m (Figure 11a). The left half of the cognitive hydrostratigraphic model is then used as a TI to simulate the 

right half of the model. The reconstructed resistivity grid is also cut in half Figure 11b). The left half of the resistivity grid is 

used as an auxiliary variable describing the hydrostratigraphic-resistivity relationship, as seen in Figure 4a, while the right half 685 

is used for spatially constraining the simulation. In this example 10 stochastic hydrostratigraphic realizations are created using 

DS. A single hydrostratigraphic realization is seen in Figure 11c, while the mode of the hydrostratigraphic model ensemble is 

seen in Figure 11d. 

 

Figure 11: An overview of the setup for simulating new survey areas and the hydrostratigraphic modellingmodeling results using 690 
the Kasted dataset. The presented horizontal slices are centered on 20 mbsl, and the vertical cross-section intersects at UTMY 

6230150m. a) the cognitive hydrostratigraphic model is cut in half to simulate having two survey areas, one area with a cognitive 

hydrostratigraphic model (training image) available and the other without. The white area represents the new survey we wish to 

simulate. b) the horizontal slices and vertical cross-sections of the soft data used to simulate the new area. The left half is the auxiliary 
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variable, while the right half constrains the simulation of the new survey area. c) a single hydrostratigraphic realization. The left 695 
half is exactly the same as the cognitive model, see a), while the right half is simulated using DS. d) the mode of an ensemble of 10 

hydrostratigraphic model realizations. Again, the left haft is the same as the training image and the right half shows the ensemble 

mode of 10 realizations. 

The example presented in this study is synthesized from the Kasted dataset. The dataset is divided in two along the UTMX 

coordinate 569025m (Figure 11a). The left half of the cognitive hydrostratigraphic model is then used as a TI to simulate the 700 

right half of the model. The reconstructed resistivity grid is also cut in half Figure 11b). The left half of the resistivity grid is 

used as an auxiliary variable describing the hydrostratigraphic-resistivity relationship, as seen in Figure 4a, while the right half 

is used for spatially constraining the simulation. In this example 10 stochastic hydrostratigraphic realizations are created using 

DS. The DS method was selected since it is both easy to parameterize and to run in parallel on a computer cluster.   A single 

hydrostratigraphic realization is seen in Figure 11c, while the mode of the hydrostratigraphic model ensemble is seen in Figure 705 

11d. Using the same data from the Kasted survey area, the half-sim case is also presented using iqsim by Hoffimann et al. 

(2017). 

The simulation results show that one hydrostratigraphic realization represents the overall architecture of the resistivity grid; 

compare Figure 11Figure 11c and b. Comparing the single hydrostratigraphic realization (Figure 11Figure 11c) to the original 

cognitive model (Figure 11Figure 11a) reveals that one realization largely reflects the variability in the soft data grid. The 710 

mode of the model ensemble on the other hand (Figure 11d) has a closer resemblance to the cognitive hydrostratigraphic 

model; compare Figure 11a and d. This means that the individual realizations do on average resemble the original cognitive 

model. The end goal is not to create a set of hydrostratigraphic models, which match the cognitive hydrostratigraphic model. 

The goal is to create a suite of realistic hydrostratigraphic models.  

Generally, unrealistic short scale variability is introduced in both the single hydrostratigraphic realization as well as in the 715 

ensemble mode model, but is generally not present in either the TI or the resistivity grid. These short-scale variation patterns 

are artifacts from the DS method itself and can be removed by using post-processing tools (Pyrcz and Deutsch 2014). Such 

tools are generally run on the realizations to remove artifacts that were introduced due to the algorithms. Since post-processing 

is a separate step, it was not used for any of the simulations in this study, making all the simulation results comparable to each 

other. 720 

5 Discussion 

The snesim setup is different from the DS and iqsim setups. The snesim setup differs in the usage of the probability framework, 

and in the choice of the implicit Resistivity Atlas histograms (Barfod et al. 2016). The implicit histograms (Figure 4d) are used 

to directly translate the resistivity grids into probability grids. This illustrates the utility of the Resistivity Atlas framework in 

relation to geostatistical modellingmodeling. The DS and iqsim frameworks would normally, in real-world cases, require the 725 

usage of a G* operator since no auxiliary variable exists which geographically overlaps with a conceptual TI. As explained in 

section 3.1.2 Direct sampling simulation - DS, applying a realistic G* operator requires several steps and can be a complicated 

affair. In this study, however, the TI was an actual cognitive geological model of Kasted study area, meaning a resistivity grid 

which geographically overlaps with the TI exists. Using the SkyTEM resistivity grid as an auxiliary variable resulted in the 

application of different resistivity-hydrostratigraphic relationships in the DS and iqsim approach – compare the explicit 730 

histograms used in DS and iqsim, Figure 4a, with the implicit Resistivity Atlas histograms used in snesim, Figure 4d, or see 

Table 1. Even though there are some differences in the setups of the different MPS algorithms, the snesim and DS realizations 

are still similar in nature; compare Figure 8b and c. The differences mentioned here are mainly due to the differences of the 

implementation of the algorithms. 
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The snesim and DS realizations portray some differences, which are related to the choice of the implicit Resistivity Atlas 735 

histograms for translating the resistivity grid. This can help us understand some of the basic differences in the information 

provided by the implicit Resistivity Atlas histograms and the explicit auxiliary variable. In DS probable hydrostratigraphic 

units are not conditioned properly. An example of this is the aforementioned West-Northwest - East-Southeast trending glacial 

clay valley (see Figure 8a), which is uninterrupted in 78% of the DS realizations. The same valley is clearly represented in the 

resistivity grid (Figure 5a) and in the cognitive model (Figure 8a). However, the explicit auxiliary variable histograms show 740 

increased overlapping resistivity values for the glacial clay and sand & gravel histograms (Figure 4a,d). The auxiliary variable 

histograms (Figure 4a) reveals approximately equal probability of glacial clay and sand & gravel resistivities lying close to 

40-45 Ωm. The histogram also shows that hemipelagic clay has a resistive tail, resulting in a small probability for hemipelagic 

clay in the areas of intermediate resistivity values of 10-50 Ωm. The Resistivity Atlas histograms (Figure 4d), on the other 

hand, favor the glacial clay in the 40-45 Ωm range, with a 0% probability for hemipelagic clay. The snesim realizations show 745 

an uninterrupted glacial clay valley in ~90% of the realizations in the horizontal cross-section centered on 20 mbsl. The 

probability grid for snesim reveals a ~75% probability for glacial clay at the location of the West-Northwest - East-Southeast 

trending glacial clay valley at 20 mbsl (Figure 5c). At 20 mbsl the sand & gravel probability ~15-20% while hemipelagic clay 

has a low probability of ~0-5% (Figure 5b,d). The underlying hydrostratigraphic-petrophysical relationship which holds 

information on how to condition the simulations to the soft data, is important to the MPS modeling results, especially when 750 

extensive and spatially dense geophysical datasets are available. The presented practical example, showing the simulation of 

a new survey, has the two aforementioned requirements: 1) the geological environments of the two areas need to be similar 

and 2) the statistical hydrostratigraphic-petrophysical relations also need to be similar. Since the Resistivity Atlas histograms 

are created using only local data, i.e. boreholes and SkyTEM resistivity models, they represent the local relationship. Since 

stationarity in the hydrostratigraphic-petrophysical relations is not guaranteed (Barfod et al. 2016), it is necessary to check for 755 

stationarity, which is possible within the Resistivity Atlas framework. Here, histograms can be created for each area and 

compared. If statistically similar, stationarity can be inferred for the hydrostratigraphic-petrophysical relations. 

 

The MHDDMH results revealed some interesting trends between the MPS realizations. The 𝑀𝐻𝐷𝑣𝑎𝑟   DMH,var for snesim, DS 

and iqsim were 0.48, 0.78, and 1.79, respectively. The low snesim 𝑀𝐻𝐷𝑣𝑎𝑟 , DMH,var, is related to the soft data conditioning, 760 

which is dependent on the choice of histograms for translating the resistivity grids into probability grids. For this translation, 

as mentioned, the implicit Resistivity Atlas histograms were used. Overall, the implicit histograms show a larger separation 

between the glacial clay and sand & gravelhemipelagic clay histograms compared to the explicit histograms; compare Figure 

4a and d. This results in less ambiguity in the transition from glacial clay to sand & gravelhemipelagic clay in the probability 

grids, yielding a smaller subset of possible models. This also results in snesim realizations, which closely resemble the soft 765 

data variable, compared to DS and iqsim. The borehole distance results are also influenced by choosing the implicit histograms. 

Generally, the snesim realizations show the smallest borehole distances with respect to glacial clay and sand & gravel units, 

while the corresponding hemipelagic clay distances are the largest. The increased separation of the glacial clay and sand & 

gravelhemipelagic clay histograms seem to improve the snesim borehole distances to thesethe glacial clay and sand & gravel 

units, while hemipelagic clay seems to be underestimated.  770 

It can be concluded thatIn conclusion snesim and DS yield similar realizations, portrayed by the relatively small MHDDMH 

values between snesim and DS. This is reflected in the t-SNE plot (Figure 9c), where the iqsim point cloud is isolated from 

the snesim and DS point clouds, and is closer to the cognitive model. The isolation of the iqsim point cloud agrees with a lack 

of short-scale variabilityiqsim being imprecise in its simulation of the iqsim realizationsvalley architecture compared to snesim 

and DS. However, the abundance of hemipelagic clay close to terrain is clear and undesired in iqsim realizations; see the 775 

vertical cross-sections of the models (Figure 8). Evidence of abundant near surface hemipelagic clay is also found indirectly 
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in the borehole distance results. The borehole distances of the iqsim realizations revealed exceedingly small hemipelagic clay 

distances, with an average of 0.2m. In comparison, snesim and DS had hemipelagic clay borehole distance averages of 0.8m 

and 1.6m, respectively. This shows that iqsim produces realizations where hemipelagic clay units are, on average, closer to the 

borehole hydrostratigraphic logs. However, it is important to also notice the relatively large iqsim borehole distances for glacial 780 

clay and sand & gravel units. This indicates that the ample near surface hemipelagic clay, decreases the hemipelagic clay 

borehole distances, while increasingincrease the glacial clay and sand & gravel borehole distances (Figure 10) (Table 4). Here, 

it is important to understand the trade-off relationship between the different hydrostratigraphic categories. As more 

hemipelagic clay is introduced at the surface of the iqsim realizations, it does not increase the average borehole distance for 

hemipelagic clay, since the algorithm only measures the distance from the borehole cell to the nearest cell in a realization with 785 

the same hydrostratigraphic category. Instead, the sand & gravel and glacial clay distances increase, since the realizations no 

longer match with the borehole lithology logs, which only reveal the presence of sand & gravel and glacial clay close to the 

surface. The trade-off relationship is also evident from the row averages presented in Table 4. It is clear that even though iqsim 

has a low hemipelagic clay borehole distance of 0.2 m, the row average is still the largest with a value of 3.2 m, while Table 4 

reports corresponding snesim and DS row averages of 2.5 m and 2.8 m, respectively. 790 

Unrealistic shortShort scale variability is found throughoutpresent in the snesim and DS realizations. This iscan be seen as an 

artifact introduced by the algorithms themselves, and do not reflect the underlying datasets, i.e. the soft data or TI. As Linde 

et al. (2015) discuss, fine-scale patterns are present in the real-world hydrostratigraphic subsurface, but are not presentonly 

slightly resolved in geophysical models. Two of the three presented stochastic MPS methods introduce fine-scale variations in 

the form of short scale variability to the overall hydrostratigraphic architecture, with the overall architecture resembling the 795 

underlying datasets. This adds complexity to the realizations and the resulting equiprobable hydrostratigraphic models span a 

larger subset of possible models. The question, however, is whether this short-scale variability is similar to the real-world 

short-scale variability missing from our geophysical data, which is difficult to answer. The importance of short-scale variability 

also depends on the type of prediction for which the hydrostratigraphic model is to be used. 

An important difference in the iqsim realizations, compared to snesim and DS, is the lack of fine-scale variability. The 𝑀𝐻𝐷 800 

and the resulting valley architecture. The DMH results reveal that the iqsim realizations were the most similar to the cognitive 

model, and that they were different from the snesim and DS realizations. It can be concluded that sinceThe iqsim realizations 

do not contain fine-scalehave a high DMH,var of 1.79, which means that each realization is significantly different from one 

another, which indicates a large variability, in the 𝑀𝐻𝐷𝑐𝑜𝑔  is smallerrealizations. However, the overall placement of the 

valleys agrees with the cognitive model, which results in a small DMH,cog and the most significant valley features of the cognitive 805 

model are reproduced. It is notedNote that the MHDs areDMH is not sensitive towards the hydrostratigraphically unrealistic 

placement of hemipelagic clay at the surface in the iqsim realizations. The presented MHDDMH results reveal that iqsim 

performs “best”, according to the definition of “best” introduced in section “3.5 The modified Hausdorff Distance – a measure 

for similarity”. The TI statistics are better reproduced better and the space of uncertainty is large. However, the iqsim 

realizations do not reflect all complexities of the underlying datasets, which is also reflected by the poorer borehole distance 810 

results for glacial clay and sand & gravel units. 

In relation to the new survey example, it is worth mentioning a caveat. When cutting the TI in half the 3D objects are reduced 

in size and some of the 3D objects are entirely removed. Generally the TI should contain the objects which are to be conditioned 

during simulation (e.g. Emery & Lantuéjoul 2014; Journel & Zhang 2007; Strebelle 2002). If the 3D objects are not fully 

represented in the TI it cannot be guaranteed that they will be reproduced in the resulting realizations (Emery & Lantuéjoul 815 

2014). It is therefore important to state that the example simply just exemplifies an important application of MPS in relation 

to dense geophysical datasets, but is not a valid practical application. 
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The snesim and DS realizations portray some differences, which are related to the choice of the implicit Resistivity Atlas 

histograms for translating the resistivity grid. This can help us understand some of the basic differences in the information 

provided by the implicit Resistivity Atlas histograms and the explicit auxiliary variable. In DS probable hydrostratigraphic 820 

units are not conditioned properly. An example of this is the aforementioned West-Northwest - East-Southeast trending glacial 

clay valley (see Figure 8a), which is uninterrupted in 78% of the DS realizations. The same valley is clearly represented in the 

resistivity grid (Figure 5a) and in the cognitive model (Figure 8a). However, the explicit auxiliary variable histograms show 

increased overlapping resistivity values for the glacial clay and sand & gravel histograms (Figure 4a,d). The auxiliary variable 

histograms (Figure 4a) reveals approximately equal probability of glacial clay and sand & gravel resistivities lying close to 825 

40-45 Ωm. The histogram also shows that hemipelagic clay has a resistive tail, resulting in a small probability for hemipelagic 

clay in the areas of intermediate resistivity values of 10-50 Ωm. The Resistivity Atlas histograms (Figure 4d), on the other 

hand, favor the glacial clay in the 40-45 Ωm range, with a 0% probability for hemipelagic clay. The snesim realizations show 

an uninterrupted glacial clay valley in ~90% of the realizations in the horizontal cross-section centered on 20 mbsl. The 

probability grid for snesim reveals a ~75% probability for glacial clay at the location of the West-Northwest - East-Southeast 830 

trending glacial clay valley at 20 mbsl (Figure 5c). At 20 mbsl the sand & gravel probability ~15-20% while hemipelagic clay 

has a low probability of ~0-5% (Figure 5b,d). The underlying hydrostratigraphic-petrophysical relationship which holds 

information on how to condition the simulations to the soft data, is important to the MPS modelling results, especially when 

extensive and spatially dense geophysical datasets are available. 

The presented practical example, showing the simulation of a new survey, has the two aforementioned requirements: 1) the 835 

geological environments of the two areas need to be similar and 2) the statistical hydrostratigraphic-petrophysical relations 

also need to be similar. Since the Resistivity Atlas histograms are created using only local data, i.e. boreholes and SkyTEM 

resistivity models, they represent the local relationship. Since stationarity in the hydrostratigraphic-petrophysical relations is 

not guaranteed (Barfod et al. 2016), it is necessary to check for stationarity, which is possible within the Resistivity Atlas 

framework. Here, histograms can be created for each area and compared. If statistically similar, stationarity can be inferred for 840 

the hydrostratigraphic-petrophysical relations. 

The hydrogeophysical dataset is processed and modeled for the purpose of creating a petrophysical model. The practical 

example has the advantage of an explicit implementation of hydrostratigraphic-resistivity relationship by using the resistivity 

grid as an auxiliary variable. The relationship is indirectly modeled during the cognitive modelling process. During modeling 

the geoscientist makes qualitative decisions regarding the relations between geophysical and borehole data. Experienced 845 

geoscientists have a general understanding of how geophysical data reflect the geological features. That knowledge is used to 

create geologically realistic hydrostratigraphic models, resembling both the geophysical and the sparse borehole data. The 

explicit hydrostratigraphic-petrophysical relationship is described in detail, and can be extracted from the collocated 

hydrostratigraphic and petrophysical grids; as presented in Figure 4a. 

6 Conclusion 850 

The three MPS methods snesim, DS and iqsim are used for stochastic hydrostratigraphic modellingmodeling. The 

modellingmodeling results are compared in an elaborate framework of comparing the modellingmodeling results visually, 

mathematically and against boreholes. Each individual MPS method has its own set of advantages/disadvantages which are 

covered in this study. Overall the DS method had the highest computation times. An average DS realization taketakes 6-7 h, 

while for snesim the number isit takes 2-3 h and for iqsim the number is 10-12 min. We emphasize that these times are for a 855 

specific setup, and that they will likely change for different configurations. Both the snesim and DS methods yield realizations 

with sufficient soft data conditioning, as reflected byin the low MHD variability of 0.48 and 0.78, respectively.modelling 
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results in Figure 8a-c . The iqsim realizations showed a MHD variability of 1.79erratic results in regards to the overall valley 

architecture, compare Figure 8a,d, which was due to insufficient soft data conditioning. 

The presented practical example for modellingmodeling new survey areas uses a cognitive hydrostratigraphic model from one 860 

area as a TI to simulate the new area without a pre-existing cognitive model. The requirements are two-fold: 1) the geological 

settings of the two areas need to be similar and 2) the statistical hydrostratigraphic-petrophysical relationship needs to be 

stationary between the two areas. The presented example shows a case where the two requirements are true, and the set of 

stochastic models are consistent with the cognitive geological model. 

Finally, the importance of the underlying resistivity-hydrostratigraphic relationship has been shown. The relationship contains 865 

information on the translation of the continuous soft data variable into subsurface hydrostratigraphic units, and is indirectly 

used for soft data conditioning. The MPS modellingmodeling results are therefore sensitive towards the resistivity-

hydrostratigraphic relationship, and the more information acquired regarding the relationship, the better the realizations. 
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