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Abstract. An ensemble simulation of 5 regional climate models (RCMs) from the Coordinated Regional Downscaling 

Experiment in East Asia (CORDEX-East Asia) was evaluated and used for future regional climate change projection in 

China. Meanwhile, the contributions of model uncertainty and internal variability are identified. The RCMs simulated both 

the historical climate (1989-2008) and future climate projection (2030-2049) under the Representative Concentration 10 

Pathway (RCP) RCP4.5 scenario. We highlighted 5 subregions in China, viz. Northeast China, North China, South China, 

Northwest China, and Tibetan Plateau. Our results showed that the capability of RCMs to capture the climatology, annual 

cycle and inter-annual variability of temperature and precipitation and multi-model ensemble outperforms the individual 

RCM. For the future climate, consistent warming trends around 1 °C were indicated by multi-model ensemble over the 

whole domain and more pronounced warming was projected in northern and western China. The annual precipitation is 15 

likely to increase in most of the simulation region, except the Tibetan Plateau which decreases -7.8%. Compare with the 

similar seasonal temperature changes with the driving global climate model (GCM), the seasonal precipitation change shows 

significant inter-RCM difference and has larger magnitude and variability than driving GCM. The model uncertainty for 

future temperature projection is clearly dominant over the northeast, northwest China and Tibetan Plateau, reaching up to 

70%, and it contribute about 40% of the total uncertainty over north and south China. For precipitation, the internal 20 

variability is dominant over most regions except for the Tibetan Plateau which the model uncertainties reach up to 60%. In 

addition, the model uncertainty increases with prediction lead time over all subregions. 

1 Introduction 

The globally averaged surface temperature has increased by 0.65-1.06 °C during the period from 1880 to 2012 according to 

multiple independently produced datasets, and further rises on the order of 0.3-4.8 °C are projected for 2081-2100 relative to 25 

1986-2005 using a set of global climate models (GCMs) driven by the Representative Concentration Pathway (RCP) 

scenarios RCP2.6 to RCP8.5 (IPCC, 2013). Meanwhile, other climate factors are also changing such as precipitation 

amounts and variability, snow and ice cover patterns and mean sea level (Alfieri et al., 2015; Kerr, 2008; Patz et al., 2005). 

Reliable regional future climate projection is important for the evaluation of climate change impacts and vulnerability, as 
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well as the elaboration of appropriate mitigation and adaptation measures, especially for the developing countries like China 

tend to be one of the most vulnerable to the adverse effects of climate changes.  

The East Asian summer monsoon (EASM) is the most distinctive climate feature in China, and the monsoon area accounts 

for approximately 60% of mainland (Ding and Chan, 2005). EASM system-related precipitation starts around mid-May or 

even earlier in Indo-China Peninsula, presents distinct stepwise northward and northeastward advances feature with two 5 

abrupt northward jumps and three stationary periods, and begins withdrawing southward in September (Ding, 2004; Hsu, 

2005). The rainy seasons of EASM, including the pre-summer rainy season over South China, mei-yu (in China) occur 

normally during the stationary periods which are imbedded in the northward advance of the summer monsoon. The anomaly 

of EASM could cause floods and droughts which plays a crucial role in the livelihood of more than one billion people 

(Webster et al., 1998). However, because of the complex topography and model limitation, how to reliably reproduce the 10 

climatological rainfall and interannual variation of EASM still remains a challenge. The CMIP3 (coupled model 

intercomparison project phase 3) and CMIP5 GCMs, however, have problems simulating precipitation in this region. Recent 

studies have suggested that the new generation of GCMs from CMIP5 archive shows some improvements to reproduce the 

climatology and interannual variability of EASM compared with the CMIP3 GCMs, but the simulated biases remained and 

large intermodel spread existed (Chen and Bordoni, 2014; Gu et al., 2015; Huang et al., 2013; Song and Zhou, 2013). For 15 

example, the mei-yu rainfall band is missing in the GCMs, although the monsoon circulation is well reproduced (Ding and 

Chan, 2005; Song and Zhou, 2013).  

Because of these deficiencies, higher resolution GCMs have been developed to improve the capabilities in monsoon features 

simulation including orographic precipitation, low-level jet orientation and variability, as well as the mei-yu onset and 

withdrawal (Kitoh and Kusunoki, 2008; Kitoh et al., 2013; Kusunoki et al., 2006). However, these experiments are still 20 

burdensome due to large computation resources required for multi-decadal simulations. Therefore the regional climate 

models (RCMs) forces on a region of interest are commonly used in regional climate projection and climate change impacts 

studies (Christensen et al., 2007; Gallée et al., 2004; Gao et al., 2006; Giorgi and Mearns, 1999; Gu et al., 2012; Leung et al., 

2003; Wang et al., 2004; Yira et al., 2017; Yu et al,. 2006). The ongoing coordinated regional downscaling experiment 

(CORDEX) (Giorgi et al., 2009; Jones et al., 2011), whose aim to provide high-resolution regional future climate projections 25 

for the majority of populated land regions on the globe by using multi-RCMs, and an interface to the applicants of the 

climate simulations in climate change impact, adaptation, and mitigation studies. The CORDEX-EA is the East-Asian branch 

of the CORDEX experiment and provides ensemble regional climate simulations (https://cordex-

ea.climate.go.kr/main/modelsPage.do). The CORDEX-EA has been evaluated for simulating the precipitation and 

temperature over East Asia (Huang et al., 2015; Jin et al., 2016; Lee and Hong, 2014; Oh et al., 2013; Park et al., 2013; Suh 30 

et al., 2012; Zou et al., 2014).  

Despite large improvements in the simulating of local processes, future climate projections are still accompanied by large 

uncertainties stemming from different sources, including the forcing GCMs, emission scenarios, downscaling methods 

(RCMs or statistical downscaling methods), and natural climate internal variability (Déqué et al., 2007; Deser et al., 2012). 
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Numerous previous studies have demonstrated that GCMs being the main source of uncertainty (Seo et al., 2016). However, 

after excluding the outliers from the GCM ensemble, other uncertainty sources like RCMs and internal variability will 

became more important than GCMs (Kay et al., 2009; Wilby and Harris, 2006). In a non-stationary climate, the internal 

variability of a given GCM-RCM chain can remain high above the trend related to a given emission scenarios forcing  

(Deser et al., 2012; Hawkins and Sutton, 2011; Lafaysse et al., 2014; O'Brien et al., 2011). So far, little attention has been 5 

paid to quantify the contributions of the uncertainty arising from RCMs and internal variability in future climate projection 

over China. Thus, it is necessary to objectively evaluate the capability of RCMs and quantify the uncertainty in future 

climate projections. 

In this study, we evaluate the performance of five RCMs within CORDEX-EA to reproduce present-day climate and to 

analyze the projected future climate changes under the middle emission scenario. In addition, biases in current climate 10 

simulations and uncertainties in future climate projections attributed to the RCMs and internal variability are further 

analyzed. This paper is structured as follows. The data from observation and model simulation, and analysis method are 

described in next section. Scection 3 presents the historical performances of RCMs for temperature and precipitation and 

future climate changes under RCP4.5 emission scenario over China. The uncertainties in regional future climate projection 

resulting from inter-RCMs and natural climate internal variability are also discussed. The summary and conclusion are given 15 

in section 4. 

2 Data and methods 

2.1 Observations 

The reference temperature and precipitation data used to compare the model results to observation data develops from the 

University of East Anglia Climate Research Unit Timeseries 3.23 (CRU TS3.23), with a spatial resolution 0.5°, derived from 20 

gauge measurements, details in Harris et al., (2014). The Asian Precipitation-Highly Resolved Observational Data 

Integration Toward Evaluation (APHRODITE) dataset with a spatial resolution 0.25° also was used for RCMs evaluation 

(Yatagai et al., 2012). In order to facilitate comparison, outputs from a host of RCMs were converted to a common grid of 

0.5°×0.5° latitude/longitude as in the remapped to the CRU and APHRO observations, using bilinear interpolation. The use 

of two data sets is beneficial not only to the evaluation of RCM’s performance but also to the verification of the observation 25 

datasets. 

2.2 Models and experiments 

In this study, we used five RCMs, namely, HadGEM3-RA, MM5, WRF, RegCM4, and RSM for East Asian climate 

experiments (Table 1). The dataset were produced from multi-RCM national project under Korea Meteorological 

Administration. The spatial resolution of the data is 50 km (except HadGEM3-RA is 0.44°), and the whole CORDEX-EA 30 

domain includes East Asia, India, the Western Pacific Ocean, and the northern part of Australia, as shown in Fig. 1. Model 
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configurations include physical schemes are summarized in Table 1. The detailed description of each of the RCM 

simulations can be found in Suh et al. (2012) and Park et al. (2016). 

Table 1 

Figure 1 

In this study, two types of current climate experiments from five RCMs were performed, including the evaluation (hereafter 5 

EVAL) experiment for the period of 1989-2007 and historical (HIST) experiment for the period of 1980-2005. The EVAL 

experiment acquires initial and boundary conditions from the National Centers for Environmental Prediction (NCEP) 

reanalysis and the HIST experiment is forced by  the Atmosphere-Ocean coupled Hadley Center Global Environmental 

Model version 2 (HadGEM2-AO) simulation. The HadGEM2-AO (1.875°×1.25° horizontal resolution) has been used for 

climate simulations in a CMIP5 set of long-term experiments, and has been evaluated to have a reasonable ability to capture 10 

the East Asian climatology (Baek et al., 2013; Martin et al., 2011; Sperber et al., 2013). The future climate simulation is 

driven from the HadGEM2-AO under RCP 4.5 scenario. The RCP 4.5 scenario is an intermediate scenario and a cost-

minimizing pathway that total radiative forcing is stabilized at 4.5 W m
-2

 in the year 2100 (Thomson et al., 2011). The 

reference period from 1980 to 1999 and the scenario period from 2030 to 2049 are analyzed for climate changes study. 

The multi-model ensemble (MME) mean, which is defined as the pointwise arithmetic average over all individual model 15 

climatologies, is used to narrow down inter-RCM uncertainties because of their differences in model structures and physics. 

To further evaluate the model performance on smaller spatial scales, we evaluate the performance of RCMs over five 

selected sub-regions, that is, Northeast China (40-50°N, 115-130°E), North China (30-40 °N, 105-120 °E), South China (22-

30 °N, 105-120 °E), Northwest China (35-45 °N, 80-95 °E), and Tibetan Plateau (28-35 °N, 80-95 °E). 

2.3 Analysis methods 20 

We evaluate climatology from individual RCMs, MME using bias, the root-mean-square error (RMSE), and Taylor diagram 

analysis. The annual and seasonal means are examined by bias and RMSE. The model performance on spatial patterns is 

evaluated by Taylor diagram (Taylor, 2001). 

In this study, all RCMs are driven by the same GCM under the same scenario, so the uncertainty of the climate projections is 

mainly caused by the inter-RCM variability and internal variability (Niu et al., 2015). The method developed by Hawkins 25 

and Sutton (2009; 2011) was used for separating these two sources of uncertainty. 

The raw simulation of each model Xm,t for the model m and year t which can be expressed by 

   
, , ,m t m t m m t

X x c  (1) 

where the smooth fit is represented by xm,t, the reference data is denoted by cm, and the residual is denoted by εm,t. Here each 

individual simulation was fit with a fourth-order polynomial by using ordinary least squares method during the years 2030-

2049. The reference data used are the mean of the years 1980 to 1999 and estimated from the smooth fits. 30 
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The RCMs are weighted by their performance in simulating the current climate from the mean of 1980-1999, up to the year 

1999. Thus, each model is weighted according to 

 
,1999

1
m

obs m obs

w
x x x


 

 (2) 

where xm,1999 is the model climate changes at the year of 1999, relative to 1980-1999, and xobs is an observational estimate 

derived from fitting a similar fourth-order polynomial to the observations. The normalized quantities of these weightings can 

be expressed as 5 

 
m

m

mm

w
W

w

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 (3) 

The internal variability (equ. 4) is defined as the multi-model mean of theses variance of the residuals from the fits for each 

model, 

   var( , )
m t mm

V W t  (4) 

 
,

( ) var ( )
m m t

M t x  (5) 

And the intermodel variability (equ.5) is estimated from the variance in the different RCM prediction fits (xm,t), where vart(.) 

and varm(.) indicate the variance across time and model, respectively. 

It was assumed that the two sources of uncertainty can be treated independently (i.e., there is no interaction between them). 10 

Thus, the total variability VT is then 

  ( ) ( )
T
V t V M t  (6) 

3 Results 

3.1 Climatology for the control climate  

Figure 2 shows annual average temperature of CRU and multi-model ensemble, and the temperature biases of five RCMs 

driving by HadGEM2-AO during 1980 to 2005. The corresponding MME mean is denoted by point ensemble. Similar as the 15 

multi-model average results, all RCMs could reproduce the spatial pattern which demonstrates a decreasing south-north 

gradient of the observed temperature over China and a cold area over the Tibetan Plateau. Generally, all models give warm 

biases over most domain, especially MM5 and HadGEM3-RA give larger warm biases than the other models. Most RCMs 

give obvious warm biases over the Tibetan Plateau except for RSM which give a cold biases. The multi-model ensemble 

shows overall best results to reproduce the temperature spatial distribution and give less than 1 °C temperature biases over 20 

most area of China. 

Figure 2 
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The RCMs give reasonably accurate simulations on temperature, but are less successful at reproducing the precipitation. 

Figure 3 shows annual average precipitation of CRU, APHRO, multi-model ensemble, and the precipitation biases of five 

RCMs in current period. Observed precipitation amounts also show a spatial pattern with decreasing southeast-northwest 

gradient over China. All RCMs successfully simulate the precipitation patterns but with quite large biases in amounts. The 

precipitation is overestimated in the arid/semiarid region of northwest China by all RCMs except for WRF which 5 

underestimate the precipitation over the whole domain. Comparably, RegCM shows more realistic in current precipitation 

reproduction. In general, the multi-model ensemble outperforms the individual RCM in reproducing the observed spatial 

pattern of precipitation.  

Figure 3 

The comparison of the spatial variability statistics of the models in reproducing the annual mean temperature and 10 

precipitation by the Taylor plot (Taylor, 2001) are summarized in Figure 4. The temperature simulation from five RCMs 

display a good spatial pattern correlation range from 0.83 to 0.96, while the precipitation simulation show a relatively wide 

range of spatial pattern correlations from 0.29 to 0.93. It should be noted that the RMSE of the ensemble statistic is less than 

most of single model simulation. In other words, the apparent biases of the individual models are reduced by the multi-model 

ensembles.  15 

There could be several reasons for this phenomenon, which also noticed by other scholars in their model inter-comparisons 

(Phillips and Gleckler, 2006). First, to a certain extent that the bias of a simulated climate field is symptomatic of random 

error, and the multi-model ensemble may reduce or counteract this error. Moreover, the pointwise variations of climate field 

have been smooth out by averaging, thereby filtering regional scale simulations, where current climate models are difficult to 

capture. However, their causes are often difficulty to identify and to remedy, further investigation is needed in model inter-20 

comparison. In addition, most of RCMs show better performance than the driving GCM HadGEM2-AO, and it reflect the 

added value of the high resolution RCMs in simulation of spatial variability of the East Asia monsoon. 

Figure 4 

The ability of a climate model to capture realistic interannual variability is an important measure of its performance. The 

time series of the annual mean temperature and precipitation from RCMs are compared to CRU and APHRO in Figure 5. 25 

The interannual variation of the climatologies is well reproduced in RCMs ensemble. In the evaluation experiment for 1989-

2007, the correlation coefficient of the annual climatologies time series at five subregions between observation and RCMs 

ensemble is range from 0.52 to 0.78 for temperature, and range from 0.50 to 0.87 for precipitation. The correlation 

coefficient is lower in West China compare with the East China, especially in Tibetan Plateau. In the historical experiment 

for 1980-2005, the RCMs have difficulty to reproduce the interannual variability for precipitation because of the impact of 30 

the driving GCM. 

Figure 5 
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The temporal distribution of rainfall throughout the year is quite importance for the ecosystems and water resource 

management. In order to evaluate the RCM’s ability to capture the seasonal variability of climatologies, the seasonal cycles 

of simulated temperature and precipitation averaged over five subregions in China was examined (Figures 6). The observed 

temperature and precipitation show the steep onset of summer rainfall associated with the summer monsoon, which peaks 

sharply in July (except south China in June for precipitation). All RCMs successfully reproduce the seasonal variation 5 

characteristics of a single peak. All models capture the bell-shape of the monthly temperature profile. But almost all RCMs 

overestimate the temperature the whole year with systematic biases except for WRF which underestimate the temperature 

over most regions. Overall, the RCMs show better in simulating the twenty-year average monthly temperature than the 

corresponding precipitation. The multi-model ensemble succeed in reproducing the seasonal variation of precipitation. 

However, the inter-model difference is quite larger compare with the temperature. Some RCMs always underestimate (i.e. 10 

WRF) or overestimate (i.e. MM5 and HadGEM3-RA) the precipitation especially in summer, other RCM (i.e. RSM) 

overestimate precipitation in some region/season but underestimate precipitation in others. Overall, RegCM and multi-model 

ensemble give the most accurate twenty-year average climate simulation.  

Figure 6 

3.2 Multi-RCM future climate projection 15 

3.2.1 Futrue change in climatology 

The projected future changes in annual mean temperature show similar warming trends over the whole domain for the period 

2030-2049 under RCP4.5 emission scenario (Fig. 7). All five model project substantially significant warming while exhibits 

different spatial patterns. The ensemble averaged annual temperature increases are 1.3, 1.0, 0.9, 1.2, and 1.3 °C over the 

Northeast, North, South, Northwest, and Tibetan Plateau subregions, respectively. The warming in northern and western 20 

China is more significant than southern China, especially in Northeast China and Tibetan Plateau, which are similar with 

observation and projection of models (Sun et al., 2014; You et al., 2014; Zhou and Yu, 2006). 

Figure 7 

Figure 8 shows the spatial distributions of annual precipitation changes (RCP4.5 – baseline). In the future period, 2030-2049, 

the multi-model averaged precipitation change is positive over China, with all five individual model exhibiting positive 25 

changes over all five subregions. The most prominent precipitation increases are shown in MM5, RSM, and RegCM over the 

north and northwest China. The annual precipitation changes little over central China, northern China and southwestern 

China. In Tibetan Plateau a decrease in order of -7.8% is projected. There are some broad similarities across RCMs because 

they have the same parent GCM, but among those, the signal for change is more mixed in WRF.  

Figure 8 30 

Table 2 
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3.2.2 Change in seasonal cycle 

The future changes of temperature and precipitation are characteristic of regionality and seasonality. The ensemble 

projection (as shown in Figure 9) indicates that the monthly temperature change over five subregions in China is in the range 

from 0.3°C to 2.2 °C under RCP4.5 scenario. All RCMs projections show that there is a more remarkable trend to become 

warm in colder months from November to March than in other months. Most RCMs project positive monthly precipitations 5 

changes for summer (from June to August) in northeast, north, and south China. The spreads in monthly precipitation 

changes by five RCMs are characteristic of seasonality, with largest appearing in July and the smallest in March. 

Additionally, the seasonal cycle of temperature change in multi-model ensemble is similar to that of the driving GCM 

HadGEM-AO. However, the seasonal precipitation change in multi-model ensemble has larger magnitude and variability 

than driving GCM. This phenomenon concerns the significance of the model physics and processes for future climate 10 

projection.  

Figure 9  

3.2.3 Inter-RCM variability of Multi-RCM projections 

The uncertainties of regional climate projection are arised from different sources, which include the GCMs, emission 

scenarios, RCMs, and natural climate internal variability. In this study, the regional future climate is projected by using five 15 

RCMs forced with the same GCM  under an intermediate scenario (RCP4.5). As a consequence, the contribution of inter-

RCM variability and natural climate internal variability to total uncertainty are analyzed in this section. 

The contributions to the total prediction uncertainty from model uncertainty and natural climate internal variability were 

estimated by the method proposed by Hawkins and Sutton (2009), and the results for five subregions were shown in Figure 

10. It shows that the relative importance of the model uncertainty increases with prediction lead time over all subregions. For 20 

temperature, the model uncertainty is primary source of uncertainty over the northeast, northwest China and Tibetan Plateau 

during 2030-2049, reaching up to 70%. The model uncertainty contribute smaller (about 40%) of the total uncertainty over 

north and south China before the middle of the 21
st
 century. For precipitation, the internal variability is dominant over most 

regions except for the Tibetan Plateau which the model uncertainties reach up to 60%. The uncertainties come from the 

driving GCM and the emission scenarios are not discussed in this study, although they have been recognized as important 25 

component for  total uncertainty (Déqué et al., 2012). More robust estimates include larger ensemble of projections by 

RCMs forced by different GCMs and emission scenarios are necessary for the uncertainty quantification. 

Figure 10 

4 Summary and conclusions 

In this research, simulation of five RCM models run within the CORDEX-EA initiative at 50km resolution with boundary 30 

forcing from a CMIP5 global model applying the RCP4.5 scenario are employed to derive the future climate change signal 
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for the China and five selected smaller investigation areas. In this study, we focus on the future regional climate projection 

over China and the quantification of model uncertainty and natural climate internal variability.  

The control runs of CORDEX-EA RCMs reveal an overall reasonable representation of the mean climate properties when 

compared with observational gridded dataset. In general, all RCMs give warm biases while the multi-model ensemble shows 

overall best performance with less than 1 °C annual average temperature biases over most area of China. The control RCM 5 

results have a significant spread, and show quite large biases in annual precipitation. Similarly, the multi-model ensemble 

outperforms the individual RCM in reproducing the observed spatial pattern of precipitation. The RCMs also have the ability 

to capture realistic interannual variability and seasonal variability of the annual mean temperature and precipitation. Based 

upon the model performance evaluation, our results show that the present set of RCMs from CORDEX-EA can be used to 

provide useful information on climate projections over East Asia. 10 

For the future climate of 2030-2049, consistent warming trends around 1 °C were indicated by multi-model ensemble over 

the whole domain and more pronounced warming was projected in northern and western China. The spread between the 

single simulations is in the order of 1.3 °C. The annual precipitation is likely to increase in most of the simulation region, 

especially in north and northwest China. The annual precipitation decreases or changes little over northeastern China and 

south China. In Tibetan Plateau a decrease in order of -7.8% is projected. The seasonal temperature changes more drastically 15 

in colder months which are similar to that of the driving GCM. However, the seasonal precipitation show positive changes in 

summer with significant inter-RCM difference and has larger magnitude and variability than driving GCM. The above 

results manifest that the internal model variability play an important role in the regional climate change projection. 

The contributions of model uncertainty and internal variability are identified in this study. The model uncertainty for future 

temperature projection is clearly dominant over the northeast, northwest China and Tibetan Plateau during 2030-2049, 20 

reaching up to 70%, and it can explain about 40% of the total uncertainty over north and south China. For precipitation, the 

internal variability is dominant over most regions except for the Tibetan Plateau which the model uncertainties reach up to 

60%. In addition, the model uncertainty increases with prediction lead time over all subregions. The simulation results of 

RCM also influenced by the internal physics and boundary conditions from GCMs as discussed in other’s studies (Mariotti et 

al., 2011; Syed et al., 2012). More reliable future climate information could be provided by coupling GCMs and RCMs 25 

through the modifications to model structures and parameters. 
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Table Captions 

Table 1. RCMs used in this study 

Table 2. The future changes in average temperature (T; °C) and precipitation (P; %) for the five 

subregions (as shown in Figure 1). The ensemble averages for each statistic are given in the second line. 

The projections by the forcing GCM are given in the last line. 5 
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Table 1. RCMs used in this studya (Park et al., 2016) 

 HadGEM3-RA RegCM4 MM5 WRF RSM 

Resolution 0.44° 50km 50km 50km 50km 

Dynamic process Non-hydrostatic Hydrostatic Non-hydrostatic Non-hydrostatic Hydrostatic 

Convective 

scheme 

Revised mass flux 

scheme 

MIT-Emanuel Kain-Fritch II Kain-Fritch II Simplified Arakawa-

Schubert 

Land surface 

parameterization 

MOSES2  CLM3 CLM3 NOAH NOAH 

Planetary 

boundary layer 

MOSES2 non-local Holtslag YSU YSU YSU 

Spectral nudging No Yes Yes Yes Yes 

Center of research MOHC ICTP NCAR NCAR YSU 

References Davies et al. (2005) Giorgi et al. 

(2012) 

Cha and Lee 

(2009) 

Skamarock et 

al.(2005) 

Hong et al. (2013) 

a
MOSES= Met Office Surface Exchange Scheme, CLM= Community Land Model, NOAH=Noah Land Surface Model, 

YSU= Yonsei University scheme, MOHC= The Met Office Hadley Centre, ICTP= The International Centre for Theoretical 

Physics, NCAR= National Center for Atmospheric Research 

 5 

Table 2. The future changes in average temperature (T; °C) and precipitation (P; %) for the five subregions (as shown in Figure 1). 

The ensemble averages for each statistic are given in the second line. The projections by the forcing GCM are given in the last line. 

  
WRF MM5 HadGEM3-RA RegCM RSM Ensemble HadGEM2-AO 

Northeast China 
T(°C) 0.2 2.7 1.4 1.4 1.1 1.3 0.8 

P(%) -21.7 8.2 13.0 4.4 7.1 1.5 -0.4 

North China 
T(°C) 0.3 1.7 1.1 1.0 1.0 1.0 0.8 

P(%) -1.5 15.1 3.1 10.2 3.3 6.1 4.9 

South China 
T(°C) 0.5 1.5 1.0 0.8 0.8 0.9 0.7 

P(%) -14.6 -1.6 4.8 4.9 1.3 -1.5 2.3 

Northwest China 
T(°C) 1.3 0.8 1.5 1.3 1.1 1.2 1.2 

P(%) -27.0 19.4 2.2 4.7 8.9 3.6 7.2 

Tibetan Plateau 
T(°C) 0.9 1.4 1.2 1.3 1.6 1.3 1.4 

P(%) -31.6 -17.8 2.4 6.4 7.4 -7.8 2.1 

 

 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-407
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 11 September 2017
c© Author(s) 2017. CC BY 4.0 License.



16 

 

Figure Captions 

Figure 1. The simulation domain of CORDEX-EA and the topography of the regional climate models (m). The boxes 

illustrate the five selected subregions over China: Northeast China (NE), North China (NC), South China (SC), Northwest 

China (NW), and Tibetan Plateau (TP). 

Figure 2. Spatial distributions of annual average temperature (ºC) of CRU (a), multi-model ensemble (b), and temperature 5 

biases (ºC) of the driving GCM HadGEM2-AO (c), multi-RCM ensemble (d) and five RCMs (e-i) during 1980-2005. 

Figure 3. Spatial distributions of annual average precipitation (mm/year) of CRU (a), APHRO (b), multi-model ensemble (c), 

and precipitation biases (%) of the driving GCM HadGEM2-AO (d), multi-RCM ensemble (e) and five RCMs (f-j) during 

1980-2005. 

Figure 4. Taylor diagram to compare the skill of the models in representing the summer precipitation over the five regions 10 

of China, using the CRU (for temperature) and APHRO (for precipitation) data as the OBS. The azimuthal axis shows the 

pattern spatial correlation. The redial distance from the origin represents the spatial variability, while the distance from the 

OBS point is the centered RMSE difference between the simulated and observed. 

Figure 5. The temporal evolution of the annual mean temperature (left two panels) and precipitation (right two panels) in 

RCM simulations and observation over five subregions during the 1989-2007 (Eval) and 1980-2005 (Hist) periods. The 15 

correlation coefficient between RCMs ensemble and the observation are shown at the top right of each panel. 

Figure 6. Observed and simulated multiyear average of monthly temperature and precipitation over the five subregions 

during the 1989-2007 (Eval) and 1980-2005 (Hist) periods. 

Figure 7. Projected future changes (RCP4.5-Baseline) in surface air temperature for each of the five RCM.   

Figure 8. Projected future changes ((RCP4.5-Baseline)/Baseline×100%) in precipitation for each of the five RCM.  20 

Figure 9. Projected future changes in monthly mean temperature and precipitation for each of the five RCM under RCP4.5 

scenario.  

Figure 10. The fraction of total variance in future temperature (left panel) and precipitation (right panel) projections 

explained by intermodel variability (gray) and internal variability (white) over the five subregions. 

 25 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-407
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 11 September 2017
c© Author(s) 2017. CC BY 4.0 License.



17 

 

 

Figure 1. The simulation domain of CORDEX-EA and the topography of the regional climate models (m). The boxes illustrate the five 

selected subregions over China: Northeast China (NE), North China (NC), South China (SC), Northwest China (NW), and Tibetan Plateau 

(TP). 
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Figure 2. Spatial distributions of annual average temperature (ºC) of CRU (a), multi-model ensemble (b), and temperature biases (ºC) of 

the driving GCM HadGEM2-AO (c), multi-RCM ensemble (d) and five RCMs (e-i) during 1980-2005. 
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Figure 3. Spatial distributions of annual average precipitation (mm/year) of CRU (a), APHRO (b), multi-model ensemble (c), and 

precipitation biases (%) of the driving GCM HadGEM2-AO (d), multi-RCM ensemble (e) and five RCMs (f-j) during 1980-2005. 
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Figure 4. Taylor diagram to compare the skill of the models in representing the summer precipitation over the five regions of China, using 

the CRU (for temperature) and APHRO (for precipitation) data as the OBS. The azimuthal axis shows the pattern spatial correlation. The 

redial distance from the origin represents the spatial variability, while the distance from the OBS point is the centered RMSE difference 

between the simulated and observed. 5 
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Figure 5. The temporal evolution of the annual mean temperature (left two panels) and precipitation (right two panels) in RCM 

simulations and observation over five subregions during the 1989-2007 (Eval) and 1980-2005 (Hist) periods. The correlation coefficient 

between RCMs ensemble and the observation are shown at the top right of each panel. 
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Figure 6. Observed and simulated multiyear average of monthly temperature and precipitation over the five subregions during the 1989-

2007 (Eval) and 1980-2005 (Hist) periods. 
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Figure 7. Projected future changes (RCP4.5-Baseline) in surface air temperature for each of the five RCM.  

 

Figure 8. Projected future changes ((RCP4.5-Baseline)/Baseline×100%) in precipitation for each of the five RCM.  
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Figure 9. Projected future changes in monthly mean temperature and precipitation for each of the five RCM under RCP4.5 scenario.  
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Figure 10. The fraction of total variance in future temperature (left panel) and precipitation (right panel) projections 

explained by intermodel variability (gray) and internal variability (white) over the five subregions. 
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