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REPLIES TO THE REVIEWERS’ COMMENTS 1 

The authors are grateful to the reviewers for their valuable comments that helped to 2 

improve the quality of the manuscript. The point-by-point responses are presented as 3 

follows: 4 

Reviewer #1 5 

1.This paper reports a useful analysis of model simulations and forecasts of temperature and 6 

precipitation over China. Yet the presentation needs improving by avoiding vague and empty 7 

statements and the English needs polishing before the paper is publishable.  8 

Response: Thanks for your comments and suggestions. We tried our best to revise the 9 

manuscript according to your advices. Hopefully, this revised version will be satisfactory to 10 

meet the publication standard. 11 

2. Section 2, Data and methods lacks details. Why selecting these five RCMs? What advantages 12 

do they have compared to other regional and global models products? Do the five models have 13 

desired features for the purpose of this analysis? 14 

Response: Thanks for your suggestions. Data and methods in section 2 have been modified in 15 

the revision. The reason why five RCMs are selected is below: 16 

The selected five RCMs have been demonstrated to have abilities to reasonably reproduce 17 

the regional climate over East Asia and have been used for modeling and predicting extreme 18 

climate as well as investigating physical processes of East Asia climate (Cha and Lee, 2009; 19 

Cha et al., 2011; Hong and Yhang, 2010; Park et al., 2008; Yhang and Hong, 2008). Moreover, 20 

the five RCMs used in this work are derived from the CORDEX East Asia experiment that is 21 

able to provide a common framework in a global-wide perspective for regional climate 22 

projections in order to understand their uncertainties as well as provide model evaluation.  23 

3. CRU and APHRO products are used as “observations”. Are they more accurate and reliable 24 

than other global temperature and precipitation data products over the study domain (China)? 25 

Response: Thanks. We use the temperature data from CRU and precipitation data from APHRO 26 

as the observation climate in this study. Some illustrations about CRU and APHRO products 27 

and the reason why they are used in this study are clarified as below: 28 

Some studies have focused on comparing and evaluating the spatio-temporal similarities 29 

and differences of several widely used observed gridded datasets over China (Sun et al., 2014; 30 

Wu and Gao, 2013; Yin et al., 2015). Table 1 shows the information of several widely used 31 

global observed gridded climate datasets (from Sun et al., 2014). According to Sun et al (2014), 32 

all temperature datasets in table 1 exhibit similar distribution patterns for the annual average 33 

temperature in mainland China. Considering its easier access and wider usage in evaluation of 34 
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RCM model used in East Asian/China (Wang et al., 2017), CRU other than UDEL temperature 35 

data are used to evaluate the performance of RCM in this study.  36 

Table 1 Detailed information on the datasets in the research of Sun et al (2014) 37 

Dataset Pre Tas Spatial domain Temporal domain Reference 

APHRO √  0.25°, East Asia Daily, 1951-2007 (Yatagai et al., 2012) 

CRU √ √ 0.5°, global Monthly, 1901-2017 (New et al., 2000) 

GPCC √  0.5°, global Monthly, 1901-2010 (Becker et al., 2013) 

UDEL √ √ 0.5°, global Monthly, 1901-2010 (Willmott and Matsuura, 2001) 

 38 

Sun et al (2014) suggest that observed precipitation coming from different datasets do 39 

have differences, which are caused by differences in raw data sources, quality control schemes, 40 

orographic correction and interpolation techniques. Indeed, we have no ability to know the 41 

‘truth value’. To some degree, the dataset constructed based on observations from more 42 

meteorological stations can be treated as more accurate and reliable one. Among the several 43 

precipitation datasets shown in table 1, APHRO’s daily gridded precipitation, presently the only 44 

long-term, continental-scale, high-resolution daily product, is constructed based on data 45 

collected at 5000-12000 stations, which represent 2.3-4.5 times the data made available through 46 

the Global Telecommunication System network used for generating global gridded dataset (i.e. 47 

CRU, GPCC and UDEL) (Yatagai et al., 2012). Thus, the APHRO dataset would give more 48 

confidence in the robustness of the results in comparison with other global precipitation datasets 49 

and thus is widely used for evaluating the performance of RCM in East Asia (Gao et al., 2017; 50 

Kumar and Dimri, 2017; Lau et al., 2017; Lee et al., 2017; Um et al., 2017). 51 

4. Section 2.3 is somewhat confusing due to lack of details. Why using Taylor diagram? A 52 

concise description of the Taylor diagram is needed for those who are not familiar with the 53 

method.  54 

Response: Thanks. Detailed illustration for Taylor diagram has been added in the revised 55 

manuscript.  56 

The Taylor diagram was designed to quantify the degree of correspondence between the 57 

modeled and observed behavior by plotting a 2D graph with three statistics (Pearson correlation 58 

coefficient (R), standard deviation (SD), and the root-mean-square error (RMSE)). In the 59 

Taylor diagram, a smaller distance between the observation and the compared models means a 60 

closer agreement (Baker and Taylor, 2016; Sun et al., 2015; Taylor, 2001). More details about 61 

this diagram are available from the above references. In general, The Taylor diagram enable 62 

statistics for different fields (with different units) to show in a single plot, facilitating the 63 

comparative assessment of different models.  64 

5. Eqs. (4)-(5) appear to come from nowhere with undefined notations. A justification of the 65 

statistical method and metrics used in the analysis is helpful.  66 
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Response: Thanks. More details about notations in Eqs. (4)-(5) and methods (where Eqs. (4)-67 

(5) are included) to separate and quantify the two sources of uncertainty were added in the 68 

revised manuscript. Here we give a brief illustration. 69 

(1) Firstly, the percentage change from the mean of 1980-1999 is calculated for each 70 

projection, and a smooth fourth-order polynomial is fitted for 2030-2049. Then the raw 71 

simulation of each model Xm,t for the model m and year t which can be expressed by 72 

 , , ,m t m t m m tX x c     (Eqs. 1) 

where the smooth fit is represented by xm,t, the reference data is denoted by cm, and the residual 73 

is denoted by εm,t. 74 

The internal variability is represented by the decadal mean residuals from these smooth fits 75 

for 2030-2049, which is assumed to be constant with lead time.  76 

The model uncertainty is considered by the model spread around the mean for each scenario. 77 

(2) The RCMs are weighted by their performance in simulating the current climate from 78 

the mean of 1980-1999, up to the year 1999. Thus, each model is weighted according to 79 
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where xm,1999 is the model climate changes at the year of 1999, relative to 1980-1999, and xobs 80 

is an observational estimate derived from fitting a similar fourth-order polynomial to the 81 

observations. The normalized quantities of these weightings can be expressed as 82 
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 (Eqs. 3) 

(3) The internal variability (equ. 4) is defined as the multi-model mean of theses variance 83 

of the residuals from the fits for each model. Here vart(.) indicates the variance across different 84 

time slices. 85 

var ( , )m t mm
V W t                    (Eqs. 4) 86 

(4) The intermodel variability (equ.5) is estimated from the weighted variance (varw) in 87 

the different RCM prediction fits (xm,t), where varm(.) represents the variance across different 88 

models. 89 



4 

 

 m ,( ) var ( )w

m tM t x  (Eqs. 5) 

(5) It was assumed that the two sources of uncertainty can be treated independently (i.e., 90 

there is no interaction between them). Thus, the total variability VT is: 91 

 ( ) ( )TV t V M t   (Eqs. 6) 

6. Section 3 is not well organized and thought out. Overall, discussions are somewhat 92 

superficial. To make this paper useful, more insightful explanations and suggestions should be 93 

made explicit and specific. For example, on page 6 “All RCMs successfully simulate the 94 

precipitation patterns but with quite large biases in amounts”. Should we trust more the CRU 95 

data or the RCMs simulations?  96 

Response: Thanks. We reorganized the Section 3 and included more specific analysis in our 97 

revised manuscript. The response to the question “Should we trust more the CRU data or the 98 

RCMs simulations?” is below: 99 

In this paper, we aimed to evaluate the performance of five RCMs within CORDEX-EA 100 

in reproducing present-day climate and to analyze the projected future climate changes under 101 

the middle emission scenario and uncertainties attributed to RCMs and internal variability. Here 102 

the performance of five RCMs in reproducing present-day climate is evaluated by comparing 103 

the RCM simulations with the CRU and APHRO products. The CRU and APHRO products are 104 

constructed based on observed metrological data during historical period. Thus the CRU and 105 

APHRO database can be treated as the proxy for the observed metrological data, with higher 106 

reliability than the RCMs simulations during historical period. 107 

7. The authors suggest that “the multi-model ensemble outperforms the individual RCM in 108 

reproducing the observed spatial pattern of precipitation” (page 6). Would it be possible to 109 

obtain the “true” climate by having infinite ensembles?  110 

Response: Thanks. It is difficult to obtain the “true” climate by having infinite ensembles so 111 

far. The reason is listed below: 112 

The skill of climate models in reproducing precipitation or temperature is limited by 113 

internal atmospheric variability that is largely unpredictable (Kharin and Zwiers, 2002). Thus, 114 

perfect climate model does not exist. Some researchers have concluded the multi-model 115 

ensemble outperforms the individual RCM in reproducing climate pattern (Huttunen et al., 2017; 116 

Rozante et al., 2014). Moreover, the probability of obtaining “true” climate would rise with 117 

increased ensemble number. However, huge computational resource is required for the long-118 
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term and high-resolution climate projection. Therefore, to obtain the “true” climate by having 119 

infinite ensembles is difficult by now.  120 

8. In section 3.3.2, it was suggested that “the seasonal precipitation change in multi-model 121 

ensemble has larger magnitude and variability than driving GCM. This phenomenon concerns 122 

the significance of the model physics and processes for future climate projection”. Specification 123 

of what model physics and processes are important would be very useful. The paper ended with 124 

“More reliable future climate information could be provided by coupling GCMs and RCMs 125 

through the modifications to model structures and parameters.” To be specific about the model 126 

structures and parameters to be modified would be the valuable new knowledge that the reader 127 

can learn from this analysis. 128 

Response: Thanks for your suggestions. The illustrations for important model physics processes 129 

have been added in the revision. They are clarified by two points below:  130 

(1) In section 3.3.2, it was suggested that “the seasonal precipitation change in multi-131 

model ensemble has larger magnitude and variability than driving GCM”. The configurations 132 

of each RCM were showed in Table 2. For each RCM, optimal schemes of the dynamical and 133 

physical processes were determined through the investigation of the model sensitivities to the 134 

schemes. In general, convective parameterization is the most important and sensitive physical 135 

process associated with the simulation results (Huang and Gao, 2017). Land surface 136 

parameterizations, as well as those parameterizations over the ocean, are also very important 137 

because they control the quantity of moisture entering into atmosphere from the Earth’s surface 138 

(Zhao and Li, 2015). Thus, the phenomenon above could be attributed to the difference in 139 

convective parameterization, land surface parameterizations, as well as those parameterizations 140 

over the ocean between GCMs and RCMs. On the other hand, the discrepancies between the 141 

RCMs and driving GCM indicate that the RCM projections are sensitive to local and regional 142 

processes and the methods represented in the model (Diallo et al., 2012; Saini et al., 2015). 143 

(2) At the end of this paper, further research in the future was added: More reliable future 144 

climate information and uncertainty quantification could be provided by coupling large 145 

ensemble of GCMs and RCMs under different emission scenarios. 146 

Table 2. RCMs used in this studya 147 

 HadGEM3-RA RegCM4 MM5 WRF RSM 

Resolution 0.44° 50km 50km 50km 50km 

Dynamic 

process 

Non-hydrostatic Hydrostat

ic 

Non-

hydrostatic 

Non-

hydrostatic 

Hydrostatic 

Convective 

scheme 

Revised mass 

flux scheme 

MIT-

Emanuel 

Kain-Fritch 

II 

Kain-Fritch 

II 

Simplified 

Arakawa-

Schubert 
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Land surface 

parameterization 

MOSES2  CLM3 CLM3 NOAH NOAH 

Planetary 

boundary layer 

MOSES2 non-

local 

Holtslag YSU YSU YSU 

Spectral 

nudging 

No Yes Yes Yes Yes 

Center of 

research 

MOHC ICTP NCAR NCAR YSU 

References Davies et 

al.(2005) 

Giorgi et 

al.(2012) 

Cha and 

Lee(2009) 

Skamarock 

et al.(2005) 

Hong et 

al.(2013) 

aMOSES= Met Office Surface Exchange Scheme, CLM= Community Land Model, NOAH=Noah Land 148 

Surface Model, YSU= Yonsei University scheme, MOHC= The Met Office Hadley Centre, ICTP= The 149 

International Centre for Theoretical Physics, NCAR= National Center for Atmospheric Research 150 

9.The paper needs a careful text editing to improve its presentation. A long sentence is often 151 

confusing such as “Reliable regional future climate projection is important for the evaluation 152 

of climate change impacts and vulnerability, as well as the elaboration of appropriate mitigation 153 

and adaptation measures, especially for the developing countries like China tend to be one of 154 

the most vulnerable to the adverse effects of climate changes” (page 1). English Grammar needs 155 

to checked carefully. For example, “The ongoing coordinated regional downscaling experiment 156 

(CORDEX) (Giorgi et al., 2009; Jones et al., 2011), whose aim to provide high-resolution 157 

regional future climate projections for the majority of populated land regions on the globe by 158 

using multi-RCMs, and an interface to the applicants of the climate simulations in climate 159 

change impact, adaptation, and mitigation studies.” (page 2) is not a sentence as it does not 160 

have a verb. 161 

Response: Sorry for the serious language problem in previous manuscript. We consider your 162 

criticism thoroughly in revising manuscript. In total, the previous article was severely revised 163 

four times, particularly on the presentation, interpretation and language together with the 164 

figures and tables. In the revising process, two important co-authors (Prof. W. R. Peltier from 165 

University of Toronto, Toronto, Canada and Prof. Guiling Wang from University of 166 

Connecticut, USA) with proficient English skills contributed to the thorough control check in 167 

language for this version significantly. They read and corrected the language and presentation 168 

for the paper sentence by sentence to meet the reviewers’ request. As you can see from the 169 

track-changes in the main context, tables, and figures, the revised version was really 170 

undergone a major revision through which the paper quality has been improved. 171 

 172 

 173 

 174 

 175 

 176 
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Reviewer #2 177 

Major comments 178 

(1) Introduction. The limitation and development of GCMs are reviewed, but the advantages 179 

and applications of RCMs are not clearly discussed. A more detailed introduction on the 180 

progress and limitation on dynamical downscaling is needed. As mentioned by the authors, 181 

“The CORDEX-EA has been evaluated for simulating the precipitation and temperature over 182 

East Asia (Huang et al., 2015; Jin et al., 2016; Lee and Hong, 2014; Oh et al., 2013; Park et al., 183 

2013; Suh et al., 2012; Zou et al., 2014).” Therefore, how does this study differ from previous 184 

CORDEX-EA studies should be clearly stated. 185 

Response: Thanks for your valuable suggestions. More details on the progress and limitation 186 

on dynamical downscaling and the difference between this study and previous CORDEX-EA 187 

studies were added in the revision. Two points are clarified as follows:  188 

(1) The resolution of RCMs is approximately 12-50 km, and it accounts for the sub-GCM 189 

grid-scale forcing, e.g. complex topographical features and land cover heterogeneities in a 190 

physically based manner. However, RCMs inherit the biases from systematic model errors 191 

caused by imperfect conceptualization, discretization, and spatial averaging within grid cells. 192 

(Dong et al., 2018). Nonetheless, RCM ensembles enable the understanding and 193 

characterization of uncertainties which have different origins, from the future scenario, to the 194 

forcing data and the regional model physics, and therefore, reduce uncertainties and increase 195 

confidence in future projections.  196 

(2) A series of studies based on RCMs within CORDEX-EA have been conducted to 197 

project extreme and mean precipitation and temperature over china under different scenarios 198 

(Jin et al., 2016; Lee et al., 2014; Niu et al., 2015; Park et al., 2016; Tang et al., 2016; Um et 199 

al., 2017), but little attention has been paid to quantify the contributions of the uncertainty 200 

arising from RCMs and internal variability in future climate projection over China. Thus, it is 201 

necessary to objectively evaluate the capability of RCMs and quantify the uncertainty in future 202 

climate projections. In this study, we evaluate the performance of five RCMs within CORDEX-203 

EA to reproduce present-day climate and to anayze the projected future climate changes under 204 

the middle emission scenario. More importantly, biases in current climate simulations and 205 

uncertainties in future climate projections attributed to the RCMs and internal variability are 206 

further analyzed. 207 

(2) Uncertainty quantification method. P5, L5-7. The paper by Hawkins and Sutton (2009, 208 

BAMS) used a model-weighted variance when calculating inter-model variability M(t), while 209 

eq. 5 in this paper seemed to get an unweighted value. Given that eq. 4 defined a weighted mean 210 

of variance as V (same as Hawkins and Sutton’s paper), I suggest keeping it consistent in the 211 

manuscript, because RCM simulations may differ a lot in both magnitude and variation. If the 212 
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eq. 5 is just a typo and this study does calculate weights for different models, both simple multi-213 

model ensemble (MME) and weighted MME should be compared in the evaluation (e.g., 214 

Figures 2-4). 215 

Response: Thanks for your valuable suggestions. Equation 5 was modified and the weighted 216 

variance was used when calculating the inter-model variability in the revision. As shown in the 217 

Figures 1-3 in this response file, no significant difference in the spatial patterns (Figures 1-2) 218 

between simple multi-model ensemble (MME) and weighted MME can be found. Similarly, 219 

skills of the models in reproducing the precipitation and temperature with simple MME are 220 

nearly consistent with that based on weighted MME (Figure 3). Thus, the weighted MME is 221 

used in the revised manuscript, instead of the simple MME.   222 

 223 

Figure 1. Spatial distributions of annual average temperature (ºC) of CRU (a), multi-model 224 

ensemble (b), multi-model ensemble (c), and temperature biases (ºC) of the driving GCM 225 

HadGEM2-AO (d), multi-RCM ensemble (e, f) and five RCMs (g-k) during 1980-2005. 226 
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 227 

 228 

Figure 2. Spatial distributions of annual average precipitation (mm/year) of APHRO (a), multi-229 

model ensemble (b), weighted multi-model ensemble (c), and precipitation biases (%) of the 230 

driving GCM HadGEM2-AO (d), multi-RCM ensemble (e and f) and five RCMs (g-k) during 231 

1980-2005. 232 

 233 
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 234 

Figure 3. Taylor diagram to compare the skill of the models in representing the annual average 235 

temperature and precipitation over the five regions of China, using the CRU (for temperature) 236 

and APHRO (for precipitation) data as the REF.  237 

(3) The abstract needs a careful revision. For example, how does the CORDEX-EA future 238 

projection over China or East Asia differ from existing reports (e.g., IPCC AR5 report or at 239 

least the driven GCM in this study)? Are the 5 models (RCMs) enough to quantify the model 240 

variability? What is the added value for dynamical downscaling (e.g., how much error has been 241 

reduced)? 242 

Response: Thanks for your suggestion. We tried to compare and add the CORDEX-EA future 243 

projection and the simulation by the driven GCM in the revision. Meanwhile, the added value 244 

for dynamical downscaling was analyzed in the revised manuscript.  245 

(1) The comparison of the CORDEX-EA future projection over China with the projection 246 

by the driven GCM was added. As shown in table 3, increases in annual mean temperature 247 

based on the five RCMs’ ensemble range from 0.9 ºC to 1.3 ºC in different subregions, which 248 

is quite close to the projected increase in annual mean temperature from the forcing GCM 249 

(range from 0.7 ºC to 1.4 ºC). Meanwhile, similar spatial patterns for projected change in annual 250 

mean temperature by the ensemble method and the driving GCM are shown in Figures 4a-b. 251 

Generally, the CORDEX-EA future projected change in mean temperature is nearly consistent 252 

with the results from the driving GCM. However, opposite signals for projected changes in 253 

average precipitation between the ensemble method and the driving GCM are shown over South 254 

china, Northeast china and Tibetan Plateau (table 3). Particularly the spatial and temporal 255 

differences in projection from two methods above are largest at the Tibetan Plateau, up to about 256 

10%.    257 
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Table 3. The future changes in average temperature (T; °C) and precipitation (P; %) for the 258 

five subregions (as shown in Figure 1). The ensemble averages for each statistic are given in 259 

the second line. The projections by the forcing GCM are given in the last line. 260 

  WRF MM5 HadGEM3-RA RegCM RSM Ensemble HadGEM2-AO 

Northeast China 
T(°C) 0.2 2.7 1.4 1.4 1.1 1.3 0.8 

P(%) -21.7 8.2 13.0 4.4 7.1 1.5 -0.4 

North China 
T(°C) 0.3 1.7 1.1 1.0 1.0 1.0 0.8 

P(%) -1.5 15.1 3.1 10.2 3.3 6.1 4.9 

South China 
T(°C) 0.5 1.5 1.0 0.8 0.8 0.9 0.7 

P(%) -14.6 -1.6 4.8 4.9 1.3 -1.5 2.3 

Northwest China 
T(°C) 1.3 0.8 1.5 1.3 1.1 1.2 1.2 

P(%) -27.0 19.4 2.2 4.7 8.9 3.6 7.2 

Tibetan Plateau 
T(°C) 0.9 1.4 1.2 1.3 1.6 1.3 1.4 

P(%) -31.6 -17.8 2.4 6.4 7.4 -7.8 2.1 

 261 

(2) The added values for RCMs were confirmed by comparing the performance of RCM 262 

and GCM in reproducing annual mean precipitation and temperature during historical period. 263 

According to the Taylor diagram (Figure 3 above), it is found that the added value for RCMs 264 

strongly depends on the climate variable and the region of interest. The added value of the 265 

RCMs with respect to the driving global climate model was evident in term of annual mean 266 

temperature over all five subregions, with higher spatial correlation coefficient for all five 267 

RCMs. Compared with the driving global climate model simulations, the spatial patterns of the 268 

simulated annual average precipitation over South China, Northwest China and the Tibetan 269 

Plateau were improved in most RCMs. The expectations are over Northeast China and North 270 

China, where higher performance is shown for the driving global climate model. Please see 271 

lines 286-297 in this response file for the reasons resulting in this phenomenon.    272 

Besides, the results shown in above two points were summarized in a couple of sentences 273 

in the revised abstract, in view of the length limit for the abstract. 274 

 275 

 276 

http://www.youdao.com/w/phenomenon/#keyfrom=E2Ctranslation
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 277 

Figure 4. Projected future changes (RCP4.5-Baseline) in surface air temperature for the forcing 278 

GCM HadGEM2-AO and each of the five RCMs. 279 

 280 

Figure 5. Projected future changes ((RCP4.5-Baseline)/Baseline×100%) in precipitation for the 281 

forcing GCM HadGEM2-AO and each of the five RCMs. 282 

 283 

(4) Figure 4b. Why there is a decrease in precipitation correlation, where GCM outperforms all 284 

RCMs over North China? 285 

Response: Thanks. The reason why there is a decrease in precipitation correlation over North 286 

China was added in the revision. In this study, it is found the performance of RCM in 287 

reproducing spatial pattern of annual average precipitation is superior to that of the driving 288 

GCM in term of correlation coefficient in most sub-regions over China. The only exception is 289 

North China. In reality, the added value in RCM simulations (in compaction with GCM) is 290 

related to a better representation of spatial variability of surface climate statistics, particularly 291 

in regions with fine-scale surface forcing such as orographic and coastal features. Thus, the 292 

added value in RCM simulations is commonly significant in regions with fine-scale surface 293 

forcing, whereas the performance of RCM is less improved or even worse than that of the 294 

driving GCM over relatively flat regions. For instance, Prommel and Geyer (Prömmel et al., 295 

http://www.youdao.com/w/correlation%20coefficient/#keyfrom=E2Ctranslation
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2010) also found the RCM deteriorates some results compared to the driving GCM in relatively 296 

flat subregions surrounding the Alps, particularly during the summer season.  297 

(5) There are a lot of grammar errors while I just mentioned quite a few below. Please proofread 298 

the paper carefully or ask a native English speaker for help. 299 

Response: Sorry for the serious language problem in previous manuscript. In the revising 300 

process, two important co-authors (Prof. W. R. Peltier from University of Toronto, Toronto, 301 

Canada and Prof. Guiling Wang from University of Connecticut, USA) with proficient English 302 

skills contributed to the thorough control check in language for this version significantly. As 303 

you can see from the track-changes in the main context, tables, and figures, the revised version 304 

was really undergone a major revision through which the paper quality has been improved. 305 

 306 

Minor comments  307 

(6) P3, Section 2.1. Two datasets were used as reference precipitation, CRU and APHRO. The 308 

reason why both datasets are necessary is equivocal, partly because of little comparison 309 

between them. Which one was chosen as reference value when calculating precipitation biases 310 

(%) in Figure 3 and why?  311 

Response: Thanks for your suggestions. In figure 3 APHRO data was chosen as reference 312 

precipitation when calculating precipitation biases (%). Meanwhile, only APHRO dataset other 313 

than CRU dataset was used as reference precipitation in the revision, to increase the readability 314 

of this paper. The reason why APHRO dataset is used has been detailed in lines 40-53 in this 315 

response file. 316 

(7) P1, L16, “decreases -7.8%” -> “decreases by -7.8%”.  317 

Response: Thanks. They have been done. 318 

(8) P1, L20, “contribute” -> “contributes”. 319 

Response: Thanks. They have been done. 320 

(9) P1, L21, “which” -> “where”.  321 

Response: Thanks. They have been done. 322 

(10) P2, L22, “forces on” -> “focusing on”.  323 

Response: Thanks. They have been done. 324 

(11) P2, L24-27, this sentence is awkward.  325 

Response: Thanks. We rewrote this sentence. 326 

(12) P2, L32, “simulating”->”simulation”  327 
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Response: Thanks. They have been done. 328 

(13) P3, L2, “will became”->”will become”  329 

Response: Thanks. They have been done. 330 

(14) P3, L13, “Scection 3” ->“Section 3”.  331 

Response: Thanks. They have been done. 332 

(15) P4, L1, “include” -> “including”, “.. of each of the RCM: : :” -> “of each RCM : : :”.  333 

Response: Thanks. They have been done. 334 

(16) Several sentences in the manuscript are difficult to read with grammar mistakes, for 335 

instance, P2 L2, P2 L7-L8, P3 L1, P3 L19-21, etc. The authors should improve the presentation, 336 

especially for Abstract and Introduction Section. 337 

Response: Thanks. We rewrote these sentences. 338 

(17) Caption of Figure 4 needs revision, where the information for temperature (red rectangles) 339 

is missing. 340 

Response: Thanks. We modified this caption in the revised manuscript. 341 
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Abstract. An ensemble simulation of 5 five regional climate models (RCMs) from the Coordinated coordinated Regional 

regional Downscaling downscaling eExperiment in East Asia (CORDEX-East Asia) was is evaluated and used forto project 10 

future regional climate change projection in China. Meanwhile, tThe contributions influences of model uncertainty and internal 

variability on projections are are also identified. The RCMs simulated both the historical (1980-2005) climate (1989-2008) 

and future (2006-2049) climate projections (2030-2049) under the Representative Concentration Pathway (RCP) RCP4.5 

scenario. We highlightedThe simulations for 5 five subregions in China, includingviz. Northeast China, North China, South 

China, Northwest China, and Tibetan Plateau, are highlighted in this study. Our rResults showed that (1) the capability of 15 

RCMs tocan capture the climatology, annual cycle and inter-annual variability of temperature and precipitation and a multi-

model ensemble (MME) outperforms that of thean individual RCM. The added values for RCMs are confirmed by comparing 

the performance of RCM and GCM in reproducing annual and seasonal mean precipitation and temperature during the 

historical period. (2) For the future climate, the MME indicate consistent warming trends at around 1 °C were indicated by 

multi-model ensemble over in the whole entire domain and project more pronounced warming was projected in northern and 20 

western China. The annual precipitation is likely to increase in most of the simulation region, except for the Tibetan Plateau 

which decreases -7.8%. (3) Generally, the future projected change in annual and seasonal mean temperature by RCMs is nearly 

consistent with the results from the driving GCM. However, changes in annual and seasonal mean precipitation Compare with 

the similar seasonal temperature changes with the driving global climate model (GCM), the seasonal precipitation change 

shows exhibit significant inter-RCM difference and has possesses larger magnitude and variability than driving GCM. Even 25 

opposite signals for projected changes in average precipitation between the MME and the driving GCM are shown over South 

China, Northeast China and Tibetan Plateau. (4) The model uncertainty for futurein projected mean temperature projection 

mainly arises from the internal variability is clearly dominant over the northeastnorth and, southnorthwest China and the model 

uncertainty over the rest three subregions and Tibetan Plateau, reaching up to 70%, and it contribute about 40% of the total 

uncertainty over north and south China. For the projected mean precipitation, thethe internal variability is dominant uncertainty 30 

source is the internal variability over most regions, except for the Tibetan Plateau which where the the model uncertaintyies 
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reaches up to 60%. Moreover, the In addition, the mmodel uncertainty increases with prediction lead time over across all 

subregions. 

 

1 Introduction 

The gGlobally averaged surface temperature has increased by 0.65-1.06 °C during the period from 1880 to 2012 according to 5 

multiple several independently produced datasets, and further rises increases ranging from on the order of 0.3 °C -to 4.8 °C 

are projected for 2081-2100 relative to 1986-2005 using a set of global climate models (GCMs) driven by the Representative 

Concentration Pathway (RCP) scenarios RCP2.6 to RCP8.5 (IPCC, 2013)(IPCC, 2013). Meanwhile, other climate factors, 

such as precipitation amounts and variability, snow and ice cover patterns and mean sea level, are also changing such as 

precipitation amounts and variability, snow and ice cover patterns and mean sea level (Alfieri et al., 2015; Kerr, 2008; Patz et 10 

al., 2005)(Alfieri et al., 2015; Kerr, 2008; Patz et al., 2005). Reliable projection of regional  future climate projection is 

important critical for thein evaluatingon of  climate change impacts and vulnerability, as well as and the elaboration ofin 

developing appropriate mitigation and adaptation measures, especially for the developing countries, like such as China which 

tends to be one of the most vulnerable countries to the adverse effects of climate changes (Kreft et al., 2016; Wang et al., 

2017).  15 

The East Asian summer monsoon (EASM) is the most distinctive climate feature in China, and the monsoon area accounts 

for approximately 60% of the mainland (Ding and Chan, 2005)(Ding and Chan, 2005). EASM system-related precipitation 

starts around mid-May or even earlier in Indo-China Peninsula, which presents distinct stepwise northward and northeastward 

advances feature with two abrupt northward jumps and three stationary periods, and begins withdrawing southward in 

September (Ding, 2004; Hsu, 2005)(Ding, 2004; Hsu, 2005). The rainy seasons of EASM, including the pre-summer rainy 20 

season over South China, mei-yu (in China) occur normally occurs during the stationary periods, which are imbedded in the 

northward advance of the summer monsoon. The anomaly of EASM could cause floods and droughts which plays aare crucial 

role in the livelihood of more than one billion people (Gu et al., 2015; Webster et al., 1998; Yu et al., 2018)(Webster et al., 

1998). However, because of the complex topography and model limitation, how to reliably reproduce thethe manner in which 

climatological rainfall and interannual variation of EASM can be reliably reproduced still remains a challenge because of the 25 

complex topography and model limitation. The CMIP3 (coupled Coupled model intercomparison project phase 3 (CMIP3)) 

and CMIP5 GCMs, however, have problems simulating precipitation in this region. Recent studies have suggested that the 

new generation of GCMs from CMIP5 archive shows exhibits some several improvements to reproduce the climatology and 

interannual variability of EASM compared with the CMIP3 GCMs, but although the simulated biases remained and large 

intermodel spread existed (Chen and Bordoni, 2014; Gu et al., 2015; Huang et al., 2013; Yang et al., 2017)(Chen and Bordoni, 30 

2014; Gu et al., 2015; Huang et al., 2013). For example, the mei-yu rainfall band in GCMs is missing in the GCMs, although 

even though the monsoon circulation is well reproduced.  
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Because ofConsidering these deficiencies, higher high-resolution GCMs have been developed to improve the capabilities 

in monsoon features simulation, including orographic precipitation, low-level jet orientation and variability, as well as the mei-

yu onset and withdrawal (Kitoh et al., 2013; Kusunoki et al., 2006)(Kitoh and Kusunoki, 2008; Kitoh et al., 2013; Kusunoki 

et al., 2006). However, these experiments are still remained burdensome due to large computational cost resources required 

for multi-decadal simulations. Therefore, the regional climate models (RCMs) forces on focusing on a region of interest are 5 

commonly used in regional climate projection and climate change impacts studies (Gao et al., 2006; Giorgi and Mearns, 1999; 

Gu et al., 2012; Wang et al., 2004; Yira et al., 2017; Yu et al., 2006)(Christensen et al., 2007; Gallée et al., 2004; Gao et al., 

2006; Giorgi and Mearns, 1999; Gu et al., 2012; Leung et al., 2003; Wang et al., 2004; Yira et al., 2017; Yu et al., 2006). The 

resolution of RCMs is approximately 12-50 km, and it could consider local scale forcing, e.g. complex terrain features and 

land cover heterogeneities in a physically based method. However, RCMs inherit the biases from systematic model errors 10 

because of the imperfect conceptualization, discretization, and spatial averaging within grid cells (Dong et al., 2018). 

Nonetheless, RCM ensembles can be used to understand and characterize uncertainties from different sources, such as future 

climate scenario, the driving GCM and regional model physics, and therefore, reduce the uncertainties and increase credibility 

in future projections. The ongoing coordinated regional downscaling experiment (CORDEX)  (Giorgi et al., 2009; Jones et al., 

2011)(Giorgi et al., 2009; Jones et al., 2011), whose aims to provide high-resolution regional future regional climate projections 15 

for the majority of populated land regions on the globaelly by using multi-RCMs, and to present an interface to thefor applicants 

of the climate simulations in climate change impact, adaptation, and mitigation studies (Giorgi et al., 2009; Jones et al., 

2011)(Giorgi et al., 2009; Jones et al., 2011). The CORDEX in East Asia -( CORDEX-EA) is the East- Asian branch of the 

CORDEX experiment, and it provides ensemble regional climate simulations (https://cordex-

ea.climate.go.kr/main/modelsPage.do). TheA series of studies based on RCMs within  CORDEX-EA has been conducted to 20 

project extreme and meanevaluated for simulating the precipitation and temperature over in East Asia (Huang et al., 2015; Jin 

et al., 2016; Lee and Hong, 2014; Oh et al., 2013; Park et al., 2013; Suh et al., 2012; Zou et al., 2014) (Jin et al., 2016; Lee et 

al., 2014; Niu et al., 2015; Park et al., 2016; Tang et al., 2016; Um et al., 2017), but little attention has been paid to quantify 

the contributions of the uncertainty in future climate projection over China.. 

Despite large improvements in the simulating simulation of local processes, future climate projections are still 25 

accompanied by large uncertainties stemming from different sources, including the forcing GCMs, emission scenarios, 

downscaling methods (RCMs or statistical downscaling methods), and natural climate internal variability (Déqué et al., 2007; 

Deser et al., 2012)(Déqué et al., 2007; Deser et al., 2012). Numerous previous studies have demonstrated that GCMs being are 

the main source of uncertainty (Seo et al., 2016)(Seo et al., 2016). However, after excluding the outliers from the GCM 

ensemble, other Other uncertainty sources, such aslike RCMs and internal variability will becoame more important than GCMs 30 

after excluding the outliers from the GCM ensemble (Kay et al., 2009; Wilby and Harris, 2006)(Kay et al., 2009; Wilby and 

Harris, 2006). In a non-stationary climate, the internal variability of a given GCM-RCM chain can remain high above the trend 

related to a given emission scenarios forcing (Lafaysse et al., 2014; O'Brien et al., 2011)(Hawkins and Sutton, 2011; Lafaysse 

et al., 2014; O'Brien et al., 2011). So far, little Little attention has been paid devoted to quantify the contributions of the 
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uncertainty arising from RCMs and internal variability in future climate projection over China. Thus, it is necessary to 

oObjectively evaluatinge the capability of RCMs and quantifying the uncertainty in future climate projections are necessary. 

In this study, we evaluate the performance of five RCMs within CORDEX-EA to reproduce present-day climate and to 

analysze the projected future climate changes under the middle emission scenario. In addition More importantly, biases in 

current climate simulations and uncertainties in future climate projections attributed to the RCMs and internal variability are 5 

further analyzsed. This paper is structured as follows. The dData from observation and model simulation, and analysis method 

are described in the succeedingnext  section. Scection 3 presents the historical performances of RCMs for temperature and 

precipitation and future climate changes under RCP4.5 emission scenario over in China. The uncertainties in regional future 

climate projection resulting fromcaused by inter-RCMs and natural climate internal variability are also discussed. The 

summary and conclusion are given presented in Ssection 4. 10 

2 Data and methods 

2.1 Observations 

The reference temperature and precipitation data used to compare evaluate the model results to with observation data develops 

from the University of East Anglia Climate Research Unit Timeseries 3.23 (CRU TS3.23) of the University of East Anglia, 

with a spatial resolution of 0.5°, derived from gauge measurements , details in Harris et al.,(Harris et al., 2014)(2014). 15 

Meanwhile, the reference precipitation data, namely Tthe Asian Precipitation-Highly Resolved Observational Data Integration 

Toward Evaluation (APHRODITE, hereafter APHRO) dataset with a spatial resolution of 0.25° also was used forto evaluate 

RCMs evaluation (Yatagai et al., 2012)(Yatagai et al., 2012). In order tTo facilitate the comparison, outputs from a host of 

RCMs were converted to a common grid of 0.5° × 0.5° latitude/longitude as in the remapped to the CRU and APHRO 

observations, using bilinear interpolation. The reasons why CRU and APHRO products are used as reference in this study are 20 

clarified as below. 

Some studies have focused on comparing and evaluating the spatial-temporal similarities and differences of several 

widely used observed gridded datasets over China (Sun et al., 2014; Wu and Gao, 2013; Yin et al., 2015). Among the widely 

used gridded dataset, such as the Global Precipitation Climatology Centre (CPCC) product, the University of Delaware 

(UDEL) product, CRU data and the National Meteorological Information Center dataset from China Meteorological 25 

Administration, all temperature datasets exhibit similar distribution patterns for the annual average temperature in mainland 

China. Considering its easier access and wider usage in the evaluation of RCMs used in China and East Asian (Wang et al., 

2017), CRU product is used as the reference temperature data in this study. APHRO’s daily gridded precipitation, presently 

the only long-term, continental-scale, high-resolution daily product, is constructed based on the data collected at 5000-12000 

stations, which represent 2.3-4.5 times the data made available through the stations used for generating global gridded (i.e. 30 

CRU, GPCC and UDEL) (Yatagai et al., 2012). Thus, the APHRO dataset would give more confidence in the robustness of 

the results in comparison with other global precipitation datasets and thus is widely used for evaluating the performance of 
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RCM in East Asia(Gao et al., 2017; Lau et al., 2017; Um et al., 2017). In addition, the CRU and APHRO product are used 

instead of station data accessible from China Meteorological Administration, owing to the study area involving in the domain 

of East Asia extending beyond China territory.The use of two data sets is beneficial not only to the evaluation of RCM’s 

performance but also to the verification of the observation datasets. 

2.2 Models and experiments 5 

In this study, we used five RCMs, namely, HadGEM3-RA, MM5, WRF, RegCM4, and RSM for East Asian climate 

experiments (Table 1). They are derived from the CORDEX East Asia experiment that is able to provide a global holistic 

framework for regional climate projections so as to understand their uncertainties as well as provide model evaluation. 

Moreover, the selected five RCMs have been demonstrated to have abilities to reproduce the regional climate over East Asia 

and have been used for modelling and predicting extreme climate as well as investigating physical processes of East Asia 10 

climate (Cha and Lee, 2009; Cha et al., 2011; Hong and Yhang, 2010; Park et al., 2008; Yhang and Hong, 2008). The dataset 

were produced from multi-RCM national project under Korea Meteorological Administration. The spatial resolution of the 

data is 50 km (except HadGEM3-RA is 0.44°), and the whole CORDEX-EA domain includes East Asia, India, the Western 

Pacific Ocean, and the northern part of Australia, as shown in Fig.ure 1. Model configurations includinge physical schemes 

are summarized in Table 1. The detailed description of each of the RCM simulations can be found inPlease refer to the 15 

references Suh et al.(2012)(2012) and Park et al.(2016)(2016) about more details about RCMs used in this study.  

Table 1 

Figure 1 

In this study, two types of current climate experiments from five RCMs were performed, including the evaluation 

(hereafter EVAL) experiment for the period of from 1989 -to 2007 and the historical (HIST) experiment for the period offrom 20 

1980- to 2005. The EVAL experiment acquires initial and boundary conditions from the National Centers for Environmental 

Prediction (NCEP) reanalysis, and whereas the HIST experiment is forced by  the Atmosphere-Ocean coupled Hadley Center 

Global Environmental Model version 2 (HadGEM2-AO) simulation. The HadGEM2-AO (1.875°×1.25° horizontal resolution) 

has been used for climate simulations in a CMIP5 set of long-term experiments, and has been evaluated demonstrated to have 

a reasonable ability to capture the East Asian climatology (Baek et al., 2013; Martin et al., 2011; Sperber et al., 2013)(Baek et 25 

al., 2013; Martin et al., 2011; Sperber et al., 2013). The fFuture climate simulation is driven from the HadGEM2-AO under 

RCP 4.5 scenario. The RCP 4.5 scenario, which is an intermediate scenario and a cost-minimizing pathway that total radiative 

forcing is stabilized at 4.5 W m-2 in the year the year 2100 (Thomson et al., 2011)(Thomson et al., 2011). The reference period 

from 1980 to 1999 and the scenario period from 2030 to 2049 are analyzsed for climate changes research in this studystudy. 

The multi-model ensemble (MME) mean, which is defined as the pointwise arithmetic average over all individual model 30 

climatologies, is used to narrows down inter-RCM uncertainties because of their differences in model structures and physics. 

To further evaluate the model performance on smaller spatial scales, we evaluate the performance of RCMs over five selected 
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sub-regions (as shown in Figure 1), that isnamely, Northeast China (40-50°N, 115-130°E), North China (30-40 °N, 105-120 

°E), South China (22-30 °N, 105-120 °E), Northwest China (35-45 °N, 80-95 °E), and Tibetan Plateau (28-35 °N, 80-95 °E). 

2.3 Analysis methods 

The root-mean-square error (RMSE), biasWe evaluate climatology from individual RCMs, MME using bias, the root-mean-

square error (RMSE),  and Taylor diagram analysis are selected for statistical measurements of the performance for the 5 

individual RCM and the MME. The former two indexes are used for evaluating the ability of models in reproducing annual 

and seasonal mean of climatology. The annual and seasonal means are examined by bias and RMSE. The model performance 

on spatial patterns is evaluated by Taylor diagram (Taylor, 2001).The Taylor diagram is designed to quantify the degree of 

correspondence between the modelled and observed behavior by plotting a 2D graph with three statistics (correlation 

coefficient, standard deviation, and RMSE). In the Taylor diagram, a small distance between reference and compared objects 10 

indicates close agreement (Baker and Taylor, 2016; Sun et al., 2015)(Sun et al., 2015). In general, the Taylor diagram enable 

statistics for different fields (with different units) to show in a single plot, facilitating the comparative assessment of different 

models (Taylor, 2001). 

Uncertainty in projected climate change mainly arises from the internal variability of the climate system, the model 

uncertainty, and the scenario uncertainty (Niu et al., 2015; Woldemeskel et al., 2016). In this study, all RCMs are driven by 15 

the same GCM under the same scenario, soand thus, the uncertainty of the climate projections is mainly caused by the inter-

RCM variability and internal variability (Niu et al., 2015). The method developed by Hawkins and Sutton (2009; 2011)(2009; 

2011)was  is used for to separatinge these two sources of uncertainty. Here we give a brief illustration. 

(1) Firstly, a smooth fourth-order polynomial is used to fit each individual simulation over the years 1980-2049 by using 

ordinary least squares method. Then Tthe raw simulation of each model Xm,t for the model m and year t which can be expressed 20 

by 

 , , ,m t m t m m tX z c     (1) 

where the smooth fit is represented by xmzm,t, represents the simulation from the smooth fit for the model m and year t 

minus the reference data; the reference data is denoted by cm, and the residual (internal variability) is denoted by εm,t. Here the 

reference data is the mean of simulation from the smooth fit during the years 1980-1999. Here each individual simulation was 

fit with a fourth-order polynomial by using ordinary least squares method during the years 2030-2049. The reference data used 25 

are the mean of the years 1980 to 1999 and estimated from the smooth fits. 

(2) The RCMs are weighted by their performance in simulating the current climate from the mean of 1980-1999, up to 

the year 1999. Thus, each model is weighted according to 

 
,1999

1
m

obs m obs

w
z z z


 

 (2) 
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where xmzm,1999 is the model climate changes at the year ofin 1999, relative to 1980-1999, and xobs zobs is an observational 

estimate derived from fitting a similar fourth-order polynomial to the observations. The normalized quantities (Wm) of these 

weightings can be expressed as 

 
m

m

mm

w
W

w



 (3) 

(3) The iInternal variability (V, as shown in equEq. 4) is defined as the multi-model mean of theses variance of the 

residuals from the fits for each model, 5 

 ,var ( )m t m tm
V W   (4) 

 m ,( ) var ( )w

m tM t z  (5) 

(4) And the iIntermodel variability (M, as shown in equEq. 5) is estimated from the weighted variance (varw) in the 

different RCM prediction fits (xmzm,t), where vart(.) and varm(.) indicate the variance across time and model, respectively. 

(5) It was assumed that the two sources of uncertainty can be treated independently (i.e., there is no interaction exists 

between them). Thus, the total variability VT is then 

 ( ) ( )TV t V M t   (6) 

(6) The fraction of variance of internal variability and model uncertainty defined as V/VT(t) and M(t)/VT(t), respectively.  10 

3 Results 

3.1 Climatology for the control historical climate  

3.1.1 Historical annual average climate evaluation 

Figure 2 shows the annual average temperature of CRU, the driving GCM HadGEM2-AO and multi-model ensemble, and as 

well as the temperature biases of five RCMs drivingen by HadGEM2-AO during from 1980 to 2005. Obviously, both the 15 

MME and The corresponding MME mean is denoted by point ensemble. Similar as the multi-model average results, allfive 

RCMs could can capturereproduce the spatial pattern of annual mean temperature in China, which demonstrateswith a 

decreasing south-north gradient of the observed temperature over China and a cold area over in the Tibetan Plateau. Moreover, 

the MME presents overall best results to reproduce the temperature spatial distribution and provides less than 1 °C temperature 

biases over most area in China. However, Generally, aall modelRCMs generally overestimated the mean temperature give 20 

warm biases over most of the domain, , in particular warmer mean temperature is simulated by especially MM5 and HadGEM3-

RA give larger warm biases than the other models. The only exception is that RSM underestimated the mean temperature  

Most RCMs give obvious warm biases over the Tibetan Plateau except for RSM which give a cold biases. The multi-model 

ensemble shows overall best results to reproduce the temperature spatial distribution and give less than 1 °C temperature biases 

over most area of China. 25 
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Figure 2 

The RCMs give provide reasonably accurate simulations on for mean temperature during the historical period, , but are 

less successful at reproducing the precipitation. Figure 3 shows the annual average precipitation of from CRU, APHRO, 

HadGEM2-AO, multi-model ensembleand MME, andas well as the precipitation biases of from five RCMs in the current 

period. Observed precipitation amounts also show a It is found that the spatial pattern for annual mean precipitation is 5 

characterised bywith a decreasing southeast-northwest gradient over China. , which can be All RCMs successfully simulated 

by all RCMs. However, quite large precipitation biases are found in different RCMs. For instance, WRF underestimated the 

annual the mean precipitation patterns in northwest China, where mean precipitation was overestimate by the other RCMs. In 

comparison with the simulation from each RCM,but with quite large biases in amounts. The precipitation is overestimated in 

the arid/semiarid region of northwest China by all RCMs except for WRF which underestimate the precipitation over the whole 10 

domain. Comparably, RegCM shows more realistic in current precipitation reproduction. In general, tthe multi-model 

ensembleMME is better in reproducing annual mean precipitation over most subregions in China. outperforms the individual 

RCM in reproducing the observed spatial pattern of precipitation.  

Figure 3 

The comparison of the spatial variability statistics of the models in reproducing the annual mean temperature and 15 

precipitation by the Taylor plot (Taylor, 2001)(Taylor, 2001) are exhibitedsummarized in Figure 4. The temperature 

simulations from of the five RCMs display exhibit a good spatial pattern correlation, rangeing from 0.83 to 0.96, while whereas 

the precipitation simulation show a relatively wide extensive range of spatial pattern correlations from 0.29 to 0.93. Besides, 

the MME is superior to most RCMs in capturing spatial variability of these climate variables, as reflected by higher spatial 

correlation coefficient and lower It should be noted that the RMSE of the ensemble statistic is less than most of single model 20 

simulation. In other words, the apparent biases of the individual models are reduced by the multi-model ensembles.  

There could be sSeveral reasons forcould explain this phenomenon, , as noted by which also noticed by oother scholars 

in their studies on model inter-comparisons (Huttunen et al., 2017; Phillips and Gleckler, 2006; Rozante et al., 2014) (Phillips 

and Gleckler, 2006).  On the one handFirst, to a certain extent that the bias of a simulated climate field is symptomatic of 

random errors to a certain extent, and the multi-model ensembleMME may reduce or counteract this error from the RCM. On 25 

the other handMoreover, the pointwise variations of the climate field have beenare smoothened out by averaging, thereby 

filtering regional regional-scale simulations, whereich current climate models are difficult to capture. However, their causes 

are often difficulty to identify and to remedy, further investigation is needed in model inter-comparison.  

Figure 4 

In addition, most of RCMs show better performance than the driving GCM HadGEM2-AO, and it reflect the added value 30 

of the high resolution RCMs in simulation of spatial variability of the East Asia monsoon. 

3.1.2 Interannual and seasonal variabilityFigure 4 of historical climate 
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The ability of a climate model to capture realistic interannual variability is an importantcritical measure of its performance. 

The time series of the annual mean temperature and precipitation from RCMs are compared to with CRU and APHRO in 

Figure 5. Evidently, The the interannual variation of the climatologies climatology is generally well reproduced in the RCMs 

ensembleMME. In the evaluation experiment for 1989-2007, the correlation coefficient of the annual climatologies 

climatology time series at five subregions between the observation and RCMs ensemblesimulation from the MME is ranges 5 

from 0.52 to 0.78 for temperature, and range from 0.50 to 0.87 for precipitation. The correlation coefficient is always lower in 

West China compared with that in the East China, especially in Tibetan Plateau. In the historical experiment for from 1980- 

to 2005, the MME show better performance, in comparison with the RCMs which have difficulty to in reproduceing the 

interannual variability for precipitation because of the impact of the driving GCM. 

Figure 5 10 

The temporal distributions of rainfall precipitation and temperature throughout the year is are quite importance important 

for the ecosystems and water resource management. In order toTo evaluate the RCM’s ability to capture the seasonal variability 

of climatologies, the seasonal cycles of simulated temperature and precipitation averaged over five subregions in China wasare 

examined (Figures 6). It is evident that the seasonal patterns of The observed temperature and precipitation is featured by one 

peak in June over south China and in July over the rest regions, which can be successfully reproduced by all RCMs and MME. 15 

show the steep onset of summer rainfall associated with the summer monsoon, which peaks sharply in July (except south China 

in June for precipitation). All RCMs successfully reproduce the seasonal variation characteristics of a single peak. All models 

capture the bell-shape of the monthly temperature profile. However, the inter-model difference in simulated precipitation is 

large. For instance, monthly precipitation is always underestimated by WRF and overestimated by MM5 and HadGEM3-RA, 

especially larger bias is shown in summer. Among five RCMs, RegCM is the one with best ability to simulate the seasonal 20 

cycles of precipitation. The MME generally provide the most accurate simulation for the temporal distribution of precipitation, 

in comparison with the RCMs. As for the temperature, the RCMs can capture its temporal pattern over all subregions. Moreover, 

mean temperature in different months are alwaysBut almost all RCMs overestimated by most RCMsthe temperature the whole 

year with systematic biases except for WRF which underestimate the temperature over most regions. Overall, theHowever, the 

MME reduces the bias from the RCMs and therefore generate more accurate temporal distribution for mean temperature. 25 

RCMs show better in simulating the twenty-year average monthly temperature than the corresponding precipitation. The multi-

model ensemble succeed in reproducing the seasonal variation of precipitation. However, the inter-model difference is quite 

larger compare with the temperature. Some RCMs always underestimate (i.e. WRF) or overestimate (i.e. MM5 and HadGEM3-

RA) the precipitation especially in summer, other RCM (i.e. RSM) overestimate precipitation in some region/season but 

underestimate precipitation in others. Overall, RegCM and multi-model ensemble give the most accurate twenty-year average 30 

climate simulation.  

Figure 6 
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3.1.3 The added value for RCMs 

The added values for high-resolution RCMs were confirmed by comparing the performance of RCMs and driving GCM 

HadGEM2-AO in reproducing annual mean precipitation and temperature during the historical period. According to the Figure 

4-6, it is found that the added value for RCMs depends largely on the climate variable and the area of interest. The added value 

of the RCMs in comparison with the driving GCM was evident in term of annual mean temperature over all five subregions, 5 

with higher spatial and temporal correlation coefficient and less seasonal bias for all five RCMs. Compared with the driving 

GCM simulations, the historical precipitation over South China, Northwest China and the Tibetan Plateau were improved in 

most RCMs. The exceptions are over Northeast China and North China where higher performance is shown for the driving 

global climate model. In reality, the added value in RCM simulations is mainly concerned with a better representation of spatial 

variability of surface climate statistics, particularly in areas with small-scale land surface forcing such as orographic and coastal 10 

features. Thus, the added value in RCM simulations is commonly significant in regions with fine-scale surface forcing, whereas 

the performance of RCM is less improved or even worse than that of the driving GCM over relatively flat regions. For instance, 

Prommel and Geyer (Prömmel et al., 2010) also found the RCM deteriorates some results compared to the driving GCM in 

relatively flat regions surrounding the Alps, especially in summer. In most cases, five RCMs perform better than the driving 

GCM HadGEM2-AO. It needs to be emphasized that the better model performance tends to increase confidence in the future 15 

climate projections from RCMs. 

 

3.2 Multi-RCM future climate projection 

3.2.1 Futurrue change in climatology 

According to figure 7 showing the projections for mean temperature from the driving GCM, RCMs and the MME, The 20 

projected future changes in annual mean temperature show similar warming trends are detected over the whole entire domain 

for the periodfrom 2030 to- 2049 under RCP4.5 emission scenario (Fig. 7). All five models project substantially significant 

warming while exhibitings different spatial patterns. The ensemble increases averagedin annual temperature increases by the 

MME are 1.3, 1.0, 0.9, 1.2, and 1.3 °C over the Northeast, North, South, Northwest, and Tibetan Plateau subregions, 

respectively. The warming in northern and western China is more significant than that in southern China, especially in 25 

Northeast China and Tibetan Plateau, which are is similar to the results from previous studies with observation and projection 

of models (Sun et al., 2015; You et al., 2014; Zhou and Yu, 2006)(Sun et al., 2015; You et al., 2014; Zhou and Yu, 2006). 

Moreover, the magnitude for the increase in annual temperature over a given subregion varies with the RCM. For instance, the 

projected increase in mean temperature over the Tibetan Plateau ranges from 0.9 °C to 1.6 °C. 

Figure 7 30 

Figure 8 shows the spatial distributions of changes in annual mean precipitation changes (RCP4.5 – baseline). In During 

the period the future period, 2030-2049, increased precipitation is projected by the multi-model averaged precipitation change 
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is positiveMME and most RCMs over China, with all five individual model exhibiting positive changes over all five 

subregions. Moreover, the projected spatial pattern from the driving GCM, the MME and RCMs is nearly consistent, with Tthe 

most prominent increase in precipitation increases are shown in MM5, RSM, and RegCM over the north and northwest China 

and slightly increase precipitation over the rest regions. The only exception is the results from WRF, by which the declined 

mean precipitation is projected over China. In particular, wider range for the change in projected annual precipitation are 5 

shown over the Tibetan Plateau. This is related to the fact that significant difference in projected precipitation change between 

WRF and the other RCMs. Therefore, the projected change in annual precipitation over the Tibetan Plateau should be treated 

with caution. The annual precipitation changes little over central China, northern China and southwestern China. In Tibetan 

Plateau a decrease in order of -7.8% is projected. There are some broad similarities across RCMs because they have the same 

parent GCM, but among those, the signal for change is more mixed in WRF. Besides, opposite signals for projected changes 10 

in average precipitation between the MME and the driving GCM are detected over South China, Northeast China and Tibetan 

Plateau (Table 2). Particularly the differences in projection form two methods above are largest at the Tibetan Plateau, up to 

about 10%. 

Figure 8 

Table 2 15 

 

3.2.2 Change in seasonal cycle 

The future changes of temperature and precipitation are characteristic of regionality and seasonality. The ensemble 

projection (as shown in Figure 9) indicates that the monthly temperature change over five subregions in China is in the ranges 

from 0.3 °C to 2.2 °C under the RCP4.5 scenario. All RCMs projections show that there is aA more remarkable warming trend 20 

to become warm in colder months from November to March than inis detected by all RCMs other months. The seasonal cycle 

of temperature change in MME is also similar to that of the driving GCM HadGEM-AO. Most RCMs project positive monthly 

precipitations changes for summer (from June to August) in northeast, north, and southover China, with the exception of the 

Tibetan Plateau. The spreads in monthly precipitation changes by five RCMs are characteristic of seasonality, with largest 

appearing in July and the smallest in March. Additionally, the seasonal cycle of temperature change in multi-model ensemble 25 

is similar to that of the driving GCM HadGEM-AO. However, the projected monthlyseasonal precipitation change byin multi-

model ensembleMME has larger magnitude and variability than the driving GCM. This phenomenon concerns the significance 

of the model physics and processes for future climate projection. The configurations of each RCM were showed in Table 1. 

For each RCM, optimal schemes of the dynamical and physical processes were determined through the model sensitivity 

analysis (Suh et al., 2012). In general, convective parameterization is one of the most important and sensitive process in a 30 

RCM (Huang and Gao, 2017). Land surface parameterization, as well as those parameterizations over the ocean, are also very 

important because they control the quantity of water vapor flux entering into atmosphere from the earth’s surface (Zhao and 

Li, 2015). Thus, the phenomenon above could be attributed to the difference in convective parameterization, land surface 
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parameterizations, as well as those parameterizations over the ocean between GCMs and RCMs. On the other hand, the 

discrepancies between the RCMs and the driving GCM indicate that the RCM projections are sensitive to local and regional 

processes and the corresponding methods incorporated in the model (Diallo et al., 2012; Saini et al., 2015). 

Figure 9  

3.2.3 Inter-RCM variability of Multimulti-RCM projections 5 

The uncertainties of regional climate projection are arised from different sources, which include the GCMs, emission scenarios, 

RCMs, and natural climate internal variability for natural climate. In this study, the regional future climate is projected by 

using five RCMs forced with the same GCM  under an intermediate scenario (RCP4.5). As a cConsequencetly, the contribution 

of inter-RCM variability and natural climate internal variability to total uncertainty in the projections are analyzed in this 

section. 10 

The contributions of the model uncertainty and natural climate internal variability to the total prediction uncertainty from 

model uncertainty and natural climate internal variability were are estimated by the method proposed by Hawkins and Sutton 

(2009)(2009),. and tThe results for five subregions were are shown in Figure 10. It shows that tThe relative importance of the 

model uncertainty increases with prediction lead time over all subregions. For temperature, the model uncertainty is the primary 

source of uncertainty over the northeast, northwest China, and Tibetan Plateau during from 2030- to 2049, reaching up to 70%. 15 

The model uncertainty minimally contributes smaller (about approximately 40%) of to the total uncertainty over north and 

south China before the middle of the 21st century. For the uncertainty on projected precipitation, the internal variability is the 

dominant uncertainty source over most regions, except for for the Tibetan Plateau wherewhich the model uncertainties reached 

up to 60%. The uncertainties come from the driving GCM, and the emission scenarios are not discussed in this study, although 

they have been recognized as important components for  total uncertainty (Déqué et al., 2012)(Déqué et al., 2012). Further 20 

research on uncertainty quantification on the basis of different More robust estimates include larger ensemble of projections 

by RCMs forced by different GCMs, RCMs and emission scenarios are necessary foris needed in the futureuncertainty 

quantification. 

Figure 10 

4 Summary and conclusions 25 

In this research, simulation of five RCM models, which run are simulated within the CORDEX-EA initiative at 50km 

resolution with boundary forcing from a CMIP5 global model applying the RCP4.5 scenario, are employed to derive the future 

climate change signal for the China and five selected smaller investigation areas. In this studyMeanwhile, we focus on the 

future regional climate projection over China and the contribution quantification of the model uncertainty and natural climate 

internal variability to the total prediction uncertainty are quantified.  30 
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The control runs of CORDEX-EA RCMs revealed an overall reasonable representation of the mean climate properties 

when compared with the observational gridded dataset. In general, aAll RCMs generally giveprovide warm biases, whileereas 

the multi-model ensembleMME shows demonstrates the overall best performance, with less than 1 °C annual average 

temperature biases over most area of in China. The control RCM results have a significant spread, and show quite large biases 

in annual precipitation. Similarly, the multi-model ensembleMME outperforms outperformed the individual RCM in 5 

reproducing the observed spatial pattern of precipitation. The RCMs also have the ability to capture realistic interannual 

variability and seasonal variability of the annual mean temperature and precipitation. Moreover, five RCMs perform better 

than the driving GCM HadGEM2-AO in reproducing annual and seasonal precipitation over most subregions. Based 

uponTherefore, it is concluded the model performance evaluation, our results show that the MME constructed based on 

presentthe  set of RCMs from CORDEX-EA can be used to provide useful information on climate projections over East Asia. 10 

For the future climate of 2030- to 2049, MME indicated consistent warming trends around 1ranging from 0.9 °C to 1.6 

°C were indicated by multi-model ensemble overin the whole entire domain and more pronounced warming was detected was 

projected in northern and western China. The spread between the single simulations is in the order of 1.3 °C. Seasonal 

temperature changes drastically in cold months, which is similar to that of the driving GCM. Besides, Tthe annual precipitation 

is likely to increase in most of the simulation subregions, especially in north and northwest China. The projected spatial pattern 15 

for annual precipitation is characterized by prominent increase over the north and northwest China and slightly increased 

precipitation over the rest regions. decreases or changes little over northeastern China and south China. In Tibetan Plateau a 

decrease in order of -7.8% is projected. The seasonal temperature changes more drastically in colder months which are similar 

to that of the driving GCM. HowMoreeover, the seasonal precipitation show positive changes in summer months are predicted 

to consistently increase over the entire domain, with the exception of the Tibetan Plateau. with significant inter-RCM difference 20 

and has larger magnitude and variability than driving GCM. The above results manifest that the internal model variability play 

an important role in the regional climate change projection.It should be noted that the projected monthly precipitation change 

by MME has larger magnitude and variability than the driving GCM. 

This study identified Tthe contributions of model uncertainty and internal variability are identified in this study. The 

model uncertainty for in projected future temperature mainly arises from the internal variability over north and south China. 25 

Whereas, the model uncertainty is clearly dominant over the rest three subregions, projection is clearly dominant over the 

northeast, northwest China and Tibetan Plateau during 2030-2049, reaching up to 70%, and it can explaining about 

approximately 4070% of the total uncertainty. over north and south China. For precipitation, the internal variability is dominant 

over most regions except for the Tibetan Plateau, in which the model uncertainties reach up to 60%. In addition, the mModel 

uncertainty also increases with prediction lead time over all subregions. The RCM simulation results of RCMare also 30 

influenced by the internal physics and boundary conditions from GCMs as discussed in other’s studies (Mariotti et al., 2011; 

Syed et al., 2012)(Mariotti et al., 2011; Syed et al., 2012). More reliable future climate information could be provided by 

coupling GCMs and RCMs through the modifications to model structures and parameters.More reliable future climate 
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information and uncertainty quantification could be provided by coupling large ensemble of GCMs and RCMs under different 

emission scenarios.  
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Table Captions 

Table 1. RCMs used in this study. 

Table 2. The future changes in average temperature (T; °C) and precipitation (P; %) for the five 

subregions. The ensemble averages for each statistic are given in the second line. The projections by the 

forcing GCM are given in the last line.The future changes in average temperature (T; °C) and 5 

precipitation (P; %) for the five subregions (as shown in Figure 1). The ensemble averages for each 

statistic are given in the second line. The projections by the forcing GCM are given in the last line. 
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Table 1. RCMs used in this studya (Park et al., 2016)(Park et al., 2016) 

 HadGEM3-RA RegCM4 MM5 WRF RSM 

Resolution 0.44° 50km 50km 50km 50km 

Dynamic process Non-hydrostatic Hydrostatic Non-hydrostatic Non-hydrostatic Hydrostatic 

Convective 

scheme 

Revised mass flux 

scheme 

MIT-

Emanuel 

Kain-Fritch II Kain-Fritch II Simplified 

Arakawa-Schubert 

Land surface 

parameterization 

MOSES2  CLM3 CLM3 NOAH NOAH 

Planetary 

boundary layer 

MOSES2 non-local Holtslag YSU YSU YSU 

Spectral nudging No Yes Yes Yes Yes 

Center of research MOHC ICTP NCAR NCAR YSU 

References Davies et 

al.(2005)(2005) 

Giorgi et 

al.(2012)(201

2) 

Cha and 

Lee(2009)(2009

) 

Skamarock et 

al.(2005)(2005) 

Hong et 

al.(2013)(2013) 

aMOSES= Met Office Surface Exchange Scheme, CLM= Community Land Model, NOAH=Noah Land Surface Model, YSU= 

Yonsei University scheme, MOHC= The Met Office Hadley Centre, ICTP= The International Centre for Theoretical Physics, 

NCAR= National Center for Atmospheric Research 

 5 

Table 2. The future changes in average temperature (T; °C) and precipitation (P; %) for the five subregions (as shown in Figure 1). 

The ensemble averages for each statistic are given in the second line. The projections by the forcing GCM are given in the last line. 

  WRF MM5 HadGEM3-RA RegCM RSM Ensemble HadGEM2-AO 

Northeast China 
T(°C) 0.2 2.7 1.4 1.4 1.1 1.3 0.8 

P(%) -21.7 8.2 13.0 4.4 7.1 1.5 -0.4 

North China 
T(°C) 0.3 1.7 1.1 1.0 1.0 1.0 0.8 

P(%) -1.5 15.1 3.1 10.2 3.3 6.1 4.9 

South China 
T(°C) 0.5 1.5 1.0 0.8 0.8 0.9 0.7 

P(%) -14.6 -1.6 4.8 4.9 1.3 -1.5 2.3 

Northwest China 
T(°C) 1.3 0.8 1.5 1.3 1.1 1.2 1.2 

P(%) -27.0 19.4 2.2 4.7 8.9 3.6 7.2 

Tibetan Plateau 
T(°C) 0.9 1.4 1.2 1.3 1.6 1.3 1.4 

P(%) -31.6 -17.8 2.4 6.4 7.4 -7.8 2.1 
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Figure Captions 

Figure 1. The simulation domain of CORDEX-EA and the topography of the regional climate models (m). The boxes illustrate 

the five selected subregions over China: Northeast China (NE), North China (NC), South China (SC), Northwest China (NW), 

and Tibetan Plateau (TP).The simulation domain of CORDEX-EA and the topography of the regional climate models (m). The 

boxes illustrate the five selected subregions over China: Northeast China (NE), North China (NC), South China (SC), 5 

Northwest China (NW), and Tibetan Plateau (TP). 

Figure 2. Spatial distributions of annual average temperature (ºC) of CRU (a), multi-model ensemble (b), and temperature 

biases (ºC) of the driving GCM HadGEM2-AO (c), multi-RCM ensemble (d) and five RCMs (e-i) during 1980-2005.Spatial 

distributions of annual average temperature (ºC) from CRU (a), the driving GCM HadGEM2-AO (b), multi-model ensemble 

(c), and temperature biases (ºC) of the driving GCM HadGEM2-AO (d), multi-RCM ensemble (e, f) and five RCMs (g-k) 10 

during 1980-2005. 

Figure 3. Spatial distributions of annual average precipitation (mm/year) of CRU (a), APHRO (b), multi-model ensemble (c), 

and precipitation biases (%) of the driving GCM HadGEM2-AO (d), multi-RCM ensemble (e) and five RCMs (f-j) during 

1980-2005. Spatial distributions of annual average precipitation (mm/year) from APHRO (a), the driving GCM HadGEM2-

AO (b), MME (c), and precipitation biases (%) of the driving GCM HadGEM2-AO (d), MME (e) and five RCMs (f-j) during 15 

1980-2005. 

Figure 4. Taylor diagram to compare the skill of the models in representing the summer precipitation over the five regions of 

China, using the CRU (for temperature) and APHRO (for precipitation) data as the OBS. The azimuthal axis shows the pattern 

spatial correlation. The redial distance from the origin represents the spatial variability, while the distance from the OBS point 

is the centered RMSE difference between the simulated and observed. The Taylor diagram to evaluate the skill of the models 20 

in reproducing the annual average temperature and precipitation over the five regions of China, using the CRU (for 

temperature) and APHRO (for precipitation) data as the reference. The azimuthal axis shows the pattern spatial correlation. 

The redial distance from the origin represents the spatial variability, whereas the distance from the OBS point is the centred 

RMSE difference between the simulated and observed. 

Figure 5. Temporal evolution of the annual mean temperature (left two panels) and precipitation (right two panels) in RCM 25 

simulations and observation over the five subregions during the 1989-2007 (EVAL) and 1980-2005 (HIST) periods. The 

correlation coefficient between RCMs ensemble and the observation are shown at the top right of each panel.The temporal 

evolution of the annual mean temperature (left two panels) and precipitation (right two panels) in RCM simulations and 

observation over five subregions during the 1989-2007 (Eval) and 1980-2005 (Hist) periods. The correlation coefficient 

between RCMs ensemble and the observation are shown at the top right of each panel. 30 
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Figure 6. Observed and simulated monthly mean temperature and precipitation over the five subregions during the 1989-2007 

(EVAL) and 1980-2005 (HIST) periods.Observed and simulated multiyear average of monthly temperature and precipitation 

over the five subregions during the 1989-2007 (Eval) and 1980-2005 (Hist) periods. 

Figure 7. Projected future changes (RCP4.5-Baseline) in surface air temperature for each of the five RCM. Projected future 

changes (RCP4.5-Baseline) in surface air temperature by the forcing GCM HadGEM2-AO, the MME and each of the five 5 

RCMs.  

Figure 8. Projected future changes ((RCP4.5-Baseline)/Baseline×100%) in precipitation by the forcing GCM HadGEM2-AO, 

the MME and each of the five RCMs.Projected future changes ((RCP4.5-Baseline)/Baseline×100%) in precipitation for each 

of the five RCM.  

Figure 9. Projected future changes in monthly mean temperature and precipitation by the forcing GCM HadGEM2-AO, the 10 

MME and each of the five RCMs under RCP4.5 scenario. Projected future changes in monthly mean temperature and 

precipitation for each of the five RCM under RCP4.5 scenario.  

Figure 10. Fraction of total variance in future temperature (left panel) and precipitation (right panel) projections explained by 

intermodel variability (gray) and internal variability (white) over the five subregions.The fraction of total variance in future 

temperature (left panel) and precipitation (right panel) projections explained by intermodel variability (gray) and internal 15 

variability (white) over the five subregions. 
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Figure 1. The simulation domain of CORDEX-EA and the topography of the regional climate models (m). The boxes illustrate the five 

selected subregions over China: Northeast China (NE), North China (NC), South China (SC), Northwest China (NW), and Tibetan Plateau 

(TP). 
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Figure 2. Spatial distributions of annual average temperature (ºC) of CRU (a), multi-model ensemble (b), and temperature biases (ºC) of the 

driving GCM HadGEM2-AO (c), multi-RCM ensemble (d) and five RCMs (e-i) during 1980-2005.Spatial distributions of annual average 

temperature (ºC) from CRU (a), the driving GCM HadGEM2-AO (b), multi-model ensemble (c), and temperature biases (ºC) of the driving 

GCM HadGEM2-AO (d), multi-RCM ensemble (e, f) and five RCMs (g-k) during 1980-2005. 5 
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Figure 3. Spatial distributions of annual average precipitation (mm/year) of from CRU (a), APHRO (ba), the driving GCM HadGEM2-AO 

(b), multi-model ensembleMME (c), and precipitation biases (%) of the driving GCM HadGEM2-AO (d), multi-RCM ensembleMME (e) 

and five RCMs (f-j) during 1980-2005. 
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Figure 4. The Taylor diagram to evaluate the skill of the models in reproducing the annual average temperature and precipitation over the 

five regions of China, using the CRU (for temperature) and APHRO (for precipitation) data as the referenceTaylor diagram to compare the 

skill of the models in representing the summer precipitation over the five regions of China, using the CRU (for temperature) and APHRO 

(for precipitation) data as the OBS. The azimuthal axis shows the pattern spatial correlation. The redial distance from the origin represents 5 
the spatial variability, while whereas the distance from the OBS point is the centered RMSE difference between the simulated and observed. 

带格式的: 字体: 非加粗

带格式的: 字体: 非加粗

带格式的: 字体: 非加粗



29 

 

 

Figure 5. The tTemporal evolution of the annual mean temperature (left two panels) and precipitation (right two panels) in RCM simulations 

and observation over the five subregions during the 1989-2007 (EvalEVAL) and 1980-2005 (HistHIST) periods. The correlation coefficient 

between RCMs ensemble and the observation are shown at the top right of each panel. 



30 

 

 

Figure 6. Observed and simulated multiyear average of monthly mean temperature and precipitation over the five subregions during the 

1989-2007 (EvalEVAL) and 1980-2005 (HistHIST) periods. 
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Figure 7. Projected future changes (RCP4.5-Baseline) in surface air temperature for each of the five RCM.Projected future changes (RCP4.5-

Baseline) in surface air temperature by the forcing GCM HadGEM2-AO, the MME and each of the five RCMs.  

 

Figure 8. Projected future changes ((RCP4.5-Baseline)/Baseline×100%) in precipitation for each of the five RCM. Projected future changes 5 
((RCP4.5-Baseline)/Baseline×100%) in precipitation by the forcing GCM HadGEM2-AO, the MME and each of the five RCMs. 
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Figure 9. Projected future changes in monthly mean temperature and precipitation by the forcing GCM HadGEM2-AO, the MME and for 

each of the five RCMs  under RCP4.5 scenario.  
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Figure 10. The fFraction of total variance in future temperature (left panel) and precipitation (right panel) projections 

explained by intermodel variability (gray) and internal variability (white) over the five subregions. 
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