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Abstract. Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in 9 

agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table 10 

(WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic 11 

experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion 12 

paper, we developed a physically-based numerical algorithm (SWINGO) that allows representing soil infiltration with a 13 

shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport 14 

mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment and 15 

pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-16 

loam soil under Mediterranean semi-continental climate, and silty-clay under temperate Oceanic climate), where limited 17 

testing of the model with field data on one of the sites showed promising results. The application showed that for the 18 

conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to 19 

evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and 20 

uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow 21 

reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for 22 

sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the 23 

silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex 24 

responses dominated by strong interactions in the modelled system response, reducing the typical predominance of saturated 25 

hydraulic conductivity on infiltration under deep water table conditions. This study demonstrates that when present, WT 26 

should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.  27 
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1 Introduction 28 

Today, surface waters are threatened by pesticide pollution at the local, regional and global scales (Malaj et al., 2014; Stehle 29 

and Schulz, 2015). Agricultural surface runoff is an important contributor to this contamination (Louchart et al., 2001). Grass 30 

buffer zones or vegetative filter strips (VFS), are a typical environmental control practice to protect aquatic ecosystems from 31 

sediment, and agrichemicals from agricultural fields (Roberts et al., 2012). While VFS are recommended in the USA and 32 

other regions, in Europe they are often mandatory along rivers due to their potential to limit surface pesticide runoff and 33 

aerial spray drift from entering adjacent surface water bodies (Asmussen et al., 1977; Rohde et al 1980; USDA-NRCS, 2000; 34 

Dosskey, 2001; Syversen and Bechmann, 2004; Poletika et al., 2009). However, the effectiveness of edge-of-field buffer 35 

strips to reduce runoff transport of pesticides can be very different as a function of many local characteristics (land use, soil, 36 

climate, vegetation and pollutant). For example, based on 16 field studies (Reichenberger et al., 2007), the 25th percentile of 37 

VFS pesticide reduction efficiency ranges from 45 to 75 % of the amount coming into the filter from the field edge. 38 

Moreover, VFS are typically located down the hillslope along the hydrographic network. As a result, the filter is often 39 

bounded by a seasonal shallow or perched water table, which may significantly inhibit their function and must be taken into 40 

account when designing VFS and evaluating their efficiency (Lacas et al., 2005). Dosskey et al. (2001, 2006) identified 41 

presence of shallow water table (<1.8 m) as an important factor that should be considered for VFS design and evaluation. 42 

Simpkins et al. (2002) also report that the hydrogeologic setting, specifically the direction of groundwater flow and the 43 

position of the water table in thin sand aquifers underlying the buffers, is probably the most important factor in determining 44 

buffer efficiency. Arora et al. (2010), in a review on VFS pesticide retention from agricultural runoff present that soil 45 

saturation from a shallow water table may be a reason for negative runoff volume retention. Other studies also identify the 46 

potential effects of location of the buffers where shallow water table is present (Ohliger and Schulz, 2010; Borin et al., 2004) 47 

but do not quantify or study its effects (Lacas et al., 2005). 48 

The processes occurring in the VFS interact in a complex manner in space and time, thus they must be simulated by dynamic 49 

models accounting for hydrologic (Gatel et al., 2016) and sedimentological variability (Fox et al., 2005). The Vegetative 50 

Filter Strip Modeling System (VFSMOD) (Muñoz-Carpena et al., 1993, 1999; Muñoz-Carpena and Parsons, 2004) is a 51 

storm-based numerical model coupling overland flow, water infiltration and sediment trapping in a filter considering 52 

incoming surface flow and sediment from an upslope field (Fig. 1). VFSMOD also includes a generalized empirical pesticide 53 

trapping equation as a function of soil and sediment sorption, dissolved phase infiltration, and sorbed phase sedimentation 54 

(Sabbagh et al., 2009). Pesticide degradation on the filter is included between runoff events for long-term pesticide 55 

assessments (Muñoz-Carpena et al., 2015), but neglected during events due to their short duration (min to h). VFSMOD has 56 

been successfully tested against measured data for predictions of flow, infiltration, and sediment trapping efficiency (Muñoz-57 

Carpena et al., 1999, Abu-Zreig, 2001, Dosskey et al., 2002, Fox et al., 2005, Han et al., 2005, Pan et al., 2017), tracers and 58 
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multi-reactive reactive solutes (Perez-Ovilla, 2010), phosphorus (Kuo and Muñoz-Carpena, 2009), pesticides (Poletika et al., 59 

2009; Sabbagh et al, 2009; Winchell et el., 2011), and colloids (Yu et al., 2013). Previous work studied the global sensitivity 60 

of simulated outflow, sediment and pesticide trapping to VFSMOD input factors (Muñoz-Carpena et al., 2007, 2010, 2015; 61 

Fox et al. 2010). At the watershed scale, VFSMOD has been included in methods or frameworks to optimize filter placement 62 

and design (Dosskey et al., 2006; Tomer et al., 2009; White and Arnold, 2009; Balderacchi et. al, 2016; Carluer et al., 2017). 63 

Sabbagh et al. (2010) integrated VFSMOD within higher-tier, US-EPA long-term pesticide exposure framework 64 

(PRZM/VFSMOD/EXAMS) to estimate changes in aquatic concentrations when VFS are adopted as a runoff pollution 65 

control practice. Recently, the German EPA (UBA) developed the GERDA software package as a pesticide regulatory tool 66 

for surface water that includes VFSMOD simulations with a shallow water table where present (Brinke et al., 2017). 67 

The extended Green-Ampt soil infiltration component (Skaggs and Khaheel, 1982) used in VFSMOD does not account for 68 

the presence of a shallow water table. In a companion paper, a physically-based algorithm was developed to describe soil 69 

infiltration under shallow water table conditions (SWINGO: Shallow Water table INfiltration alGOrithm). Dynamic coupling 70 

of this new infiltration algorithm to VFSMOD will allow for mechanistic description of interactions between surface and 71 

subsurface hydrology under shallow water table boundary conditions and ensuing effects on VFS sediment and pesticide 72 

transport.  73 

Thus, the objective of this work is to study the effects that the change in infiltration introduced by the presence of shallow 74 

water table has on VFS runoff reduction, sediment and pesticide trapping. This was done by a) dynamic coupling of 75 

SWINGO in VFSMOD; b) applying the coupled model on two contrasted and realistic benchmark study sites (sandy-loam 76 

soil vs silty-clay soil) and events (Mediterranean semi-continental vs temperate oceanic climates); and c) global sensitivity 77 

and uncertainty analysis to ascertain the actual global importance of shallow water table depth on the efficiency of the VFS 78 

when compared to other input factors.  79 

2 Material and methods 80 

2.1 Dynamic coupling of shallow water table infiltration algorithm (SWINGO) with VFSMOD overland flow, 81 

sediment and pesticide components 82 

The overland flow submodel in VFSMOD (Muñoz-Carpena et al., 1993a) (Fig. 1) is based on the kinematic wave equation 83 

numerical, upwinding Petrov-Galerkin finite element (FE) solution (Lighthill and Whitham, 1955), 84 

{

𝜕ℎ

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 𝑖 − 𝑓 = 𝑖𝑒

𝑆𝑓 ≈ 𝑆𝑜 → 𝑞 =
√𝑆𝑜

𝑛
ℎ
5

3

            (1) 85 
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with initial and boundary conditions 86 

 {
ℎ = 0; 0 ≤ 𝑥 ≤ 𝑉𝐿, 𝑡 = 0
ℎ = ℎ𝑜; 𝑥 = 0, 𝑡 ≥ 0

          (2) 87 

where h=h(x,t) [L] is the flow depth, t is time (L), q=q(x,t) [L
2
T

-1
] is discharge per unit width, x [L] is the surface flow 88 

direction axis, i=i(t) [LT
-1

] is rainfall intensity, f=f(t) [LT
-1

] is soil infiltration rate,  ie=ie(t) [LT
-1

] is rainfall excess, So and Sf 89 

[LL
-1

] are the bed and water surface friction slopes at each node of the system, n is Manning’s surface roughness coefficient, 90 

VL [L] is the filter length, and ho=ho(0,t) [L] represents the field runon hydrograph entering the filter as a boundary condition 91 

(Fig. 2). 92 

Originally, the overland flow component was coupled for each time step with a modified Green-Ampt infiltration algorithm  93 

for unsteady rainfall (GAMPT, see Fig. 1) for soils without (or with deep) water table (Chu, 1978; Mein and Larson, 1971, 94 

1973; Skaggs and Khaheel, 1982; Muñoz-Carpena et al., 1993b). The infiltration component provides the rainfall excess, ie 95 

in Eq. (1), based on a given unsteady rainfall distribution (hyetograph) for each FE node and time step. The field conditions 96 

can be well represented since the program handles field inflow hydrographs and hyetographs, and spatial variability of the 97 

filter over the nodes of the grid (Fig. 2). 98 

In the sediment component (Fig. 1), based on sediment mechanics (transport and deposition) in shallow flow, the model 99 

divides the incoming sediment into bed load (coarse particles, with diameter >37 μm) and suspended load (fine particles, 100 

diameter <37 μm).  Bed load deposition is dynamically calculated based on Einstein bed-load transport equation successfully 101 

tested for variable shallow flow through non-submerged dense vegetation (Barfield et al., 1978). Transport and deposition of 102 

suspended particles is calculated for non-submerged dense vegetation conditions (Tollner et al., 1976; Wilson et al., 1981). 103 

Flow characteristics needed for sediment calculations are provided for each time step by the overland flow component. The 104 

particle deposition pattern on the filter is predicted based on a conceptual sediment wedge, mass-balance approach (Fig. 2a).  105 

Pesticide reduction and transport in the filter during the runoff event is calculated within the water quality/pollutant module 106 

(Fig. 1) based on a generalized regression-based approach developed from on a large database of field studies by Sabbagh et 107 

al. (2009) and further tested by others (Poletika et al., 2009; Winchell et al., 2011). The equation considers reduction of 108 

dissolved pesticide through infiltration, deposition of sediment-bound pesticide, and pesticide adsorption characteristics. The 109 

integration of the mechanistic (flow and sedimentation from VFSMOD) and empirical pesticide approaches allows for 110 

identification of important site-specific factors determining the efficiency of pesticide removal (or lack of thereof) under 111 

realistic field conditions (Muñoz-Carpena et al., 2010; Fox et al., 2010).  112 

In this work, to simulate VFS water, sediment and pesticide dynamics under realistic unsteady rainfall-runoff conditions for 113 
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shallow water table conditions, we dynamically couple the new algorithm SWINGO (developed in the companion paper) as 114 

an alternative, user-selected infiltration submodel (Fig. 1). Full details of SWINGO are provided in the companion paper. 115 

Briefly, SWINGO is a time-explicit infiltration solution based on a combination of approaches by Salvucci and Entekhabi 116 

(1995) and Chu (1997) with the assumption of a horizontal wetting front. Proposed integral formulae allow estimation of the 117 

singular times: time of ponding (tp), shift time (to), and time (tw) when the wetting front depth is equal to zw (capillary fringe 118 

above the water table, Fig. 2b). As with GAMPT, the algorithm provides the infiltration rate f (Eq. 1) for each FE node and 119 

time step in VFSMOD as, 120 

{

𝑓 = 𝑖 0 < 𝑡 < 𝑡𝑝

𝑓 = 𝑓𝑝 = 𝐾𝑠 +
1

𝑧𝐹
∫ 𝐾(ℎ)𝑑ℎ
𝐿−𝑍𝐹
0

𝑡𝑝 < 𝑡 < 𝑡𝑤

𝑓 = 𝑚𝑖𝑛⁡(𝑓𝑤, 𝑖) 𝑡 ≥ 𝑡𝑤

        (3) 121 

where (Fig. 2b), z [L] is the vertical axis, zF [L] is wetting front depth from the surface, L [L] the depth to the water table, 122 

K=K(h) [MT
-1

] the soil water hydraulic conductivity function of soil matric suction h [L] (non uniform with depth), Ks [MT
-

123 

1
] is the saturation soil water content, and fw [MT

-1
] is the end vertical boundary condition when the wetting front reaches the 124 

water table (or its capillary fringe) typically assumed as vertical saturated flow or lateral drainage (see companion paper for 125 

details).  For real VFS field situations, unsteady rainfall without initial ponding must be considered and tp and to calculated. 126 

For each time step increment, Δt=tj-tj-1, the surface water balance at each VFS FE node (neglecting evaporation during the 127 

event) (Chu, 1997) is, 128 

𝛥𝑃 = 𝛥𝐹 + 𝛥𝑠 + 𝛥RO           (4) 129 

where ΔP, ΔF, Δs, and ΔRO [L] are changes for each Δt of cumulative precipitation (P), cumulative infiltration (F), surface 130 

storage and cumulative runoff (RO). Notice that ie= ΔRO/Δt for each time step. Unsteady rainfall is described by a 131 

hyetograph of constant ij for each rainfall period. If surface storage becomes s=0 then tp and to are re-calculated at the next 132 

rainfall period as, 133 

𝑡𝑝 =
1

𝑖
(𝜃𝑠𝑧𝑝 − ∫ 𝜃(𝐿 − 𝑧)𝑑𝑧

𝑧𝑝
0

)          (5) 134 

𝑡0 = ∫
1

𝑓𝑝
[𝜃𝑠 − 𝜃(𝐿 − 𝑧)]

𝑧𝑝
0

𝑑𝑧           (6) 135 

where s , (h) [L
3
L

-3
] are the soil water saturated content and the soil water characteristic curve, and zp [L] is the equivalent 136 

wetting front depth at tp, and for periods after the first, zF(t) (Fig. 2b) is calculated explicitly from the Newton-Raphson 137 

iterative solution (k iteration level), 138 
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𝐺(𝑧𝐹) = 𝑡 − 𝑡𝑝 + 𝑡0 − ∫
𝜃𝑠−𝜃(𝐿−𝑧)

𝐾𝑠−
1

𝑧𝐹
∫ 𝐾(𝐿−𝑧)dz
𝑧𝐹
𝐿

𝑑𝑧
𝑧𝐹
0

𝐺′(𝑧𝐹) = −
𝜃𝑠−𝜃(𝐿−𝑧)

𝐾𝑠−
1

𝑧𝐹
∫ 𝐾(𝐿−𝑧)dz
𝑧𝐹
𝐿

|| 𝑧𝐹
𝑘+1 = 𝑧𝐹

𝑘 −
𝐺(𝑧𝐹

𝑘)

𝐺′(𝑧𝐹
𝑘)

with |𝑧𝐹
𝑘+1 − 𝑧𝐹

𝑘| < 𝜀  (7) 139 

Finally, the algorithm computes tw, the time to reach column saturation as,  140 

𝑡𝑤 = 𝑡𝑝 − 𝑡0 + ∫
1

𝑓𝑝
[𝜃𝑠 − 𝜃(𝐿 − 𝑧)]𝑑𝑧

𝑧𝑤
0

         (8) 141 

Similarly, this singular time tw has to be obtained again each time tp and to are computed. When initial ponding is present we 142 

get tp = t0 = 0. Additional details are provided in the companion paper, and Supp. Materials S1 provides instructions for 143 

downloading the free VFSMOD open source code, documentation and sample applications. 144 

2.2 Benchmark field studies  145 

VSFMOD extended for shallow water table was applied to two experimental VFS sites in France (Fig. 3, Table 1), selected 146 

because they represent contrasting agronomic, pedological and climatic conditions (Fontaine 2010). The first site in a 147 

Beaujolais vineyard (Rhône-Alpes) consists of a vegetative filter strip on a steep hillslope (20-30%) located along the river 148 

Morcille (affluent of the Saône river). The site was instrumented from 2001 to 2008 for long-term experiments of 149 

infiltration-percolation of crop protection products (Boivin et al., 2007; Lacas, 2005; Lacas et al., 2012). The region has a 150 

semi-continental climate, with Mediterranean influence, where intense seasonal runoff events can induce erosion. The soil is 151 

a very permeable granitic sandy-clay. The water table is deep in summer and shallow in winter after intense storm events, 152 

from 0.60 m deep at the downstream part of the strip near the river to 4.0 m deep at the field upstream side of the strip 153 

(Lacas, 2005).  154 

The site of Jaillière (Loire-Atlantique, close to Brittany) is an experimental farm maintained by ARVALIS–Institut du 155 

Végétal where soils are shallow and hydromorphic, and climate is temperate oceanic with mild and rainy winters and cool 156 

and wet summers (Madrigal-Monarrez, 2004). Buffer zone experiments were conducted at the site under natural rainfall 157 

(Patty et al., 1997) and simulated runoff (Souiller et al., 2002). Crops are mainly wheat and maize, typically under tile 158 

drainage conditions, with slopes of around 3%. Silty clay soils overlay a virtually impermeable layer of alterite shales, 159 

typically leading in winter to the formation of seasonal shallow water table from 0.5 m to 2 m and the appearance of runoff 160 

by subsaturation (Adamiade, 2004). This site is also the basis for the EU pesticide regulatory scenario for surface water 161 

FOCUSsw D5 (EU-FOCUS, 2001). 162 

Among the pesticides used at the experimental sites, a soluble and low sorption (mobile) herbicide (isoproturon) used on 163 

both sites was selected for simulations, contrasted by a less mobile product chosen at each site, i.e. the fungicide 164 



 7 

tebuconazole at Morcille and the herbicide diflufenican at Jaillière (Madrigal et al 2002) (Table 1). 165 

While both Morcille and Jaillière provide sufficient details for application of the coupled model (field parameters, initial and 166 

boundary conditions), VFS outflow was only available for Morcille. In particular, Lacas (2005) and Lacas et al. (2012) 167 

monitored the effectiveness of the VFS at Morcille, but because of the high permeability of the soil and deeper shallow water 168 

conditions, only 5 out of the 24 natural rainfall events recorded generated outflow from the VFS. From these 5, the one 169 

closer to the average for the high water table season was selected for application of the model (Fig. 4a). Earlier studies at 170 

Jaillière by Patty et al. (1997) monitored VFS efficiency in the same site but in the absence of a shallow water table. 171 

Although they provide some of the model inputs they are not directly applicable for this WT model application. Later, 172 

working on the same watershed Branger et al. (2009) and Fontaine (2010) studied the shallow water table effects on runoff at 173 

the edge-of-the-field and a receiving drainage ditch, but did not monitor the efficiency of the VFS.  We selected one average 174 

event (dynamics and volume) in the middle of the high-water season based on Fontaine (2010) for our model application 175 

(Fig. 4b).  176 

To our knowledge there are no VFS experimental studies with a shallow water table present that can be used for systematic 177 

model testing. While this paper focuses on coupling of the new infiltration algorithm with VFSMOD and the analysis of the 178 

important factors controlling VFS efficiency in the presence of WT, we used the single event with sufficient hydrological 179 

data at Morcille to get a preliminary assessment if the model responds in the same range as the measured field data. 180 

Uncalibrated or “cold” testing of the model (without initial calibration using field values) was performed and the 95% 181 

confidence interval (grey area in Fig. 4a) was obtained by varying only Ks within measured field values (Table 2). The model 182 

performance was assessed against the measured data based on FitEval software (Ritter and Muñoz-Carpena, 2013). FitEval 183 

uses block-bootstrapping of the observed and predicted paired values to approximate the underlying distributions of 184 

goodness-of-fit statistics (Nash and Sutcliffe Efficiency- NSE and Root Mean Square Error -RMSE). From these 185 

distributions, median values and 95% confidence intervals (95CI) are provided for both NSE and RMSE. NSE provides a 186 

dimensionless metric of goodness-of-fit, and RMSE an indicator of absolute error, with the same dimensions as model 187 

outputs. The uncertainty in the observed data is accounted for in FitEval using the modification of the NSE based on the 188 

probable error range (PER) method (Harmel et al, 2007). FitEval evaluation files are included in Supp. Materials. 189 

2.3 Global sensitivity analysis  190 

Global sensitivity (GSA) and uncertainty analysis (UA) of the coupled model allows for the systematic study of the influence 191 

of the input factors and their interactions on VFS performance for surface runoff, sediment and pesticide removal. The 192 

“global” term denotes that GSA studies output variability when all input factors vary globally, within their validity domain 193 

defined by probability distribution functions (PDF), as opposed to locally, (one at a time), i.e. around an arbitrary range from 194 
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a base value. GSA allows for simultaneous estimation of the factors individual importance and interactions (Saltelli et al., 195 

2004). In this study, two complementary sensitivity methods were used: the qualitative Morris’ (1991) elementary effects 196 

screening method, and the quantitative variance-decomposition extended Fourier Amplitude Sensitivity Test (eFAST) 197 

(Cukier et al., 1978; Saltelli et al., 1999). In both methods, input factors are sampled, the model is evaluated on the sample 198 

sets, and global sensitivity indices are computed. Morris is generally used as a first, qualitative step to identify a group of 199 

important input factors, where in a second step a variance-based method is applied on the selected input factors (Saltelli et 200 

al., 2007, 2008).  201 

Morris method uses in its original form a regular discretization of the k input factors space defined by their PDFs, requiring a 202 

total number of simulations (N) on the order of N=r(k+1) where r > 8 is the number of sampling trajectories, typically taken 203 

as 10 used here (Campolongo et al., 2007). Each factor influence, called Elementary Effects (EE), is evaluated by 204 

comparison of simulations where this factor is changed alternatively among the others. Morris is a robust, low-cost 205 

sensitivity analysis that allows identifying quickly the most influent input factors without prior model assumptions (i.e. 206 

linearity, additivity) (Campolongo et al., 2007; Faivre et al., 2013; Khare et al., 2015). Sensitivity indices for each factor Xi 207 

(i=1, k) are computed based on the EE: (i) µi* (mean of absolute values of EE) that measures direct effects of each factor on 208 

the output of interest, and (ii) σi (standard deviation of EE) that provides a measure of interactions and non-linearities. The 209 

method compares the input factors’ indices relatively to the others, making possible to visually classify the inputs on a (µ*, 210 

σ) Cartesian plane in 4 groups as a function of their relative effect on the model: (1) negligible effect (low µ* and low σ); (2) 211 

important direct effects and small interactions (high µ* and low σ); (3) important non-linear and/or interactions (high µ* and 212 

high σ); and (4) interacting factors with low sensitivity (low µ* and high σ).  213 

The eFAST method is a quantitative global sensitivity method based on high-dimensional variance decomposition. A 214 

pseudo-random multivariate sampling scheme is conducted across the k-dimensional space, informed by the input factors 215 

PDFs, requiring N=M*k simulations with M between 512 and 1024 (8 or 9 binary factor combinations) (Saltelli et. al, 2004). 216 

The model total output Y variance is decomposed in parts attributed to each factor direct effects or to factor interactions.  217 

First order sensitivity indices (Si) for each factor Xi are defined by the fraction of the output variance associated to the direct 218 

effect of that factor and represents the average output variance reduction that can be achieved when the input factor Xi is 219 

fixed (Tarantola et al., 2002; Yang, 2011). Total sensitivity indices (STi) are calculated as the fraction of variance associated 220 

with that factor and its interactions. The largest values of the sensitivity indices correspond to the highest influence of these 221 

inputs on the corresponding output variable (Saltelli et al., 2008; Faivre et al., 2013). eFAST was chosen on this study 222 

because it is robust and overcomes the initial limitation of the Fourier Amplitude Sensitivity Test (Cukier et al., 1978) 223 

applicable only for mostly additive models (i.e. Si > 0.6) (Faivre et al., 2013). The dense variance-based multivariate 224 

sampling and ensuing model simulations allow for quantification of the model uncertainty analysis through output 225 
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probability density functions and statistics (median, quatiles, confidence intervals) (Saltelli et al. 2004, Muñoz-Carpena et al. 226 

2007). 227 

Morris indices (µ*, σ) have been found to provide a good approximation to the eFAST indices (STi, STi-Si) at a much lower 228 

computational cost (Saltelli et al. 2004, Campolongo et al. 2007) making it ideal for large and computationally expensive 229 

models. However, for models with strong non-linear outputs or discontinuities in the output space, the low density of Morris 230 

sampling can result in inaccurate sensitivity analysis results. In this study, both methods were run with the full set of inputs 231 

as a check for the consistency and robustness of the GSA results. For conciseness, Morris results are presented in detail and 232 

eFAST results are summarized briefly with additional details in Supplementary Materials.  233 

2.4 Selection of inputs and outputs for GSA simulations 234 

The first step of GSA is to define output variables and input factors. In this study, changes in VFS efficiency were selected 235 

as output variables: reduction of water (dQ), sediments (dE) and pesticides (dP). Both model versions, with water table 236 

(SWINGO algorithm) and without water table (GAMPT algorithm), were compared on each site. The input factors (Table 2) 237 

were selected considering previous GSA performed on VFSMOD (Fox et al., 2010; Muñoz-Carpena et al., 2007, 2010), with 238 

new inputs for the water table case (OR, VGALPHA and VGN, L). Input factors distributions (Table 2) are assigned based 239 

either on experimental measurements on the case study plots, scientific publications, or expert knowledge.  240 

Although the VFS dimensions FWIDTH and VL were measured on the field (Table 1), the effective dimensions are known 241 

to be different in practice as the runoff does not follow perfectly uniform sheet flow (Abu-Zreig, 2001). Thus, the measured 242 

values were chosen to vary uniformly within -10% and +10% for FWIDTH and VL, respectively (Muñoz-Carpena et al., 243 

2010). The slope (SOA) uniform distribution represents field measured spatial variation across the VFS. PDFs for filter 244 

roughness and vegetation factors were assigned based on vegetation type (Table 1) (Haan et al. 1994; Muñoz-Carpena et al. 245 

2007).  246 

For the infiltration components, log-normal PDFs were assigned to the soil saturated hydraulic conductivity (VKS) from 247 

measured values at each site (Madrigal-Monarrez, 2004; Souiller et al., 2002; Lacas, 2005) based on effective field values 248 

calculated from the harmonic mean of the topsoil horizons (Bouwer, 1969). The Green-Ampt infiltration OI and OS inputs 249 

were fitted distributions based on values measured at the sites, and the average suction at the wetting front (SAV) was 250 

considered to vary uniformly based on ranges for soil texture at each site (Rawls et al.,1983). Soil water characteristics 251 

parameters (VGALPHA, VGN, OR in Table 2) needed for calculation of infiltration under shallow water table (Eq. 3-8) 252 

were assigned normal PDF based on the soil texture (Meyer et al., 1997). Hourly water table depths (L) that were 253 

automatically monitored on Morcille during the case study event (Lacas, 2005) followed a uniform distribution. On Jaillière, 254 
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the average water depth and variation was measured manually at the site (Adamiade, 2004) and a uniform distribution 255 

around these values assigned.  256 

Sediment particle characteristics from the upper field (COARSE and DP) were assigned uniform distributions based on 257 

USDA textural class (Woolhiser et al., 1990), and truncated to respect the relationship between DP and COARSE (Muñoz-258 

Carpena et al., 1999). 259 

For pesticide inputs, field measurements of the percentage of clay (PTC) and organic carbon (PCTOC) of the upper field 260 

followed a uniform PDF (Lacas, 2005; Benoit et al., 1998; Madrigal-Monarrez, 2004). The triangular distribution for KOC 261 

for the pesticides evaluated at each site is based on measurements; in Jaillière for the base value and boundaries (Benoit et 262 

al., 1998; Souiller et al., 2002), and in Morcille for the base value (Lacas, 2005) but using boundaries from PPDB database 263 

(IUPAC, 2007). 264 

In all, for the two sites, two infiltration options (GAMPT without shallow water table with k=18, and SWINGO with shallow 265 

water table with k=20, Table 2) and 2 pesticides at each site, the total number of GSA simulations performed were 75544 for 266 

eFAST (M=497≈500) and 1600 for Morris. The procedure was repeated 3 times to ensure the robustness of the results.  267 

3. Results 268 

3.1 Model application on benchmark studies 269 

The effect of water table on simulated VFS efficiency using SWINGO was first tested on the two contrasted benchmark 270 

study sites Morcille (Fig. 4a) and Jaillière (Fig. 4b). Since a stream at the bottom of the VFS was present on both sites, the 271 

lateral Dupuit-Forscheimer option was selected for the end vertical bottom boundary condition fw (Eq. 3) (see section 2.1 in 272 

companion paper), hereon referred to as vertical boundary condition. The detailed outflow hydrograph from the VFS 273 

measured during the event at Morcille is compared with a direct simulation with base values (no calibration) (Fig. 4a). The 274 

dashed line for L=2.5 m corresponds to average measured VKS for the top soil horizons (4.58 x10
-5

 m/s), and the grey 275 

envelope represents outflow variability due to uncertainty of measured hydraulic conductivity (between 3.89 x10
-5

 m/s from 276 

direct measurement on the soil surface horizon 10-30 cm and 5.29 x10
-5

 m/s computed by harmonic mean of measurements 277 

on 0-10 cm and 10-30 cm horizons). In addition to the measured water table depth at the sites, each event was tested with 278 

different water table conditions to study the response to these conditions (Fig. 4a,b). The large differences in VFS surface 279 

outflow found between shallow and deeper water table clearly illustrates the hydrological importance of shallow water table 280 

presence on VFS at these sites. 281 

Direct simulation of the VFS surface outflow at Morcille fits observations well for the end of the second rain period (4000 to 282 
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6000s) but misses the rest (Fig. 4a). The differences between simulated and observed values could come from measurement 283 

or parametrization errors at the site, since runoff was expected early on for an event with such hydraulic loading (rainfall + 284 

incoming runoff). The intrinsic spatial variability of Ks represents also a significant source of uncertainty in the simulations 285 

(grey area in Fig. 4a). Nash-Sutcliffe efficiency (NSE) and root mean square error (RMSE) ranges for the model uncertainty 286 

bounds in Fig. 4a were median NSE = 0.610 and 95CI [0.448 - 0.943], and RMSE= 4.284 x10
-5

 [1.179 x10
-5

 - 7.472 x10
-5

] 287 

m
3
/s. Within those uncertainty bounds, the model is classified as ‘unacceptable’ to ‘very good’ based on the FitEval 288 

methodology (Ritter and Muñoz-Carpena, 2013). In all, considering that the model was run with base values and without 289 

calibration, these preliminary results are deemed satisfactory.  290 

The effect of water table change (from 0-2 m) on VFS changes in runoff (dQ), sediment (dE) and pesticide (dP) reductions 291 

for the two case studies is presented in Fig. 5. In general, dQ and dP are sensitive to the shallow water table depth until a 292 

threshold (~1.5 m for the case study sites) beyond which there are no effects and the filter achieves maximum efficiency for 293 

the event. The two-step curves for Morcille are due to the two storm periods, where relative contributions to surface flow 294 

between the first and second events will vary with the depth of the shallow water table. Sediment retention (dE) does not 295 

exhibit similar changes because the relatively low flow conditions experienced likely result in low transport capacity 296 

available and high sediment deposition on the VFS. The difference in effects introduced by the chemical characteristics of 297 

the pesticide is observed in the curves for diflufenican (high sorption) and isoproturon (low sorption) at Jaillière. This local 298 

study does not take into account all effects and interactions between input factors, but only the water table depth variation 299 

effect. A global sensitivity analysis presented in section 3.2 will address this.  300 

The simulation results for Morcille and Jaillière confirm that a shallow water table can affect the VFS surface hydrological 301 

response by generating saturation surface runoff, depending on the soil characteristics and the hydraulic loading. Conversely, 302 

for deep water table, surface hydrology processes are effectively decoupled after a threshold controlled by the soil 303 

characteristics and hydraulic loading. Interestingly, simulations with the no shallow-water table option (GAMPT, Fig. 1) for 304 

the case study conditions closely matched those for SWINGO for the deeper water tables in Fig. 4, providing additional 305 

physical consistency to both components.  306 

3.2 Global sensitivity analysis of water, sediment and pesticide reductions  307 

A combination of shallow water table (“WT”, run with SWINGO) and no shallow water table (“no WT”, run with GAMPT) 308 

simulations (Fig. 1) for Jaillière and Morcille conditions with two pesticides at each site (Table 1) were selected for GSA 309 

Morris and eFAST methods. For simplicity, GSA results are presented only for one pesticide, isoproturon, which is a 310 

common herbicide with average sorption properties. A comparison of the different pesticides effects is presented in the 311 

uncertainty analysis section later. 312 
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Morris sensitivity analysis indices (Table S1 in Supp. Materials) are presented in Fig. 6, where important input factors for 313 

each output are separated from the origin of the (µ*, σ) Cartesian planes. Distinct patterns on the important factors 314 

controlling the shallow water table effects on the efficiency of the VFS (dQ, dE, dP) are identified by comparing the 315 

different soil (fine at Jaillière and coarse at Morcille) and hydraulic loading across the study sites. The differences can be 316 

interpreted in terms of the interplay between excess rainfall (controlled mainly by the saturated hydraulic conductivity VKS 317 

and hydraulic loading) and sub-saturation (controlled by the water table depth L). 318 

Finer soils typically exhibit lower permeability but a higher capillarity fringe above a water table (Terzaghi, 1943; Lane and 319 

Washburn, 1946; Parlange et al., 1990). For no WT, excess rainfall (controlled by VKS) leads to relatively more water on 320 

the surface compared to coarse soils. Morris results (Fig. 6a) show the strong sensitivity of dQ to VKS for this case. With 321 

WT the soil readily saturates from the bottom and it is less sensitive to VKS. This is shown by the strong direct effect of L 322 

on dQ (Fig. 6d). For dE in finer soils, more runoff present at the surface typically results in higher transport capacity 323 

available, and sediment and surface characteristics become a limiting factor for transport and deposition (Muñoz-Carpena et 324 

al., 2010). This is shown by the importance of DP and interaction with VKS (Fig. 6b). With WT, the infiltration is limited 325 

even further in these fine soils, where excess rainfall no longer controls surface flow and VKS falls in importance while 326 

sediment and surface characteristics dominate the response (Fig. 6e). In general, pesticide reduction (dP) is controlled by 327 

factors controlling the liquid (dQ) and solid (dE) phase transport (Sabbagh, et al., 2009). For no WT and for this moderately 328 

adsorbed chemical, the effect of excess rainfall on dQ (controlled by VKS) also becomes the most important process for dP 329 

(Fig. 6c).  With WT, the dominance of L in dQ is also present in dP, with some sediment and pesticide characteristics also 330 

showing importance (Fig. 6f).    331 

In contrast, the coarser soil in Morcille exhibits higher permeability and small capillary fringe and under no WT runoff is 332 

typically controlled by excess rainfall (importance of VKS on Fig. 6g). With WT, the soil might sub-saturate depending on 333 

position L and this input gains importance interacting with VKS (Fig. 6j). For dE and no WT (Fig. 6h), with more 334 

permeability the surface water flow (controlled by VKS) is the main limiting factor controlling sedimentation (Muñoz-335 

Carpena et al., 2010). With WT, again the VKS and L that control surface flow also interact strongly to control 336 

sedimentation, and sediment soil water characteristics are of secondary importance (Fig. 6k).  Control of infiltration 337 

propagates also into dP, and for this moderately sorbed pesticide, dQ factors also control dP (Fig. 6i,l).  338 

Interestingly, introduction of WT increases the number of factors and interactions (i.e. more input factors show higher σ 339 

values and are separated near or above the dashed 1:1 line). This indicates an increase in complexity of the VFS response 340 

when the shallow water table is present. This suggests that simple relationships to simulate water, sediment and pesticide 341 

behavior are not able to represent all complex processes that interact in a VFS.  342 
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Comparison of Morris and eFAST indices (Fig. 6, and Supp. Mat. Table S2 and Fig. S1) for interactions and first order 343 

effects, STi-Si ~ σ and STi  ~ µ*, respectively, shows good consistency among the methods (Saltelli et al, 2004; Campolongo 344 

et al, 2007) and further corroborates the results. The importance of VKS for both soils under no WT identified by Morris is 345 

quantified by eFAST with more than 90% of the dQ and dP output variance being controlled by first order (direct) effects of 346 

this factor (Fig. S1a,g and c,i). Similarly, the importance of DP for dE for the fine soil is apparent where more than 60% of 347 

the variance is explained by first order and interaction effects of this factor (Fig. S1b,e). For the case of WT, the effect of L 348 

on dQ and dP is predominant, with 60-90% of the output controlled by this factor and its interactions (Fig. S1d,j,l). 349 

Uncertainty Analysis 350 

The model runs from eFAST dense multivariate input sampling allows realizing a quantitative uncertainty analysis of the 351 

model outputs water (dQ), sediment (dE), pesticide (dP) reductions for the 2 contrasted pesticides at each site (Fig. 7 and 352 

Table S3 in Supp. Materials). As expected, the reduction in infiltration and increase in surface flow introduced by the 353 

shallow water table translates into a distinct decrease in dQ values, with median dQ changing from 81% to 7% and 65% to 354 

45% in Jaillière (Fig. 7a, b) and Morcille (Fig. 7c,d), respectively (Table S3, Supp. Materials).  For dE, for the coarser soil at 355 

Morcille the smaller change in dQ with WT does not visibly change the high sediment retention, whereas for the finer soil of 356 

Jaillière the changes in flow introduce marked changes in median dE from 99% to 64%. Again, changes in dQ and dE with 357 

WT affect the VFS pesticide retention at both sites, with median reductions from dP = 99% to 38% and 97% to 84% in 358 

Jaillière and Morcille, respectively. Since the VFS pesticide retention is also directly related to pesticide sorption 359 

characteristics (Sabbagh et al., 2009), some differences are expected for different chemicals. Reduction of diflufenican at 360 

Jaillière (dP-Dif) (Fig. 7b) and tebuconazole at Morcille (dP-Teb) (Fig. 7d) is higher than reductions of the other two 361 

pesticides because of their affinity for sediment (higher KOC values in Table 1) and high sediment retention in the VFS. 362 

These results further support the GSA findings that changes in surface and subsurface hydrological responses introduced by 363 

the shallow water table, can translate into important reductions on the expected pesticide retention and uncertainty controlled 364 

by field conditions (soils, hydraulic loading, pesticide characteristics).  365 

4. Summary and conclusions 366 

In this study, we coupled a new infiltration algorithm under shallow water table conditions (SWINGO, developed in 367 

companion paper) with a commonly used event based vegetative filter strips model (VFSMOD). The coupled model takes 368 

into account the dynamic interactions among water table, surface runoff, sediment and pesticide filtration in a vegetative 369 

filter strip. The model was applied to two different experimental sites with contrasted soils and rainfall conditions. The direct 370 

testing of the uncalibrated model under limited experimental conditions showed promising results. Simulations varying the 371 
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water table depth for two experimental sites provided interesting insights on the effect on VFS efficiencies to reduce 372 

overland flow, sediment and pesticides. While the VFS surface flow, sediment and pesticide reduction responses are very 373 

sensitive when the water table is close to the surface, the effect is lost after a threshold depth around 1.5 m for the 374 

experimental sites condition, consistent with previous field studies (Dosskey et al., 2006, Lacas et al., 2012). For depths 375 

larger than the threshold, the model showed physical consistency when compared to a common Green-Ampt solution (with 376 

no water table assumptions). More comprehensive global sensitivity and uncertainty analyses (GSA) for the two sites 377 

revealed that the effectiveness of the VFS was markedly reduced in the presence of the shallow water table, and in this case 378 

the VFS response is more complex, dominated by interactions between surface, subsurface and transport processes. The 379 

most important factors controlling the expected variability of water and pesticide reductions are water table depth and 380 

saturated hydraulic conductivity of the soil, but their importance also depends on sediment characteristics controlled by the 381 

soil type and hydraulic loading of the event. Uncertainty in the pesticide reduction, driven by water or sediment reduction, 382 

also depends on the pesticide sorption properties (Koc). 383 

This work suffers from some limitations. Firstly, limited field experimental data is available for detailed studies of 384 

the response of a VFS under alternative conditions of deep and shallow water table. Further laboratory and field research 385 

should address this limitation, where exhaustive experimental datasets must be compiled to reduce the uncertainty in the 386 

identification of sensitive input factors controlling the measured and simulated responses studied here. Secondly, although 387 

two contrasting case studies were selected, the results presented here are limited to these studies, and further analysis will be 388 

needed for other local, regional and larger scales.  389 

The application of the improved VFSMOD under contrasting set of conditions, and physical consistency with other 390 

models indicate the robustness of the model for use in VFS sizing and evaluation of potential losses of efficiency under 391 

shallow water table conditions.  Since VFS are commonly placed near streams and these areas can suffer seasonal shallow 392 

water conditions, this tool fills an important gap in environmental management and analysis. For example, in Europe VFS 393 

are often prescribed along river drainage networks without objective assessment of their efficiency during winter wet periods 394 

(Carluer et al., 2017; Brinker et al., 2017). In the US, the historical topography-based approach, which links priority for 395 

buffers to locations where runoff water converges from uplands and saturates the soil, often results in placement on 396 

bottomlands next to streams (Dosskey and Qiu 2011). Alternative targeted placement of buffers based on soil characteristics 397 

and conductivity can improve the efficiency of the buffers (Dosskey et al., 2006). However, both placement methods 398 

disregard seasonal shallow water table effects that can now be mechanistically assessed with the improved physical model 399 

developed herein. For the case of the regulatory assessment of pesticides, currently long-term exposure frameworks in 400 

Europe and the USA disregard the potential effects that shallow water effects might have in reducing the effectiveness of in-401 

label mitigation practices like VFS. Results from this study support the critical need to incorporate in these environmental 402 
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exposure assessments the effects of a shallow water table when present. 403 
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Table 1. Characteristics of the field studies utilized for sensitivity–uncertainty analyses of shallow water table effects on VFS 594 
performance 595 

Study Authors Lacas (2005); Lacas et 

al. (2012) 

Madrigal-Monarrez 

(2004), Adamiade (2004) 

Location, climate Morcille, Mediterranean 

semi-continental 

Jaillère,  Temperate 

oceanic 

Event description Rainfall (mm) 15 10.7 

Rainfall duration (hr) 2.1 3 

Inflow volume (mm) 0.847 6.347 

Inflow duration (hr) 2.1 7.9 

Hydraulic loading (rainfall + 

incoming runoff) (m
3
) 

2.48 25.9 

Shallow water table depth (m) 2.5 (0.4-2.5) 0.8 (0.4-2) 

Source field area (m
2
) 2500 4000 

Soil description USDA Soil Taxonomy Cambisol-luvic Stagnic-luvisol 

USDA texture Sandy-loam Silty-clay 

VFS description Length (direction of flow)×width 

slope 

6 x 4m 

28% 

5 x 10m 

4% 

Field-to-filter area ratio 110  100 

Vegetation Ray-grass (20 years) Ray-grass (7 years) 

Pesticides (Koc, ml/g)  isoproturon  (144) 

tebuconazole (769) 

isoproturon (144) 

diflufenican (3000) 

 596 



 

Table 2. Input factors base values and selected statistical distributions at the case study sites.  597 

Input factor 

(units) 
Description 

                Morcille Jaillière 

Base 

value 

Distribution Base value Distribution 

Hydrological inputs     

FWIDTH (m) Effective flow width of the strip 4.0 U(4.0, 4.4) 10.0 U (9.0,10.0) 

VL (m) Length in the direction of the flow 6.0 U (5.4,6.0) 5.0 U(5.0, 5.5) 

RNA (s m
−1/3

) Filter Manning’s roughness n for each segment 0.2 T(0.1,0.2,0.3) 0.2 T(0.1,0.2,0.3) 

SOA (–) Filter slope for each segment 0.25 U(0.20,0.30) 0.03 U(0.02,0.04) 

VKS (m s
−1

) Soil vertical saturated hydraulic conductivity in the VFS 4.58E-5 LN (-10.6676,0.69) 2.50E-6 LN(13.0,0.69) 

SAV (m) Green-Ampt’s average suction at wetting front 0.110 U(0.088, 0.132) 0.1668 U(0.13,0.20) 

OI  (–) Initial soil water content, θi 0.22 U(0.1,0.35) 0.15 U(0.12,0.18) 

OS  (–) Saturated soil water content, θs 0.4 N(0.4,0.03) 0.4 N(0.4,0.03) 

SCHK (–) Relative distance from the upper filter edge where check for 

ponding conditions is made (i.e., 1 = end; 0 = beginning) 

0.5 U(0,1) 0.5 U(0,1) 

L (m)
 †

 Shallow water table depth from soil surface 1.0 U(0.4,2.5) 0.8 U(0.4,2) 

OR (–) 
†
 Residual soil water content, θi 0.038 N(0.038,0.03) 0.07 N(0.07,0.03) 

VGALPHA (m
-1

)
 †
 van Genuchten soil characteristic curve parameter (α) 10.0 N(10,2) 1.18 N(1.18,0.05) 

VGN (–) 
†
 van Genuchten soil characteristic curve parameter (n), m=1-

1/n 

1.52 N(1.52,0.05) 1.45 N(1.45,0.05) 

Vegetation inputs     



 

SS (cm) Average spacing of grass stems 1.6 U(1.3,2.1) 1.6 U(1.3,2.1) 

VN (s cm
−1/3

) Filter media (grass) modified Manning’s nm (cylindrical 

=0.012) 

0.012 T(0.0084,0.012,0.016) 0.012 T(0.0084,0.012,0.016) 

H (cm) Filter grass height 15.0 U(10,35) 15.0 U(10,35) 

Sedimentation inputs     

VN2 (s m
−1/3

) Bare surface Manning’s n for sediment inundated area in 

VFS 

0.013 T(0.011,0.013,0.04) 0.02 T(0.011,0.02,0.04) 

DP (cm) Sediment particle size diameter (d50) 0.0099 U(3.80E-3,1.60E-2) 0.0029 U(2.00E-4,3.69E-3) 

COARSE (–) Fraction of incoming sediment with particle diameter > 

0.0037 cm (coarse fraction routed through wedge as bed 

load) [unit fraction, i.e. 100% = 1.0] 

0.55 U(0.51,0.6) 0.45 U(0.4,0.49) 

Pesticide inputs     

KOC (ml/g) Organic carbon sorption coefficient for simulated pesticide     

Isoproturon  144 T(36,144,241) 144 T(36,144,241) 

Tebuconazole  769 T(102, 769,1249) – – 

Diflufenican  – – 3000 T(1622,3000,7431) 

PCTOC (%) Percentage of organic carbon in the soil 1.2 U(1.18,2.5) 3.78 U(1.4,7) 

PCTC (%) Percentage clay in the soil 12 U(11,15) 22 U(19.8,25.5) 

† Parameters of the new infiltration under shallow water table component (SWINGO); ‡Statistics of the assigned distributions, uniform: U(mix,max), triangular: 598 

T(min,mean,max), log-normal: LN(μy,σy), normal: N(μx,σx). LN and N distributions are truncated between (0.001,0.999).599 



 

Figure captions 600 

Figure 1: Conceptual model of VFSMOD showing the coupling between overland flow, soil infiltration and 601 
redistribution, sediment and pesticide components. Solid lines indicate required processes and their interactions, and 602 
dashed lines are optional, user selected components. The selection of infiltration under either a) deep water table 603 
(extended Green-Ampt, GAMPT), or b) shallow water table (SWINGO) is highlighted.  604 

Figure 2: Details of the dynamic coupling of (a) the overland flow and sediment and pesticide transport through the 605 
VFS (contained in VFSMOD), with (b) the new infiltration and soil water redistribution with shallow water 606 
component (SWINGO). Colors indicate water (blue), sediment (brown) and pesticide (red) components. V, M and m 607 
indicate water, sediment and pesticide mass moving through the filter, where subscripts indicate incoming (i), 608 
outgoing (o), in sediment (sed), on the filter (f), infiltrated (F), in mixing-layer (ml) and in runoff (ro). Other symbols 609 
are defined in the text. 610 

Figure 3: Location of experimental VFS sites: Jaillière, North-West of France, maize crops on a flat silty-clay soil 611 
under Temperate oceanic climate; Morcille, South-East of France, vineyards on a sandy-loam soil under 612 
Mediterranean semi-continental climate. Morcille is located at 46°10'31.3"N - 4°38'11.2"E and Jaillière at 613 
47°27'6.25"N - 0°57'58.37"O, in GPS coordinates. 614 

Figure 4: Hydrological response of the VFS at the study sites. (a) Event at Morcille Aug. 17, 2004 with L=2.5 m, 615 
showing comparison of measured outflow (symbols) and VFSMOD simulations (lines). The dashed Qout line for L=2.5 616 
m corresponds to average conditions for that event (Ks = 4.58E-05 m/s), and the grey envelope represents outflow 617 
variability due to uncertainty of measured hydraulic conductivity. (b) Event at Jaillière on February 16, 1997 with 618 
L=0.8 m, without outflow measurements. Qin and Qout represent surface inflow and outflow at the VFS. The 619 
potential effect on overland outflow of alternative water table depths in those events is represented by the dotted lines 620 
for L=0.4 (a) and 4.0 m (b). 621 

Figure 5: Change in dQ (reduction of surface water), dE (reduction of sediment) and dP (reduction of pesticide 622 
isoproturon) with water table depth for experimental events in Fig. 4a-b. Grey area indicates water table depths 623 
where influence over surface outputs on the VFS is no longer observed. 624 

Figure 6: Morris elementary effects results for dQ (reduction of surface water), dE (reduction of sediment) and dP 625 
(reduction of pesticide isoproturon) on Jaillière (a-f) and Morcille (g-l) sites, without water table (no WT) and with 626 
water table (WT) present. Factors that have not negligible effects are named. 627 

Figure 7: Probability density functions from the uncertainty analysis of eFAST simulations on output variables dQ 628 
(reduction of surface water), dE (reduction of sediment), dP (reduction of pesticides) for the Jaillière (a-b) and 629 
Morcille (c-d) sites, without water table (no WT) and with water table (WT). Pesticides are isoproturon (Iso), 630 
diflufenican (Dif) and tebuconazole (Teb). 631 


