
1 

 

The sub-annual calibration of hydrological models considering 
climatic intra-annual variations 

Binru Zhao1, 2, Huichao Dai1, Dawei Han2, Guiwen Rong3 

1College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, China 
2Water and Environmental Management Research Centre, Department of Civil Engineering, University of Bristol, Bristol, 5 
BS81TR, UK 
3College of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China 

Correspondence to: Binru Zhao (zbrhhu@gmail.com) 

Abstract. Changing climate leads to change of temporal dynamics of hydrological systems by affecting the catchment 

conditions. Considering climatic variations when calibrating a hydrological model can improve model performance, which 10 

allows parameter sets to vary according to sub-periods with different climate conditions. This study has explored climatic 

intra-annual variations by using two classification approaches to recognize the sub-periods with similar climatic patterns, 

Calendar-Based Grouping (CBG) method and Fuzzy C-Means (FCM) algorithm. The model performances of the sub-annual 

calibration schemes based on these two approaches are compared using the conceptual model IHACRES. The effect of time 

scales on sub-annual calibration schemes was also studied. Results indicate that the sub-annual calibration scheme based on 15 

CBG method performs better than that based on Rainfall-dominated FCM algorithm, since the CBG method has a better 

performance in recognizing temperature pattern, and the main source of catchment change is from the change of vegetation, 

which is mainly affected by temperature in the study site. The optimal time scale is dependent on the sub-annual calibration 

scheme, with bimonthly for CBG method and Temperature-dominated FCM algorithm and seasonal for Rainfall-dominated 

FCM algorithm. Overall, when using sub-annual calibration schemes, the selection of the partitioning method and time scale 20 

is very important to model performances. 

1.	Introduction	

Understanding hydrological responses of a catchment is important to water resources managers. Hydrological models provide 

useful tools for this task, varying from simple statistical or conceptual models to complicated spatially-distributed or physically 

based models. Although physically based hydrological models can better describe the real physical process, the conceptual 25 

hydrological models are widely used to address some management and research problems, because they rely on fewer 

parameters and have satisfactory performances.  

 

Hydrological model parameters are generally estimated through calibration from the historically observed rainfall and 

streamflow data, and the model is then validated using the data outside of the calibration period. The parameters are assumed 30 

to be stationary for the historical period and these calibrated parameters are also assumed to be valid for the future period. 

However, this assumption is challenged due to the change of catchment conditions. The reliability of using stationary model 

parameters in a changing environment has been questioned in previous studies (e.g. Milly et al., 2008; Brigode et al., 2013), 

where the change of catchment is mainly indicated by the climate change since the climate change can directly and indirectly 

affect the catchment conditions and the climate data can be obtained more easily. 35 

 

Several attempts have been made to explore intra-annual variations of hydrological processes. Paik et al. (2005) proposed a 
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seasonal tank model where parameter sets were calibrated based on three 4-month seasons. The seasonal tank model gives 

much less calibration error than the non-seasonal model. Levesque et al. (2008) found that when winter and summer data were 

used separately to calibrate the SWAT model, the model performance was considerably improved over the case when only 40 

summer observations were provided for calibration. However, there is no real advantage when the model is calibrated based 

on winter observations compared with the traditional calibration using all available data. Luo et al. (2012) examined ten 

parameterization schemes at 12 catchments located in three different climatic zones in east Australia. The results show that it 

is worth calibrating the model with the use of data from each individual month for the purpose of seasonal streamflow 

forecasting.  45 

 

On the other hand, there are some studies focusing on the inter-annual dynamics of hydrological behaviors. In such a scheme, 

different climatic conditions are taken into account. Klemeš (1986) initially considered the need to verify hydrological model 

parameters under different climate conditions. He proposed a differential split-sampling test in which two opposing climate 

periods were identified and the hydrological model was calibrated and validated by the contrast periods. Merz et al. (2011) 50 

applied the test to 273 catchments in Australia and found that the parameters representing snow and soil moisture processes 

showed high correlations to changing climatic conditions of the catchments. Consequently, the performance of the model is 

particularly affected if the calibration and validation periods differed substantially. The similar results were found by Brigode 

et al (2013), where the differential split-sampling test was used to group one wet, one medium, and two dry sub-periods on the 

basis of the Aridity Index, and each sub-period group was calibrated separately for two conceptual models, leaving one dry 55 

period for the validation. The results showed that the validation had the worst performance when the models were calibrated 

against the wet sub-period.  

 

Recently, calibrating model parameters based on a portion of the record with conditions similar to those of the future period to 

simulate is suggested. In this scheme, clustering methods were widely used to identify the periods with hydrological similarities. 60 

Choi and Beven (2007) classified the 30-day data sets into 15 clusters using Fuzzy C-Means algorithm. The TOPMODEL was 

calibrated and validated for each cluster in the GLUE framework. Although the evaluations showed satisfactory results at the 

global level, no parameter set was found satisfactory for all 15 clusters. De Vos et al. (2010) used the k-means clustering 

algorithm to partition the historical data into 12 clusters of hydrological similarity, allowing the model parameters to vary over 

clusters. They also improved the model structure by analyzing the patterns in the parameter sets of the various clusters. Toth 65 

(2009) classified hydro-meteorological conditions with a clustering method based on Self-Organising Maps (SOM). The 

results show that an adequate distinction of the hydro-meteorological conditions may considerably improve the rainfall-runoff 

modelling performance. On the other hand, when using the sub-annual calibration scheme, some researchers divided periods 

into several groups based on calendar. Luo et al. (2012) calibrated the hydrological model only using the data from the same 

month and each month has one optimized parameter set. The results indicate this calibration scheme has better performance 70 

compared with other calibration schemes. Kim and Han (2016) compared the model performance under different sub-annual 

calibration schemes in terms of serial calibration scheme (SCS) and parallel calibration scheme (PCS). Parameter sets are 

estimated for each sub-period which is based on different time scales. They found that PCS performed slightly better than SCS. 

 

The above-mentioned studies discussed the reliability of hydrological models to simulate runoff under varying climate 75 

conditions and demonstrated that allowing model parameters to vary over time can improve the performance of hydrological 

models. In many cases, the historical period is divided into groups or clusters according to climate characteristics. When 

recognizing climate patterns that contribute to temporal dynamics of hydrological responses, there are generally two 

approaches, clustering methods and calendar-based method. Although sub-annual calibration schemes based on these two 
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approaches have significant advantages compared with the traditional calibration using all available data, the comparison of 80 

model performances between these two approaches has not been considered yet in the literature. Besides, the time period of 

the sub-period can range from month to year, which may have effects on model efficiencies, and there may be an optimal time 

scale for the sub-annual calibration scheme. When using clustering methods, a definition of the number of clusters is required 

before the clustering is performed. Therefore, how to define the number of clusters and its effect on the model performance 

also deserves exploration. 85 

 

In this study, we only consider the climatic intra-annual variations through using two classifying approaches to recognize 

climatic patterns, Calendar-Based Grouping (CBG) method and Fuzzy C-Means (FCM) algorithm. Sub-annual calibration 

schemes based on these two approaches allow parameter sets to vary according to climatic patterns, which is based on four 

time scales (biannual, seasonal, bimonthly and monthly). The conceptual hydrological model IHACRES is applied to one 90 

catchment in England to explore the above-mentioned problems.  

2.	Study	Sites	

The study site herein considered is the Thorverton catchment, located in the southwest of England. The Thorverton catchment 

is one of the Exe subcatchments with an area of around 606 km2. Figure 1 shows the overview of the Thorverton catchment. 

Reasons for selecting Thorverton catchment are (1) the catchment has a climate with warm, dry summers and cold, wet winters, 95 

showing great intra-annual variations in terms of rainfall and flow (Fig. 2); (2) the Thorverton catchment has a long history in 

meteorological and hydrological observations and there are available daily time series of rainfall, flow and temperature. 

 

The average daily rainfall data for the period 1890-2015 over the Thorverton catchment were obtained from NERC 

Environmental Information Data Centre (Tanguy et al., 2016). The daily time series of the observed flow data were available 100 

for the period from 1957 to 2014, which can be extracted from the National River Flow Archive (NRFA) provided by the 

Center for Ecology & Hydrology. The catchment average temperatures covering the period from 1960 to 2011 were calculated 

based on the daily temperature data at 50 km ´  50 km grid cells, which were downloaded from the UKCP09 gridded 

observation data sets. The daily time series of rainfall, flow and temperature are all available for the period from 1960 to 2011. 

This study used data from 1960 to 2000 to calibrate the hydrological model, and the rest for model validation. 105 

3.	Methodology	

3.1	Hydrological	model	

The IHACRES model (Jakeman and Hornberger, 1993) is a conceptual rainfall-runoff model. The model has a satisfactory 

performance in simulating the catchment rainfall-runoff response as a function of total streamflow and has been widely applied 

to a range of catchments for climate impact studies due to its flexibility. (Jakeman et al.,1993; Letcher et al.,2001; Kim and 110 

Lee, 2014; Kim et al., 2016). 

 

The IHACRES model comprises two modules, in series: the non-linear loss module and the linear routing module. The non-

linear loss module transforms rainfall into effective rainfall. Effective rainfall is defined as the portion of rainfall that eventually 

leaves the catchment as streamflow, which is then converted to the streamflow by the linear routing module. The linear routing 115 

module applies the well-known unit hydrograph theory, conceptualizing the catchment as a configuration of linear storages 
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acting in series and / or parallel. The structure of the IHACRES model is shown in Fig. 3. Model parameters are listed in 

Table1. More details about the model are described by Jakeman and Hornberger (1993). 

3.2	Recognition	of	sub-periods	with	hydrological	similarities	

The traditional calendar-based sampling method is applied to divide historical observations into sub-periods at different time 120 

scales (biannual, seasonal, bimonthly and monthly). With regard to monthly time scale, for instance, the historical observations 

which include n  years are sampled every one month, resulting in 12 n´  sub-periods of the length of one month. 

 

When recognizing sub-periods with hydrological similarities, two methods are used, Calendar-Based Grouping (CBG) method 

and Fuzzy C-Means (FCM) algorithm.  125 

 

Calendar-Based Grouping (CBG) method 

Calendar-Based Grouping (CBG) method assumes that the same calendar months or seasons among different years have similar 

climatic patterns, therefore, they can be classified into one group. In this scheme, sub-periods sampled from historical 

observations at monthly time scale are classified into 12 groups. And the numbers of groups for biannual, seasonal and 130 

bimonthly time scales are 2, 4 and 6, respectively. 

 

Fuzzy C-Means (FCM) algorithm  

Fuzzy C-Means (FCM) algorithm is an unsupervised clustering algorithm which was originally introduced by Bezdek (1981). 

In clustering, objects with similar characteristics are classified into one cluster, and objects in different clusters are dissimilar 135 

in the same characteristics (Sbai, 2001; Pakhira et al., 2004). In this study, FCM algorithm was used to cluster sub-periods of 

historical observations by recognizing different climatic patterns based on five climate variables. These climate variables 

include four variables regarding rainfall and one regarding temperature. Periodic rainfall, maximum daily rainfall, rate of rainy 

days, and variance of rainfall form a representation of rainfall conditions, and the variable of periodic average temperature 

examines the role of temperature in recognizing hydroclimatic patterns. These five climate variables are considered to be 140 

capable of describing climate characteristics of each sub-period.  

 

When classifying sub-periods { }1 2, , , nX x x x=  into k clusters denoted by fuzzy sets ( ), j 1, ,kjF = , the algorithm is 

based on minimization of the following objective function 

2
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where ijµ  is the membership degree of ix  to the cluster jF  with 1ijj
µ =å . [ )1,mÎ ¥  is a weight exponent controlling 

the degree of fuzzification. jc  is the cluster centroids of the fuzzy cluster jF , and i jx c- is an Euclidean norm between 

ix  and jc . In this study, ix  is the thi  climate variable of the targeted sub-period. 

 

Fuzzy partitioning is conducted through an iterative optimization of the above-shown objective function, with the update of 150 

membership degree ijµ  and the cluster centroids jc  until no further improvement in mJ  is possible. 

 

FCM algorithm needs initial definition of the number of clusters before the clustering is performed. An evaluation method is 
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required to determine the optimal number of clusters. In previous studies, the validity index ( XBV ) proposed by Xie and Beni 

(1991) is used to evaluate the validation of fuzzy c-partitions.  155 
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The optimal number of clusters optk  is obtained by minimizing XBV  over max2,3, ,k k= . The value of maxk  can be 

chosen according to pre-knowledge from the data set. 

 

However, whether the model based on the optimal number of clusters defined by XBV  can really have the best simulation 160 

performance remains unknown. Therefore, models based on clusters with different numbers were run to assess the validation 

of XBV . 

3.3	Sub-annual	calibration	scheme	

For the traditional calibration scheme, the parameters remain stationary during the calibration period under the assumption 

that parameters are valid for the entire calibration period. For the sub-annual calibration scheme, parameter sets are allowed 165 

to vary according with different climate conditions. In this paper, it means that the parameter set is stationary for sub-periods 

in one group or cluster but differ among groups or clusters. Therefore, the model will be calibrated separately for each group 

or cluster. When calibrating parameters for one group or cluster, although the entire calibration periods are used to run the 

model, objective function only considers sub-periods in the specific group or cluster.  

 170 

For this calibration scheme, the difference between the observed and simulated flow is minimized by maximizing the Nash-

Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) which is defined as: 
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where, ,obs iQ  and ,sim iQ  are the simulated and observed runoff of the thi day, respectively. obsQ  is the arithmetic mean of the 

observed runoff. N  is the number of days in a specific group or cluster. 175 

 

For the optimization algorithm, we initially used the Latin hypercube sampling method to generate various random parameter 

sets. The best combination of parameter values was chosen as the initial start of the nlminb function according to the NSE 

value of various parameter sets. The nlminb function was then applied to search the optimal parameter sets. 

3.4	Evaluation	of	sub-annual	calibration	scheme	180 

Model performance is assessed for both the calibration period and the validation period with NSE. The validation method is 

also based on sub-periods with hydroclimatic similarities, which is similar with calibration procedures. Firstly, sub-periods in 

the validation period are matched into the most similar cluster of all clusters in the calibration period and assigned the 

corresponding optimal parameter set. Secondly, each parameter set is applied separately to run the model for the whole 

validation period. Thirdly, extract simulated runoff of specific sub-periods from each simulation to combine the final simulated 185 
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runoff.  

4.	Results	and	discussion	

4.1	Optimal	number	of	clusters	for	FCM	algorithm	

The validity index XBV  evaluate the validation of fuzzy c-partitions from the respective of the compactness of the fuzzy 

partition and the separation between clusters. When defining the optimal number of clusters, XBV  was calculated for each 190 

number of clusters which ranged from 2 to 15. The optimal number of clusters occurred where the value of XBV  is minimum. 

On the other hand, the optimal number of clusters was defined according to performances of each model which was run based 

on clusters with different numbers. The optimal number of clusters from two methods is shown in Table2.  

 

Figure 4 shows the variation of NSE for both the calibration period and validation period and the validity index XBV  with the 195 

number of cluster at monthly time scale, and other time scales have similar results. The NSE for calibration period generally 

increases with the number of clusters, which indicates the model calibrated to more clusters can better response the 

hydrological responses over the catchment, because the differences of hydrological responses among different climate patterns 

could be described through more runs of models which highlights specific climate pattern each time. There are no significant 

relationships between the value of NSE and XBV , and the optimal number of clusters from XBV  and simulation for monthly 200 

time scale are 7 and 12 respectively. 

 
Although the optimal number of clusters from two methods are different, the NSE for validation period of these two optimal 

numbers of clusters are very similar, 0.8081 and 0.8093 respectively. Therefore, the cluster validity index XBV  in identifying 

the optimal number of clusters has a satisfactory performance and we used the cluster validity index XBV  to recognize the 205 

optimal number of clusters in this study. 

4.2	Partitioning	of	sub-periods	with	hydrological	similarities	

The difference between the Calendar-Based Grouping (CBG) method and Fuzzy C-Means (FCM) algorithm in partitioning 

sub-periods with hydrological similarities are shown in Fig. 5 and Fig. 6, respectively. Figure 5 describes the difference 

between the distribution of groups classified by the CBG method and clusters from the FCM algorithm for different time scales 210 

(biannually, seasonal, bimonthly and monthly) in the period 1990-1995. Clusters are numbered based on the value of periodical 

rainfall. We can found there are big differences in their distribution. Sub-periods in one group generally belonged to different 

clusters. Sub-periods in clusters with small rainfall statistics are more distributed in the period from March to August, while 

sub-periods in months from September to February are more classified into clusters with large rainfall statistics, which 

indicates that the rainfall in the month of September, December, January and February is more than that of other months.  215 

 
Figure 6 shows the distribution of climatic variables for each cluster and group from FCM algorithm and CBG method 

respectively, which is calculated from observations in the calibration period at monthly time scale. The width of boxes are 

related with the sample size of each cluster or group. For clusters, their sample sizes are variable and Cluster 2, Cluster 3, 

Cluster 4 comprise more sub-periods compared with other clusters. For groups classified by the CBG method, they have the 220 

same number of sub-periods. Comparing the FCM algorithm with CBG method, for all climatic variables regarding rainfall, 
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the variations in clusters are smaller than those in groups and the median values of variables for different clusters range more 

greatly in comparison with those for different groups. However, the variable average temperature has opposite results. In terms 

of outliers in each cluster or group, FCM algorithm has a better performance because there are fewer outliers in clusters. 

Overall, the FCM algorithm can better recognize different rainfall patterns and put together sub-periods with similar rainfall 225 

characteristics, while the CBG method has a better performance in recognizing the temperature pattern. The results also show 

that the rainfall in the month of September, December, January and February is more than that of other months. 

4.3	Model	efficiency	of	two	sub-annual	calibration	schemes	

The simulation performance of sub-annual calibration schemes based on two classifying approaches is compared in Fig. 7. 

The traditional calibration method which calibrates the model using all historical observations was also performed with the 230 

purpose of comparison. The sub-annual calibration schemes based on hydroclimatic similarities show advantages in model 

performance over the traditional calibration scheme. Except for the biannual time scale, the simulation performance for both 

calibration period and validation period indicates that CBG method performed better than FCM algorithm. The reason for this 

might be that the catchment change in the study site is mainly affected by the temperature since CBG method has a better 

performance in recognizing sub-periods with similar temperature patterns (Fig. 6). 235 

 
In order to prove this hypothesis, we have done an experiment where the FCM algorithm is performed only on the basis of 

temperature variables (maximum temperature, minimum temperature and average temperature for each sub-period). The 

distribution of climatic variables for each cluster shows big differences when indicators characterizing the climate differ (Fig. 

8). The temperature-dominated FCM algorithm can better recognize sub-periods with similar temperature patterns with the 240 

optimal number of clusters 9.  

 
Figure 9 compares the model efficiency of sub-annual calibration schemes based on three classifying approaches. The model 

performance is considerably improved using the Temperature-dominated FCM algorithm in comparison with Rainfall-

dominated FCM algorithm for both the calibration period and validation period. However, the difference of the model 245 

performance based on Temperature-dominated FCM algorithm and CBG method is not obvious. For the calibration period, 

the performance of the Temperature-dominated FCM algorithm is slightly better than CBG method except for bimonthly time 

scale, while for the validation period, except for monthly time scale, there is no improvement for the Temperature-dominated 

FCM algorithm compared to the CBG method. 

 250 
Overall, the hypothesis that the catchment change in the study site is mainly affected by the temperature proves true. A possible 

interpretation of this phenomenon is that the main source of catchment change is from the change of vegetation, since the 

growth of vegetation (indicated by NDVI) is mainly impacted by temperature, which can be found from the positive correlation 

between temperature and NDVI in Fig. 10. The correlation coefficient 0.667 also indicates a positive correlation between 

temperature and NDVI, which is calculated with the data for the period 2001-2011, while there is no significant correlation 255 

between rainfall and NDVI. Therefore, identifying the relevant climate factors to vegetation growth is of great importance for 

the clustering approach, since the vegetation change is the main source for the temporal change of the hydrological model 

parameters for this study catchment. 

4.4	Evaluation	of	the	optimal	time	scale	

The optimal time scale for different sub-annual calibration schemes can be found from Fig. 9. For the calibration period, the 260 

optimal time scale is monthly for three sub-annual calibration schemes. However, for the validation period, the optimal time 
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scale is bimonthly for CBG method and Temperature-dominated FCM algorithm. Although Rainfall-dominated FCM 

algorithm has the optimal time scale of season, the performance of bimonthly time scale is very close to the optimal one.   

 

Figure 11 shows the validation performance of the CBG-based calibration scheme for the period 2005-2008. The biannual 265 

time scale performed worst with NSE of 0.812, which resulted in underestimation for most periods, while the other three time 

scales all have a good performance, and the difference of these three time scales in model performance is very tiny. With regard 

to high flows, bimonthly time scale have a slight better result especially in November of 2006.  

5.	Conclusion	

This study compared the hydrological model performance of different sub-annual calibration schemes, which take into account 270 

the intra-annual variations of climate. Two methods recognizing similar climatic pattern were applied to partition sub-periods 

with hydroclimatic similarities, Calendar-Based Grouping (CBG) method and Fuzzy C-Means (FCM) algorithm. The sub-

annual calibration schemes based on hydroclimatic similarities exhibit advantages over the traditional calibration scheme 

which assumes the catchment condition is stationary. However, the model performance of sub-annual calibration schemes is 

affected by the partitioning method and time scales. 275 

 

The CBG method has a better performance in recognizing temperature pattern, while FCM algorithm performs better in 

recognizing rainfall pattern since partitioning indicators of the FCM algorithm are most related to rainfall conditions. It is 

found that the sub-annual calibration scheme based on the CBG method leads to a better model performance, which may 

implies the catchment change in the study site is mainly affected by temperature conditions rather than rainfall conditions. 280 

This hypothesis is proved true through performing FCM algorithm only based on temperature variables, since the model 

performance is considerably improved using the Temperature-dominated FCM algorithm in comparison with Rainfall-

dominated FCM algorithm for both calibration period and validation period; however, the difference of the model performance 

for the Temperature-dominated FCM algorithm and CBG method is not obvious. A possible interpretation of this phenomenon 

is that the main source of catchment change is from the change of vegetation, since there is a positive correlation between 285 

temperature and NDVI over the study catchment. Therefore, identifying the relevant climate factors to vegetation growth is of 

great importance for the clustering approach. On the other hand, the cluster validity index XBV  is proved feasible in identifying 

the optimal number of clusters for the FCM algorithm. Additionally, the optimal time scale is dependent on the sub-annual 

calibration scheme, with bimonthly for the CBG method and Temperature-dominated FCM algorithm and seasonal for the 

Rainfall-dominated FCM algorithm. Overall, when using sub-annual calibration schemes, the selection of partitioning method 290 

and time scale is very important to the model performance.  
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 335 

Tables	

Table1: List of parameters in the IHACRES model 

Module Parameter Description Minimum Maximum 

None-linear c   Mass balance 0 0.04 

 wt   Reference drying rate 0 50 

 
f   

Temperature modulation of  

drying rate 
0 4 

 l   Soil moisture index threshold 0 50 

 p   Power on soil moisture 0 3 

Linear 
qa , sa   

Quick and slow flow recession  

rate 
-1 0 

  
qb , sb   

Fractions of effective  

rainfall for peak response 
-1 0 

 
 

Table2: The optimal number of clusters (
optk ) from two methods 340 

  biannual  seasonal bimonthly monthly 

optk  from XBV  5 5 4 7 

optk  from simulation 3 4 10 12 
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Figures 

 

Figure 1: Location of the Thorverton catchment (the shaded area) in the UK 345 

 

 

 
Figure 2: The autocorrelation function for rainfall (left) and flow (right) which shows great intra-annual variations 

 350 
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Figure 3: Structure of the IHACRES model 355 
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Figure 4: Variation of the NSE and 

XBV  index with the number of clusters 

 360 

 
 

 

Figure 5: Difference between the distribution of groups classified by CBG method and clusters from FCM algorithm for different 
time scales (biannually, seasonal, bimonthly and monthly) in the period 1990-1995 365 
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Figure 6: Distribution of climatic variables for each cluster (left) and group (group) from FCM algorithm and CBG method 

respectively 

 

   370 
Figure 7: Comparison of simulation performance of different calibration schemes 
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Figure 8: Distribution of climatic variables for each cluster from Rainfall-dominated FCM algorithm (left) and Temperature-

dominated FCM algorithm (right) respectively 

 375 

 

  
Figure 9: Comparison of simulation performance of sub-annual calibration schemes based on three classifying approaches 
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Figure 10: The change of average monthly temperature，rainfall and NDVI for the Thorverton catchment 

 

 390 

 
Figure 11: Model performance of the CBG-based calibration scheme for validation phase at four time scales 
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