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Abstract This study examines the relative roles of climatic variables in altering annual 1 

runoff in the conterminous United States (CONUS) in the 21st century, using a monthly 2 

ecohydrological model (the Water Supply Stress Index model, WaSSI) driven with 3 

historical records and future scenarios constructed from 20 Coupled Model 4 

Intercomparison Project Phase 5 (CMIP5) climate models. The results suggest that 5 

precipitation has been the primary control of runoff variation during the latest decades, 6 

but the role of temperature will outweigh that of precipitation in most regions if future 7 

climate change follows the projections of climate models instead of the historical 8 

tendencies. Besides these two key factors, increasing air humidity is projected to 9 

partially offset the additional evaporative demand caused by warming and consequently 10 

enhance runoff. Overall, the projections from 20 climate models suggest a high degree 11 

of consistency on the increasing trends in temperature, precipitation, and humidity, 12 

which will be the major climatic driving factors accounting for 43%~50%, 20%~24%, 13 

and 16%~23% of the runoff change, respectively. Spatially, while temperature rise is 14 

recognized as the largest contributor that suppresses runoff in most areas, precipitation 15 

is expected to be the dominant factor driving runoff to increase across the Pacific Coast 16 

and the Southwest. The combined effects of increasing humidity and precipitation may 17 

also surpass the detrimental effects of warming and result in a hydrologically wetter 18 

future in the East. However, severe runoff depletion is more likely to occur in the central 19 

CONUS as temperature effect prevails.  20 
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1 Introduction 1 

Precipitation and temperature are the two key climatic variables that control land water 2 

balances and thus control water availability for both ecosystem and humans (Lutz et al., 3 

2014;Milly et al., 2005;Seager et al., 2013;Piao et al., 2010). Changes in temperature 4 

interact with changes in precipitation and cause profound shifts in water balance, such 5 

as snowpack melting and accumulation (Barnett et al., 2005;Zhang et al., 2015), 6 

intensification of hydrologic cycle (Creed et al., 2015;Davis et al., 2015), precipitation 7 

partitioning (Duan et al., 2016b;Zhou et al., 2015), extreme floods and droughts (Duan 8 

et al., 2016a;Trenberth et al., 2014;Duan and Mei, 2014b), and can lead to hydrological 9 

‘nonstationarity’ (Milly et al., 2008).  10 

Surface and subsurface (shallow aquifers) runoff is a critical source of fresh water 11 

for humans  (Vörösmarty et al., 2000). The impacts of temperature and precipitation 12 

changes on the magnitude and variability of runoff (Ficklin et al., 2009;Arnell and 13 

Gosling, 2013;Nash and Gleick, 1991;Vano et al., 2012) have drawn particular attention 14 

due to its importance for water supplies. Future changes in precipitation, evaporation, 15 

and plant water use are direct driving forces of runoff generation. Climate change alters 16 

both precipitation and the partitioning of precipitation into evapotranspiration (ET) and 17 

runoff since a warmer climate generally provides more energy for water fluxes between 18 

the land and the atmosphere. Although an increase in precipitation may cause increase 19 

in both ET and runoff, the enhanced evaporative demand can result in decreases in 20 

runoff efficiency (ratio of runoff to precipitation) (McCabe and Wolock, 2016). Both 21 

observation and simulation studies in the U.S. suggest that higher ET induced by rising 22 
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temperature is unlikely to be counterbalanced by the increase in precipitation and lead 1 

to less runoff at large scales (Duan et al., 2016b;Jackson et al., 2005;Duan et al., 2017). 2 

Conversely, warming may also cause precipitation decrease in some regions and 3 

exacerbate the effects of temperature on runoff change.  4 

Several studies have examined the relative contributions of historical changes in 5 

precipitation and temperature to runoff variation at watershed (Karl and Riebsame, 6 

1989), regional (Ryberg et al., 2014;Gupta et al., 2015), and continental (McCabe and 7 

Wolock, 2011) levels across the conterminous U.S. (CONUS). These studies all agree 8 

that precipitation, instead of temperature, explains most of the long-term change and 9 

variability in runoff during the past century. McCabe and Wolock (2011) suggested that 10 

the effects of temperature on runoff may become more substantial under a warming 11 

climate. However, no study in the literature has rigorously investigated the potential 12 

changes in the roles of precipitation and temperature under future climate scenarios. 13 

According to the Parameter-elevation Relationships on Independent Slopes Model 14 

(PRISM) dataset (http://prism.oregonstate.edu/) (Daly et al., 2008), the rate of decadal 15 

change in temperature over the CONUS fluctuated between -0.03 °C and +0.28 °C from 16 

1960s to 2000s. The rate of warming is likely to accelerate under intermediate or high 17 

emission scenarios and increase the pressure of water scarcity in many regions in this 18 

century (IPCC, 2014;Schewe et al., 2014). In addition, future change in climate is 19 

projected to vary spatiotemporally in both direction and magnitude in the CONUS 20 

(Mearns et al., 2012), thus sensitivity of water budget to climate change may be 21 

discrepant across time and space. Although the possible underestimation of the 22 

http://prism.oregonstate.edu/
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influence of temperature in altering regional water resources has been discussed 1 

recently (Sospedra‐Alfonso et al., 2015;Woodhouse et al., 2016), a comprehensive 2 

evaluation under different climate backgrounds and land-cover compositions is still 3 

lacking.  4 

We aim to address two questions in this study: (1) to what extent, if any, will the 5 

relative roles of precipitation and temperature in controlling runoff shift, if future 6 

climate changes follow the projections of climate models instead of the tendencies 7 

documented in the recent decades, and (2) how will runoff change in the future and 8 

what are the potential roles of other climatic driving forces besides precipitation and 9 

temperature? In the remainder of the paper, we first describe the methodology of runoff 10 

simulation and sensitivity assessment, and the hydro-climatic datasets used, followed 11 

by the results. Then, the advantages, limitations, and implications of this study are 12 

discussed and the conclusions are drawn. 13 

2 Methods 14 

2.1 Study area 15 

The CONUS covers the 48 adjoining states and the District of Columbia. In the 16 

hydrologic unit system developed by the U.S. Geological Survey (USGS) 17 

(http://water.usgs.gov/GIS/huc.html), the nation is divided into six levels of hydrologic 18 

units and each unit is identified by a unique hydrologic unit code (HUC) consisting of 19 

two to twelve digits. The first level of classification divides the CONUS into 18 2-digit 20 

HUC areas that are also commonly referred to as Water Resource Regions (WRRs) (Fig. 21 

1). These regions can be further divided into 2,099 8-digit HUC areas, or HUC-8 22 

http://water.usgs.gov/GIS/huc.html
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watersheds. This study investigates climate and runoff variations at the resolution of 1 

HUC-8 watershed, as well as the aggregations in each WRR and the entire CONUS. 2 

The full lists and boundaries of hydrologic units at different levels can be found in the 3 

Watershed Boundary Dataset (https://datagateway.nrcs.usda.gov/). 4 

2.2 Runoff modeling 5 

The runoff responses to climate change and variability were modeled with the Water 6 

Supply Stress Index model (WaSSI). WaSSI is a monthly ecohydrological model that 7 

simulates the land-cover specific water and carbon cycles (Caldwell et al., 2012;Sun et 8 

al., 2011b). The model incorporates several mathematical sub-models to describe 9 

monthly hydrologic processes from precipitation input to streamflow routing. A 10 

conceptual snow sub-model (McCabe and Markstrom, 2007) is used to partition the 11 

total precipitation into rainfall and snowfall, and to estimate snowpack 12 

melt/accumulation and snow water equivalent with concern of the mean elevation, 13 

latitude, and air temperature in the watershed. ET is calculated with an ecosystem ET 14 

model developed from the empirical relationships between ET and precipitation, 15 

potential evapotranspiration (PET), and leaf area index (LAI) (Sun et al., 2011a;Sun et 16 

al., 2011b). These ET functions were established for 10 different land-cover classes 17 

independently to account for the different water demand within different vegetation, 18 

ranging from cropland, deciduous forest, evergreen forest, mixed forest, grassland, 19 

shrubland, wetland, open water, urban area, to barren land. Then, this ET estimation is 20 

further constrained by soil water availability, which is simulated using the algorithms 21 

of Sacramento Soil Moisture Accounting model (SAC-SMA) (Burnash, 1995), as well 22 

https://datagateway.nrcs.usda.gov/
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as the processes of infiltration and runoff generation at monthly basis. SAC-SMA is a 1 

classic rainfall-runoff conceptual model that has been successfully used by the U.S. 2 

National Weather Service (NWS) to issue river forecasts across the country for 3 

decades.Necessary inputs for WaSSI include monthly precipitation, air temperature, 4 

PET, LAI, and land-cover composition. In this study, the spatial distribution of LAI and 5 

the 10 land-cover classes were assumed to be static over time. Monthly climate data 6 

were first scaled to watersheds by the area-weighted averages. All the water balance 7 

components were calculated independently for each land cover class within each 8 

watershed, and then were aggregated monthly means. The model parameters were 9 

acquired from several previous studies, including: (1) The parameters of snow sub-10 

model were estimated for each WRR by comparing regional monthly mean snow water 11 

equivalent to remotely sensed values from the Snow Data Assimilation System 12 

(McCabe and Markstrom, 2007;Caldwell et al., 2012). (2) The parameters of ET sub-13 

model were estimated by empirical relationships derived from eddy covariance or 14 

sapflow measurements at multiple sites (Sun et al., 2011a;Sun et al., 2011b). (3) SAC-15 

SMA parameters used to drive the soil water balance sub-model were developed from 16 

soil physical characteristics documented by the State Soil Geographic Database 17 

(http://soildatamart.nrcs.usda.gov) (Anderson et al., 2006;Koren et al., 2003). 18 

The WaSSI model has been validated against observations at USGS gauged sites at 19 

the levels of both 8-digit (Caldwell et al., 2012) and 12-digit HUC watersheds (Sun et 20 

al., 2015b). We here verify the model performance at CONUS and WRR scales to 21 

complement to previous validations. The simulated annual runoff, driven by monthly 22 

http://soildatamart.nrcs.usda.gov/
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precipitation and temperature from the PRISM dataset, was compared against the 1 

USGS measurements over the entire CONUS (Fig. 2a&2c) and in the 18 WRRs (Fig. 2 

2b&2d) for the time period of 1961-2010. Despite a slight overestimation of the 3 

minimums, WaSSI shows reliable accuracy in capturing annual runoff at both CONUS 4 

and WRR scales, with R-square statistic reaching 0.91 and 0.95, and Root Mean 5 

Squared Error (RMSE) limited to 29 and 55 mm yr-1, respectively.  6 

2.3 Quantifying the independent effects of climatic variables 7 

Large-scale water balance can be described as runoff (R) equals precipitation (P) minus 8 

ET and changes in soil moisture (SM) and the hydrologically connected snowpack (SP): 9 

R = P − ET + dSM/dt + dSP/dt
                       

(1)
 

10 

While P is the primary water input, changing temperature (T) and other climatic factors 11 

interact with each other and affects R by altering the melt/accumulation of snowpack 12 

and controlling ET with the constraints of vegetation and soil moisture. 13 

  Here we developed a simple approach of sensitivity test to examine the relative roles 14 

of climatic variables in R variation, as:  15 

𝛥𝑅 = ∑ 𝐸𝐶𝑖
𝑁
𝑖=1 + 𝐸𝐼𝑛𝑡                          (2) 16 

where ΔR denotes the change in R, which equals the combined effect of variations in 17 

all the climatic variables (Ci, i=1,2,…,N). ΔR can be decomposed into the independent 18 

effects of each variable (ECi) and the effect of interactions among them (EInt). From a 19 

pre-change period (t1) to a post-change period (t2), ΔR is quantified by R change 20 

(%)driven by changes in all the variables, as the difference between 21 

R(C1 t 2 ,…,Ci t 2 ,…,CN t 2) and R(C1 t 1 ,…,Ci t 1 ,…,CN t 1); while ECi is estimated by 22 

R change driven by changes in the variable Ci only, as the difference between 23 
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R(C1 t 1 ,…,Ci t 2 ,…,CN t 1) and R(C1 t 1 ,…,Ci t 1 ,…,CN t 1). EInt is calculated as the 1 

ΔR minus ∑ 𝐸𝐶𝑖
𝑁
𝑖=1 , representing the changes in R that cannot be accounted for by the 2 

independents effects. Given that the changing climatic variables may cause either 3 

positive or negative effects on R, their contributions (%) are quantified by the relative 4 

weights, as 5 

𝐶(𝐶𝑖) = 100 × |𝐸𝐶𝑖|/(∑ |𝐸𝐶𝑖| + |𝐸𝐼𝑛𝑡|)
𝑁

𝑖=1
               (3) 6 

2.4 Modeling experiments 7 

2.4.1 Climate projection 8 

Climate data downscaled from the raw outputs of 20 Global Climate Models (GCMs) 9 

(Table 1) of the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) 10 

(the MACAv2-LIVNEH dataset, Livneh et al., 2013, available at 11 

http://maca.northwestknowledge.net/) were used to test the potential future changes in 12 

R. This dataset includes the CMIP5 experiments of ‘historical’, Representative 13 

Concentration Pathways (RCP) 4.5, and RCP8.5, which correspond to the climate 14 

forcings (i.e., greenhouse gases emissions, aerosols, land use feedbacks, etc.) observed 15 

in the history and projected in a future with the radiative forcing reaching 4.5 and 8.5 16 

W m-2 in 2100 (equivalent to 650 ppm and 1370 ppm CO2), respectively (Moss et al., 17 

2010;IPCC, 2014). The used climatic variables include monthly P, maximum and 18 

minimum T, solar radiation (Rs), wind speed (Ws), and specific humidity (Sh) spanning 19 

from 1950 to 2099 (Fig. 3).  20 

  To evaluate the R responses to various changes in future climates, we conducted four 21 

30-year simulation experiments: (i) RCP4.5/2030s (S1 scenario) — near future 2020-22 

http://maca.northwestknowledge.net/
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2049 under RCP4.5; (ii) RCP4.5/2080s (S2) — far future 2070-2099 under RCP4.5; 1 

(iii) RCP8.5/2030s (S3) — near future 2020-2049 under RCP8.5; (iv) RCP8.5/2080s 2 

(S4) — far future 2070-2099 under RCP8.5. These four future scenarios cover two post-3 

change time periods (2030s and 2080s) and are compared to the historical condition in  4 

1970-1999 (1980s) that represents the baseline level. Traditional sensitivity test 5 

methods usually assume a fixed amount of change (Karl and Riebsame, 1989) or allow 6 

one (or more) of the variables to remain constant over time (McCabe and Wolock, 2011). 7 

In this study, the 30-year-long continuous climate series were used to examine the long-8 

term patterns while implicitly incorporating the inter- and intra-annual variations. This 9 

large set of climate projections was collected to enable a robust quantification of the 10 

major uncertainties from GCM structure and emission scenario.  11 

2.4.2 Estimation of potential evapotranspiration 12 

Hamon’s PET equation has been used for PET estimation in previous WaSSI 13 

simulations because it only requires mean temperature as input and has shown reliable 14 

correlation with actual ET in historical periods (Lu et al., 2005;Vörösmarty et al., 1998). 15 

Essentially, temperature-based methods perform well because T is correlated with 16 

radiation and humidity at monthly timescale (Sheffield et al., 2012). Such correlations 17 

are the physical bases of the empirical ET functions, through which variability in P, T, 18 

and LAI was able to explain the main controls of evaporation and transpiration fluxes 19 

without including the radiative and aerodynamic variables. However, recent studies 20 

revealed that the bias in temperature-based methods could be amplified in future 21 

scenarios of global warming, leading to overestimation of PET and ultimately ET and 22 
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the severity of land surface drying (Milly and Dunne, 2011;Sheffield et al., 2012). 1 

Penman-Monteith (PM) reference ET (Allen et al., 1998), as a commonly used 2 

alternative PET model, incorporates the effects of surface temperature, humidity, wind, 3 

and radiation, and is considered the most reliable PET approach where sufficient 4 

meteorological data exist (Kingston et al., 2009;Feng and Fu, 2013).  5 

  In this case, using Hamon equation would lead to 130 mm yr-1 larger PET increase 6 

from the baseline to RCP8.5/2080s than that using PM equation (Fig. 4). We assume 7 

that the PM PET projections are more reasonable because the effects of future changes 8 

in Rs, Ws, and Sh are included as well as T. In the remaining of this paper, we will focus 9 

on analyzing the R changes and the independent effects of five climatic variables based 10 

on PM PET, i.e., P, T (including changes in maximum T, minimum T, and mean T that 11 

was estimated as the average of maximum and minimum), Rs, Ws, and Sh. Effects of P 12 

and T evaluated from simulations of Hamon PET will also be investigated to address 13 

the consistency and discrepancy caused by using different PET methods.  14 

3. Results 15 

3.1 Projected changes in runoff  16 

Changes in mean annual R under future climate change scenarios vary among HUC-8 17 

watersheds (Fig. 5) and WRRs (Fig. 6) across the CONUS. Runoff depletion is 18 

projected to cover most part of the central CONUS across WRR7~WRR12, with largest 19 

decreases over 50% found in the south of WRR10 (Missouri) under RCP8.5. Increases 20 

are mainly projected in the Southwest, the north of Missouri, and regions along the 21 

Atlantic Coast and Pacific Coast. Extreme increases over 100% are projected in several 22 
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arid watersheds in WRR15 (Lower Colorado) and WRR16 (Great Basin). However, this 1 

may be caused by the inability of GCMs in reproducing the low P values in these 2 

extremely dry areas. Although the general spatial patterns appear to be similar in the 3 

four scenarios, there is an evident expansion of the areas showing either extreme 4 

increasing or decreasing trend from 2030s to 2080s under both RCP4.5 (Fig. 5a-5b) and 5 

RCP8.5 (Fig. 5c-5d) scenarios.  6 

The large variability of regional changes in R (Fig. 6) indicates considerable 7 

uncertainties from GCM structure. In most cases, the uncertainty range is limited to 8 

−30% ~ +30%, showing both positive and negative changing signals. The distributions 9 

of the median lines and Inter-Quartile Ranges (IQRs) suggest a hydrologically drier 10 

future in WRR7~12 and WRR14 (Upper Colorado), where consistent decreasing signal 11 

is found in all the scenarios. Increasing trend can be found in WRR1 (New England), 12 

WRR2 (Mid-Atlantic), WRR17 (Pacific Northwest), and WRR18 (California). 13 

Generally, the uncertainty ranges tend to increase from 2030s to 2080s under both RCPs, 14 

and reach a particularly high level under RCP8.5/2080s. There is a noticeable 15 

consistency in the pattern that the GCMs agree more on the simulations in 2030s while 16 

the uncertainty aggregates over time toward 2080s, which implies the limitation of the 17 

state-of-the-art GCMs in predicting farther future. 18 

3.2 Independent effects of climate variables 19 

The changes in R discussed above are under the combined impact of changing P, T, Rs, 20 

Ws, and Sh. The independent effects of these factors over the entire CONUS are 21 

illustrated in Fig.7a-7b. P and T are clearly the two most influential factors, which are 22 
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projected to cause divergent changes in R due to the increase in P (+15 ~ +31 mm yr-1) 1 

and T (+1.8 ~ +5.3 ℃). The median values show that annual R under the independent 2 

P effect is expected to increase by 13 mm yr-1 (4%) in 2030s and 24 mm yr-1 (8%) in 3 

2080s under RCP4.5, and by 21 (7%) and 30 (10%) mm yr-1 at the same time under 4 

RCP8.5. In contrast, the independent effects of T reach -32 (-11%), -50 (-17%), -34 (-5 

12%), and -80 (-28%) mm yr-1 in the scenarios S1~S4. The negative effect of rising T 6 

is expected to exceed the positive effect of increasing P and lead to overall decrease in 7 

R. However, Sh, the third largest contributor, will enhance R by 3%~12% and largely 8 

offset the T effects. Significant increasing trend in Sh is projected under both RCP4.5 9 

and RCP8.5 (Fig. 3e), which will suppress vapor pressure deficit and thus partially 10 

counterbalance the increasing evaporative demand caused by warming. Meanwhile, the 11 

effects of Rs (slightly negative), Ws (slightly positive), and interactions among the 12 

factors (Int) are relatively minimal (<3%), suggesting that the variations in T, P, and Sh 13 

can explain the major changes in R. 14 

It is worth noticing that much larger uncertainty ranges can be found in the P effects. 15 

Compared to the highly consistent increases in T and Sh, the 20 GCMs constantly 16 

disagree on the changing direction of P. Under RCP8.5/2080s, the multi-model result 17 

of P effect ranges from -11% to 24%, and the IQR also reaches the highest level (13%). 18 

It indicates that uncertainty in P projection is still the largest contributor to the 19 

uncertainty in R simulations, especially in the far future. 20 

We also compared these results with those evaluated based on Hamon PET (Fig. 7c), 21 

and found some similar features. The differences in independent effects of P and T 22 
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between the two sets of results are mostly smaller than 5%, and both results show that 1 

T effect would be twice as large as P effect at CONUS scale. This suggest that the bias 2 

in PET model structure is not likely to turn over the relative importance of P and T 3 

effects as long as ET model is properly calibrated. However, the projected decreases in 4 

R (i.e., the ‘Total’ effects) are obviously more severe when using Hamon PET because 5 

the positive effect of increasing humidity is not considered. 6 

3.3 Relative contributions of precipitation and temperature 7 

Table 2 summarizes the relative contributions of P and T to R change for the historical 8 

and future periods in 18 WRRs and the entire CONUS. Historical changes in P, T, and 9 

their effects on R were tested using PRISM climate data spanning from January 1960 10 

to December 2010. Given the significant spatial and temporal variability in R trend 11 

across the CONUS (Mauget, 2003;McCabe and Wolock, 2002, 2011;Gupta et al., 2015), 12 

a consistent breakpoint is statistically unavailable. We hereby took 1985 as the 13 

breakpoint year for all the watersheds and evaluated the multi-decadal mean changes 14 

from 1961-1985 (pre-change period) to 1986-2010 (post-change period). Although the 15 

selection of different breakpoints may cause certain deviations, the analysis can provide 16 

a comparable benchmark for exploring the shifts in future scenarios at a multi-decadal 17 

scale. Unsurprisingly, the results of these latest decades show the prevailing role of P 18 

in nearly all the regions, with WRR14 being the only exception. In the future periods 19 

(from baseline to S1~S4), however, results derived from both PM and Hamon PET 20 

suggest that the role of T rise will surpass P and become the largest driver in most of 21 

the regions (15~16 out of 18 WRRs) in the future. In contrast, a larger mean 22 
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contribution of P can be occasionally found in the Atlantic Coast (WRR1,2), Pacific 1 

Coast (WRR18), and the Southwest (WRR12,15). Considering that the inconsistency 2 

among GCMs may make the recognition of larger contributor dubious, we used 3 

Wilcoxon signed-rank test (Gibbons and Chakraborti, 2011) to assess the statistical 4 

significance of the difference between each pair of P and T contributions (i.e., 20 5 

samples from the 20 GCMs). The test results reveal high agreement among GCMs on 6 

the prominent role of T across most regions (underlined in Table 2). 7 

  At CONUS level, the mean contributions of P and T are projected to lie within 8 

20%~24% and 43%~50% using PM PET, and 33%~40% and 55%~62% using Hamon 9 

PET, suggesting a similar shift in the relative importance of these two key driving 10 

factors. However, future changes in Sh, Rs, and Ws account for another 16%~23%, 11 

2%~7%, and 1%~4% of R change respectively, and indirectly affect the attributions to 12 

P and T. For example, the R increase in WRR1 would be completely attributed to P 13 

increase if Sh was not considered, and thus lead to an overestimation of P contribution.  14 

3.4 Spatial distribution of the major driving factors 15 

To further investigate the spatial pattern of future climatic controls on annual R, we 16 

mapped the coverage of dominant driving factors (Fig. 8) and examined its consistency 17 

with the changing trend in R at watershed scale (Table 3). Judging by multi-model 18 

ensemble means, P and T are the largest driving factor in 10%~22% and 68%~89% of 19 

the CONUS area. High consistency on their dominant roles (80% or more of the 20 20 

GCMs agree on the sign) can be found in 4%~7% and 21%~41% of the CONUS, 21 

respectivley. As P and T are projected to keep increasing, the coverages of P-dominant 22 
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and T-dominant areas are also expected to expand from 2030s to 2080s. A directional 1 

change suggests that rising T will become more influential in the east (WRR1~6), while 2 

P will prevail in more watersheds across the west (WRR13~18). Although the 3 

aggregated effect of Sh is quite close to that of P at large scales, it is only expected to 4 

play a dominant role in several watersheds (1% in area) across the borders between 5 

WRR10 and WRR11 under RCP8.5/2080s.  6 

  The P-dominant areas that mainly distributed in the Southwest (WRR13,15) and 7 

Pacific Coast (WRR17,18) show clear signals of increasing R, driven by the widespread 8 

increase in P. One the other hand, only two thirds of the T-dominant areas coincide with 9 

the areas of decreasing R, covering a large part of the central CONUS (WRR7,9,10,11) 10 

and a number of watersheds scattered in the Northwest (WRR14,16,17). Although T is 11 

also identified as the most influential factor in the eastern regions WRR1~5, the 12 

combined effect of other four factors, primarily P and Sh, is projected to exceed the T 13 

effect and lead to an increase in R. 14 

4. Discussion 15 

4.1 Spatial patterns of future runoff change 16 

This study characterizes and generalizes large-scale relationships among changing P, T, 17 

and R despite the large geographic differences. The coherence in the spatial dynamics 18 

of R trend and the corresponding climatic drivers shows a rough pattern: T change 19 

dominates R decrease while P and Sh changes dominate R increase. However, it should 20 

be interpreted with limitations on time scale and underlying surface features. This 21 

pattern does not hold true in all the watersheds due to the nonlinear complexity of R 22 
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response to climate change at various time scales, as well as the influence of other 1 

watershed characteristics (e.g., topography, land-use, soil property). For example, slight 2 

decreases in annual P but somewhat increases in annual R are projected in south Texas  3 

due to the changes in intra-annual climate variability. The role of T may also become 4 

more positive in regions where water availability is dominated by snow melting 5 

(Barnett et al., 2005;Lutz et al., 2014). Besides, local R can be affected by other factors, 6 

such as land-cover evolution and the direct effects of atmospheric composition on 7 

transpiration (Gedney et al., 2006;Zhang et al., 2001;Zhang et al., 2015).  8 

4.2 The role of land cover and land use 9 

Land cover, LAI, and soil are important controls on catchment water balance and R 10 

sensitivity to climate change (Zhang et al., 2001;Bosch and Hewlett, 1982;Cheng et al., 11 

2014). This study specifically focused on evaluating the separate and combined effects 12 

of changing climates on R within a static land cover/land use. We did not consider the 13 

potential evolution of land cover and its interactions with water balance. We made no 14 

explicit tabulation of the impact of land cover/land use on the R responses to climate 15 

change, but we did incorporate it as a key factor by estimating ET with a set of functions 16 

of climate, LAI, and soil moisture capacity and deficit. Across the land cover classes, 17 

the uncertainty ranges of independent contributions of P (13%~30%) and T (39%~51%) 18 

are relatively small compared to the ranges across WRRs (18%~47% and 29%~52%). 19 

This may be because the discrepancy across different land covers is largely offset by 20 

the different climate backgrounds across the country. Evaluation of future land cover 21 

change and its impact on R is out of the scope of this study. However, our results imply 22 
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that the potential impact of land cover change might not be large enough to alter the 1 

relative significance of P and T in controlling future continental water availability. 2 

4.3 Implications for water and land management 3 

Our results have important implications for water and land management across the 4 

CONUS. Water resources planning may need to prepare different management 5 

strategies for areas facing contrasting future hydrological conditions. Additional water 6 

storage such as reservoirs may be needed in regions expecting more R, while inter-basin 7 

water transfer, improving water use efficiency, and other water conservation measures 8 

such as rain harvesting, and waste water recycling should be implemented for areas 9 

expecting water shortages. The vast croplands across central U.S. are likely to be 10 

threatened by rising T and diminishing water availability for irrigation and food 11 

production. Adaptations in cropping systems and irrigation strategy are needed to 12 

secure food supply and increase resiliency to drought and changing climate (Challinor 13 

et al., 2014;Teixeira et al., 2013). The drier and hotter conditions may also result in 14 

increasing water stress, higher risks of tree insects and disease outbreaks, and 15 

catastrophic wildfires in forests (Dale et al., 2001) (e.g., National Forests in WRR14, 16 

16, 17) and grasslands (e.g., in WRR10~11). Innovative land management practices 17 

such as forest thinning and fuel management, irrigation, and planting drought-tolerant 18 

species are vital to minimize the potential risk and vulnerability to climate change and 19 

reduce the threats to ecosystems and society (Sun et al., 2015a;Grant et al., 2013;Vose 20 

et al., 2016). 21 
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4.4 Uncertainties and caveats 1 

Considerable uncertainty lies in the projection of future climate changes from the 20 2 

GCMs. The uncertainty ranges under both RCP4.5 and RCP8.5 show significant 3 

expansions over time from 2030s to 2080s. In particular, the large uncertainty in 4 

predicting future P may substantially compromise the reliability in evaluating either R 5 

change or the roles of P and T (Karl and Riebsame, 1989;Piao et al., 2010). Although 6 

the results allow us to draw some conclusions on the general patterns, uncertainties are 7 

large and vary differently across space and time. There are certain limitations in this 8 

evaluation that should be noted when interpreting the results. First, we did not 9 

incorporate other sources of uncertainty, such as the methodology of downscaling 10 

(Duan and Mei, 2014a;Chen et al., 2011), and structure and parameters of hydrologic 11 

model (Jung et al., 2012). Although the selections of GCM and emission scenario are 12 

more likely to be the largest sources of uncertainty in hydro-climatic modeling (Kay et 13 

al., 2009;Wilby and Harris, 2006;Duan and Mei, 2014b), the other sources may also 14 

affect the results to different extents. The roles of uncertainties from different sources 15 

can be particularly equivocal when investigating seasonal/monthly variability and 16 

extreme events (Bosshard et al., 2013;Giuntoli et al., 2015;Bae et al., 2011;Kay et al., 17 

2009). Second, we focused on the independent effects of potential climate changes, 18 

while assuming the inter-relationship among the meteorological variables and water-19 

balance components remains the same as in historical periods. In future studies, 20 

improved climate datasets and better representation of the physical mechanisms of 21 

climatic factors (e.g., radiation, Bohn et al., 2013; wind speed, McVicar et al., 2012) 22 
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are needed to reduce uncertainties. 1 

5. Conclusions 2 

This study evaluates the relative roles of precipitation and air temperature, as well as 3 

solar radiation, wind speed, and air humidity, in altering annual runoff across the 4 

CONUS based on a large ensemble of simulations using data from both historical 5 

measurements and CMIP5 GCMs projections. Despite the large uncertainty and spatial 6 

variability involved in the results, two robust conclusions can be drawn at the CONUS 7 

and regional scales on multi-decadal basis. First, the role of temperature will outweigh 8 

that of precipitation in a continued warming future in the 21st century, in spite that 9 

precipitation has been the primary control of runoff variation during the latest decades. 10 

The projections from 20 climate models suggest a high degree of consistency on the 11 

increasing trends in both precipitation and temperature, but the negative effect of 12 

temperature is expected to exceed the positive effect of precipitation on runoff change 13 

in most regions. Over the entire CONUS, temperature is projected to be the largest 14 

contributor (43%~50%), followed by precipitation (20%~24%), humidity (16%~23%), 15 

solar radiation (2%~7%), and wind speed (1%~4%). Spatially, precipitation is likely to 16 

be the dominant driving factor for runoff increase across the Pacific Coast and the 17 

Southwest, while temperature will be more influential in the central CONUS and parts 18 

of the Northwest and cause runoff decreases.  19 

  Second, increasing humidity is expected to partially offset the additional evaporative 20 

demand caused by warming, and consequently enhance runoff wide across the country. 21 

Although the rising temperature is projected to be the largest control of runoff change 22 
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in the eastern CONUS, the combined effects of increasing humidity and precipitation 1 

will surpass the detrimental effects of warming and result in a hydrologically wetter 2 

future. This study also raises concern on the choice of PET method. It has been well 3 

acknowledged in hydrometeorological communities that temperature-based PET 4 

methods tend to be oversensitive to temperature change. Our results further demonstrate 5 

that the main risk of using temperature-based PET is overlooking the effects of other 6 

changing climatic variables (mainly humidity in this case), which have not been as 7 

widely measured as temperature and are relatively understudied, rather than 8 

overestimating the effects of temperature.  9 
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Tables 1 

Table 1. List of the 20 climate models and the changes in mean annual precipitation and temperature 2 

over the conterminous United States (CONUS) from the baseline scenario (B) to future scenarios S1 3 

(RCP4.5/2030s), S2 (RCP4.5/2080s), S3 (RCP8.5/2030s), and S4 (RCP8.5/2080s). 4 

GCM Country 
Precipitation (mm yr-1) Temperature (°C) 

B S1 S2 S3 S4 B S1 S2 S3 S4 

bcc-csm1-1 China 787 -3 +13 +33 -5 11.4 +1.7 +2.4 +1.9 +4.8 

bcc-csm1-1-m China 786 +18 -18 +29 +33 11.4 +1.5 +2.4 +1.7 +4.3 

BNU-ESM China 798 +51 +42 +25 +45 11.5 +1.9 +3.2 +2.0 +5.4 

CanESM2 Canada 800 +14 +42 +19 +83 11.3 +2.3 +3.5 +2.4 +5.8 

CCSM4 USA 783 +29 +29 +18 +58 11.5 +1.5 +2.5 +1.9 +4.6 

CNRM-CM5 France 780 +46 +56 +40 +85 11.4 +1.4 +2.8 +1.6 +4.6 

CSIRO-Mk3-6-0 Australia 780 +14 +84 +24 +74 11.2 +2.0 +3.4 +2.0 +5.6 

GFDL-ESM2M USA 787 +6 +20 +32 +31 11.3 +1.6 +2.2 +1.7 +4.2 

GFDL-ESM2G USA 791 +21 +36 +38 +12 11.4 +1.2 +1.7 +1.2 +3.7 

HadGEM2-ES UK 784 +16 +7 +18 +7 11.3 +2.2 +3.8 +2.5 +6.8 

HadGEM2-CC UK 779 +23 +39 +5 +32 11.3 +2.3 +4.2 +2.7 +6.7 

inmcm4 Russia 779 -7 +4 +0 +13 11.4 +0.9 +1.7 +1.1 +3.4 

IPSL-CM5A-LR France 780 +8 +14 +13 -8 11.5 +1.8 +3.0 +1.8 +5.8 

IPSL-CM5A-MR France 789 -4 +13 -25 -70 11.3 +1.9 +3.2 +2.3 +6.0 

IPSL-CM5B-LR France 781 +23 +62 +34 +82 11.4 +1.5 +2.4 +1.7 +4.4 

MIROC5 Japan 788 +9 +10 +24 +6 11.2 +2.3 +3.6 +2.4 +5.7 

MIROC-ESM Japan 791 +56 +37 +30 +9 11.3 +2.1 +4.1 +2.6 +6.6 

MIROC-ESM-CHEM Japan 784 +12 +38 +26 +10 11.4 +2.4 +4.0 +2.7 +6.9 

MRI-CGCM3 Japan 783 +20 +47 +38 +87 11.4 +0.8 +1.7 +1.0 +3.2 

NorESM1-M Norway 784 +13 +31 +25 +63 11.3 +1.8 +3.1 +2.2 +5.1 
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Table 3. Cross comparison of the areal proportions (%) with different dominant driving factors and 1 

changing directions of runoff (R) in the future scenarios S1 (RCP4.5/2030s), S2 (RCP4.5/2080s), S3 2 

(RCP8.5/2030s), and S4 (RCP8.5/2080s). The areas where a variable is the largest driving factor 3 

identified by multi-model ensemble means is marked in the brackets. The areas where a variable is 4 

identified as the ‘dominant’ factor are bolded. A climate variable is identified as the ‘dominant’ one only 5 

when 80% or more of the 20 GCMs agree that it is the largest driving factor of runoff change.   6 

Scenario S1 S2 S3 S4 

       Precipitation 

R↗a 4 (10) 7 (17) 6 (15) 6 (21) 

R↘ 0.2 (0.2) 0  0.2 (0.2) 0 (0.7) 

       Temperature 

R↗ 9 (51) 15 (45) 7 (55) 13 (26) 

R↘ 15 (38) 23 (37) 14 (30) 28 (42) 

      Specific humidity 

R↗ 0 (0.2) 0 (2) 0 (0.2) 0.8 (5) 

R↘ 0 (0.2) 0 (0.4) 0 1 (5) 

a “↗” and “↘” indicate increase and decrease in the multi-model means of runoff, respectively. 7 
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Figures 1 

 2 

Figure 1. Location of the 18 Water Resource Regions (WRRs) in the conterminous United States 3 

(CONUS). 4 
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 1 

 2 

Figure 2. Validations of the WaSSI model at the conterminous United States (CONUS) and Water 3 

Resource Region (WRR) levels. a-b, Comparisons of simulated annual runoff (R) (mm yr-1) against 4 

USGS observed data in 1961-2010 over the entire CONUS (a) and in 18 WRRs (b). c-d, Comparisons 5 

of simulated runoff coefficient (runoff/precipitation, R/P) against that derived from USGS observed data 6 

in the CONUS (c) and WRRs (d). 7 
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 1 

Figure 3. Temporal variations of annual mean precipitation (a), surface air temperature (b), solar 2 

radiation at surface (c), wind speed near surface (d), and specific humidity near surface (e) over the 3 

CONUS. Thick lines and the shading denote the multi-model ensemble means and uncertainty ranges of 4 

the 20 GCMs, respectively. 5 
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 1 

Figure 4. Temporal variations of changes in annual potential evapotranspiration (PET) over the CONUS 2 

against the baseline level (1970-1999). Thick lines and the shading denote the ensemble means and 3 

uncertainty ranges of the 20 GCMs, respectively. 4 
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 1 

Figure 5. Projected changes in multi-year mean annual runoff (%) at HUC-8 watershed scale. a-d, 2 

Changes from the baseline to S1 (RCP4.5/2030s) (a), S2 (RCP4.5/2080s) (b), S3 (RCP8.5/2030s) (c), 3 

and S4 (RCP8.5/2080s) (d) scenarios. The maps display the multi-model mean changes from the 20 4 

GCMs. 5 
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 1 

Figure 6. Area-averaged changes in runoff in the 18 Water Resource Regions (WRRs) in the future 2 

scenarios. The four future scenarios are denoted by S1 (RCP4.5/2030s), S2 (RCP4.5/2080s), S3 3 

(RCP8.5/2030s), and S4 (RCP8.5/2080s) in the x-axis. The vertical spread of the box-whisker plots 4 

shows the different results projected from the 20 GCMs, with the boxes covering the ranges from 25% 5 

quartile to 75% quartile of the distributions (Inter-Quartile Range, IQR) and the red lines within each 6 

box marking the median values. Points outside the whiskers are taken as extreme outliers and marked by 7 

plus signs. 8 
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 1 
Figure 7. Independent effects of the climate variables over the conterminous United States (CONUS) in 2 

the future scenarios S1 (RCP4.5/2030s), S2 (RCP4.5/2080s), S3 (RCP8.5/2030s), and S4 3 

(RCP8.5/2080s). a-b, Effects of precipitation (P), temperature (T), solar radiation (Rs), wind speed (Ws), 4 

specific humidity (Sh), interactions among the variables (Int), and their sum (Total) on runoff based on 5 

the projections of Penman-Monteith PET. c, Effects of precipitation (P), temperature (T), interaction 6 

between P and T (Int), and their sum (Total) on runoff based on the projections of Hamon PET. The 7 

format of the box-whisker plots is the same as that in Figure 6. 8 

 9 

 10 
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 1 

Figure 8. Relative importance of P and T in affecting runoff change across the HUC-8 watersheds in the 2 

future scenarios of S1 (RCP4.5/2030s) (a), S2 (RCP4.5/2080s) (b), S3 (RCP8.5/2030s) (c), and S4 3 

(RCP8.5/2080s) (d). The watersheds under larger influence of P and T are marked with blue and red 4 

colors, respectively. The dark colors denote the areas where 80% or more of the 20 GCMs agree on the 5 

sign, while the light colors denote the results of ensemble average.  6 

 7 


