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2 

Abstract 1 

Satellite Rainfall Estimates (SRE) are prone to bias as they are indirect derivatives of the 2 

visible, infrared, and/or microwave cloud properties, hence SREs need correction. We evaluate 3 

the influence of elevation and distance from large scale open water bodies on bias for Climate 4 

Prediction Center-MORPHing (CMORPH) rainfall estimates in the Zambezi Basin. The 5 

effectiveness of five linear/non-linear and time-space variant/invariant bias correction schemes 6 

was evaluated for daily rainfall estimates and climatic seasonality. Schemes used are: Spatio-7 

temporal Bias (STB), Elevation zone bias (EZ), Power transform (PT), Distribution 8 

transformation (DT) and the Quantile mapping based on an empirical distribution (QME). We 9 

used daily time series (1998-2013) from 60 gauge stations and CMORPH SREs for the 10 

Zambezi Basin. To evaluate effectiveness of the bias correction techniques, spatial and 11 

temporal cross-validation was applied based on 8 stations and on the 1998-1999 CMORPH 12 

time series, respectively. For correction, STB and EZ schemes proved to be more effective in 13 

removing bias. STB improved the correlation coefficient and Nash Sutcliffe efficiency by 50 14 

% and 53 % respectively and reduced the root mean squared difference and relative bias by 25 15 

% and 33 % respectively. Paired t-tests showed that there is no significant difference (p < 0.05) 16 

in the daily means of CMORPH against gauge rainfall after bias correction. ANOVA post-hoc 17 

tests revealed that the STB and EZ bias correction schemes are preferable. Bias is highest for 18 

very light rainfall (< 2.5 mm d-1), for which most effective bias reduction is shown, in particular 19 

for the wet season. Similar findings are shown through quantile-quantile (q-q) plots. The spatial 20 

cross-validation approach revealed that the majority of the bias correction schemes removed 21 

bias by > 28 %. The temporal cross-validation approach showed effectiveness of the bias 22 

correction schemes. Taylor diagrams show that station elevation has an influence on CMORPH 23 

performance. Effects of distance >10 km from large scale open water bodies are minimum 24 

whereas the effect at shorter distances are indicated but not conclusive by lack of rain gauges. 25 

Findings of this study show the importance of applying bias correction to SREs. 26 

 27 
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 1 

1. Introduction 2 

Correction schemes for rainfall estimates are developed for climate models (Maraun, 2016; 3 

Grillakis et al., 2017; Switanek et al., 2017), for radar approaches (Cecinati et al., 2017;Yoo et 4 

al., 2014) and for satellite based, multi-sensor approaches (Najmaddin et al., 2017;Valdés-5 

Pineda et al., 2016). In this study focus is on satellite rainfall estimates (SREs) to improve 6 

reliability in spatio-temporal rainfall representation. 7 

Studies in satellite based rainfall estimation show that estimates are prone to systematic and 8 

random errors (Gebregiorgis et al., 2012;Habib et al., 2014;Shrestha, 2011; Tesfagiorgis et al., 9 

2011; Vernimmen et al., 2012;Woody et al., 2014). Errors result primarily from the indirect 10 

estimation of rainfall from visible (VIS), infrared (IR), and/or microwave (MW) based satellite 11 

remote sensing of cloud properties (Pereira Filho et al., 2010; Romano et al., 2017). Systematic 12 

errors in SREs commonly are referred to as bias, which is a measure that indicates the 13 

accumulated difference between rain gauge observations and SREs. Bias in SREs is expressed 14 

for rainfall depth (Habib et al., 2012b), rain rate (Haile et al., 2013) and frequency at which 15 

rain rates occur (Khan et al., 2014). Bias may be negative or positive where negative bias 16 

indicates underestimation whereas positive bias indicates overestimation (Liu, 2015; Moazami 17 

et al., 2013). 18 

Recent studies on the National Oceanic and Atmospheric Administration (NOAA) Climate 19 

Prediction Center-MORPHing (CMORPH) (Wehbe et al., 2017;Jiang et al., 2016; Liu et al., 20 

2015; Haile et al., 2015) reveal that accuracy of this satellite rainfall product varies across 21 

different regions (Gumindoga et al., 2019), but causes are not directly identifiable. As such 22 

correction schemes serve to reduce systematic errors and to improve applicability of SREs. 23 

Correction schemes rely on assumptions that adjust errors in space and/or time (Habib et al., 24 

2014). Some correction schemes consider correction only for spatial distributed patterns in 25 

bias, commonly known as space variant/invariant. Approaches that correct for spatially 26 

averaged bias have roots in radar rainfall estimation (Seo et al., 1999) but are unsuitable for 27 

large scale basins (> 5,000 km2) where rainfall may substantially vary in space (Habib et al., 28 

2014). Studies by Tefsagiorgis et al. (2011) in Oklahoma (USA) and Müller and Thompson 29 

(2013) in Nepal concluded that space variant correction schemes are more effective in reducing 30 

CMORPH and TRMM bias than space invariant correction schemes. In a study conducted in 31 

the Upper Blue Nile basin in Ethiopia, Bhatti et al. (2016) show that CMORPH bias correction 32 

is most effective when bias factors are calculated for 7-day sequential windows. 33 

Bias correction schemes based on regression techniques have reported distortion of frequency 34 

of rainfall rates (Ines and Hansen, 2006;Marcos et al., 2018). Multiplicative shift procedures 35 

tend to adjust SRE rainfall rates, but Ines and Hansen (2006) reported that they do not correct 36 

systematic errors in rainfall frequency of climate models. Non-multiplicative bias correction 37 

schemes preserve the timing of rainfall within a season (Fang et al., 2015;Hempel et al., 2013). 38 
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Studies that have applied non-linear bias correction schemes such as Power Function report 1 

correction of extreme values (depth, rate and frequency) thus mitigating the underestimation 2 

and overestimation of CMORPH rainfall (Vernimmen et al., 2012). The study by Tian (2010) 3 

in the United States noted that the Bayesian (likelihood) analysis techniques are found to over-4 

adjust both light and heavy CMORPH rainfall. 5 

Bias often exhibits a topographic and latitudinal dependency as, for instance, shown for 6 

CMORPH product in the Nile Basin (Bitew et al., 2011; Habib et al., 2012a; Haile et al., 2013). 7 

For Southern Africa, Thorne et al. (2001), Dinku et al. (2008) and Meyer et al. (2017) show that 8 

bias in rainfall rate and frequency can be related to location, topography, local climate and 9 

season. First studies in the Zambezi Basin (Southern Africa) on SREs show evidence that 10 

necessitates correction of SREs. For example, Cohen Liechti (2012) show bias in CMORPH 11 

SREs for daily rainfall and for accumulated rainfall at monthly scale. Matos et al. (2013), 12 

Thiemig et al. (2012) and Toté et al. (2015) show that bias in rainfall depth at time intervals 13 

ranging from daily to monthly varies across geographical domains in the Zambezi Basin and 14 

may be as large as ±50 %. Besides elevation, there are indications that presence of Lake Tana 15 

(≈ 3050 km2, Ethiopia) affects rainfall at short distances (< 10km) (Haile et al., 2009). 16 

For less developed areas such as in the Zambezi Basin that is selected for this study, studies on 17 

SREs are limited. This is despite the strategic importance of the basin in providing water to 18 

over 30 million people (World Bank, 2010a). An exception is the study by Beyer et al. (2014) 19 

on correction of the TRMM-3B42 product for agricultural purposes in the Upper Zambezi 20 

Basin. Studies (Cohen Liechti et al., 2012; Meier et al., 2011) on use of SREs in the Zambezi 21 

River Basin mainly focused on accuracy assessment of the SREs using standard statistical 22 

indicators with little or no effort to perform bias correction despite the evidence of errors in 23 

these products. The use of uncorrected SREs is reported for hydrological modelling in the Nile 24 

Basin (Bitew and Gebremichael, 2011) and Zambezi Basin (Cohen Liechti et al., 2012), 25 

respectively, and for drought monitoring in Mozambique (Toté et al., 2015). The poor 26 

performance of SREs in above studies urges for bias correction to result in more accurate 27 

rainfall representation. The selection of CMORPH satellite rainfall for this study is based on 28 

successful applications of bias corrected CMORPH estimates in African basins for 29 

hydrological modelling (Habib et al., 2014) and flood predictions in West Africa (Thiemig et 30 

al., 2013). In first publications on CMORPH, Joyce et al. (2004) describe CMORPH as a 31 

gridded precipitation product that estimates rainfall with information derived from IR data and 32 

MW data. CMORPH combines the retrieval accuracy of passive MW estimates with IR 33 

measurements which are available at high temporal resolution but with low accuracy. The 34 

important distinction between CMORPH and other merging methods is that the IR data are not 35 

used for rainfall estimation but used only to propagate rainfall features that have been derived 36 

from microwave data. The flexible ‘morphing’ technique is applied to modify the shape and 37 

rate of rainfall patterns. CMORPH is operational since 2002 for which data is available at the 38 

CPC of the National Centers for Environmental Prediction (NCEP) (after 39 
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http://www.ncep.noaa.gov/). Recent publications on CMORPH in African basins exist (Wehbe 1 

et al., 2017; Koutsouris et al., 2016; Jiang et al., 2016; Haile et al., 2015). However, studies on 2 

bias correction of CMORPH in the semi-arid Zambezi Basin are limited. 3 

In this study we use daily CMORPH and rain gauge data for Upper, Middle, and Lower 4 

Zambezi basins to (1) evaluate if performance of CMORPH rainfall is affected by elevation 5 

and distance from large scale open water bodies (2) evaluate the effectiveness of linear/non-6 

linear and time-space variant/invariant bias correction schemes and (3) assess the performance 7 

of bias correction schemes to represent different rainfall rates and climate seasonality. Analysis 8 

serve to improve reliability of SREs applications in water resource applications in the Zambezi 9 

basin such as for rainfall-runoff modeling. 10 

1. Study area 11 

The Zambezi River is the fourth-longest river (~2,574 km) in Africa with basin area of 12 

~1,390,000 km2 (~4 % of the African continent). The river drains into the Indian Ocean and 13 

has mean annual discharge of 4,134 m3/s (World Bank, 2010a). The river has its source in 14 

Zambia with basin boundaries in Angola, Namibia Botswana, Zambia, Zimbabwe and 15 

Mozambique (Figure 1). The basin is characterized by considerable differences in elevation 16 

and topography, distinct climatic seasons and presence of large-scale open water bodies and, 17 

as such, makes the basin well suited for this study. The basin is divided into three sub-basins 18 

i.e., the Lower Zambezi comprising the Tete, Lake Malawi/Shire, and Zambezi Delta basins, 19 

the Middle Zambezi comprising the Kariba, Mupata, Kafue, and Luangwa basins, and the 20 

Upper Zambezi comprising the Kabompo, Lungwebungo, Luanginga, Barotse, and 21 

Cuando/Chobe basins (Beilfuss, 2012). 22 

The elevation of the Zambezi basin ranges from < 200 m (for some parts of Mozambique) to 23 

>1500 m above sea level (for some parts of Zambia). Large scale open water bodies in and 24 

around the basin are Kariba, Cabora Bassa, Bangweulu, Chilwa and Nyasa. The Indian Ocean 25 

lies to the east of Mozambique. Typical landcover types are woodland, grassland, water 26 

surfaces and cropland (Beilfuss et al., 2000). The basin lies in the tropics between 10 and 20 27 

degrees South, encompassing humid, semi-arid and arid regions dominated by seasonal rainfall 28 

patterns associated with the Inter-Tropical Convergence Zone (ITCZ), a convective front 29 

oscillating along the equator (Cohen Liechti et al., 2012). The movement of the ITCZ in 30 

Southern hemisphere results in the peak rainy season that occurs during the summer (October 31 

to April) and the dry winter months (May-Sept) is a result of the shifting back of ITCZ towards 32 

the equator (Schlosser and Strzepek, 2015). The weather system in South Eastern parts such as 33 

Mozambique is dominated by Antarctic Polar Fronts (APF) and Tropical Temperate Troughs 34 

(TTTs) occurrence which is positively related to La Niña and Southern Hemisphere planetary 35 

waves, while El Niño-Southern Oscillation (ENSO) appears to play a significant role in causing 36 

dry conditions in the basin (Beilfuss, 2012). 37 

http://www.ncep.noaa.gov/
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 1 

Figure 1: Zambezi River Basin from Africa with sub basins, major lakes, elevation, and locations and names of the 60 rain 2 

gauging stations (in each respective elevation zone) used in this study. 3 

The basin is characterized by high annual rainfall (> 1 400 mm yr-1) in the northern and north-4 

eastern areas and by low annual rainfall (< 500 mm yr-1) in the southern and western parts 5 

(World Bank, 2010b). Due to this rainfall distribution, northern tributaries in the Upper 6 

Zambezi sub-basin contribute 60 % of the mean annual discharge (Tumbare, 2000). The river 7 

and its tributaries are subject to seasonal floods and droughts that have devastating effects on 8 

the people and economies of the region, especially the poorest members of the population 9 

(Tumbare, 2005). It is not uncommon to experience both floods and droughts within the same 10 

hydrological year. 11 

3.  Materials and Methodology 12 

3.1. Rainfall data 13 

3.1.1. CMORPH 14 

For this study, time series of CMORPH rainfall images (1998-2013)  at 8 km × 8 km, 30-minute 15 

resolution were selected and downloaded from the NOAA repository 16 

(ftp://ftp.cpc.ncep.noaa.gov/prep/CMORPH_V1.0/CRT/8km.30m/). Images are downloaded 17 

by means of the GeoNETCAST ISOD toolbox of ILWIS GIS software 18 

(http://52north.org/downloads/). Half hourly estimates were aggregated to daily totals to match 19 

the observation interval of gauge based daily rainfall. 20 

ftp://ftp.cpc.ncep.noaa.gov/prep/CMORPH_V1.0/CRT/8km.30m/
http://52north.org/downloads/
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3.1.2. Rain gauge network 1 

Time series of daily rainfall from 60 stations were obtained from meteorological departments 2 

in Botswana, Malawi, Mozambique, Zambia and Zimbabwe for stations that cover the study 3 

area. All the stations are standard type rain gauges with a measuring cylinder whose unit of 4 

measurement is millimetres (mm).   5 

Some stations are affected by data gaps but the available time series are of sufficiently long 6 

duration (see Appendix 1) to serve the objectives of this study. Stations are irregularly 7 

distributed across the vast basin and are located at elevation between 3 m to 1575 m (Figure 8 

1). The minimum, maximum and average distance between the rain gauges is 3.5 km (Zumbo 9 

in Mozambique-Kanyemba in Zimbabwe), 1570 km (Mwinilunga in Zambia-Marromeu in 10 

Mozambique) and 565 km respectively. Distances to large scale open water bodies range 11 

between 5 km and 615 km. This allows us to evaluate if elevation and distance to large scale 12 

open water bodies affect CMORPH performance. 13 

3.1.1. Comparison of CMORPH and gauge rainfall 14 

In this study, we compare gauge rainfall at point scale to CMORPH satellite derived rainfall 15 

estimates at pixel scale (point-to-pixel). Comparison is at a daily time interval covering the 16 

period 1998-2013, following Cohen Liechti et al. (2012), Dinku et al. (2008), Haile et al. 17 

(2014), Hughes (2006), Tsidu (2012) and Worqlul et al. (2014) who report on point-to-pixel 18 

comparisons in African basins. We apply point-to-pixel comparison to rule out any aspect of 19 

interpolation error as a consequence of the low-density network with unevenly distributed 20 

stations. We refer to Heidinger et al. (2012), Li and Heap (2011), Tobin and Bennett (2010) and 21 

Yin et al. (2008) who report that interpolation introduces unreliability and uncertainty to pixel-22 

based rainfall estimates. Also, Worqlul et al. (2014) describe that for pixel-to-pixel comparison, 23 

there is demand for a well distributed rain gauge network that would not hamper accurate 24 

interpolation. 25 

3.2. Elevation and distance from large scale open water bodies 26 

Habib et al. (2012a) and Haile et al. (2009) for the Nile Basin reveal that elevation affect 27 

performance of SREs. Findings in the latter two studies signal that performance possibly also 28 

may be affected by presence of Lake Tana. To assess both influences, we classified the Zambezi 29 

Basin into 3 elevation zones for which the hierarchical cluster ‘within-groups linkage’ method 30 

in the Statistical Product and Service Solutions (SPSS) software was used (Table 1). Based on 31 

Euclidian distance to large-scale open water bodies, 4 arbitrary distance zones are defined to 32 

group stations (Table 1). A detailed description on the individual stations, their elevation and 33 

distance to large-scale open water bodies is provided in Appendix 1. The Advanced Spaceborne 34 

Thermal Emission and Reflection Radiometer (ASTER) based DEM of 30 m resolution 35 

obtained from http://gdem.ersdac.jspacesystems.or.jp/, is used to represent elevation across the 36 

Zambezi Basin. The Euclidian distance of each rain gauge location to large-scale open water 37 

http://gdem.ersdac.jspacesystems.or.jp/
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bodies is defined in a GIS environment through the distance calculation algorithm. Large-scale 1 

open water bodies are defined as perennial open water bodies with surface area > 700 km2. The 2 

threshold is defined based on knowledge of the water bodies in the Zambezi basin study area 3 

and the detailed fieldwork the authors have conducted over the years in various other study 4 

areas in Africa (such as Lake Tana in Ethiopia and Lake Naivasha in Kenya). The relationship 5 

between lake surface area and CMORPH bias on 300 water bodies in the study area shows that 6 

at a threshold > 700 km2, a signal is induced to warrant the removal from the analysis of all 7 

water bodies with surface area < 700 km2. 8 

Table 1: Elevation and distance from large scale open water bodies 9 

Zone ID Elevation (m) No. of stations Mean elevation of stations (m) 

Zone 1 < 250 8 90 

Zone 2 250-950 21 510 

Zone 3 > 950 31 1140 

    

Zone ID Distance (km) No. of stations Mean distance to large-scale open water bodies (km) 

Zone 1 < 10 km 4 5 

Zone 2 10 - 50 10 35 

Zone 3 50 - 100 18 80 

Zone 4 > 100 28 275 

 10 

3.3. Bias correction schemes 11 

Bias correction schemes evaluated in this study are the Spatio-temporal bias (STB), Elevation 12 

zone bias (EZ), Power transform (PT), Distribution transformation (DT), and the Quantile 13 

mapping based on an empirical distribution (QME), this by our aim to correct for bias while 14 

daily rainfall variability is preserved. The five schemes are chosen based on merits documented 15 

in literature (Bhatti et al., 2016; Habib et al., 2014; Teutschbein and Seibert, 2013; Themeßl et 16 

al., 2012; Vernimmen et al., 2012). We note that findings on the performance of selected bias 17 

correction schemes in literature do not allow for generalization but findings only apply to the 18 

respective study domains (Wehbe et al., 2017; Jiang et al., 2016; Liu et al., 2015; Haile et al., 19 

2015). 20 

In the procedure to define a time window for bias correction we follow Habib et al. (2014) and 21 

Bhatti et al. (2016) who in the Lake Tana Basin (Ethiopia) carried out a sensitivity analysis on 22 

moving time windows and on sequential time windows. Window lengths between 3 and 31 23 

days are tested. Findings indicated that a 7-day sequential time window for bias factors is most 24 

appropriate but only when a minimum of five rainy days were recorded within the 7-day 25 

window with a minimum rainfall accumulation depth of 5 mm d-1, otherwise no bias is 26 

estimated (i.e. a value of 1 applies as bias correction factor). Preliminary tests in this study on 27 

5 and 7-day moving and sequential windows on 20 individual stations distributed over the three 28 
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elevation zones indicates that the 7-day sequential approach is well applicable in the Zambezi 1 

Basin. As such, the approach was selected. 2 

The bias correction factors are calculated using only rain days (rainfall ≥ 1 mm d-1). Otherwise 3 

in cases where both the gauge and satellite have zero values (Rain gauge (G)=0 and CMORPH 4 

(S) =0), correction is not applied and the SRE value remains 0 mm d-1. 5 

Following Bhatti et al. (2016), we spatially interpolate the bias correction factors of the rain 6 

gauges so that SREs at all pixels can be corrected. For interpolation, the Universal Kriging was 7 

applied. Thus, to systematically correct all CMORPH estimates, station based bias factors for 8 

each time window are spatially interpolated to arrive at spatial coverage across the study area 9 

and to allow for comparison with other approaches. 10 

3.3.1. Spatio-temporal bias correction (STB) 11 

This linear bias correction scheme has its origin in the correction of radar-based precipitation 12 

estimates (Tesfagiorgis et al., 2011) and downscaled precipitation products from climate 13 

models. The CMORPH daily rainfall estimates (S) are multiplied by the bias correction factor 14 

for the respective sequential time window for individual stations resulting in corrected 15 

CMORPH estimates (𝑆𝑇𝐵) in a temporally and spatially coherent manner (Equation [1]).  16 

 17 

  𝑆𝑇𝐵 =

( )

( )


=

=

=

=

l-dt

dt

l-dt

dt

ti,S

ti,G
S         [1] 18 

Where:   19 

G = gauged rainfall (mm d-1) 20 

i  =  gauge number 21 

d = day number 22 

t  = julian day number 23 

l  = length of a time window for bias correction 24 

 25 

The advantages of this bias correction scheme are that it is straightforward and easy to 26 

implement due to its simplicity and modest data requirements. However, just like any 27 

multiplicative shift procedures of bias correction, STB has challenges in correcting systematic 28 

errors in rainfall frequency particularly the wet-day frequencies (Lenderink et al., 2007; 29 

Teutschbein and Seibert, 2013). 30 

3.3.2. Elevation zone bias correction (EZ) 31 

This bias scheme is proposed in this study and aims at correcting satellite rainfall for elevation 32 

influences. This method groups rain gauge stations into 3 elevation zones based on station 33 

elevation. The grouping in this study is based on the hierarchical clustering technique, expert 34 
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knowledge about the study area but also guided by relevant past studies in the basin (e.g. World 1 

Bank, 2010b; Beilfuss, 2012). Each zone has the same bias correction factor but differs across 2 

the three zones. In the time domain bias factors vary following the 7-day sequential window 3 

approach. The corrected CMORPH estimates (EZ) at daily time interval are obtained by 4 

multiplying the uncorrected CMORPH daily rainfall estimates (S) by the daily bias correction 5 

factor of each elevation zone.  6 

 7 

EZ =
( )

( ) 

 
=

=

=

=

=

=

=

=

l-dt

dt

ni

1i

l-dt

dt

ni

1i

ti,S

ti,G
S         [2] 8 

 9 

The merit of this bias correction scheme is that the effects of elevation on rainfall depth are 10 

accounted for. SREs often have difficulties in capturing rainfall events due to orographic effects 11 

and thus require elevation-based correction. 12 

 13 

3.3.3. Power transform (PT) 14 

The non-linear PT bias correction scheme has its origin in studies of climate change impact 15 

(Lafon et al., 2013). Vernimmen et al. (2012) show that the scheme could be applied to correct 16 

satellite rainfall estimates for use in hydrological modelling and drought monitoring. The PT 17 

method uses an exponential form to adjust the standard deviation of rainfall series. The daily 18 

bias corrected CMORPH rainfall (PT) for a pixel that overlays a station is obtained using 19 

equation: 20 

𝑃𝑇  = aG(i,t) b          [3] 21 

Where: 22 

G = gauged rainfall (mm d-1) 23 

a = prefactor such that the mean of the transformed CMORPH values is equal to the 24 

mean of rain gauge rainfall 25 

b = factor calculated such that for each rain gauge the coefficient of variation (CV) of    26 

CMORPH matches the gauge based counter parts 27 

i  = gauge number 28 

t  = day number 29 

Optimized values for a and b are obtained through the generalized reduced gradient algorithm 30 

(Fylstra et al., 1998). Values for a and b vary for the 7-day sequential window since correction 31 

is at daily time base. In the case of utilizing the PT method in a certain area (or for a certain 32 

period), the bias correction factor is spatially interpolated to result in comparable estimates with 33 

other bias correction schemes. The advantage of the bias scheme is that it adjusts extreme 34 

precipitation values in CMORPH estimates (Vernimmen et al., 2012). PT has reported 35 
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limitations in correcting wet-day frequencies and intensities (Leander et al., 2008; Teutschbein 1 

and Seibert, 2013). 2 

 3 

3.3.4. Distribution transformation (DT) 4 

DT is an additive bias correction approach which has its origin in statistical downscaling of 5 

climate model data (Bouwer et al., 2004). The method transforms a statistical distribution 6 

function of daily CMORPH rainfall estimates to match the distribution by gauged rainfall. The 7 

procedure to match the CMORPH distribution function to gauge rainfall based counter parts is 8 

described in equations [4-8]. The principle to matching is that the difference in the mean value 9 

and differences in the variance are corrected for, in the 7-day sequential window. First, the bias 10 

correction factor for the mean is determined by equation [4]: 11 

𝐷𝑇𝑢 =
𝐺𝑢

𝑆𝑢
                     [4] 12 

𝐺𝑢 and S𝑢 are mean values of 7-day gauge and CMORPH rainfall estimates. 13 

 14 

Secondly, the correction factor for the variance (𝐷𝑇𝜏) is determined by the quotient of the 7-15 

day standard deviations, 𝐺𝜏 and S𝜏, for gauge and CMORPH respectively. 16 

 17 

𝐷𝑇𝜏 =
𝐺𝜏

S𝜏
           [5] 18 

Once the correction factors which vary within a 7-day time sequential window are established, 19 

they are then applied to correct all daily CMORPH estimates (S) through equation [6] to obtain 20 

corrected CMORPH rainfall estimate (DT). The parameters DTu and are developed within a 7-21 

day sequential window but correction is at daily time intervals. 22 

 23 

𝐷𝑇 = (𝑆(𝑖, 𝑡) − 𝑆𝑢)𝐷𝑇𝜏 + 𝐷𝑇𝑢 ∗ 𝑆𝜏      [6] 24 

 25 

Uncorrected CMORPH daily values are returned if [6] results in negative values. The merit of 26 

this bias correction scheme is that it corrects wet-day frequencies and intensities. The 27 

disadvantage of this bias correction scheme is that adding the gauge based mean deviation to 28 

the satellite data destroys the physical consistency of the data. In addition, the method might 29 

result in the generation of too few rain days in the wet season, and sometimes the mean of daily 30 

intensities might be unrealistically corrected (Johnson and Sharma, 2011; Teutschbein and 31 

Seibert, 2013). 32 

 33 

3.3.5. Quantile mapping based on an empirical distribution (QME) 34 
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This is a quantile based empirical-statistical error correction method with its origin in empirical 1 

transformation and bias correction of regional climate model-simulated precipitation (Themeßl 2 

et al., 2012). The method corrects CMORPH precipitation based on empirical cumulative 3 

distribution functions (ecdfs) which are established for each 7-day time window and for each 4 

station. The bias corrected rainfall (QME) using quantile mapping are expressed in terms of the 5 

empirical cumulative distribution function (ecdf) and its inverse (ecdf-1). Parameters apply to a 6 

7-day sequential window but correction is then at daily time interval with bias spatially 7 

averaged for the entire domain to allow for comparison with other approaches 8 

 9 

𝑄𝑀𝐸 =  𝑒𝑐𝑑𝑓𝑜𝑏𝑠
−1(𝑒𝑐𝑑𝑓𝑟𝑎𝑤(𝑆(𝑖, 𝑡)))          [7] 10 

Where: 11 

𝑒𝑐𝑑𝑓𝑜𝑏𝑠= empirical cumulative distribution function for the gauge-based observation 12 

𝑒𝑐𝑑𝑓𝑟𝑎𝑤 = empirical cumulative distribution function for the uncorrected CMORPH  13 

The advantage of this bias scheme is that it corrects quantiles and preserves the extreme 14 

precipitation values (Themeßl et al., 2012). However, it also has its limitation due to the 15 

assumption that both the observed and satellite rainfall follow the same proposed distribution, 16 

which may introduce potential new biases. 17 

3.4. Rainfall rates and seasons 18 

To assess the performance of SREs for different classes of daily rainfall rates five classes are 19 

defined which indicate: very light (< 2.5 mm d-1), light (2.5-5.0 mm d-1), moderate (5.0-10.0 20 

mm d-1), heavy (10.0-20.0 mm d-1) and very heavy rainfall (> 20.0 mm d-1). 21 

Furthermore, gauged rainfall was divided into wet and dry seasonal periods to assess the 22 

influence of seasonality on performance of bias correction schemes. The wet season in the 23 

Zambezi Basin spans from October-March whereas the dry season spans from April-24 

September. 25 

3.5. Evaluation of CMORPH estimates 26 

Corrected and uncorrected CMORPH satellite rainfall estimates are evaluated with reference 27 

to rain gauge rainfall using statistics that measure systematic differences (i.e. percentage bias 28 

and Mean Absolute Error (MAE)), measures of association (e.g. correlation coefficient and 29 

Nash Sutcliffe Efficiency (NSE) and random differences (e.g. standard deviation of differences 30 

and coefficient of variation) (Haile et al., 2013). Bias is a measure of how the satellite rainfall 31 

estimate deviates from the rain gauge rainfall, and the result is normalised by the summation 32 

of the gauge values. A positive value indicates overestimation whereas a negative value 33 

indicates underestimation. The correlation coefficient (ranging between +1 and −1) represents 34 

the linear dependence of gauge and CMORPH data. MAE is the arithmetic average of the 35 
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absolute values of the differences between the daily gauge and CMORPH satellite rainfall 1 

estimates. The MAE is zero if the rainfall estimates are perfect and increases as discrepancies 2 

between the gauge and satellite become larger. NSE indicates how well the satellite rainfall 3 

matches the rain gauge observation and it ranges between - ∞ and 1, with NSE = 1 meaning a 4 

perfect fit (Nash and Sutcliffe, 1970). 5 

Equations [8-11] apply. 6 

 7 

𝑏𝑖𝑎𝑠 (%) =  
∑(𝑆−𝐺)

∑𝐺
∗ 100         [8] 8 

 9 

𝑅              =
∑( 𝐺− 𝐺̅)(𝑆− 𝑆̅)

√∑(𝐺− 𝐺̅)2√∑(𝑆− 𝑆̅)2
       [9] 10 

 11 

𝑀𝐴𝐸        =
1

𝑛
∑|𝑆 − 𝐺|                   [10] 12 

 13 

𝑁𝑆𝐸          =
∑(𝐺−𝑆)2

∑(𝐺− 𝐺̅)2         [11] 14 

 15 

Where: 16 

S  = satellite rainfall estimates (mm d-1) 17 

𝑆̅  = mean of the satellite rainfall estimates (mm d-1) 18 

G  = rainfall by a rain gauge (mm d-1) 19 

𝐺̅  = mean values of rainfall recorded by a rain gauge (mm d-1) 20 

𝑛  = number of observations 21 

 22 

3.6. Test for differences of mean 23 

To detect significant differences between gauge and satellite rainfall (corrected and 24 

uncorrected) and differences amongst the five bias correction methods described in Section 25 

3.3, we apply paired t-test and analysis of variance (ANOVA) tests. 26 

3.6.1. Paired t-tests 27 

A paired t-test was used to test whether there is a significant difference between rain gauge, 28 

uncorrected and bias corrected CMORPH satellite rainfall for the 52 rain gauges. Results are 29 

summarized for the Upper, Lower and Middle Zambezi. The paired t-test compares the mean 30 

difference of the values to zero. It depends on the mean difference, the variability of the 31 

differences and the number of data. The null hypothesis (H0) is that there is no difference in 32 

mean gauge and satellite daily rainfall (uncorrected and bias corrected). If the p-value is less 33 

than or equal 0.05 (5%), the result is deemed statistically significant, i.e., there is a significant 34 

relationship between the gauge and satellite rainfall (Wilks, 2006; Field, 2009). 35 

3.6.2. Analysis of Variance (ANOVA) test 36 
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The ANOVA-test aims to test whether there is a significant difference amongst the 5 bias 1 

correction techniques. The Null hypothesis (H0) is that there are no differences amongst the 2 

five bias correction schemes. We further determined which schemes differ significantly using 3 

3 post-hoc tests, namely: Tukey HSD, Scheffe and the Bonferroni (Brown, 2005; Kucuk et al., 4 

2018). Results are summarized for the Upper, Lower and Middle Zambezi. 5 

3.7. Taylor diagram 6 

We apply a Taylor diagram to evaluate differences in data sets generated by respective bias 7 

correction schemes by providing a summary of how well bias correction results match gauge 8 

rainfall in terms of pattern, variability and magnitude of the variability. Visual comparison of 9 

SRE performance is done by analysing how well patterns match each other in terms of the 10 

Pearson’s product-moment correlation coefficient (R), root mean square difference (E), and the 11 

ratio of variances on a 2-D plot (Lo Conti et al., 2014; Taylor, 2001). The reason that each point 12 

in the two-dimensional space of the Taylor diagram can represent the above three different 13 

statistics simultaneously is that the centered pattern of root mean square difference (𝐸𝑖), and 14 

the ratio of variances are related by the following: 15 

𝐸𝑖 = √σ𝑓
2 + σ𝑟

2 − 2σ𝑓σ𝑟𝑅                   [12] 16 

 17 

Where: 18 

σf and σr = standard deviation of CMORPH and rain gauge rainfall, respectively.   19 

 20 

Development and applications of Taylor diagrams have roots in climate change studies 21 

(Smiatek et al., 2016; Taylor, 2001) but also has frequent applications in environmental model 22 

evaluation studies (Cuvelier et al., 2007; Dennis et al., 2010; Srivastava et al., 2015).  Bhatti et 23 

al. (2016) propose the use of Taylor Diagrams for assessing effectiveness of SREs bias 24 

correction schemes. The most effective bias correction schemes will have data that lie near a 25 

point marked ‘reference’ on the x-axis, relatively high correlation coefficient and low root mean 26 

square difference. Bias correction schemes matching gauged based standard deviation have 27 

patterns that have the right amplitude. 28 

3.8. Quantile-quantile (q-q) plots 29 

A q-q plot is used to check if two datasets (in this case gauge vs CMORPH rainfall) can fit the 30 

same distribution (Wilks, 2006). A q-q plot is a plot of the quantiles of the first data set against 31 

the quantiles of the second data set. A 45-degree reference line is also plotted. If the satellite 32 

rainfall (corrected and uncorrected) has the same distribution as the rain gauge, the points 33 

should fall approximately along this reference line. The greater the departure from this 34 

reference line, the greater the evidence for the conclusion that the bias correction scheme is 35 

less effective (NIST/SEMATECH, 2001). 36 
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The main advantage of the q-q plot is that many distributional aspects can be simultaneously 1 

tested. For example, changes in symmetry, and the presence of outliers can all be detected from 2 

this plot. 3 

3.9. Cross validation of bias correction 4 

3.9.1.  Spatial cross-validation 5 

The spatial cross-validation procedure (hold-out sample) applied in this study, involves the 6 

withdrawal of 8 in-situ stations from the sample of 60 when generating bias corrected SREs 7 

for all pixels across the study area. Corrected SREs are then compared to the rain gauge rainfall 8 

of the withdrawn stations to evaluate closeness of match. From the sample of 8 we selected 2 9 

stations in the < 250 m elevation zone, 3 stations in the 250-950 m zone and 3 stations in > 950 10 

m elevation zone. Stations selected have elevation close to the average elevation zone value 11 

and are centred in an elevation zone. This left us with 52 stations for applying the bias 12 

correction methods and spatial interpolation. As performance indicators to evaluate results of 13 

cross-validation, we use the percentage bias, MAE, Correlation Coefficient and the estimated 14 

ratio which is obtained by dividing CMORPH rainfall totals and gauge-based rainfall totals for 15 

the 1999-2013 period. 16 

3.9.2.  Temporal cross-validation 17 

For evaluation of SREs in the time domain we followed Gutjahr and Heinemann (2013) to omit 18 

rainfall (both from gauge and satellite) for the 1998-1999 hydrological year to remain with 14 19 

years for bias correction of SREs. Bias corrected estimates for the 14 years are then evaluated 20 

against estimates for 1998-1999 period that served as reference. For evaluation we use the 21 

percentage bias, MAE, correlation coefficient and the estimated ratio, that all are averaged for 22 

the Upper, Middle and Lower Zambezi but also for the wet and dry seasons. 23 

4. Results and Discussion 24 

4.1.  Performance of uncorrected CMORPH rainfall 25 

The spatially interpolated values of bias (%) across the Zambezi Basin are shown in Figure 2. 26 

Areas in the central and western part of the basin have bias relatively close to zero suggesting 27 

good performance of the uncorrected CMORPH product. However, relatively large negative 28 

bias values (-20 %) are shown in the Upper Zambezi‘s high elevated areas such as Kabompo 29 

and northern Barotse Basin, in the south-eastern part of the basin such as Shire River Basin and 30 

in in the Lower Zambezi’s downstream areas where the Zambezi River enters the Indian Ocean. 31 

CMORPH overestimates rainfall locally in Kariba, Luanginga, and Luangwa basins by positive 32 

bias values. As such CMORPH estimates do not consistently provide results that match rain 33 

gauge observations. Since CMORPH estimates have pronounced error (-10 > bias (%) > 10), 34 

bias needs to be removed before the product can be applied for hydrological analysis and in 35 

water resources applications. Figure 2 also shows contours for rain gauge mean annual 36 
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precipitation (MAP) in the Zambezi Basin with higher values in the northern parts of the basin 1 

(Kabompo and Luangwa) compared to localised estimates of MAP such as in Shire River and 2 

Kariba sub-basins. 3 

 4 

Figure 2: The spatial variation of bias (%) for gauge vs uncorrected CMORPH daily rainfall (1998-2013) for the Zambezi 5 
Basin. The gauge-based isohyets for Mean Annual Precipitation (MAP) are shown in blue. 6 

4.1. Effects of elevation and distance from large-scale open water bodies on CMORPH 7 

bias 8 

Figure 3 shows Taylor diagrams with a comparison of basin lumped estimates of daily 9 

uncorrected time series (1999–2013) of CMORPH and gauge-based rainfall for the 3 elevation 10 

zones (Figure 3a) and 4 distance zones from large-scale open water bodies (Figure 3b). Here 11 

CMORPH performance is indicated by means of the root mean square difference (E), 12 

correlation coefficient (R) and standard deviation. Figures 3a and 3b show that standard 13 

deviations in the elevation zones and the distance zones (except for the < 10 km distance zone) 14 

are lower than the reference/rain gauge standard deviation which is indicated by the black arc 15 

(value of 8.45 mm d-1). The stations in the high elevation zone (> 950 m) and long-distance 16 

zone (> 100 km) reveal lower variability than stations at lower elevation and shorter distance 17 

zones. With respect to the reference line, CMORPH estimates that are lumped for respective 18 

elevation zones and distance to a large water body do not match standard deviation of rain 19 

gauge-based counterparts. Figure 3a and 3b also show that CMORPH standard deviations that 20 

are close to gauge-based rainfall apply to lower elevation and shorter distance zones. Based on 21 
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the Taylor diagrams, the statistics (R and E) for uncorrected CMORPH show increasing 1 

performance for increasing elevation and increasing distance from large-scale water bodies. 2 

Specifically, stations in the lower elevation zones (< 250m) have lower R and higher E than the 3 

higher elevation zones (> 950 m). For shorter distance zones lower R and higher E is shown 4 

than for longer distance zones (> 100 km). These findings suggest that in general effects of 5 

distance to large scale water body are minimal except for distances <10 km.  6 

 7 

Figure 3a. Elevation zones                                                          8 

 9 

 10 
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 1 

Figure 3b. Distance zones                                                          2 

Figure 3. Time series of rain gauge (reference) vs CMORPH estimations, period 1999-2013, for elevation zones (Figure 

3a) and distance zones (Figure 3b) in the Zambezi Basin. The correlation coefficients for the radial line denote the 

relationship between CMORPH and gauge-based observations. Standard deviations on both the x and y axes show the 

amount of variance between the two-time series. The standard deviation of the CMORPH pattern is proportional to the 

radial distance from the origin. The angle between symbol and abscissa measures the correlation between CMORPH and 

rain gauge observations. The root mean square difference (red contours) between the CMORPH and rain gauge patterns is 

proportional to the distance to the point on the x-axis identified as "reference”. For details, see Taylor (2001). 

4.2. Evaluation of bias correction 3 

4.2.1. Standard statistics 4 

Figure 4 shows frequency-based statistics (mean and maximum) on accuracy of CMORPH 5 

rainfall estimates for each bias correction method. The ratio of cumulated estimates (1999-6 

2013) from rain gauge and CMORPH estimates for the Lower, Middle and Upper Zambezi 7 

sub-basins are shown. Results show that the bias of CMORPH moderately reduced for each of 8 

the five bias correction schemes. However, the effectiveness of the schemes varies spatially 9 
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with best performance in Lower and Upper Zambezi sub-basin and relatively poor performance 1 

in the Middle Zambezi sub-basin (see Figure 4). 2 

 3 

Figure 4: Frequency based statistics (mean, max and estimated ratio of gauged sum vs CMORPH sum for 1999-2013) of 4 

corrected CMORPH for Lower, Middle and Upper Zambezi Basin. 5 

Judging by the three performance indicators (mean, max and estimated ratio), results indicate 6 

that STB bias correction scheme is consistently effective in removing CMORPH rainfall bias 7 

in the Zambezi Basin. STB and PT effectively adjust for the mean of CMORPH rainfall 8 

estimates. Statistics in Figure 5 confirm these findings especially for the Upper Zambezi sub-9 

basin where the mean of corrected estimates improved by > 60 % from the mean of uncorrected 10 

estimates. In addition, PT in the Lower Zambezi, QME in both Middle and Upper Zambezi and 11 

STB in the Upper Zambezi were also effective (improvement by 16 %) in correcting for the 12 

highest values in the rainfall estimates. STB performs better than other bias schemes in 13 

reproducing rainfall for the Lower and Upper Zambezi sub-basin, where the ratio of gauge total 14 

to corrected CMORPH total is close to 1.0. 15 

Figure 5 shows the mean absolute error (MAE) and percentage bias (% bias) on the left axis 16 

and Nash Sutcliffe Efficiency (NSE) on the right axis as measures to evaluate performance of 17 

bias correction schemes in the Zambezi Basin. The effectiveness of the bias correction by all 18 

schemes varies over the different parts of the basin but is higher in the Lower and Upper 19 

Zambezi than in the Middle Zambezi. The STB, PT and EZ shows improved performance by 20 

exhibiting smaller MAEs compared to the uncorrected CMORPH (R-CMORPH). A greater 21 

improvement is shown for the Middle Zambezi where the uncorrected MAE of 1.89 mm d-1 is 22 

reduced to 0.86 mm d-1 after bias correction by the elevation zone bias correction scheme (EZ). 23 

The signal on improved performance for the Lower and Middle Zambezi as compared to the 24 

Upper Zambezi is also evident for the majority of the bias correction techniques. However, 25 

relatively large error remains in the MAE. 26 
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 1 

Figure 5: Percentage bias, Mean Absolute Error (left axis) and Nash Sutcliffe (NSE) (right axis) of corrected and uncorrected 2 

CMORPH (R-CMORPH) daily rainfall averaged for the Lower Zambezi, Middle Zambezi and Upper Zambezi for 1999-2013 3 

period. 4 

NSE for STB is larger than 0.8 for all three Zambezi sub-basins. This is followed by EZ with 5 

NSE larger than 0.7 for the three sub-basins.  The lowest NSE is for QME which is close to 6 

0.65 for all three sub-basins. Best results for reducing bias (% bias) are obtained by EZ in the 7 

Lower Zambezi (% bias of 0.7 % ~ absolute bias of 0.10 mm d-1) and Upper Zambezi (0.22 % 8 

~0.23 mm d-1), PT in the Lower and Middle Zambezi (-0.84 % ~0.18 mm d-1) and STB in all 9 

the basins (< 3.70 % ~0.24 mm d-1). Gao and Liu (2013) over the Tibetan Plateau asserts that 10 

EZ is valuable in correcting systematic biases to provide a more accurate precipitation input 11 

for rainfall-runoff modelling. Significant underestimation for the uncorrected (-21.16 % ~0.44 12 

mm d-1) and for bias corrected CMORPH are shown for the Upper Zambezi sub-basin. 13 

4.2.2. Significance testing 14 

Table 2 shows results of statistical tests to assess whether there is a significant difference (p< 15 

0.05) between rain gauge vs uncorrected and bias corrected CMORPH satellite rainfall for each 16 

of the 52 rain gauge stations. Results are summarised for the Upper, Middle and Lower 17 

Zambezi and in the Zambezi basin. The null hypothesis is rejected for PT (Lower Zambezi), 18 

DT (Upper Zambezi) and QME (all the 3 sub-basins) since p < 0.05. This means that 19 

statistically the above-mentioned bias correction schemes results deviate from the gauge. The 20 

null hypothesis is accepted for STB and EZ (all three sub-basins), DT (Lower and Upper 21 

Zambezi) and PT (Middle and Upper Zambezi), since p >0.05 showing the effectiveness of 22 



21 

these bias correction schemes. Compared to uncorrected satellite rainfall (R-MORPH), results 1 

also reveal that the bias corrected satellite rainfall is closer to the gauge-based rainfall. 2 

Table 2: Paired t-tests for the Upper, Middle and Lower Zambezi. The mean difference is significant at the 0.05 level. Bold 3 

shows significant values. 4 

Basin Rainfall Estimate t-value Mean Std. Error p-value (0.05) 

Lower Zambezi 

R-CMORPH 8.95 0.04 0.04 

DT 39.86 0.09 0.35 

PT 21.08 0.04 0.03 

QME 23.99 0.04 0.04 

EZ 36.43 0.03 0.27 

STB 14.7 0.04 0.46 

Middle 

Zambezi 

R-CMORPH 3.27 0.03 0.001 

DT 41.9 0.07 0.24 

PT 26.02 0.03 0.14 

QME 18.38 0.03 0.00 

EZ 26.60 0.02 0.07 

STB 23.6 0.03 0.09 

Upper Zambezi 

R-CMORPH 4.28 0.08 0.00 

DT 22.63 0.14 0.01 

PT 12.98 0.07 0.05 

QME 13.27 0.07 0.00 

EZ 13.73 0.07 0.14 

STB 13.62 0.07 0.08 

  5 

4.2.3. Analysis of variance (ANOVA test) 6 

The ANOVA test is similar to a t-test except that the test was used to compare mean values 7 

from three or more data samples. Results of ANOVA shows that there is a significant (p < 0.05) 8 

difference in the mean values of the 5 bias correction results across the three sub-basins. This 9 

warranted the running of a post-hoc test to determine which schemes differ significantly. The 10 

contingency matrix in Table 3 shows results of the post-hoc test results summarized for the 11 

Tukey HSD, Scheffe and the Bonferroni methods but also for the Upper, Lower and Middle 12 

Zambezi. Table 3 also show that STB, PT and EZ are significantly different from the 13 

distribution transformation technique (DT) for the three sub-basins. STB, the best performing 14 

bias correction scheme identified using majority of the indicators, is also significantly different 15 
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from QME and EZ. QME which has poorly performed is significantly different from EZ. 1 

Results are important for further application of the bias correction schemes for studies such as 2 

flood, drought and water resources modelling. 3 

Table 3: ANOVA post-hoc tests for the results of the five bias correction schemes (p<0.05). The checklist table gives an 4 

indication (symbol) where two bias correction scheme’s results are significantly different from each other. Where there is no 5 

symbol, it means that the schemes’ results are not significantly different. The different symbols represent the Upper, Middle 6 

and Lower Zambezi basins. 7 

  8 

4.2.4. Taylor Diagrams 9 

Figure 6 shows the Taylor diagram for time series of rain gauge (reference) observations vs 10 

CMORPH bias correction schemes averaged for the Lower Zambezi (UZ), Middle Zambezi 11 

(MZ) and Upper Zambezi (UZ). Absolute values used to develop the Taylor diagram are shown 12 

in Appendix 2. The position of each bias correction scheme and uncorrected satellite rainfall 13 

(R-MORPH) on Figure 6 shows how closely the rainfall by uncorrected CMORPH (R-14 

MORPH) matches rain gauge observations as well as effectiveness of each of the bias schemes. 15 

Overall, all bias correction schemes show intermediate performance in terms of bias removal. 16 

Only the PT and STB for the Lower Zambezi sub-basin lie on the line of standard deviation 17 

(brown dashed arc) and means the standard deviation of the data for the two bias correction 18 

schemes match the gauge observations. This also indicates that rainfall variations after PT and 19 

STB bias correction for the Lower Zambezi resembles gauge based standard deviation. Note 20 

however that STB performs better than EZ as shown by the superior correlation coefficient. 21 

Compared against the reference line of mean standard deviation (8.5 mm d-1), the rainfall 22 

standard deviation for most bias correction schemes is below this line and as such exhibit low 23 

variability across the Zambezi Basin. 24 

Figure 6 also shows that most of the bias correction schemes have standard deviation range of 25 

6.0 to 8.0 mm d-1. There is a consistent pattern between the bias correction schemes that have 26 

low R and high RMSE difference indicating that these schemes are not effective in bias 27 

removal. Overall, the best performing bias correction schemes (STB and EZ) have R > 0.6, 28 

standard deviation relatively close to the reference point and RMSE < 7 mm d-1. The 29 

uncorrected CMORPH (R-MORPH) lies far away from the marked reference (gauge) point on 30 
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the x-axis suggesting an intermediate overall effectiveness of the bias correction schemes such 1 

as STB, EZ, DT and PT in removing error as they are relatively closer to the marked reference 2 

point. 3 

 4 

Figure 6: Taylor’s diagram on Rain gauge (reference) observations and CMORPH bias corrected estimates (all 5 schemes) as 5 

averaged for the Lower Zambezi (LZ), Middle Zambezi (MZ), and Upper Zambezi (UZ) for the period 1999-2013. The 6 

distance of the symbol from point (1, 0) is also a relative measure of the bias correction scheme performance. The position of 7 

each symbol appearing on the plot quantifies how closely precipitation estimates by respective bias correction scheme’s 8 

matches counterparts by rain gauge. The dashed blue lines indicate the root mean square difference (mm d-1). 9 

The least performing bias correction scheme is QME with relatively large RSMD (> 8 mm d-10 

1) and with low R (< 0.49) and standard deviation (< 6.5 mm d-1). Inherent to the methodology 11 

of most of bias correction schemes (e.g. QME) is that the spatial pattern of the SRE does not 12 

change and therefore R for a specific station for daily precipitation does not necessarily 13 

improve. The bias correction results by the Taylor Diagram in Figure 6 corroborates with 14 
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findings shown in Figure 4 and Figure 5 for mean, max, ratio of rainfall totals and bias as 1 

performance indicators. 2 

4.2.5. q-q plots 3 

Figure 7 shows q-q plots for the Upper, Middle and Lower Zambezi for gauge rainfall against 4 

uncorrected and bias corrected CMORPH rainfall. Results show that STB’s q-q plots for bias 5 

corrected CMORPH across the 3 basins has majority of points that fall approximately along 6 

the 45-degree reference line. This means that the STB bias corrected satellite rainfall has closer 7 

distribution to the rain gauge as compared to the uncorrected CMORPH counterparts 8 

suggesting effectiveness of the bias correction scheme. Other bias correction schemes such as 9 

QME, EZ and PT have data points showing a greater departure from the 45-degree reference 10 

line so performance is less effective. 11 

In some instances, in both the Upper, Middle and Lower Zambezi, bias corrected values are 12 

significantly higher than the corresponding gauge values whereas in some instances there is 13 

serious underestimation. All q-q plots also show that for all bias correction schemes, the 14 

differences between gauge and satellite rainfall are smallest for low rainfall rates (< 2.5 mm d-15 

1) and increasing for very heavy rainfall (> 20.0 mm d-1). In more detail, all the bias correction 16 

schemes show a larger difference for the transition area from low to heavy rainfall. QME and 17 

PT are not in good agreement with the rest of the bias correction schemes for higher rainfall 18 

estimates (40 and 60 mm d-1). 19 

 20 

Figure 7: q-q plot for gauge vs satellite rainfall (uncorrected and bias corrected) for the Upper (top panes), Middle 21 

(middle panes) and Lower (bottom panes) Zambezi. 22 
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4.2.6. CMORPH rainy days 1 

Occurrence (%) of rainfall rates in the Zambezi Basin for each bias correction scheme is shown 2 

in Figure 8. The highest percentage (80-90 %) is shown for very light rainfall (0.0-2.5 mm d-3 

1). A smaller percentage is shown for 2.5-5.0 mm d-1 which is the light rainfall class. Smallest 4 

percentage (< 5 %) is shown for very heavy rainfall (> 20 mm d-1). The CMORPH rainfall 5 

corrected with STB, PT and DT matches the gauge-based rainfall (%) in the Lower, Middle 6 

and Upper Zambezi suggesting good performance. All five bias correction schemes in the 7 

Zambezi Basin generally tend to overestimate very light rainfall (< 2.5 mm d-1). There is a 8 

small difference for moderate rainy days classification of 10.0-20.0 mm d-1. For QME in the 9 

Middle and Upper Zambezi, there is overestimation by > 80 %. There is underestimation of 10 

rainfall greater than 20 mm d-1. 11 

 12 

 13 

 14 

Figure 8: Percentage occurrence for rainfall rate classes 15 

 16 

Figure 9 gives the bias correction performance for the different rainy-day classes. Results of 17 

bias removal varies for the Lower, Middle and Upper Zambezi. Comparatively, the STB and 18 

EZ show effectiveness in bias removal with an average bias correction of 0.97 % and 3.6 % in 19 

the whole basin respectively. Results show more effectiveness in reducing the percentage bias 20 

for light (2.5-5.0 mm d-1) and moderate (5.0-10.0 mm d-1) rainfall compared to the heavy (10.0-21 

20.0 mm d-1) and very heavy (> 20.0 mm d-1) rainfall across the whole basin.   22 
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 1 

2 

Figure 9: Bias correction (%) for respective rainfall rate (mm d-1) classes  3 

4.4. Spatial cross-validation 4 

Table 4 shows the cross-validation results on bias correction for 8 rain gauge stations in the 5 

wet and dry seasons. It is evident that CMORPH has a considerable bias, although this bias is 6 

not always consistent for all 8 validation stations. Overall, Mutarara station has the highest 7 

positive bias (overestimation) whereas Makhanga has the highest negative bias 8 

(underestimation) for uncorrected CMORPH. Bias is effectively being removed by the STB 9 

followed by the EZ bias correction schemes. Bias is more effectively removed for the wet 10 

season than for the dry season. For the dry season, the STB shows good performance for 11 

Mkhanga and Nchalo stations, whereas good performance is shown for Kabompo and Chichiri 12 

stations. However, the MAE is higher for the wet season than for the dry season. Correlation 13 

coefficient for bias corrected satellite rainfall is higher for the wet season than for the dry 14 

season. 15 

Table 4: Cross validation results for the bias correction procedure with 8 gauging stations for the dry and wet season. Stations 16 

lie at average elevation zone and sort of centred in an elevation zone. R-CMORPH is the uncorrected R-CMOPRPH estimate. 17 

DT, PT, QME, EZ and STB are the bias corrected rainfall estimate. Bold values indicate best performance.                                            18 

* = zone 1: elevation of < 250 m, ** = zone 2: elevation range of 250 - 950 m and *** = zone 3: elevation > 950 m 19 

    Dry Season (April-Sept)  Wet Season (Oct-March)  
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Station Rainfall 

Estimate 
Bias 

(%) 
MAE 

mm d-1 Correlation Estimated 

Ratio Bias (%) MAE 

(mm d-1) Correlation 

Makhanga* 

R-CMORPH -28.69 1.23 0.42 0.87 -21.17 8.63 0.43 

DT -1.37 0.53 0.56 0.99 -1.66 3.96 0.65 

PT -5.62 0.52 0.54 0.95 -3.5 4.67 0.64 

QME 1.98 0.54 0.54 0.95 -0.64 4.86 0.65 

EZ 2.10 0.47 0.55 1.03 -0.11 4.08 0.58 

STB 0.77 0.61 0.56 1.04 0.5 5.06 0.62 

Nchalo* 

R-CMORPH -33.05 1.13 0.42 0.84 -25.18 8.05 0.38 

DT -0.23 0.73 0.56 0.96 -2.61 3.65 0.50 

PT -4.28 0.68 0.54 0.93 -6.48 5.05 0.59 

QME 1.90 0.72 0.53 0.81 -0.56 5.29 0.53 

EZ 0.35 0.63 0.54 0.99 0.22 4.4 0.60 

STB -0.43 0.73 0.58 0.96 -1.23 5.54 0.61 

Rukomichi** 

R-CMORPH -23.05 0.93 0.42 0.86 -21.18 6.69 0.31 

DT -0.23 0.90 0.56 0.94 -6.2 3.51 0.60 

PT -4.28 0.73 0.54 0.93 -2.48 3.62 0.59 

QME 1.90 0.75 0.53 1.03 -0.56 3.88 0.54 

EZ 0.35 0.71 0.54 0.99 0.22 3.5 0.60 

STB -0.43 0.76 0.58 0.94 -1.26 3.33 0.61 

Mutarara** 

R-CMORPH 20.15 0.24 0.49 1.10 20.1 2.34 0.50 

DT 11.4 0.18 0.60 1.03 8.7 1.23 0.63 

PT 8.4 0.12 0.55 0.91 4.3 1.28 0.68 

QME 5.7 0.14 0.63 1.1 8.1 1.4 0.65 

EZ -12.8 0.09 0.54 0.95 1.9 1.23 0.69 

STB 4.5 0.14 0.53 1.1 2.1 1.33 0.73 

Mfuwe** 

R-CMORPH 40.2 0.28 0.45 0.85 35.4 6.4 0.48 

DT 2.9 0.62 0.53 0.96 4.6 3.9 0.62 

PT 3.7 0.22 0.55 0.92 7.9 5.25 0.65 

QME 3.9 0.30 0.55 0.93 5.4 5.68 0.64 

EZ 6.1 0.24 0.54 0.92 3.8 5.18 0.56 

STB 5.4 0.26 0.65 0.93 1.2 4.66 0.65 

Kabombo*** 
R-CMORPH 25.3 0.70 0.44 0.95 24.3 3.8 0.48 

DT 7.7 0.32 0.51 0.96 5.7 3.5 0.62 
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PT 9.2 0.13 0.54 1.10 8.7 3.0 0.64 

QME 2.7 0.32 0.62 1.10 2.8 3.2 0.63 

EZ 5.6 0.22 0.53 0.91 3.3 2.7 0.54 

STB 19 0.13 0.62 1.01 9.3 2.7 0.64 

Chichiri*** 

R-CMORPH 34.5 1.56 0.47 0.8 -37.3 4.7 0.45 

DT 12.2 0.60 0.51 0.85 5.5 3.2 0.51 

PT 9.4 0.42 0.52 1.04 -7.8 4.1 0.54 

QME 8.4 0.92 0.56 1.05 -13.0 4.1 0.64 

EZ -13 0.61 0.60 0.94 -9.9 4.2 0.60 

STB 3.2 0.45 0.63 0.98 -14.3 2.1 0.65 

Chitedze*** 

R-CMORPH 41.5 0.90 0.47 1.06 42.3 5.4 0.48 

DT 16.7 0.53 0.54 0.98 -13.2 3.3 0.62 

PT -16.5 0.44 0.55 0.99 22.2 4.5 0.65 

QME 18.2 0.41 0.57 1.04 18.5 4.3 0.64 

EZ 11.7 0.32 0.57 1.02 8.4 4.6 0.55 

STB 3.9 0.23 0.60 0.03 -8.2 3.7 0.65 

 1 

4.5. Temporal cross-validation   2 

The same performance indicators in spatial cross-validation are calculated for the temporal 3 

cross-validation. Results are presented in Table 5. The MAE is higher for the wet season than 4 

for the dry season. The difference in effectiveness in the error removal between the dry and wet 5 

season is much larger. STB outperforms both bias correction methods but does also have 6 

problems correcting the estimated ratios. After the correction, the correlation coefficient is 7 

much improved. The fact that MAE remains relatively large indicates that errors remain locally 8 

large. These values are almost in same range to performance indicators obtained from the main 9 

performance assessment period (1999-2013). The estimated ratio shows improvement for the 10 

Middle Zambezi compared to the Lower and Upper Zambezi.  11 

Table 5: Temporal-cross validation results for the period 1998-1999 for the wet and dry season 12 

    Dry Season (April-Sept)  Wet Season (Oct-March)  

 
Rainfall 

Estimate 
Bias 

(%) 
MAE 

(mm d-1) Correlation Estimated 

Ratio 
Bias 

(%) 
MAE 

(mm d-1) Correlation 

Lower 

Zambezi 

R-CMORPH -28.26 1.10 0.42 0.86 -22.51 7.79 0.37 

DT -0.61 0.72 0.56 0.96 -3.49 3.71 0.58 
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PT -4.73 0.64 0.54 0.94 -4.15 4.45 0.61 

QME 1.93 0.67 0.53 0.93 -0.59 4.68 0.57 

EZ 0.93 0.60 0.54 1.00 0.11 3.99 0.59 

STB -0.03 0.70 0.57 0.98 -0.66 4.64 0.61 

Middle 

Zambezi 

R-CMORPH 28.55 0.41 0.46 0.97 26.60 4.18 0.49 

DT 7.33 0.37 0.55 0.98 6.33 2.88 0.62 

PT 7.10 0.16 0.55 0.98 6.97 3.18 0.66 

QME 4.10 0.25 0.60 1.04 5.43 3.43 0.64 

EZ -0.37 0.18 0.54 0.93 3.00 3.04 0.60 

STB 9.63 0.18 0.60 1.01 4.20 2.90 0.67 

Upper 

Zambezi 

R-CMORPH 38 1.23 0.47 0.93 2.5 5.05 0.465 

DT 14.45 0.565 0.525 0.915 -3.85 3.25 0.565 

PT -3.55 0.43 0.535 1.015 7.2 4.3 0.595 

QME 13.3 0.665 0.565 1.045 2.75 4.2 0.64 

EZ -0.65 0.465 0.585 0.98 -0.75 4.4 0.575 

STB 3.55 0.34 0.615 0.505 -11.25 2.9 0.65 

 1 

5. Discussion 2 

We present methods to assess the performance of bias correction schemes for CMORPH 3 

rainfall estimates in the Zambezi River Basin. For correction we applied sequential windows 4 

of 7 days that count 5 rainy days with rainfall threshold of 5 mm d-1. First, we aimed to evaluate 5 

if performance of CMORPH rainfall is affected by elevation and distance from large scale open 6 

water bodies. Results in Taylor diagrams show that effects of distances > 10 km are minimal 7 

in this study. For distance < 10 km, results in the same Taylor diagrams shows some effect with 8 

increased CMORPH estimation errors although not clearly identifiable by the limited number 9 

of gauging stations at distance < 10 km. The low number of gauge stations constrains clear 10 

identification of bias as effected by the short distance. The low number of stations also 11 

constrains detailed analysis on dependencies of observation time series. To assess bias effects 12 

at distances < 10 km we advocate installation of a well-designed network of rain gauges with 13 

stations located at preselected locations that would allow sound geostatistical analysis on small 14 

scale rainfall variability and spatial correlation analysis. We refer to (Ciach and Krajewski, 15 

2006) who present such analysis for a dense experimental network of 53 stations. The inter-16 

station distance of the rain gauges in this study is too large to capture the effect of distance to 17 

large scale open water bodies on CMORPH rainfall error. For instance, such distance exceeds 18 

350 km for most of Upper Zambezi Basin. Findings in this study show that effects of distance 19 
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would be captured at distances 10-25 km or shorter. Haile et al. (2009) indicates bias effects at 1 

short distances (<10 km) for the Lake Tana, Ethiopia.   2 

The rainfall-elevation bias correction also shows minimal signal. Contrary to this finding, 3 

Romilly and Gebremichael (2011) showed that the accuracy of CMORPH at monthly time base 4 

is related to elevation for six river basins in Ethiopia. A similar finding was reported by Haile 5 

et al. (2009), Katiraie-Boroujerdy et al., (2013) and Wu and Zhai (2012) who found that 6 

performance of CMORPH is affected by elevation. However, Vernimmen et al. (2012) 7 

concluded that TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42RT performance 8 

was not affected by elevation (R2 = 0.0001) for Jakarta, Bogor, Bandung, Java, Kalimantan and 9 

Sumatra regions (Indonesia). The study by Gao and Liu (2013) showed that the bias in 10 

CMORPH rainfall over the Tibetan Plateau is affected by elevation. Whilst distance from large 11 

scale open water bodies and elevation have been assessed separately for this study, Habib et al. 12 

(2012a) revealed that both aspects interact in the Nile Basin to produce unique circulation 13 

patterns to affect the performance of SRE. 14 

 15 

Secondly, we evaluate the effectiveness of linear/non-linear and time-space variant/invariant 16 

bias correction schemes. The bias correction results by means of performance indicators such 17 

as Taylor Diagrams, q-q plots, ANOVA and standard statistics such as mean, max, ratio of 18 

rainfall totals and bias reveal that the STB is the best bias correction method. This method by 19 

its nature, consider correction only for spatial distributed patterns in bias, commonly known as 20 

space variant/invariant and thus forces the estimates to behave as observations. We did not 21 

investigate effects of the applied sequential windows of 7 days for each bias correction scheme 22 

separately but note that other window lengths possibly could yield more favourable results for 23 

bias schemes such as PT, DT and QME that commonly rely on larger sample sizes. As alluded 24 

to by Habib (2013), correction should improve hydrological applications by improved rainfall 25 

representation. This applies to Zambezi basin as well with demands for applications of the 26 

product such as for drought analysis, flood prediction, weather forecasting and rainfall-runoff 27 

modelling. The study is unique as we assess the importance of space and time aspects of 28 

CMORPH bias for rainfall-runoff modeling in a data scarce catchment. Findings in this study 29 

on cross and temporal validation contribute to efforts that aim towards enhancing applications 30 

of satellite rainfall products. The study site is the Zambezi Basin, an example of many world 31 

regions that can benefit from satellite-based rainfall products for resource assessments and 32 

monitoring. 33 

Thirdly, an assessment of the performance of bias correction schemes to represent different 34 

rainfall rates and climate seasonality is presented. Our findings show that bias is most 35 

overestimated for the very light rainfall (< 2.5 mm d-1), which is also the range that shows the 36 

best bias reduction, which in turn is most effective during the wet season. Results also show 37 

that there is underestimation of rainfall larger than 20 mm d-1. The poor performance of 38 

correction for the heavy rainfall class is caused by, sometimes, large mismatch of high rain 39 
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gauge values versus low CMORPH values. This leads to unrealistically high CMORPH values 1 

which remain poorly corrected by bias schemes. Results are consistent with findings by Gao 2 

and Liu (2013) in the Tibetan Plateau who found consistent under and overestimation of 3 

occurrence by CMORPH for rainfall rates >10 mm d-1. A study by Zulkafli et al. (2014) in 4 

French Guiana and North Brazil noted that the low sampling frequency and consequently 5 

missed short-duration precipitation events between satellite measurements results in 6 

underestimation, particularly for rainfall > 20 mm d-1. 7 

Lastly, spatial and temporal cross validation reveal effectiveness of bias correction schemes. 8 

The hold-out sample of 8 stations in this work showed the applicability of different bias 9 

correction methods under different geographical domains. There is improved performance of 10 

satellite rainfall for the wet season than for the dry season based on correlation coefficient and 11 

MAE. The study by Ines and Hansen (2006) for semi-arid eastern Kenya showed that 12 

multiplicative bias correction schemes such as STB were effective in correcting the total of the 13 

daily rainfall grouped into seasons. Our results show that effectiveness in bias removal in the 14 

wet season is higher than in the dry season. This is contrary to Vernimmen et al. (2012) who 15 

showed that for the dry season, bias for PT decreased in Jakarta, Bogor, Bandung, East Java 16 

and Lampung regions after bias correction of monthly TMPA 3B42RT precipitation estimates 17 

over the period 2003–2008. Habib (2014) evaluated sensitivity of STB for the dry and wet 18 

season and concluded that the bias correction factor for CMOPRH shows lower sensitivity for 19 

the wet season as compared to the dry season. Our findings also reveal that bias factors for all 20 

the schemes are more variable in the dry season than in the wet season and lead to poor 21 

performance of the bias correction schemes in the dry season. 22 

6. Conclusions 23 

In this study four conclusions are drawn: 24 

1. Analysis on gauge and CMORPH rainfall estimates shows that performance increases for 25 

higher elevation (> 950 m) in the Zambezi Basin and that CMORPH has largest mismatch 26 

at low elevation. Such analysis was established for rain gauges within elevation classes of 27 

< 250 m, 250 - 950 m and > 950 m. The match between gauge and CMORPH estimates 28 

improved at increasing distance to large-scale open water bodies. This was established for 29 

rain gauges located within specified distances of 10 -50 km, 50 -100 km and > 100 km to 30 

a large-scale open water body. For distances < 10 km errors by CMORPH increased but the 31 

small sample size of stations and the weak signal require further study. To assess how bias 32 

is affected at short distance to a large-scale water body, a specifically designed and dense 33 

gauging network is s are advocated (see Ciach and Krajewski, 2006) that allow evaluation 34 

of small-scale rainfall variability. A detailed analysis on small spatial variability and spatial 35 

correlation analysis of rain gauged observations presumably is prerequisite before satellite 36 

rainfall effects at short distance to a large-scale water body can be assessed.     37 
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2. For each of the five bias correction methods applied, accuracy of the CMORPH satellite 1 

rainfall estimates improved. Assessment through standard statistics, Taylor Diagrams, t-2 

tests, ANOVA and q-q plots shows that STB that accounts for space and time variation of 3 

bias, is found more effective in reducing rainfall bias in the basin than the rest of the bias 4 

correction schemes. This indicates that the temporal aspect of CMORPH bias is more 5 

important than the spatial aspect in the Zambezi Basin. Quantile-quantile (q-q) plots for all 6 

the bias correction schemes in general show that bias corrected rainfall is in good agreement 7 

with gauge-based rainfall for low rainfall rates but that high rainfall rates are largely 8 

overestimated. 9 

3. Differences in the mechanisms that drive precipitation throughout the year could result in 10 

different biases for each of the seasons, which motivated us to calculate the bias correction 11 

factors for dry and wet seasons separately. As such CMORPH rainfall time series were 12 

divided to assess the influence of seasonality on performance of bias correction schemes. 13 

Overall, the bias correction schemes reveal that bias removal is more effective in the wet 14 

season than in the dry season. 15 

4. We assessed whether bias correction varies for different rainfall rates of daily rainfall in the 16 

Zambezi Basin. There is overestimation of very light rainfall (< 2.5 mm d-1) and 17 

underestimation of very heavy rainfall (>20 mm d-1) after application of the bias correction 18 

schemes. Bias was more effectively reduced for the very light (< 2.5 mm d-1), to moderate 19 

(5.0-10.0 mm d-1) rainfall compared to the heavy (10.0-20.0 mm d-1) and very heavy (> 20 20 

mm d-1) rainfall. Overall, the STB and EZ more consistently removed bias in all the rainy 21 

days classification compared to the three other bias correction schemes. Effects of length 22 

of sequential window sizes for selected bias correction schemes is not investigated but 23 

different length possibly could yield more favourable results for PT, QME and DT bias 24 

correction schemes. 25 

Analysis serve to improve reliability of SREs applications in hydrological analysis and water 26 

resource applications in the Zambezi basin such as in drought analysis, flood prediction, 27 

weather forecasting and rainfall runoff modelling. In follow-up studies, we aim at hydrologic 28 

evaluation of bias corrected CMORPH rainfall estimates at the headwater catchment of the 29 

Zambezi River. 30 

Data availability 31 

Supplementary data consists of shapefiles of the Zambezi study area boundary, sub-basin 32 

boundaries, location of the 60 rain gauges and lakes (Figure 1). Additional material provided 33 

is the raster files of uncorrected CMORPH bias (%) making up Figure 2. Raster files of daily 34 

and yearly uncorrected CMORPH and gauge rainfall from 1998-2013 are also provided. 35 
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Appendix 1: Rain gauge stations in the Zambezi sub-basins showing x and y location, sub-basin they belong to, year of data 27 
availability, % of missing gaps, station elevation and distance from large-scale water bodies. 28 

Station 

Sub-

basin 

Zambezi 

classification 

X 

Coord 

Y 

Coord 

Start 

date 

End 

Date 

% gaps  

(missing 

records) 

Elevat

ion 

 (m) 

Distance 

from 

lake 

(km) 

 

MAP 

Gauge 

(mm yr-1) 

MAP 

CMORP

H (mm 

yr-1) 

Marromeu 

Zambezi 

Delta Lower Zambezi 36.95 -18.28 

29/05/

2007 

31/12/

2013 0.37 3 

 

90 

 

1075 
 

1080 

Caia 

Zambezi 

Delta Lower Zambezi  35.38 -17.82 

29/05/

2007 

31/12/

2013 0.13 28 265 

 

970.5 
 

975 

Nsanje Shire Lower Zambezi 35.27 -16.95 

01/01/

1998 

31/12/

2013 3.49 39 157 

 

906.4 
 

874 

Makhanga Shire Lower Zambezi 35.15 -16.52 

01/01/

1998 

31/12/

2013 9.43 48 113 

 

778.3 
 

771 
Nchalo Shire Lower Zambezi 34.93 -16.23 01/01/ 31/12/ 0.60 64 96   
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1998 2013 726.3 725 

Ngabu Shire Lower Zambezi 34.95 -16.50 

01/01/

1998 

3112/

2010 0.74 89 123 

 

736 
 

752 

Chikwawa Shire Lower Zambezi 34.78 -16.03 

01/01/

1998 

31/12/

2010 0.93 107 77 

 

731.3 
 

725 
Tete 

(Chingodzi) Tete Lower Zambezi 33.58 -16.18 

29/05/

2007 

31/12/

2013 0.17 151 135 

 

684.3 
 

677 

Chingodzi Shire Lower Zambezi 34.63 -16.00 

29/05/

2007 

10/01/

2013 11.8 280 101 

 

737.7 
 

735 

Zumbo Shire Lower Zambezi 30.45 -15.62 

29/05/

2007 

12/09/

2012 0.16 345 <5 

 

859.3 
 

862 

Mushumbi Kariba Middle Zambezi 30.56 -16.15 

11/06/

2008 

11/12/

2013 7.47 369 43 

 

852.2 
 

1028 

Kanyemba Tete Middle Zambezi  30.42 -15.63 

01/01/

1998 

30/03/

2013 5.86 372 <5 

 

859.3 
 

862 

Morrumbala 

Zambezi 

Delta Lower Zambezi 35.58 -17.35 

29/05/

2007 

10/01/

2013 13.3 378 206 

 

1011.7 
 

1002 

Mágoè                Tete Middle Zambezi 31.75 -15.82 

01/01/

2009 

31/12/

2013 9.6 427 10 

 

821.7 
 

646 

Muzarabani Tete Middle Zambezi 31.01 -16.39 

01/01/

1998 

31/12/

2013 1.14 430 49 

 

821.3 
 

887 

Monkey Shire Lower Zambezi 34.92 -14.08 

01/01/

1998 

30/11/

2010 0.00 478 <5 

 

988.5 
 

1012 

Mangochi Shire Lower Zambezi 35.25 -14.47 

01/01/

1998 

31/12/

2010 0.02 481 <5 

 

1015 
 

1042 

Rukomechi Kariba Middle Zambezi 29.38 -16.13 

01/01/

1998 

31/12/

2013 6.40 530 68 

 

803.9 
 

800 

Mutarara Shire Lower Zambezi 33.00 -17.38 

29/05/

2007 

10/01/

2013 11.7 548 201 

 

888.2 
 

859 

Mfuwe 

Luangw

a Middle Zambezi 31.93 -13.27 

01/01/

1998 

31/12/

2010 2.70 567 246 

 

1092.5 
 

1112 

Mimosa Shire Lower Zambezi 35.62 -16.07 

01/01/

1998 

31/12/

2010 3.96 616 72 

 

964.4 
 

962 

Kariba Kariba Middle Zambezi 28.80 -16.52 

01/01/

1998 

31/12/

2013 0.01 618 21 

 

980.6 
 

767 

Balaka Shire Lower Zambezi 34.97 -14.98 

01/01/

1998 

30/04/

2010 0.78 618 24 

 

778.2 
 

754 

Thyolo Shire Lower Zambezi 35.13 -16.13 

01/01/

1998 

31/12/

2010 0.11 624 86 

 

789.6 
 

787 

Chileka Shire Lower Zambezi 34.97 -15.67 

01/01/

1998 

31/12/

2013 0.60 744 64 

 

720.7 
 

708 

Fingoe Tete Middle Zambezi 31.88 -15.17 

01/01/

2009 

31/12/

2013 5.9 881 44 

 

859.4 
 

867 

Muze Tete Zambezi 31.38 -14.95 

01/01/

2009 

31/12/

2013 8.8 888 75 

 

879 
 

800 

Neno Shire Lower Zambezi 34.65 -15.40 

01/01/

1998 

01/01/

2010 9.14 903 64 

 

810.7 
 

813 

Zámbue Tete Middle Zambezi 30.80 -15.11 

01/01/

2009 

31/12/

2013 9.8 950 56 

 

870.5 
 

1006 

Mt Darwin Tete Middle Zambezi 31.58 -16.78 

01/01/

1998 

02/03/

2008 5.00 962 94 

 

832.3 
 

839 

Chipata Shire Lower Zambezi 32.58 -13.55 

01/01/

1998 

13/08/

2003 1.11 995 179 

 

1009.4 
 

1028 

Makoka Shire Lower Zambezi 35.18 -15.53 

01/01/

1998 

31/12/

2010 0.00 996 27 

 

716.9 
 

685 

Livingstone Kariba Middle Zambezi 25.82 -17.82 

01/01/

1998 

31/12/

2013 0.00 996 107 

 

761.2 
 

765 

Senanga Barotse Upper Zambezi 23.27 -16.10 

01/01/

1998 

31/12/

2013 8.90 1001 444 

 

856.1 
 

860 

Petauke 

Luangw

a Middle Zambezi 31.28 -14.25 

01/02/

1998 

31/12/

2013 0.40 1006 155 

 

936.9 
 

912 

Msekera 

Luangw

a Middle Zambezi 32.57 -13.65 

01/03/

1998 

31/12/

2015 19.7 1028 179 

 

1009.4 
 

1028 

Kalabo 

Lungue 

Bungo Upper Zambezi 22.70 -14.85 

01/01/

1998 

31/12/

2011 5.20 1033 582 

 

835.8 
 

838 

Mongu Barotse Upper Zambezi 23.15 -15.25 

01/01/

1998 

31/12/

2013 0.51 1052 518 

 

847.9 
 

843 
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Kasungu Shire Lower Zambezi 33.47 -13.02 

01/01/

2003 

31/07/

2013 0.00 1063 89 

 

793.2 
 

783 
Victoria 

Falls Kariba Middle Zambezi 25.85 -18.10 

01/01/

1998 

31/12/

2013 2.26 1065 107 

 

740.8 
 

742 

Bolero 

Luangw

a Middle Zambezi 33.78 -11.02 

01/01/

2003 

31/05/

2013 0.00 1070 38 

 

639 
 

577 
Pandamaten

ga Kariba Middle Zambezi 25.63 -18.53 

01/01/

1998 

31/12/

2013 0.01 1071 151 

 

709 
 

771 

Zambezi 

Lungue 

Bungo Upper Zambezi 23.12 -13.53 

01/01/

1998 

31/12/

2013 1.60 1075 611 

 

982 
 

976 

Kabompo 

Kabomb

o Upper Zambezi 24.20 -13.60 

01/01/

1998 

30/04/

2005 0.08 1086 505 

 

1045.9 
 

1055 

Chichiri Shire Lower Zambezi 35.05 -15.78 

01/01/

1998 

31/12/

2010 0.00 1136 40 

 

717.3 
 

744 

Chitedze Shire Lower Zambezi 33.63 -13.97 

01/01/

2003 

30/04/

2013 0.00 1150 84 

 

808.5 
 

806 

Lundazi 

Luangw

a Middle Zambezi 33.20 -12.28 

01/01/

2003 

30/04/

2013 1.40 1151 91 

 

778.8 
 

774 

Guruve Tete Middle Zambezi 30.70 -16.65 

01/01/

1998 

30/03/

2013 0.02 1159 86 

 

866.1 
 

870 

Kaoma Barotse Upper Zambezi 24.80 -14.80 

01/01/

1998 

31/11/

2013 9.89 1162 358 

 

950 
 

956 

Bvumbwe Shire Lower Zambezi 35.07 -15.92 

01/01/

1998 

01/01/

2011 0.00 1172 59 

 

762.2 
 

744 

Kasempa Kafue Middle Zambezi 25.85 -13.53 

01/01/

1998 

31/12/

2013 9.10 1185 431 

 

1029.4 
 

1022 

Kabwe 

Luangw

a Middle Zambezi 28.47 -14.45 

01/01/

1998 

13/10/

2012 1.54 1209 230 

 

960.6 
 

956 

Chitipa Shire Lower Zambezi 33.27 -9.70 

01/01/

2003 

06/01/

2013 0.05 1288 62 

 

1133.5 
 

1156 

Mwinilunga 

Kabomp

o Upper Zambezi 24.43 -11.75 

01/01/

1998 

31/12/

2013 4.81 1319 520 

 

1001.3 
 

997 

Karoi Tete Middle Zambezi 29.62 -16.83 

01/01/

1998 

31/12/

2004 15.08 1345 88 

 

825.8 
 

819 

Solwezi Kafue Middle Zambezi 26.38 -12.18 

01/01/

1998 

31/12/

2013 0.02 1372 356 

 

1105.2 
 

1105 
Harare 

(Belvedere) Tete Middle Zambezi 31.02 -17.83 

01/01/

1998 

31/03/

2013 7.80 1472 209 

 

901.4 
 

902 
Harare 

(Kutsaga) Tete Middle Zambezi 31.13 -17.92 

01/01/

2004 

30/09/

2010 0.55 1488 209 

 

901.4 
 

902 

Mvurwi Tete Middle Zambezi 30.85 -17.03 

01/01/

1998 

11/12/

2000 0.00 1494 102 

 

834.2 
 

828 

Dedza Shire Lower Zambezi 34.25 -14.32 

01/01/

2003 

31/10/

2012 0.00 1575 44 

 

762.8 
 

762 
 1 

 2 

Appendix 2: Bias correction scheme-based Taylor Diagram performance indicators (correlation coefficients, standard 3 

deviations and RMSE) of rain gauge (reference) vs CMORPH estimations (corrected and uncorrected), period 1998-2013, for 4 

Lower, Middle and Upper Zambezi Basin. 5 

Sub-basin Rainfall estimate 

RMSE 

(mm d-1) 
Correlation 

Coefficient 

Standard Deviation 

(mm d-1) 

Lower 

Zambezi 

Gauge     9.38 

R-CMORPH 9.98 0.46 8.00 

PT 10.41 0.57 8.52 

QME 9.15 0.55 6.98 

EZ 10.48 0.62 6.35 

DT 9.30 0.56 6.55 

STB 8.59 0.72 7.17 

Middle Gauge     7.94 



44 

Zambezi R-CMORPH 8.12 0.49 7.44 

PT 7.87 0.62 6.84 

QME 7.51 0.60 6.00 

EZ 10.69 0.65 6.93 

DT 8.04 0.59 6.96 

STB 7.49 0.76 6.81 

Upper 

Zambezi 

Gauge     8.29 

R-CMORPH 7.23 0.45 6.60 

PT 7.97 0.62 7.29 

QME 8.05 0.55 7.12 

EZ 11.50 0.60 8.13 

DT 7.85 0.55 6.45 

STB 0.54 0.74 7.29 

 1 

 2 


