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Abstract  30 

Satellite Rainfall Estimates (SRE) are prone to bias as they are indirect derivatives of the 31 

visible, infrared, and/or microwave cloud properties, hence SREs need correction. We evaluate 32 

the influence of elevation and distance from large scale open water bodies on bias for Climate 33 

Prediction Center-MORPHing (CMORPH) rainfall estimates in the Zambezi Basin. The 34 

effectiveness of five linear/non-linear and time-space variant/invariant bias correction schemes 35 

was evaluated for daily rainfall estimates and climatic seasonality. Schemes used are: Spatio-36 

temporal Bias (STB), Elevation zone bias (EZ), Power transform (PT), Distribution 37 

transformation (DT) and the Quantile mapping based on an empirical distribution (QME). We 38 

used daily time series (1998-2013) from 60 gauge stations and CMORPH SREs for the 39 

Zambezi Basin. To evaluate effectiveness of the bias correction techniques, spatial and 40 

temporal cross-validation was applied based on 8 stations and on the 1998-1999 CMORPH 41 

time series, respectively. For correction, STB and EZ schemes proved to be more effective in 42 

removing bias. STB improved the correlation coefficient and Nash Sutcliffe efficiency by 50 43 

% and 53 % respectively and reduced the root mean squared difference and relative bias by 25 44 

% and 33 % respectively. Paired t-tests showed that there is no significant difference (p < 0.05) 45 

in the daily means of CMORPH against gauge rainfall after bias correction. ANOVA post-hoc 46 

tests revealed that the STB and EZ bias correction schemes are preferable. Bias is highest for 47 

the very light rainfall (<2.5 mm/d), for which most effective  bias reduction is shown, in 48 

particular for the wet season. Similar findings are shown through quantile-quantile (q-q) plots. 49 

The spatial cross-validation approach revealed that the majority of the bias correction schemes 50 

removed bias by > 28 %. The temporal cross-validation approach showed effectiveness of the 51 

bias correction schemes. Taylor diagrams show that station elevation has an influence on 52 

CMORPH performance. Effects of distance >10m from large scale open water bodies are 53 

minimum whereas the effect at shorter distances are indicated but not conclusive by lack of 54 

rain gauges. Findings of this study show the importance of applying bias correction to SREs. 55 

 56 

Keywords: distance zone, elevation zone, satellite rainfall estimates, spatio-temporal bias, 57 

Taylor diagram 58 
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 60 

1. Introduction 61 

 62 

Correction schemes for rainfall estimates are developed for climate models (Maraun, 63 

2016;Grillakis et al., 2017;Switanek et al., 2017), for radar approaches (Cecinati et al., 64 

2017;Yoo et al., 2014) and for satellite based, multi-sensor approaches (Najmaddin et al., 65 

2017;Valdés-Pineda et al., 2016). In this study focus is on satellite rainfall estimates (SREs) to 66 

improve reliability in spatio-temporal rainfall representation. 67 

 68 

Studies in satellite based rainfall estimation show that estimates are prone to systematic and 69 

random errors (Gebregiorgis et al., 2012;Habib et al., 2014;Shrestha, 2011;Tesfagiorgis et al., 70 

2011;Vernimmen et al., 2012;Woody et al., 2014). Errors result primarily from the indirect 71 

estimation of rainfall from visible (VIS), infrared (IR), and/or microwave (MW) based satellite 72 

remote sensing of cloud properties (Pereira Filho et al., 2010; Romano et al., 2017). Systematic 73 

errors in SREs commonly are referred to as bias, which is a measure that indicates the 74 

accumulated difference between rain gauge observations and SREs. Bias in SREs is expressed 75 

for rainfall depth (Habib et al., 2012b), rain rate (Haile et al., 2013) and frequency at which 76 

rain rates occur (Khan et al., 2014). Bias may be negative or positive where negative bias 77 

indicates underestimation whereas positive bias indicates overestimation (Liu, 2015; Moazami 78 

et al., 2013). 79 

  80 

Recent studies on the National Oceanic and Atmospheric Administration (NOAA) Climate 81 

Prediction Center-MORPHing (CMORPH) (Wehbe et al., 2017;Jiang et al., 2016; Liu et al., 82 

2015; Haile et al., 2015) reveal that accuracy of this satellite rainfall product varies across 83 

different regions, but causes are not directly indentifiable. As such correction schemes serve to 84 

reduce systematic errors and to improve applicability of SREs. Correction schemes rely on 85 

assumptions that adjust errors in space and/or time (Habib et al., 2014). Some correction 86 

schemes consider correction only for spatial distributed patterns in bias, commonly known as 87 

space variant/invariant. Approaches that correct for spatially averaged bias have roots in radar 88 

rainfall estimation (Seo et al., 1999) but are unsuitable for large scale basins (> 5,000 km2) 89 

where rainfall may substantially vary in space (Habib et al., 2014). Studies by Tefsagiorgis et 90 

al. (2011) in Oklahoma (USA) and Müller and Thompson (2013) in Nepal concluded that space 91 

variant correction schemes are more effective in reducing CMORPH and TRMM bias than 92 
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space invariant correction schemes. In a study conducted in the Upper Blue Nile basin in 93 

Ethiopia, Bhatti et al. (2016) show that CMORPH bias correction is most effective when bias 94 

factors are calculated for 7 day sequential windows. 95 

 96 

Bias correction schemes based on regression techniques have reported distortion of frequency 97 

of rainfall rates (Ines and Hansen, 2006;Marcos et al., 2018). Multiplicative shift procedures 98 

tend to adjust SRE rainfall rates, but Ines and Hansen (2006) reported that they do not correct 99 

systematic errors in rainfall frequency of climate models. Non-multiplicative bias correction 100 

schemes preserve the timing of rainfall within a season (Fang et al., 2015;Hempel et al., 2013). 101 

Studies that have applied non-linear bias correction schemes such as Power Function report 102 

correction of extreme values (depth, rate and frequency) thus mitigating the underestimation 103 

and overestimation of CMORPH rainfall (Vernimmen et al., 2012). The study by Tian (2010) 104 

in the United States noted that the Bayesian (likelihood) analysis techniques are found to over-105 

adjust both light and heavy CMORPH rainfall.  106 

  107 

Bias often exhibits a topographic and latitudinal dependency as, for instance, shown for 108 

CMORPH product in the Nile Basin (Bitew et al., 2011; Habib et al., 2012a; Haile et al., 2013). 109 

For Southern Africa, Thorne et al. (2001), Dinku et al. (2008) and Meyer et al. (2017) show 110 

that bias in rainfall rate and frequency can be related to location, topography, local climate and 111 

season. First studies in the Zambezi Basin (Southern Africa) on SREs show evidence that 112 

necessitates correction of SREs. For example, Cohen Liechti (2012) show bias in CMORPH 113 

SREs for daily rainfall and for accumulated rainfall at monthly scale. Matos et al. (2013), 114 

Thiemig et al. (2012) and Toté et al. (2015) show that bias in rainfall depth at time intervals 115 

ranging from daily to monthly varies across geographical domains in the Zambezi Basin and 116 

may be as large as ±50 %. Besides elevation, there are indications that presence of Lake Tana 117 

(≈ 3050 km2, Ethiopia) affects rainfall at short distances (<10km) (Haile et al., 2009; Rientjes 118 

et al., 2013a).  119 

 120 

For less developed areas such as in the Zambezi Basin that is selected for this study, studies on 121 

SREs are limited. This is despite the strategic importance of the basin in providing water to 122 

over 30 million people (World Bank, 2010a). An exception is the study by Beyer et al. (2014) 123 

on correction of the TRMM-3B42 product for agricultural purposes in the Upper Zambezi 124 

Basin. Studies (Cohen Liechti et al., 2012; Meier et al., 2011) on use of SREs in the Zambezi 125 
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River Basin mainly focused on accuracy assessment of the SREs using standard statistical 126 

indicators with little or no effort to perform bias correction despite the evidence of errors in 127 

these products. The use of uncorrected SREs is reported for hydrological modelling in the Nile 128 

Basin (Bitew and Gebremichael, 2011) and Zambezi Basin (Cohen Liechti et al., 2012), 129 

respectively, and for drought monitoring in Mozambique (Toté et al., 2015). The poor 130 

performance of SREs in above studies urges for  bias correction to result in more accurate 131 

rainfall representation. The selection of CMORPH satellite rainfall for this study is based on 132 

successful applications of bias corrected CMORPH estimates in African basins for 133 

hydrological modelling (Habib et al., 2014) and flood predictions in West Africa (Thiemig et 134 

al., 2013). In first publications on CMORPH, Joyce et al. (2004) describe CMORPH as a 135 

gridded precipitation product that estimates rainfall with information derived from IR data and 136 

MW data. CMORPH combines the retrieval accuracy of passive MW estimates with IR 137 

measurements which are available at high temporal resolution but with low accuracy. The 138 

important distinction between CMORPH and other merging methods is that the IR data are not 139 

used for rainfall estimation but used only to propagate rainfall features that have been derived 140 

from microwave data. The flexible ‘morphing’ technique is applied to modify the shape and 141 

rate of rainfall patterns. CMORPH is operational since 2002 for which data is available at the 142 

CPC of the National Centers for Environmental Prediction (NCEP) (after 143 

http://www.ncep.noaa.gov/). Recent publications on CMORPH in African basins exist (Wehbe 144 

et al., 2017;Koutsouris et al., 2016;Jiang et al., 2016;Haile et al., 2015). However, studies on 145 

bias correction of CMORPH in the semi-arid Zambezi Basin are limited. 146 

 147 

In this study we use daily CMORPH and rain gauge data for Upper, Middle, and Lower 148 

Zambezi basins to (1) evaluate if performance of  CMORPH rainfall is affected by elevation 149 

and distance from large scale open water bodies (2) evaluate the effectiveness of linear/non-150 

linear and time-space variant/invariant bias correction schemes and (3) assess the performance 151 

of bias correction schemes to represent different rainfall rates and climate seasonality. Analysis 152 

serve to improve reliability of SREs applications in water resource applications in the Zambezi 153 

basin such as for  rainfall-runoff modeling 154 

 155 

2. Study area 156 

The Zambezi River is the fourth-longest river (~2,574 km) in Africa with basin area of 157 

~1,390,000 km2 (~4 % of the African continent). The river drains into the Indian Ocean and 158 

http://www.ncep.noaa.gov/
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has mean annual discharge of 4,134 m3/s (World Bank, 2010a). The river has its source in 159 

Zambia with basin boundaries in Angola, Namibia Botswana, Zambia, Zimbabwe and 160 

Mozambique (Fig. 1). The basin is characterized by considerable differences in elevation and 161 

topography, distinct climatic seasons and presence of large scale open water bodies and, as 162 

such, makes the basin well suited for this study. The basin is divided into three sub-basins i.e., 163 

the Lower Zambezi comprising the Tete, Lake Malawi/Shire, and Zambezi Delta basins, the 164 

Middle Zambezi comprising the Kariba, Mupata, Kafue, and Luangwa basins, and the Upper 165 

Zambezi comprising the Kabompo, Lungwebungo, Luanginga, Barotse, and Cuando/Chobe 166 

basins (Beilfuss, 2012). 167 

 168 

The elevation of the Zambezi basin ranges from < 200 m (for some parts of Mozambique) to 169 

>1500 m above sea level (for some parts of Zambia). Large scale open water bodies in and 170 

around the basin are Kariba, Cabora Bassa, Bangweulu, Chilwa and Nyasa. The Indian Ocean 171 

lies to the east of Mozambique. Typical landcover types are woodland, grassland, water 172 

surfaces and cropland (Beilfuss et al., 2000). The basin lies in the tropics between 10 and 20 173 

degrees South, encompassing humid, semi-arid and arid regions dominated by seasonal rainfall 174 

patterns associated with the Inter-Tropical Convergence Zone (ITCZ), a convective front 175 

oscillating along the equator (Cohen Liechti et al., 2012). The movement of the ITCZ in 176 

Southern hemisphere results in the peak rainy season that occurs during the summer (October 177 

to April) and the dry winter months (May-Sept) is a result of the shifting back of ITCZ towards 178 

the equator (Schlosser and Strzepek, 2015). The weather system in South Eastern parts such as 179 

Mozambique is dominated by Antarctic Polar Fronts (APF) and Tropical Temperate Troughs 180 

(TTTs) occurrence which is positively related to La Niña and Southern Hemisphere planetary 181 

waves, while El Niño-Southern Oscillation (ENSO) appears to play a significant role in causing 182 

dry conditions in the basin (Beilfuss, 2012).  183 

 184 

The basin is characterized by high annual rainfall (>1,400 mm/yr) in the northern and north-185 

eastern areas and by low annual rainfall (<500 mm/yr) in the southern and western parts (World 186 

Bank, 2010b). Due to this rainfall distribution, northern tributaries in the Upper Zambezi sub-187 

basin contribute 60 % of the mean annual discharge (Tumbare, 2000). The river and its 188 

tributaries are subject to seasonal floods and droughts that have devastating effects on the 189 

people and economies of the region, especially the poorest members of the population 190 
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(Tumbare, 2005). It is not uncommon to experience both floods and droughts within the same 191 

hydrological year.  192 

 193 

 194 

Figure 1: Zambezi River Basin from Africa with sub basins, major lakes, elevation, and locations and names of the 60 rain 195 

gauging stations (in each respective elevation zone) used in this study. 196 

 197 

3.  Materials and Methodology 198 

3.1. Rainfall data  199 

 200 

3.1.1. CMORPH  201 

For this study, time series of CMORPH rainfall images (1998-2013)  at 8 km × 8 km, 30-minute 202 

resolution were selected and downloaded from the NOAA repository 203 

(ftp://ftp.cpc.ncep.noaa.gov/prep/CMORPH_V1.0/CRT/8km.30m/). Images are downloaded 204 

by means of the GeoNETCAST ISOD toolbox of ILWIS GIS software 205 

(http://52north.org/downloads/). Half hourly estimates were aggregated to daily totals to match 206 

the observation interval of gauge based daily rainfall. 207 

 208 

3.1.2. Rain gauge network 209 

ftp://ftp.cpc.ncep.noaa.gov/prep/CMORPH_V1.0/CRT/8km.30m/
http://52north.org/downloads/
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Time series of daily rainfall from 60 stations were obtained from meteorological departments 210 

in Botswana, Malawi, Mozambique, Zambia and Zimbabwe for stations that cover the study 211 

area. All the stations are standard type rain gauges with a measuring cylinder whose unit of 212 

measurement is millimetres (mm).   213 

 214 

Some stations are affected by data gaps but the available time series are of sufficiently long 215 

duration (see Appendix 1) to serve the objectives of this study. Stations are irregularly 216 

distributed across the vast basin and are located at elevation between 3 m to 1575 m (Figure 217 

1). The minimum, maximum and average distance between the rain gauges is 3.5 km (Zumbo 218 

in Mozambique-Kanyemba in Zimbabwe), 1570 km (Mwinilunga in Zambia-Marromeu in 219 

Mozambique) and 565 km respectively. Distances to large scale open water bodies range 220 

between 5 km and 615 km. This allows us to evaluate if elevation and distance to large scale 221 

open water bodies affect CMORPH performance.  222 

 223 

3.1.3. Comparison of CMORPH and gauge rainfall 224 

In this study, we compare gauge rainfall at point scale to CMORPH satellite derived rainfall 225 

estimates at pixel scale (point-to-pixel). Comparison is at a daily time interval covering the 226 

period 1998-2013, following Cohen Liechti et al. (2012), Dinku et al. (2008), Haile et al. 227 

(2014), Hughes (2006), Tsidu (2012) and Worqlul et al. (2014) who report on point-to-pixel 228 

comparisons in African basins. We apply point-to-pixel comparison to rule out any aspect of 229 

interpolation error as a consequence of the low density network with unevenly distributed 230 

stations. We refer to Heidinger et al. (2012), Li and Heap (2011), Tobin and Bennett (2010) 231 

and Yin et al. ( 2008) who report that interpolation introduces unreliability and uncertainty to 232 

pixel based rainfall estimates. Also, Worqlul et al. (2014) describe that for pixel-to-pixel 233 

comparison, there is demand for a well distributed rain gauge network that would not hamper 234 

accurate interpolation. 235 

 236 

3.2. Elevation and distance from large scale open water bodies 237 

Habib et al. (2012a), Haile et al. (2009) and Rientjes et al. (2013a) for the Nile Basin reveal 238 

that elevation affect performance of SREs. Findings in the latter two studies signal that 239 

performance possibly also may be affected by presence of Lake Tana. To assess both 240 

influences, we classified the Zambezi Basin into 3 elevation zones for which the hierarchical 241 

cluster ‘within-groups linkage’ method in the Statistical Product and Service Solutions (SPSS) 242 
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software was used (Table 1). Based on Euclidian distance to large-scale open water bodies, 4 243 

arbitrary distance zones are defined to group stations (Table 1). A detailed description on the 244 

individual stations, their elevation and distance to large-scale open water bodies is provided in 245 

Appendix 1. The Advanced Spaceborne Thermal Emission and Reflection Radiometer 246 

(ASTER) based DEM of 30 m resolution obtained from 247 

http://gdem.ersdac.jspacesystems.or.jp/, is used to represent elevation across the Zambezi 248 

Basin. The Euclidian distance of each rain gauge location to large-scale open water bodies is 249 

defined in a GIS environment through the distance calculation algorithm. Large-scale open 250 

water bodies are defined as perennial open water bodies with surface area > 700 km2. The 251 

threshold is defined based on knowledge of the water bodies in the study area. A preliminary 252 

analysis on 300 water bodies in the study area revealed that only surface areas > 700 km2  253 

induce notable effect on rainfall patterns. 254 

 255 

Table 1: Elevation and distance from large scale open water bodies 256 

Zone  ID Elevation  (m) No. of stations Mean elevation of stations (m) 

Zone 1 < 250 8 90 

Zone 2 250-950 21 510 

Zone 3 > 950 31 1140 

    

Zone  ID Distance  (km) No. of stations Mean distance to large-scale  

open water bodies (km) 

Zone 1 < 10 km 4 5 

Zone 2 10 - 50 10 35 

Zone 3 50 - 100 18 80 

Zone 4 > 100 28 275 

 257 

3.3. Bias correction schemes  258 

Bias correction schemes evaluated in this study are the Spatio-temporal bias (STB), Elevation 259 

zone bias (EZ), Power transform (PT), Distribution transformation (DT), and the Quantile 260 

mapping based on an empirical distribution (QME), this by our aim to correct for bias while 261 

daily rainfall variability is preserved.  The five schemes are chosen based on merits documented 262 

in literature (Bhatti et al., 2016; Habib et al., 2014; Teutschbein and Seibert, 2013; Themeßl et 263 

al., 2012; Vernimmen et al., 2012). We note that findings on the performance of selected bias 264 

correction schemes in literature do not allow for generalization but findings only apply to the 265 

respective study domains (Wehbe et al., 2017;Jiang et al., 2016;Liu et al., 2015;Haile et al., 266 

2015). 267 

http://gdem.ersdac.jspacesystems.or.jp/
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 268 

In the procedure to define a time window for bias correction we follow Habib et al. (2014) and 269 

Bhatti et al. (2016) who in the Lake Tana Basin (Ethiopia) carried out a sensitivity analysis on 270 

moving time windows and on sequential time windows. Window lengths of 3 and 31 days are 271 

tested. Findings indicated that a 7-day sequential time window for bias factors is most 272 

appropriate but only when a minimum of five rainy days were recorded within the 7-day 273 

window with a minimum rainfall accumulation depth of 5 mm, otherwise no bias is estimated 274 

(i.e. a value of 1 applies as bias correction factor). Preliminary tests in this study on 5 and 7-275 

day moving and sequential windows on 20 individual stations distributed over the three 276 

elevation zones indicates that the 7-day sequential approach is well applicable in the Zambezi 277 

Basin. As such, the approach was selected.  278 

 279 

The bias correction factors are calculated using only rain days (rainfall ≥ 1 mm). Otherwise in 280 

cases where both the gauge and satellite have zero values (RG=0 and CMORPH =0), correction 281 

is not applied and the SRE value remains 0 mm/day. 282 

 283 

Following Bhatti et al. (2016), we spatially interpolate the bias correction factors of the rain 284 

gauges so that SREs at all pixels can be corrected. For interpolation, the Universal Kriging was 285 

applied. Thus to systematically correct all CMORPH estimates, station based bias factors for 286 

each time window are spatially interpolated to arrive at spatial coverage across the study area 287 

and to allow for comparison with other approaches.  288 

 289 

3.3.1. Spatio-temporal bias correction (STB) 290 

This linear bias correction scheme has its origin in the correction of radar based precipitation 291 

estimates (Tesfagiorgis et al., 2011) and downscaled precipitation products from climate 292 

models. The CMORPH daily rainfall estimates (S) are multiplied by the bias correction factor 293 

for the respective sequential time window for individual stations resulting in corrected 294 

CMORPH estimates (𝑆𝑇𝐵) in a temporally and spatially coherent manner (Equation [1]).  295 

  𝑆𝑇𝐵 =

 

 










l-dt

dt

l-dt

dt

ti,S

ti,G
S         [1] 296 

Where:  297 

G = gauged rainfall (mm/day) 298 
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i  = gauge number 299 

d = day number 300 

t  = julian day number 301 

l  = length of a time window for bias correction 302 

 303 

The advantages of this bias correction scheme is that it is straightforward and easy to implement 304 

due to its simplicity and modest data requirements. However, just like any multiplicative shift 305 

procedures of bias correction, STB has challenges in correct systematic errors in rainfall 306 

frequency particularly the wet-day frequencies (Lenderink et al., 2007; Teutschbein and 307 

Seibert, 2013).  308 

 309 

3.3.2. Elevation zone bias correction (EZ) 310 

This bias scheme is proposed in this study and aims at correcting satellite rainfall for elevation 311 

influences. This method groups rain gauge stations into 3 elevation zones based on station 312 

elevation. The grouping in this study is based on the hierarchical clustering technique, expert 313 

knowledge about the study area but also guided by relevant past studies in the basin (e.g. World 314 

Bank, 2010b;Beilfuss, 2012). Each zone has the same bias correction factor but differs across 315 

the three zones. In the time domain bias factors vary following the 7-day sequential window 316 

approach. The corrected CMORPH estimates (EZ) at daily time interval are obtained by 317 

multiplying the uncorrected CMORPH daily rainfall estimates (S) by the daily bias correction 318 

factor of each elevation zone.  319 

 320 

EZ =
 

  

 
















l-dt

dt

ni

1i

l-dt

dt

ni

1i

ti,S

ti,G
S         [2] 321 

 322 

The merits of this bias correction scheme is that the effects of elevation on rainfall depth are 323 

accounted for.  SREs often have difficulties in capturing rainfall events due to orographic 324 

effects and thus require elevation based correction.  325 

 326 

3.3.3. Power transform (PT) 327 

The non-linear PT bias correction scheme has its origin in studies of climate change impact  328 

(Lafon et al., 2013). Vernimmen et al. (2012) show that the scheme could be applied to correct 329 

satellite rainfall estimates for use in hydrological modelling and drought monitoring. The PT 330 
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method uses an exponential form to adjust the standard deviation of rainfall series. The daily 331 

bias corrected CMORPH rainfall (PT) for a pixel that overlays a station is obtained using 332 

equation:  333 

 334 

𝑃𝑇  = aG(i,t) b          [3] 335 

Where: 336 

G = gauged rainfall (mm/day) 337 

a = prefactor such that the mean of the transformed CMORPH values is equal to the mean  338 

of rain gauge rainfall 339 

b = factor calculated such that for each rain gauge the coefficient of variation (CV) of    340 

CMORPH matches the gauge based counter parts 341 

i  = gauge number 342 

t  = day number 343 

 344 

Optimized values for a and b are obtained through the generalized reduced gradient algorithm 345 

(Fylstra et al., 1998). Values for a and b vary for the 7-day time sequential window since 346 

correction is at daily time base. In the case of utilizing the PT method in a certain area (or for a 347 

certain period), the bias correction factor is spatially interpolated to result in comparable 348 

estimates with other bias correction schemes. The advantage of the bias scheme is that it adjusts 349 

extreme precipitation values in CMORPH estimates (Vernimmen et al., 2012). PT has reported 350 

limitations in correcting wet-day frequencies and intensities (Leander et al., 2008; Teutschbein 351 

and Seibert, 2013). 352 

 353 

3.3.4. Distribution transformation (DT) 354 

DT is an additive bias correction approach which has its origin in statistical downscaling of 355 

climate model data (Bouwer et al., 2004). The method transforms a statistical distribution 356 

function of daily CMORPH rainfall estimates to match the distibution by gauged rainfall. The 357 

procedure to match the CMORPH distribution function to gauge rainfall based counter parts is 358 

described in equations [4-8]. The principle to matching is that the difference in the mean value 359 

and differences in the variance are corrected for, in the 7-day sequential window. First, the bias 360 

correction factor for the mean (𝐷𝑇𝑢) is determined by equation [4]:  361 

 362 
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𝐷𝑇𝑢 =
𝐺𝑢

𝑆𝑢
          [4] 363 

𝐺𝑢 and S𝑢 are mean values of 7-day gauge and CMORPH rainfall estimates. 364 

 365 

Secondly, the correction factor for the variance (𝐷𝑇𝜏) is determined by the quotient of the 7-366 

day standard deviations, 𝐺𝜏 and S𝜏, for gauge and CMORPH respectively. 367 

 368 

𝐷𝑇𝜏 =
𝐺𝜏

S𝜏
            [5] 369 

 370 

Once the correction factors which vary within a 7-day time sequential window are established,  371 

they are then applied to correct all daily CMORPH estimates (S) through equation [6] to obtain 372 

corrected CMORPH rainfall estimate (DT ). The parameters DTu and 𝐷𝑇𝜏 are developed within 373 

a 7-day sequential window but correction is at daily time intervals. 374 

 375 

𝐷𝑇 = (𝑆(𝑖, 𝑡) − 𝑆𝑢)𝐷𝑇𝜏 + 𝐷𝑇𝑢 ∗ 𝑆𝜏      [6] 376 

Uncorrected CMORPH daily values are returned if [6] results in negative values. The merit of 377 

this bias correction scheme is that it corrects wet-day frequencies and intensities. The 378 

disadvantage of this bias correction scheme is that adding the gauge based mean deviation to 379 

the satellite data destroys the physical consistency of the data. In addition, the method might 380 

result in the generation of too few rain days in the wet season, and sometimes the mean of daily 381 

intensities might be unrealistically corrected (Johnson and Sharma, 2011; Teutschbein and 382 

Seibert, 2013). 383 

 384 

3.3.5. Quantile mapping based on an empirical distribution (QME) 385 

This is a quantile based empirical-statistical error correction method with its origin in empirical 386 

transformation and bias correction of regional climate model-simulated precipitation (Themeßl 387 

et al., 2012). The method corrects CMORPH precipitation based on empirical cumulative 388 

distribution functions (ecdfs) which are established for each 7-day time window and for each 389 

station. The bias corrected rainfall (QME) using quantile mapping are expressed in terms of 390 

the empirical cumulative distribution function (ecdf) and its inverse (ecdf-1). Parameters apply 391 

to a 7-day sequential window but correction is then at daily time interval with bias spatially 392 

averaged for the entire domain to allow for comparison with other approaches  393 

 394 
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𝑄𝑀𝐸 =  𝑒𝑐𝑑𝑓𝑜𝑏𝑠
−1(𝑒𝑐𝑑𝑓𝑟𝑎𝑤(𝑆(𝑖, 𝑡)))           [7] 395 

 396 

Where: 397 

𝑒𝑐𝑑𝑓𝑜𝑏𝑠  = empirical cumulative distribution function for the gauge based observation 398 

𝑒𝑐𝑑𝑓𝑟𝑎𝑤 = empirical cumulative distribution function for the uncorrected CMORPH  399 

 400 

The advantage of this bias scheme is that it corrects quantiles and preserves the extreme 401 

precipitation values (Themeßl et al., 2012). However, it also has its limitation due to the 402 

assumption that both the observed and satellite rainfall follow the same proposed distribution, 403 

which may introduce potential new biases. 404 

 405 

3.4. Rainfall rates and seasons 406 

To assess the performance of SREs for different classes of daily rainfall rates five classes are 407 

defined which indicate: very light (< 2.5 mm/day), light (2.5-5.0), moderate (5.0-10.0 mm/day), 408 

heavy (10.0-20.0 mm/day) and very heavy rainfall (> 20 mm/day).  409 

 410 

Furthermore, gauged rainfall was divided into wet and dry seasonal periods to assess the 411 

influence of seasonality on performance of bias correction schemes. The wet season in the 412 

Zambezi Basin spans from October-March whereas the dry season spans from April-413 

September.  414 

 415 

3.5. Evaluation of CMORPH estimates  416 

Corrected and uncorrected CMORPH satellite rainfall estimates are evaluated with reference 417 

to rain gauge rainfall using statistics that measure systematic differences (i.e. percentage bias 418 

and Mean Absolute Error (MAE)), measures of association (e.g. correlation coefficient and 419 

Nash Sutcliffe Efficency (NSE) and random differences (e.g. standard deviation of differences 420 

and coefficient of variation) (Haile et al., 2013). Bias is a measure of how the satellite rainfall 421 

estimate deviates from the rain gauge rainfall, and the result is normalised by the summation 422 

of the gauge values. A positive value indicates overestimation whereas a negative value 423 

indicates underestimation. The correlation coefficient (ranging between +1 and −1) represents 424 

the linear dependence of gauge and CMORPH data. MAE is the arithmetic average of the 425 

absolute values of the differences between the daily gauge and CMORPH satellite rainfall 426 

estimates. The MAE is zero if the rainfall estimates are perfect and increases as discrepancies 427 
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between the gauge and satellite become larger. NSE indicates how well the satellite rainfall 428 

matches the rain gauge observation and it ranges between - ∞ and 1, with NSE = 1 meaning a 429 

perfect fit (Nash and Sutcliffe, 1970). 430 

 431 

Equations [8-11] apply. 432 

 433 

𝑏𝑖𝑎𝑠 (%) =  
∑(𝑆−𝐺)

∑𝐺
∗ 100         [8] 434 

 435 

𝑅              =
∑( 𝐺− 𝐺̅)(𝑆− 𝑆̅)

√∑(𝐺− 𝐺̅)2√∑(𝑆− 𝑆̅)2
       [9] 436 

 437 

𝑀𝐴𝐸      =
1

𝑛
∑ |𝑆 − 𝐺|                  [10] 438 

 439 

𝑁𝑆𝐸          =
∑(𝐺−𝑆)

2

∑(𝐺− 𝐺̅)
2                   [11] 440 

 441 

Where: 442 

S  = satellite rainfall estimates (mm/day) 443 

𝑆̅  = mean of the satellite rainfall estimates (mm/day) 444 

G  = rainfall by a rain gauge (mm/day) 445 

𝐺̅  = mean values of rainfall recorded by a rain gauge (mm/day) 446 

𝑛  = number of observations 447 

 448 

3.6. Test for differences of mean  449 

To detect significant differences between gauge and satellite rainfall (corrected and 450 

uncorrected) and differences amongst the five bias correction methods described in Section 451 

3.3, we apply paired t-test and analysis of variance (ANOVA) tests.  452 

 453 

3.6.1. Paired t-tests 454 

A paired t-test was used to test whether there is a significant difference between rain gauge, 455 

uncorrected and bias corrected CMORPH satellite rainfall for the 52 rain gauges. Results are 456 

summarized for the Upper, Lower and Middle Zambezi. The paired t-test compares the mean 457 

difference of the values to zero. It depends on the mean difference, the variability of the 458 
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differences and the number of data. The null hypothesis (H0) is that there is no difference in 459 

mean gauge and satellite daily rainfall (uncorrected and bias corrected). If the p-value is less 460 

than or equal 0.05 (5%), the result is deemed statistically significant, i.e., there is a significant 461 

relationship between the gauge and satellite rainfall (Wilks, 2006; Field,  2009). 462 

 463 

3.6.2. Analysis of Variance (ANOVA) test 464 

The ANOVA-test aims to test whether there is a significant difference amongst the 5 bias 465 

correction techniques. The Null hypothesis (H0) is that there are no differences amongst the 466 

five bias correction schemes. We further determined which schemes differ significantly using 467 

3 post-hoc tests, namely: Tukey HSD, Schefe and the Bonferroni (Brown, 2005; Kucuk et al., 468 

2018). Results are summarized for the Upper, Lower and Middle Zambezi. 469 

 470 

3.7. Taylor diagram 471 

We apply a Taylor diagram to evaluate differences in data sets generated by respective bias 472 

correction schemes by providing a summary of how well bias correction results match gauge 473 

rainfall in terms of pattern, variability and magnitude of the variability. Visual comparison of 474 

SRE performance is done by analysing how well patterns match each other in terms of the 475 

Pearson’s product-moment correlation coefficient (R), root mean square difference (E), and the 476 

ratio of variances on a 2-D plot (Lo Conti et al., 2014;Taylor, 2001). The reason that each point 477 

in the two-dimensional space of the Taylor diagram can represent the above three different 478 

statistics simultaneously is that the centered pattern of root mean square difference (𝐸𝑖), and 479 

the ratio of variances are related by the following: 480 

 481 

𝐸𝑖 = √σ𝑓
2 + σ𝑟

2 − 2σ𝑓σ𝑟𝑅          [12] 482 

 483 

Where: 484 

σf and σr = standard deviation of CMORPH and rain gauge rainfall, respectively.   485 

 486 

Development and applications of Taylor diagrams have roots in climate change studies 487 

(Smiatek et al., 2016;Taylor, 2001) but also has frequent applications in environmental model 488 

evaluation studies (Cuvelier et al., 2007;Dennis et al., 2010;Srivastava et al., 2015).  Bhatti et 489 

al. (2016) propose the use of Taylor Diagrams for assessing effectiveness of SREs bias 490 

correction schemes. The most effective bias correction schemes will have data that lie near a 491 
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point marked ‘reference’ on the x-axis, relatively high correlation coefficient and low root 492 

mean square difference. Bias correction schemes matching gauged based standard deviation 493 

have patterns that have the right amplitude.  494 

 495 

3.8. Quantile-quantile (q-q) plots 496 

A q-q plot is used to check if two datasets (in this case gauge vs CMORPH rainfall) can fit the 497 

same distribution (Wilks, 2006). A q-q plot is a plot of the quantiles of the first data set against 498 

the quantiles of the second data set. A 45-degree reference line is also plotted. If the satellite 499 

rainfall (corrected and uncorrected) has the same distribution as the rainguage, the points 500 

should fall approximately along this reference line. The greater the departure from this 501 

reference line, the greater the evidence for the conclusion that the bias correction scheme is 502 

less effective (NIST/SEMATECH, 2001). 503 

 504 

The main advantage of the q-q plot is that many distributional aspects can be simultaneously 505 

tested. For example, changes in symmetry, and the presence of outliers can all be detected from 506 

this plot. 507 

 508 

3.9. Cross validation of bias correction 509 

3.9.1.  Spatial cross-validation 510 

The spatial cross-validation procedure (hold-out sample) applied in this study, involves the 511 

withdrawal of 8 in-situ stations from the sample of 60 when generating bias corrected SREs 512 

for all pixels across the study area. Corrected SREs are then compared to the rain gauge rainfall 513 

of the withdrawn stations to evaluate closeness of match. From the sample of 8 we selected 2 514 

stations in the < 250 m elevation zone, 3 stations in the 250-950 m zone and 3 stations in > 950 515 

m elevation zone. Stations selected have elevation close to the average elevation zone value 516 

and are centred in an elevation zone. This left us with 52 stations for applying the bias 517 

correction methods and spatial interpolation. As performance indicators to evaluate results of 518 

cross-validation, we use the percentage bias, MAE, Correlation Coefficient and the estimated 519 

ratio which is obtained by dividing CMORPH rainfall totals and gauge based rainfall totals for 520 

the 1999-2013 period.  521 

 522 

3.9.2.  Temporal cross-validation 523 
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For evaluation of SREs in the time domain we followed Gutjahr and Heinemann (2013) to omit 524 

rainfall (both from gauge and satellite) for the 1998-1999 hydrological year to remain with 14 525 

years for bias correction of SREs. Bias corrected estimates for the 14 years are then evaluated 526 

against estimates for 1998-1999 period that served as reference. For evaluation we use the 527 

percentage bias, MAE, correlation coefficient and the estimated ratio, that all are averaged for 528 

the Upper, Middle and Lower Zambezi but also for the wet and dry seasons. 529 

 530 

4. Results and Discussion 531 

 532 

4.1.  Performance of uncorrected CMORPH rainfall  533 

The spatially interpolated values of bias (%) accross the Zambezi Basin are shown in Figure 2. 534 

Areas in the central and western part of the basin have bias relatively close to zero suggesting 535 

good performance of the uncorrected CMORPH product. However, relatively large negative 536 

bias values (-20 %) are shown in the Upper Zambezi‘s high elevated areas such as Kabompo 537 

and northern Barotse Basin, in the south-eastern part of the basin such as Shire River Basin and 538 

in in the Lower Zambezi’s downstream areas where the Zambezi River enters the Indian Ocean. 539 

CMORPH overestimates rainfall locally in Kariba, Luanginga, and Luangwa basins by positive 540 

bias values. As such CMORPH estimates do not consistently provide results that match rain 541 

gauge observations. Since CMORPH estimates have pronounced error (-10 > bias (%) > 10), 542 

bias needs to be removed before the product can be applied for hydrological analysis and in 543 

water resources applications. Figure 2 also shows contours for rain gauge mean annual 544 

precipitation (MAP) in the Zambezi Basin with higher values in the northern parts of the basin 545 

(Kabompo and Luangwa) compared to localised estimates of MAP such as in Shire River and 546 

Kariba sub-basins. 547 

 548 

 549 
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550 
Figure 2: The spatial variation of bias (%) for gauge vs uncorrected CMORPH daily rainfall (1998-2013) for the Zambezi 551 

Basin. The gauge based isohyets for Mean Annual Precipitation (MAP) are shown in blue. 552 

 553 

4.2. Effects of elevation and distance from large-scale open water bodies on CMORPH 554 

bias 555 

Figure 3 shows Taylor diagrams with a comparison of basin lumped estimates of daily 556 

uncorrected time series (1999–2013) of CMORPH and gauge based rainfall for the 3 elevation 557 

zones (left panes) and 4 distance zones from large-scale open water bodies (right panes). Here 558 

CMORPH performance is indicated by means of the root mean square difference (E), 559 

correlation coefficient (R) and standard deviation. Figure 3 shows that standard deviations in 560 

the elevation zones and the distance zones (except for the < 10 km distance zone) are lower 561 

than the reference/rain gauge standard deviation which is indicated by the black arc (value of 562 

8.45 mm/day). The stations in the high elevation zone (> 950 m) and long distance zone (> 100 563 

km) reveal lower variability than stations at lower elevation and shorter distance zones. With 564 

respect to the reference line, CMORPH estimates that are lumped for respective elevation zones 565 

and distance to a large water body do not match standard deviation of rain gauge based 566 

counterparts. Figure 3 also shows that CMORPH standard deviations that are close to gauge 567 

based rainfall belong to lower elevation and shorter distance zones. Based on the Taylor 568 
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diagrams, the statistics (R and E) for uncorrected CMORPH show increasing performance for 569 

increasing elevation and increasing distance from large-scale water bodies. Specifically, 570 

stations in the lower elevation zones (< 250m) have lower R and higher E than the higher 571 

elevation zones (> 950 m). For shorter distance zones lower R and and higher E is shown than 572 

for longer distance zones (> 100 km). These findings suggest that in genral effects of distance 573 

to large scale water body are minimal except for distances <10 km.  574 

 575 

 576 

a) Elevation zones                                                                            b) Distance zones  

Figure 3. Time series of rain gauge (reference) vs CMORPH estimations, period 1999-2013, for elevation zones (left panes) 

and distance zones (right panes) in the Zambezi Basin. The correlation coefficients for the radial line denote the relationship 

between CMORPH and gauge based observations. Standard deviations on both the x and y axes show the amount of 

variance between the two-time series. The standard deviation of the CMORPH pattern is proportional to the radial distance 

from the origin. The angle between symbol and abscissa measures the correlation between CMORPH and rain gauge 

observations. The root mean square difference (red contours) between the CMORPH and rain gauge patterns is proportional 

to the distance to the point on the x-axis identified as "reference”. For details, see Taylor (2001). 

 

4.3. Evaluation of bias correction 577 

 578 

4.3.1. Standard statistics  579 

Figure 4 shows frequency based statistics (mean and maximum) on accuracy of CMORPH 580 

rainfall estimates for each bias correction method. The ratio of cumulated estimates (1999-581 

2013) from rain gauge and CMORPH estimates for the Lower, Middle and Upper Zambezi 582 

sub-basins are shown. Results show that the bias of CMORPH moderately reduced for each of 583 
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the five bias correction schemes. However, the effectiveness of the schemes vary spatially with 584 

best performance in Lower and Upper Zambezi sub-basin and relatively poor performance in 585 

the Middle Zambezi sub-basin (see Figure 4).  586 

 587 

 588 
Figure 4: Frequency based statistics (mean, max and estimated ratio of gauged sum vs CMORPH sum for 1999-2013) of 589 

corrected CMORPH for Lower, Middle and Upper  Zambezi Basin. 590 

 591 

Judging by the three performance indicators (mean, max and estimated ratio),  results indicate 592 

that STB bias correction scheme is consistently effective in removing CMORPH rainfall bias 593 

in the Zambezi Basin. STB and PT effectively adjust for the mean of CMORPH rainfall 594 

estimates. Statistics in Figure 5 confirm these findings especially for the Upper Zambezi sub-595 

basin where the mean of corrected estimates improved by > 60 % from the mean of uncorrected 596 

estimates. In addition, PT in the Lower Zambezi, QME in both Middle and Upper Zambezi and 597 

STB in the Upper Zambezi were also effective (improvement by 16 %) in correcting for the 598 

highest values in the rainfall estimates. STB performs better than other bias schemes in 599 

reproducing rainfall for the Lower and Upper Zambezi sub-basin, where the ratio of gauge total 600 

to corrected CMORPH total is close to 1.0. 601 

 602 

Figure 5 shows the mean absolute error (MAE) and percentage bias (% bias) on the left axis 603 

and Nash Sutcliffe Efficency (NSE) on the right axis as measures to evaluate performance of 604 

bias correction schemes in the Zambezi Basin. The effectiveness of the bias correction by all 605 

schemes varies over the different parts of the basin but is higher in the Lower and Upper 606 
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Zambezi than in the Middle Zambezi. The STB, PT and EZ shows improved performance by 607 

exhibiting smaller MAEs compared to the uncorrected CMORPH (R-CMORPH). A greater 608 

improvement is shown for the Middle Zambezi where the uncorrected MAE of 1.89 mm/day 609 

is reduced to 0.86 mm/day after bias correction by the elevation zone bias correction scheme 610 

(EZ). The signal on improved performance for the Lower and Middle Zambezi as compared to 611 

the Upper Zambezi is also evident for the majority of the bias correction techniques. However, 612 

relatively large error remains in the MAE.  613 

 614 

Figure 5: Percentage bias, Mean Absolute Error (left axis) and Nash Sutcliffe (NSE) (right axis) of corrected and uncorrected 615 

CMORPH (R-CMORPH) daily rainfall averaged for the Lower Zambezi, Middle Zambezi and Upper Zambezi. (put NSE to 616 

the right of the numbers) 617 

 618 

NSE for STB is above 0.8 for all three Zambezi sub-basins. This is followed by EZ with NSE 619 

above 0.7 for the three sub-basins.  The lowest NSE is for QME which is close to 0.65 for all 620 

three sub-basins. Best results for reducing bias (% bias) are obtained by EZ in the Lower 621 

Zambezi (% bias of 0.7 % ~ absolute bias of 0.10 mm/day) and Upper Zambezi (0.22 % ~0.23 622 

mm/day), PT in the Lower and Middle Zambezi (-0.84 % ~0.18 mm/day) and STB in all the 623 

basins (< 3.70 % ~0.24 mm/day). Gao and Liu (2013) over the Tibetan Plateau asserts that EZ 624 

is valuable in correcting systematic biases to provide a more accurate precipitation input for 625 

rainfall-runoff modelling. Significant underestimation for the uncorrected (-21.16 % ~0.44 626 

mm/day) and for bias corrected CMORPH are shown for the Upper Zambezi sub-basin. 627 
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 628 

4.3.2. Significance testing  629 

Table 2 shows results of statistical tests to assess whether there is a significant difference (p< 630 

0.05) between rain gauge vs uncorrected and bias corrected CMORPH satellite rainfall for each 631 

of the 52 rain gauge stations. Results are summarised for the Upper, Middle and Lower 632 

Zambezi and in the Zambezi basin. The null hypothesis is rejected for PT (Lower Zambezi), 633 

DT (Upper Zambezi) and QME (all the 3 sub-basins) since p < 0.05. This means that 634 

statistically the above mentioned bias correction schemes results deviate from the gauge. The 635 

null hypothesis is accepted for STB and EZ (all three sub-basins), DT (Lower and Upper 636 

Zambezi) and PT (Middle and Upper Zambezi), since p >0.05 showing the effectiveness of  637 

these bias correction schemes. Compared to uncorrected satellite rainfall (R-MORPH), results 638 

also reveal that the bias corrected satellite rainfall is closer to the gauge based rainfall.  639 

 640 

Table 2: Paired t-tests for the Upper, Middle and Lower Zambezi. The mean difference is significant at the 0.05 level. Bold 641 

shows significant values.. 642 

Basin Rainfall Estimate t-value 

Mean Std. Error  p-value 

(0.05) 

Lower Zambezi 

R-CMORPH 8.95 0.04 0.04 

DT 39.86 0.09 0.35 

PT 21.08 0.04 0.03 

QME 23.99 0.04 0.04 

EZ 36.43 0.03 0.27 

STB 14.7 0.04 0.46 

Middle 

Zambezi 

R-CMORPH 3.27 0.03 0.001 

DT 41.9 0.07 0.24 

PT 26.02 0.03 0.14 

QME 18.38 0.03 0.00 

EZ 26.60 0.02 0.07 

STB 23.6 0.03 0.09 

Upper Zambezi 

R-CMORPH 4.28 0.08 0.00 

DT 22.63 0.14 0.01 

PT 12.98 0.07 0.05 

QME 13.27 0.07 0.00 

EZ 13.73 0.07 0.14 

STB 13.62 0.07 0.08 

 643 

4.3.3. Analysis of variance (ANOVA test)  644 
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The ANOVA test is similar to a t-test except that the test was used to compare mean values 645 

from three or more data samples. Results of ANOVA shows that there is a significant (p < 0.05) 646 

difference in the mean values of the 5 bias correction results across the three sub-basins. This 647 

warranted the running of a post-hoc test to determine which schemes differ significantly. The 648 

contingency matrix in Table 2 shows results of the post-hoc test results summarized for the 649 

Tukey HSD, Schefe and the Bonferroni methods but also for the Upper, Lower and Middle 650 

Zambezi. Table 3 also show that STB, PT and EZ are significantly different from the 651 

distribution transformation technique (DT) for the three sub-basins. STB, the best performing 652 

bias correction scheme identified using majority of the indicators, is also significantly different 653 

from QME and EZ. QME which has poorly performed is significantly different from EZ. 654 

Results are important for further application of the bias correction schemes for studies such as 655 

flood, drought and water resources modelling.  656 

 657 

Table 3: ANOVA post-hoc tests for the results of the five bias correction schemes (p<0.05). The checklist table gives a 658 

indication (symbol) where two bias correction scheme’s results are significantly different from each other. Where there is no 659 

symbol, it means that the schemes’ results are not significantly different. The different symbols represent the Upper, Middle 660 

and Lower Zambezi basins.  661 

 662 

 663 

 664 

4.3.4. Taylor Diagrams 665 

Figure 6 shows the Taylor diagram for time series of rain gauge (reference) observations vs 666 

CMORPH bias correction schemes averaged for the Lower Zambezi (UZ), Middle Zambezi 667 

(MZ) and Upper Zambezi (UZ). Absolute values used to develop the Taylor diagram are shown 668 

in Appendix 2. The position of each bias correction scheme and uncorrected satellite rainfall 669 

(R-MORPH) on Figure 6 shows how closely the rainfall by uncorrected CMORPH (R-670 

MORPH) matches rain gauge observations as well as effectiveness of each of the bias schemes. 671 

Overall, all bias correction schemes show intermediate performance in terms of bias removal. 672 

Only the PT and STB for the Lower Zambezi sub-basin lie on the line of standard deviation 673 

(brown dashed arc) and means the standard deviation of the data for the two bias correction 674 
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schemes match the gauge observations. This also indicates that rainfall variations after PT and 675 

STB bias correction for the Lower Zambezi resembles gauge based standard deviation. Note 676 

however that STB performs better than EZ as shown by the superior correlation coefficient. 677 

Compared against the reference line of mean standard deviation (8.5 mm/day), the rainfall 678 

standard deviation for most bias correction schemes is below this line and as such exhibit low 679 

variability across the Zambezi Basin.  680 

 681 

Figure 6 also shows that most of the bias correction schemes have standard deviation range of 682 

6.0 to 8.0 mm/day. There is a consistent pattern between the bias correction schemes that have 683 

low R and high RMSE difference indicating that these schemes are not effective in bias 684 

removal. Overall, the best performing bias correction schemes (STB and EZ) have R > 0.6, 685 

standard deviation relatively close to the reference point and RMSE < 7 mm/day. The 686 

uncorrected CMORPH (R-MORPH) lies far away from the marked reference (gauge) point on 687 

the x-axis suggesting an intermediate overall effectiveness of the bias correction schemes such 688 

as STB, EZ, DT and PT in removing error as they are relatively closer to the marked reference 689 

point.  690 

 691 
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 692 

Figure 6: Taylor’s diagram on Rain gauge (reference) observations and CMORPH bias corrected estimates (all 5 schemes) as 693 

averaged for the Lower Zambezi (LZ), Middle Zambezi (MZ), and Upper Zambezi (UZ) for the period 1999-2013. The 694 

distance of the symbol from point (1, 0) is also a relative measure of the bias correction scheme perfromance. The position of 695 

each symbol appearing on the plot quantifies how closely precipitation estimates by respective bias correction scheme’s 696 

matches counterparts by rain gauge. The dashed blue lines indicate the root mean square difference (mm/day).  697 

 698 

The least performing bias correction scheme is QME with relatively large RSMD (> 8 mm/day) 699 

and with low R (< 0.49) and standard deviation (< 6.5 mm/day). Inherent to the methodology 700 

of most of bias correction schemes (e.g. QME) is that the spatial pattern of the SRE does not 701 

change and therefore R for a specific station for daily precipitation does not necessarily 702 

improve. The bias correction results by the Taylor Diagram in Figure 6 corroborates with 703 

findings shown in Figure 4 and Figure 5 for mean, max, ratio of rainfall totals and bias as 704 

performance indicators. 705 

 706 

4.3.5. q-q plots 707 

Figure 7 shows q-q plots for the Upper, Middle and Lower Zambezi for gauge rainfall against 708 

uncorrected and bias corrected CMORPH rainfall. Results show that the STB q-q plots for bias 709 
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corrected CMORPH across the 3 basins has majority of points that fall approximately along 710 

the 45-degree reference line. This means that the STB bias corrected satellite rainfall has closer 711 

distribution to the rain gauge as compared to the uncorrected CMORPH counterparts 712 

suggesting effectiveness of the bias correction scheme. Other bias correction schemes such as 713 

QME, EZ and PT have data points showing a greater departure from the 45-degree reference 714 

line so performance is less effective.  715 

 716 

In some instances in both the Upper, Middle and Lower Zambezi, bias corrected values are 717 

significantly higher than the corresponding gauge values whereas in some instances there is 718 

serious underestimation. All q-q plots also show that for all bias correction schemes, the 719 

differences between gauge and satellite rainfall are smallest for low rainfall rates (< 2.5 720 

mm/day) and increasing for heavy rainfall (> 20.0 mm/day). In more detail, all the bias 721 

correction schemes show a larger difference for the transition area from low to heavy rainfall. 722 

QME and PT are not in good agreement with the rest of the bias correction schemes for higher 723 

rainfall estimates (40 and 60 mm/day).  724 

 725 

 726 

Figure 7: q-q plot for gauge vs satellite rainfall (corrected and bias corrected) for the Upper (top panes),  727 

Middle (middle panes) and Lower (bottom panes) Zambezi.  728 

 729 

4.3.6. CMORPH rainy days  730 
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Occurance (%) of rainfall rates in the Zambezi Basin for each bias correction scheme is shown 731 

in Figure 8. The highest percentage (80-90 %) is shown for very light rainfall (0.0-2.5 mm/day). 732 

A smaller percentage is shown for 2.5-5.0 mm/day which is the light rainfall class. Smallest 733 

percentage (< 5%) is shown for heavy rainfall (> 20.0 mm/day). The CMORPH rainfall 734 

corrected with STB, PT and DT matches the gauge based rainfall  (%) in the Lower, Middle 735 

and Upper Zambezi suggesting good performance. All five bias correction schemes in the 736 

Zambezi Basin generally tend to overestimate low rainfall (< 2.5 mm/day). There is a small 737 

difference for moderate rainy days classification of 10.0-20.0 mm/day. For QME in the Middle 738 

and Upper Zambezi, there is overestimation by > 80 %. There is underestimation of rainfall 739 

greater than 20 mm/day.  740 

 741 

  742 
 743 

 744 
Figure 8: Percentage occurance for rainfall rate classes 745 

 746 

Figure 9 gives the bias correction performance for the different rainy day classes. Results of 747 

bias removal varies for the Lower, Middle and Upper Zambezi. Comparatively, the STB and 748 

EZ show effectiveness in bias removal with an average bias correction of  0.97 % and 3.6 % in 749 

the whole basin respectively. Results show more effectiveness in reducing the percentage bias 750 
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for light rainfall and moderate rainfall (0-2.5 and 5.0-10.0 mm/day) than the high to very high 751 

rainfall (10.0-20.0 mm/day and >20.0 mm/day) across the whole basin.  752 

 753 

 754 

Figure 9: Bias correction (%) for respective  rainfall rate classes 755 

 756 

4.4. Spatial cross-validation  757 

Table 4 shows the cross-validation results on bias correction for 8 rain gauge stations in the 758 

wet and dry seasons. It is evident that CMORPH has a considerable bias, although this bias is 759 

not always consistent for all 8 validation stations. Overall, Mutarara station has the highest 760 

positive bias (overestimation) whereas Makhanga has the highest negative bias 761 

(underestimation) for uncorrected CMORPH. Bias is effectively being removed by the STB 762 

followed by the EZ bias correction schemes. Bias is more effectively removed for the wet 763 

season than for the dry season. For the dry season, the STB shows good performance for 764 

Mkhanga and Nchalo stations, whereas good performance is shown for Kabompo and Chichiri 765 

stations. However, the MAE is higher for the wet season than for the dry season. Correlation 766 

coefficient for bias corrected satellite rainfall is higher for the wet season than for the dry 767 

season.  768 

 769 
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Table 4: Cross validation results for the bias correction procedure with 8 gauging stations for the dry and wet season. Stations 770 

lie at average elevation zone and sort of centred in an elevation zone. R-Morph is the uncorrected R-CMOPRPH estimate. DT, 771 

PT, QME, EZ and STB are the bias corrected rainfall estimate. Bold values indicate best performance.  * = zone 1: elevation 772 

of < 250 m , ** = zone 2: elevation range of 250 - 950 m and *** = zone 3: elevation > 950 m 773 

    Dry Season (April-Sept)  Wet Season (Oct-March)  

Station 
Rainfall 

Estimate 

Bias 

(%) 
MAE Correlation 

Estimated 

Ratio 

Bias 

(%) 
MAE Correlation 

Estimated 

Ratio 

Makhanga* 

R-CMORPH -28.69 1.23 0.42 0.87 -21.17 8.63 0.43 0.91 

DT -1.37 0.53 0.56 0.99 -1.66 3.96 0.65 0.94 

PT -5.62 0.52 0.54 0.95 -3.5 4.67 0.64 1.02 

QME 1.98 0.54 0.54 0.95 -0.64 4.86 0.65 0.97 

EZ 2.10 0.47 0.55 1.03 -0.11 4.08 0.58 0.96 

STB 0.77 0.61 0.56 1.04 0.5 5.06 0.62 1.02 

Nchalo* 

R-CMORPH -33.05 1.13 0.42 0.84 -25.18 8.05 0.38 0.83 

DT -0.23 0.73 0.56 0.96 -2.61 3.65 0.50 0.87 

PT -4.28 0.68 0.54 0.93 -6.48 5.05 0.59 0.92 

QME 1.90 0.72 0.53 0.81 -0.56 5.29 0.53 0.91 

EZ 0.35 0.63 0.54 0.99 0.22 4.4 0.60 1.06 

STB -0.43 0.73 0.58 0.96 -1.23 5.54 0.61 1.02 

Rukomichi** 

R-CMORPH -23.05 0.93 0.42 0.86 -21.18 6.69 0.31 0.73 

DT -0.23 0.90 0.56 0.94 -6.2 3.51 0.60 0.87 

PT -4.28 0.73 0.54 0.93 -2.48 3.62 0.59 0.92 

QME 1.90 0.75 0.53 1.03 -0.56 3.88 0.54 0.83 

EZ 0.35 0.71 0.54 0.99 0.22 3.5 0.60 1.06 

STB -0.43 0.76 0.58 0.94 -1.26 3.33 0.61 1.02 

Mutarara** 

R-CMORPH 20.15 0.24 0.49 1.10 20.1 2.34 0.50 1.05 

DT 11.4 0.18 0.60 1.03 8.7 1.23 0.63 1.04 

PT 8.4 0.12 0.55 0.91 4.3 1.28 0.68 1.03 

QME 5.7 0.14 0.63 1.1 8.1 1.4 0.65 0.98 

EZ -12.8 0.09 0.54 0.95 1.9 1.23 0.69 1.03 

STB 4.5 0.14 0.53 1.1 2.1 1.33 0.73 1.01 

Mfuwe** 

R-CMORPH 40.2 0.28 0.45 0.85 35.4 6.4 0.48 1.08 

DT 2.9 0.62 0.53 0.96 4.6 3.9 0.62 0.98 

PT 3.7 0.22 0.55 0.92 7.9 5.25 0.65 0.96 

QME 3.9 0.30 0.55 0.93 5.4 5.68 0.64 0.97 

EZ 6.1 0.24 0.54 0.92 3.8 5.18 0.56 0.98 

STB 5.4 0.26 0.65 0.93 1.2 4.66 0.65 0.96 

Kabombo*** 

R-CMORPH 25.3 0.70 0.44 0.95 24.3 3.8 0.48 0.85 

DT 7.7 0.32 0.51 0.96 5.7 3.5 0.62 0.94 

PT 9.2 0.13 0.54 1.10 8.7 3.0 0.64 0.96 

QME 2.7 0.32 0.62 1.10 2.8 3.2 0.63 0.95 

EZ 5.6 0.22 0.53 0.91 3.3 2.7 0.54 0.96 

STB 19 0.13 0.62 1.01 9.3 2.7 0.64 0.93 
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Chichiri*** 

R-CMORPH 34.5 1.56 0.47 0.8 -37.3 4.7 0.45 0.84 

DT 12.2 0.60 0.51 0.85 5.5 3.2 0.51 0.93 

PT 9.4 0.42 0.52 1.04 -7.8 4.1 0.54 0.95 

QME 8.4 0.92 0.56 1.05 -13.0 4.1 0.64 1.04 

EZ -13 0.61 0.60 0.94 -9.9 4.2 0.60 0.96 

STB 3.2 0.45 0.63 0.98 -14.3 2.1 0.65 0.99 

Chitedze*** 

R-CMORPH 41.5 0.90 0.47 1.06 42.3 5.4 0.48 0.89 

DT 16.7 0.53 0.54 0.98 -13.2 3.3 0.62 0.86 

PT -16.5 0.44 0.55 0.99 22.2 4.5 0.65 1.05 

QME 18.2 0.41 0.57 1.04 18.5 4.3 0.64 1.04 

EZ 11.7 0.32 0.57 1.02 8.4 4.6 0.55 1.03 

STB 3.9 0.23 0.60 0.03 -8.2 3.7 0.65 0.97 

 774 

4.5. Temporal cross-validation   775 

The same performance indicators in spatial cross-validation are calculated for the temporal 776 

cross-validation. Results are presented in Table 5. The MAE is higher for the wet season than 777 

for the dry season. The difference in effectiveness in the error removal between the dry and 778 

wet season is much larger. STB outperforms both bias correction methods but does also have 779 

problems correcting the estimated ratios. After the correction, the correlation coefficient is 780 

much improved. The fact that MAE remains relatively large indicates that errors remain locally 781 

large. These values are almost in same range to performance indicators obtained from the main 782 

performance assessment period (1999-2013). The estimated ratio shows improvement for the 783 

Middle Zambezi than for the Lower and Upper Zambezi.  784 

 785 

Table 5: Temporal-cross validation results for the period 1998-1999 for the wet and dry season  786 

    Dry Season (April-Sept)  Wet Season (Oct-March)  

 
Rainfall 

Estimate 
Bias (%) MAE Correlation 

Estimated 

Ratio 
Bias (%) MAE Correlation 

Estimated 

Ratio 

Lower  

Zambezi 

R-CMORPH -28.26 1.10 0.42 0.86 -22.51 7.79 0.37 0.82 

DT -0.61 0.72 0.56 0.96 -3.49 3.71 0.58 0.89 

PT -4.73 0.64 0.54 0.94 -4.15 4.45 0.61 0.95 

QME 1.93 0.67 0.53 0.93 -0.59 4.68 0.57 0.90 

EZ 0.93 0.60 0.54 1.00 0.11 3.99 0.59 1.03 

STB -0.03 0.70 0.57 0.98 -0.66 4.64 0.61 1.02 

Middle 

Zambezi 

R-CMORPH 28.55 0.41 0.46 0.97 26.60 4.18 0.49 0.99 

DT 7.33 0.37 0.55 0.98 6.33 2.88 0.62 0.99 

PT 7.10 0.16 0.55 0.98 6.97 3.18 0.66 0.98 

QME 4.10 0.25 0.60 1.04 5.43 3.43 0.64 0.97 

EZ -0.37 0.18 0.54 0.93 3.00 3.04 0.60 0.99 
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STB 9.63 0.18 0.60 1.01 4.20 2.90 0.67 0.97 

Upper 

Zambezi 

R-CMORPH 38 1.23 0.47 0.93 2.5 5.05 0.465 0.865 

DT 14.45 0.565 0.525 0.915 -3.85 3.25 0.565 0.895 

PT -3.55 0.43 0.535 1.015 7.2 4.3 0.595 1 

QME 13.3 0.665 0.565 1.045 2.75 4.2 0.64 1.04 

EZ -0.65 0.465 0.585 0.98 -0.75 4.4 0.575 0.995 

STB 3.55 0.34 0.615 0.505 -11.25 2.9 0.65 0.98 

 787 

5. Discussion 788 

We present methods to assess the performance of bias correction schemes for CMORPH 789 

rainfall estimates in the Zambezi River Basin. For correction we applied sequential windows 790 

of 7 days that count 5 rainy days with rainfall threshold of 5 mm. First we aimed to evaluate if 791 

performance of  CMORPH rainfall is affected by elevation and distance from large scale open 792 

water bodies.  Results in Taylor diagrams show that effects of distances > 10 km are minimal 793 

in this study. For distance < 10 km results in the same Taylor diagrams shows some effect with 794 

increased CMORPH estimation errors although not clearly identifiable by the limited number 795 

of gauging stations at distance < 10 km. We advocate further study on this aspect since the 796 

gauge network we relied on was not specifically designed for this purpose of analysis.  797 

 798 

For elevation, Romilly and Gebremichael (2011) showed that the accuracy of CMORPH at 799 

monthly time base is related to elevation for six river basins in Ethiopia. A similar finding was 800 

reported by Haile et al. (2009), Katiraie-Boroujerdy et al., (2013), Rientjes et al. (2013a) and 801 

Wu and Zhai (2012) who found that performance of CMORPH is affected by elevation. 802 

Contrary to these findings, Vernimmen et al. (2012) concluded that TRMM Multi-satellite 803 

Precipitation Analysis (TMPA) 3B42RT performance was not affected by elevation (R2 = 804 

0.0001) for Jakarta, Bogor, Bandung, Java, Kalimantan and Sumatra regions (Indonesia). The 805 

study by Gao and Liu (2013) showed that the bias in  CMORPH rainfall over the Tibetan 806 

Plateau is affected by elevation. Whilst distance from large scale open water bodies and 807 

elevation have been assessed separately for this study, Habib et al. (2012a) revealed that both 808 

aspects interact in the Nile Basin to produce unique circulation patterns to affect the 809 

performance of SRE.  810 

 811 

Second we evaluate the effectiveness of linear/non-linear and time-space variant/invariant bias 812 

correction schemes. The bias correction results by means of performance indicators such as 813 

Taylor Diagrams, q-q plots, ANOVA and standard statistics such as mean, max, ratio of rainfall 814 
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totals and bias reveal that the STB is the best bias correction method. This method by its nature, 815 

consider correction only for spatial distributed patterns in bias, commonly known as space 816 

variant/invariant and thus forces the estimates to behave as observations. We did not investigate 817 

effects of the applied sequential windows of 7 days for each bias correction scheme but note 818 

that other window lenghts could yield more favarable results for bias schemes such as PT, DT 819 

and QME that commomnly rely on larger sample sizes. As alluded to by Habib (2013), 820 

correction should improve hydrological applications by improved rainfall representation. This 821 

applies to Zambezi basin as well with demands for applications of the product such as for 822 

drought analysis, flood prediction, weather forecasting and rainfall runoff modeling. The study 823 

is unique as we assess the importance of space and time aspects of CMORPH bias for rainfall-824 

runoff modeling in a data scarce catchment. Findings in this study on cross and temporal 825 

validation contribute to efforts that aim towards enhancing the real-world applicability of 826 

satellite rainfall products. The study site is the Zambezi Basin-an example of many world 827 

regions that can benefit from satellite-based rainfall products for resource assessments and 828 

monitoring. 829 

 830 

Thirdly, an assessment of the performance of bias correction schemes to represent different 831 

rainfall rates and climate seasonality is presented. Our findings show that bias is most 832 

overestimated for the very light rainfall (< 2.5 mm/day), which is also the range that shows the 833 

best bias reduction, which in turn is most effective during the wet season. Results also show 834 

that there is underestimation of rainfall greater than 20 mm/day. The poor performance of 835 

correction for the heavy rainfall class is caused by, sometimes, large mismatch of high rain 836 

gauge values versus low CMORPH values. This leads to unrealistically high CMORPH values 837 

which remain poorly corrected by bias schemes. Results are consistent with findings by Gao 838 

and Liu (2013) in the Tibetan Plateau who also found consistent under and overestimation of 839 

occurence by CMORPH for rainfall rates >10.0 mm/day. A study by Zulkafli et al. (2014) in 840 

French Guiana and North Brazil noted that the low sampling frequency and consequently 841 

missed short-duration precipitation events between satellite measurements results in 842 

underestimation, particularly for heavy rainfall. 843 

 844 

Lasty, spatial and temporal cross validation reveal effectiveness of bias correction schemes. 845 

The hold-out sample of 8 stations in this work showed the applicability of different bias 846 

correction methods under different geographical space (spatial). There is improved 847 
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performance of satellite rainfall for the wet season than for the dry season based on correlation 848 

coefficient and MAE. The study by Ines and Hansen (2006) for semi-arid eastern Kenya 849 

showed that multiplicative bias correction schemes such as STB were effective in correcting 850 

the total of the daily rainfall grouped into seasons. Our results show that effectiveness in bias 851 

removal in the wet season is higher than in the dry season. This is contrary to Vernimmen et 852 

al. (2012) who showed that for the dry season, bias for PT decreased in Jakarta, Bogor, 853 

Bandung, East Java and Lampung regions after bias correction of monthly TMPA 3B42RT 854 

precipitation estimates over the period 2003–2008. Habib (2014) evaluated sensitivity of STB 855 

for the dry and wet season and concluded that the bias correction factor for CMOPRH shows 856 

lower sensitivity for the wet season as compared to the dry season. Our findings also reveal 857 

that bias factors for all the schemes are more variable in the dry season than in the wet season 858 

and lead to poor performance of the bias correction schemes in the dry season. 859 

 860 

6. Conclusions 861 

 862 

In this study four conclusions are drawn: 863 

1. Analysis on gauge and CMORPH rainfall estimates shows that performance increases for 864 

higher elevation (>950 m) in the Zambezi Basin and that CMORPH has largest mismatch 865 

at low elevation. Such analysis was established for rain gauges within elevation classes of 866 

< 250 m, 250 - 950 m and > 950 m. The match between gauge and CMORPH estimates 867 

improved at increasing distance to large-scale open water bodies. This was established for 868 

rain gauges located within specified distances of 10 -50 km, 50 -100 km and > 100 km to 869 

a large scale open water body. For distances < 10 km errors by CMORPH increased but we 870 

advocate further study with specifically designed gauging network for the research purpose. 871 

 872 

2. For each of the five bias correction methods applied, accuracy of the CMORPH satellite 873 

rainfall estimates improved. Assessment through standard statistics, Taylor Diagrams, t-874 

tests, ANOVA and q-q plots shows that STB that accounts for space and time variation of 875 

bias, is found more effective in reducing rainfall bias in the basin than the rest of the bias 876 

correction schemes. This indicates that the temporal aspect of CMORPH bias is more 877 

important than the spatial aspect in the Zambezi Basin. Quantile-quantile (q-q) plots for all 878 

the bias correction schemes in general show that bias corrected rainfall is in good agreement 879 
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with gauge based rainfall for low rainfall rates but that high rainfall rates are largely 880 

overestimated.  881 

 882 

3. Differences in the mechanisms that drive precipitation throughout the year could result in 883 

different biases for each of the seasons, which motivated us to calculate the bias correction 884 

factors for dry and wet seasons separately. As such CMORPH rainfall time series were 885 

divided to assess the influence of seasonality on performance of bias correction schemes. 886 

Overal, the bias correction schemes reveal that bias removal is more effective in the wet 887 

season than in the dry season.  888 

 889 

4. We assessed whether bias correction varies for different rainfall rates of daily rainfall in 890 

the Zambezi Basin. There is overestimation of very light rainfall (< 2.5 mm/day) and 891 

underestimation of very heavy rainfall (>20 mm/day) after application of the bias correction 892 

schemes. Bias was more effectively reduced for very low to moderate rainfall (< 2.5 and 893 

5.0-10.0 mmm/day) than for high to very high rainfall (10.0-20.0 mm/day and >20.0 894 

mm/day). Overall, the STB and EZ more consistently removed bias in all the rainy days 895 

classification compared to the three other bias correction schemes. Effects of length of 896 

sequential window sizes for selected bias correction schemes is not investigated but 897 

different length possibly could yield more favourable results for PT, QME and DT bias 898 

correction schemes.  899 

 900 

Analysis serve to improve reliability of SREs applications in hydrological analysis and water 901 

resource applications in the Zambezi basin such as in drought analysis, flood prediction, 902 

weather forecasting and rainfall runoff modelling. In follow-up studies, we aim at hydrologic 903 

evaluation of bias corrected CMORPH rainfall estimates at the headwater catchment of the 904 

Zambezi River. 905 
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Appendix 1: Rain gauge stations in the Zambezi sub-basins showing x and y location, sub-basin they belong to, year of 1209 

data availability, % of missing gaps, station elevation and distance from large-scale  water bodies. 1210 

Station 

Sub-

basin 

Zambezi 

classification 

X 

Coord 

Y 

Coord 

Start 

date 

End 

Date 

% gaps  

(missing 

records) 

Elevati

on 

 (m) 

Distance 

from lake 

(km) 

MAP 

Gauge 

(mm/yr) 

MAP CMORPH 

(mm/yr) 

Marromeu 

Zambezi 

Delta Lower Zambezi 36.95 -18.28 

29/05/

2007 

31/12/

2013 0.37 3 

 

90 

 

1075 

 

1080 

Caia 

Zambezi 

Delta Lower Zambezi  35.38 -17.82 

29/05/

2007 

31/12/

2013 0.13 28 265 

 

970.5 

 

975 

Nsanje Shire Lower Zambezi 35.27 -16.95 

01/01/

1998 

31/12/

2013 3.49 39 157 

 

906.4 

 

874 

Makhanga Shire Lower Zambezi 35.15 -16.52 

01/01/

1998 

31/12/

2013 9.43 48 113 

 

778.3 

 

771 

Nchalo Shire Lower Zambezi 34.93 -16.23 

01/01/

1998 

31/12/

2013 0.60 64 96 

 

726.3 

 

725 

Ngabu Shire Lower Zambezi 34.95 -16.50 

01/01/

1998 

3112/

2010 0.74 89 123 

 

736 

 

752 

Chikwawa Shire Lower Zambezi 34.78 -16.03 

01/01/

1998 

31/12/

2010 0.93 107 77 

 

731.3 

 

725 

Tete 

(Chingodzi) Tete Lower Zambezi 33.58 -16.18 

29/05/

2007 

31/12/

2013 0.17 151 135 

 

684.3 

 

677 

Chingodzi Shire Lower Zambezi 34.63 -16.00 

29/05/

2007 

10/01/

2013 11.8 280 101 

 

737.7 

 

735 

Zumbo Shire Lower Zambezi 30.45 -15.62 

29/05/

2007 

12/09/

2012 0.16 345 <5 

 

859.3 

 

862 

Mushumbi Kariba Middle Zambezi 30.56 -16.15 

11/06/

2008 

11/12/

2013 7.47 369 43 

 

852.2 

 

1028 

Kanyemba Tete Middle Zambezi  30.42 -15.63 

01/01/

1998 

30/03/

2013 5.86 372 <5 

 

859.3 

 

862 

Morrumbala 

Zambezi 

Delta Lower Zambezi 35.58 -17.35 

29/05/

2007 

10/01/

2013 13.3 378 206 

 

1011.7 

 

1002 
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Mágoè                Tete Middle Zambezi 31.75 -15.82 

01/01/

2009 

31/12/

2013 9.6 427 10 

 

821.7 

 

646 

Muzarabani Tete Middle Zambezi 31.01 -16.39 

01/01/

1998 

31/12/

2013 1.14 430 49 

 

821.3 

 

887 

Monkey Shire Lower Zambezi 34.92 -14.08 

01/01/

1998 

30/11/

2010 0.00 478 <5 

 

988.5 

 

1012 

Mangochi Shire Lower Zambezi 35.25 -14.47 

01/01/

1998 

31/12/

2010 0.02 481 <5 

 

1015 

 

1042 

Rukomechi Kariba Middle Zambezi 29.38 -16.13 

01/01/

1998 

31/12/

2013 6.40 530 68 

 

803.9 

 

800 

Mutarara Shire Lower Zambezi 33.00 -17.38 

29/05/

2007 

10/01/

2013 11.7 548 201 

 

888.2 

 

859 

Mfuwe 

Luangw

a Middle Zambezi 31.93 -13.27 

01/01/

1998 

31/12/

2010 2.70 567 246 

 

1092.5 

 

1112 

Mimosa Shire Lower Zambezi 35.62 -16.07 

01/01/

1998 

31/12/

2010 3.96 616 72 

 

964.4 

 

962 

Kariba Kariba Middle Zambezi 28.80 -16.52 

01/01/

1998 

31/12/

2013 0.01 618 21 

 

980.6 

 

767 

Balaka Shire Lower Zambezi 34.97 -14.98 

01/01/

1998 

30/04/

2010 0.78 618 24 

 

778.2 

 

754 

Thyolo Shire Lower Zambezi 35.13 -16.13 

01/01/

1998 

31/12/

2010 0.11 624 86 

 

789.6 

 

787 

Chileka Shire Lower Zambezi 34.97 -15.67 

01/01/

1998 

31/12/

2013 0.60 744 64 

 

720.7 

 

708 

Fingoe Tete Middle Zambezi 31.88 -15.17 

01/01/

2009 

31/12/

2013 5.9 881 44 

 

859.4 

 

867 

Muze Tete Zambezi 31.38 -14.95 

01/01/

2009 

31/12/

2013 8.8 888 75 

 

879 

 

800 

Neno Shire Lower Zambezi 34.65 -15.40 

01/01/

1998 

01/01/

2010 9.14 903 64 

 

810.7 

 

813 

Zámbue Tete Middle Zambezi 30.80 -15.11 

01/01/

2009 

31/12/

2013 9.8 950 56 

 

870.5 

 

1006 

Mt Darwin Tete Middle Zambezi 31.58 -16.78 

01/01/

1998 

02/03/

2008 5.00 962 94 

 

832.3 

 

839 

Chipata Shire Lower Zambezi 32.58 -13.55 

01/01/

1998 

13/08/

2003 1.11 995 179 

 

1009.4 

 

1028 

Makoka Shire Lower Zambezi 35.18 -15.53 

01/01/

1998 

31/12/

2010 0.00 996 27 

 

716.9 

 

685 

Livingstone Kariba Middle Zambezi 25.82 -17.82 

01/01/

1998 

31/12/

2013 0.00 996 107 

 

761.2 

 

765 

Senanga Barotse Upper Zambezi 23.27 -16.10 

01/01/

1998 

31/12/

2013 8.90 1001 444 

 

856.1 

 

860 

Petauke 

Luangw

a Middle Zambezi 31.28 -14.25 

01/02/

1998 

31/12/

2013 0.40 1006 155 

 

936.9 

 

912 
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Msekera 

Luangw

a Middle Zambezi 32.57 -13.65 

01/03/

1998 

31/12/

2015 19.7 1028 179 

 

1009.4 

 

1028 

Kalabo 

Lungue 

Bungo Upper Zambezi 22.70 -14.85 

01/01/

1998 

31/12/

2011 5.20 1033 582 

 

835.8 

 

838 

Mongu Barotse Upper Zambezi 23.15 -15.25 

01/01/

1998 

31/12/

2013 0.51 1052 518 

 

847.9 

 

843 

Kasungu Shire Lower Zambezi 33.47 -13.02 

01/01/

2003 

31/07/

2013 0.00 1063 89 

 

793.2 

 

783 

Victoria 

Falls Kariba Middle Zambezi 25.85 -18.10 

01/01/

1998 

31/12/

2013 2.26 1065 107 

 

740.8 

 

742 

Bolero 

Luangw

a Middle Zambezi 33.78 -11.02 

01/01/

2003 

31/05/

2013 0.00 1070 38 

 

639 

 

577 

Pandamaten

ga Kariba Middle Zambezi 25.63 -18.53 

01/01/

1998 

31/12/

2013 0.01 1071 151 

 

709 

 

771 

Zambezi 

Lungue 

Bungo Upper Zambezi 23.12 -13.53 

01/01/

1998 

31/12/

2013 1.60 1075 611 

 

982 

 

976 

Kabompo 

Kabomb

o Upper Zambezi 24.20 -13.60 

01/01/

1998 

30/04/

2005 0.08 1086 505 

 

1045.9 

 

1055 

Chichiri Shire Lower Zambezi 35.05 -15.78 

01/01/

1998 

31/12/

2010 0.00 1136 40 

 

717.3 

 

744 

Chitedze Shire Lower Zambezi 33.63 -13.97 

01/01/

2003 

30/04/

2013 0.00 1150 84 

 

808.5 

 

806 

Lundazi 

Luangw

a Middle Zambezi 33.20 -12.28 

01/01/

2003 

30/04/

2013 1.40 1151 91 

 

778.8 

 

774 

Guruve Tete Middle Zambezi 30.70 -16.65 

01/01/

1998 

30/03/

2013 0.02 1159 86 

 

866.1 

 

870 

Kaoma Barotse Upper Zambezi 24.80 -14.80 

01/01/

1998 

31/11/

2013 9.89 1162 358 

 

950 

 

956 

Bvumbwe Shire Lower Zambezi 35.07 -15.92 

01/01/

1998 

01/01/

2011 0.00 1172 59 

 

762.2 

 

744 

Kasempa Kafue Middle Zambezi 25.85 -13.53 

01/01/

1998 

31/12/

2013 9.10 1185 431 

 

1029.4 

 

1022 

Kabwe 

Luangw

a Middle Zambezi 28.47 -14.45 

01/01/

1998 

13/10/

2012 1.54 1209 230 

 

960.6 

 

956 

Chitipa Shire Lower Zambezi 33.27 -9.70 

01/01/

2003 

06/01/

2013 0.05 1288 62 

 

1133.5 

 

1156 

Mwinilunga 

Kabomp

o Upper Zambezi 24.43 -11.75 

01/01/

1998 

31/12/

2013 4.81 1319 520 

 

1001.3 

 

997 

Karoi Tete Middle Zambezi 29.62 -16.83 

01/01/

1998 

31/12/

2004 15.08 1345 88 

 

825.8 

 

819 

Solwezi Kafue Middle Zambezi 26.38 -12.18 

01/01/

1998 

31/12/

2013 0.02 1372 356 

 

1105.2 

 

1105 

Harare 

(Belvedere) Tete Middle Zambezi 31.02 -17.83 

01/01/

1998 

31/03/

2013 7.80 1472 209 

 

901.4 

 

902 
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Harare(Kuts

aga) Tete Middle Zambezi 31.13 -17.92 

01/01/

2004 

30/09/

2010 0.55 1488 209 

 

901.4 

 

902 

Mvurwi Tete Middle Zambezi 30.85 -17.03 

01/01/

1998 

11/12/

2000 0.00 1494 102 

 

834.2 

 

828 

Dedza Shire Lower Zambezi 34.25 -14.32 

01/01/

2003 

31/10/

2012 0.00 1575 44 

 

762.8 

 

762 

 1211 

Appendix 2: Bias correction scheme based Taylor Diagram performance indicators (correlation coefficients, standard 1212 

deviations and RMSE) of rain gauge (reference) vs CMORPH estimations (corrected and uncorrected), period 1998-2013, for 1213 

Lower, Middle and Upper Zambezi Basin. 1214 

 1215 

Sub-basin Rainfall estimate 

RMSE 

(mm/day) 

Correlation 

Coefficient 

Standard Deviation 

(mm/day) 

Lower 

Zambezi 

Gauge     9.38 

R-CMORPH 9.98 0.46 8.00 

PT 10.41 0.57 8.52 

QME 9.15 0.55 6.98 

EZ 10.48 0.62 6.35 

DT 9.30 0.56 6.55 

STB 8.59 0.72 7.17 

Middle 

Zambezi 

Gauge     7.94 

R-CMORPH 8.12 0.49 7.44 

PT 7.87 0.62 6.84 

QME 7.51 0.60 6.00 

EZ 10.69 0.65 6.93 

DT 8.04 0.59 6.96 

STB 7.49 0.76 6.81 

Upper 

Zambezi 

Gauge     8.29 

R-CMORPH 7.23 0.45 6.60 

PT 7.97 0.62 7.29 

QME 8.05 0.55 7.12 

EZ 11.50 0.60 8.13 

DT 7.85 0.55 6.45 

STB 0.54 0.74 7.29 
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