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Performance of bias correction schemes for CMORPH rainfall estimates in the Zambezi 

River Basin 

Webster Gumindoga12, Tom. H.M. Rientjes1, Alemseged.T. Haile3, Hodson Makurira2 and 

Paolo Reggiani4 

 

Comments by Reviewer 

The authors have acceptably responded to some of my comments. They have corrected some 

technical incoherencies, such as the important spatiotemporal bias correction equation, made 

valuable improvements in the discussion, and removed several typos. 

Author Response 

The authors thank the reviewer for the positive comments that have helped to improve this 

manuscript. We have once again gone through the manuscript to remove any technical 

incoherencies. We have verified whether equations are correctly put and synthesised the 

discussion section. Any typos are traced and removed from the manuscript. 

 

Reviewer Comments 

Unfortunately, the authors are reluctant to make some changes, which is perfectly 

understandable if they have a good reason, which, in my opinion, is not the case. Their rebuttal 

seems to be focusing on discrediting my comments, suggestions and judgment rather than 

providing robust scientific arguments. There are a few points where I believe I was unfairly 

misinterpreted. For these instances, I would like to clarify and reaffirm technical arguments 

that I had already written by following the last author’s comments that concern: 

 

Author Response 

We would like to apologise if the reviewer felt that he or she has been unfairly judged or 

discredited by the authors. We appreciate the robust comments that again helped to strengthen 

the manuscript. We also appreciate the clarifications by the authors and we hereby follow and 

respond to them word by word in the next sections.  

Reviewer Comments 

The potential bias in analysing the distance to lakes (which is known to be directly proportional 

to elevation in this region) and elevation as two separate factors: I was cautious to do not give 

the impression that I was forcing (or “pushing”, as the authors wrote) to make changes in their 

manuscript that are actually not appropriate. I acknowledge that I may be tackling a 
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complicated issue to be addressed in a data-scarce region. Therefore, in my opinion, the 

removal of one analysis (in this case, distance to lakes) that has a potential bias and that relies 

on one assumption that cannot be supported by data would be the most reasonable step to 

follow. Since the authors choose to maintain this analysis, I would expect a more in-depth 

analysis, but the authors state that it is outside of the scope of their study. 

 

Author Response 

In this study effects of distance >10 km from large scale open water bodies are minimum 

whereas the effect at shorter distances are indicated but not conclusive by lack of rain gauges. 

The authors have added a substantial section on the limitations of their approach and further 

analysis that can be done in future research. The authors are aware that the current rain gauge 

fails to provide adequate data to conduct detailed analysis. The network of installed rain 

gauges is not designed, and of too low density, to allow detailed analysis as indicated in earlier 

review rounds. With their ongoing efforts in the Zambezi basin and funding via WaterNet 

Programme’s regional capacity building in the water sector of South and Eastern Africa, 

twenty-five (25) new rain gauges are being installed at distance < 10 km at preselected 

locations from large scale open water bodies to assess bias effects in detail in relation to 

distance to the water body. Of the 25 rain gauges, twenty (20) are standard type with a 

measuring cylinder whose unit of measurement is millimetres (mm). Five (5) are automatic rain 

gauges measuring rainfall at sub-daily timestep. 

  

Reviewer Comment 

As an additional justification, the authors claim that they have included both the distance to 

lakes and elevation in analyses because “an earlier reviewer of the manuscript whose urged the 

need to assess effects of distance to the very large lakes in the basin”, but I failed to find this 

suggestion from any reviewer in this submission. During this search, I found what I believe to 

be an earlier submission of this manuscript in 2016 (https://doi.org/10.5194/hess-2016-33) 

where I found that the reviewer #1 of that manuscript was primarily asking for analysis of the 

influence of orography and aspect on rainfall and stating that “the authors tend to over-

emphasize the influence of elevation on rainfall at a location”. The response for this comment 

was the addition of the distance to large water bodies as a variable to be analysed, which does 

not clarify the problem with elevation. I would like to highlight that I’m not judging this 

manuscript by previous reviews. However, since the authors required me to go back in those 

discussions to understand their rebuttal, I see that many problems from a potential earlier 

version of this manuscript are still present; 

 

Author Response 
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Indeed, an earlier submission of this manuscript in 2016 (https://doi.org/10.5194/hess-2016-

33) suggested that we could remove the over emphasis on elevation by looking at other aspects 

such as effects of distance to the very large lakes in the basin. The authors followed this strong 

suggestion, actually we considered the suggestion more like a request so to make the study 

more elaborate. Moreover, in earlier studies by the co-authors such influences were indicated. 

After completing the analysis, it has become evident that a dense, well designed, rain gauge 

network such as in Haile et al. (2009 is needed to warrant analysis. Correlation and 

correlogram analyses must be performed. Here is what Anonymous Referee #1 in the earlier 

submission 2016 (https://doi.org/10.5194/hess-2016-33) mentioned and our response also: 

 

The reviewer comment: “The authors tend to over-emphasize the influence of elevation on 

rainfall at a location, yet other important factors are not considered. For example, orography 

or aspect has not been considered when this is very important in the Zambezi Basin. Distance 

to lake water bodies such the equatorial regions, Indian Ocean has a major influence on 

rainfall in the Zambezi Basin.” 

 

Our response then: “We thank the reviewers for this important comment. We have made sure 

that in addition to elevation, we included the Euclidian distance from the large-scale water 

bodies in the Zambezi basin. Therefore, a distance map of all the 60 stations from the major 

water bodies in and around the Zambezi was developed. A Taylor diagram was then employed 

to assess whether the relationship between CMORPH satellite rainfall performance is 

dependent on elevation and distance to large scale water bodies.  Some of the water source 

include the Indian Ocean, Lakes: Kariba, Cahorra Bassa and Malawi and other perennial 

water bodies scattered in the basin. The criteria used to select the large-scale water bodies is 

that they should be perennial and > 700 km2 surface area”. 

 

Like we earlier alluded to, we now added statements in our discussion section to address the 

limitations of the method and to point on what future research could address. 

 

 

 

Reviewer Comments 

b) the authors found it strange the fact that I reduce (sic) the work of Haile et al. (2009) and 

Rientjes et al. (2013), but I don’t know how they came to this conclusion. I have never doubted 

about the quality of these two references; I don’t even mention the work of Haile et al. (2009) 

in my review. My comment on Rientjes et al. (2013) is that this study is not an appropriate 

reference for that specific part of the text because (as I mentioned in my first review): “it is not 

a study that assesses the effects of water bodies on rainfall patterns and, therefore, not a suitable 

reference to support the demand for such analysis”. 

 

Author Response 

https://doi.org/10.5194/hess-2016-33
https://doi.org/10.5194/hess-2016-33
https://doi.org/10.5194/hess-2016-33
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To satisfy the reviewer we have removed the work by Rientjes et al. (2013). In our previous 

rebuttal we argued why we think that the reference is relevant but are of the opinion that 

repeating our arguments is not functional.  

 

Reviewer Comments 

There is another reference in the manuscript from Haile et al. (2015, DOI: 

10.1016/j.atmosres.2014.11.011) that I also highly respect and that supports my arguments 

about the bias of elevation and distance to lakes. In this paper, it is stated that “total bias has a 

decreasing trend stretching from the mountain areas towards the lake suggesting elevation 

dependence” and that “the total bias of the wet season decreases when approaching the lake 

and as elevation decreases”. 

 

Author response 

Based on our knowledge of the Zambezi study area and detailed fieldwork we have conducted 

over the years in various other study areas in Africa, we are of the opinion that bias induced 

by elevation as well as distance to large scale open water bodies needs to be assessed so to 

further clarify on performance aspects of satellite rainfall estimation. We note that in Haile et 

al. (2015), the authors had many more stations at short distance (< 25 km) to induce signal in 

the bias of elevation and distance to large scale open water bodies. Findings in this study 

suggest that a dense, well designed, network is needed and refer to (Ciach and Krajewski, 

2006) who present such analysis for a dense experimental network of 53 stations. 

 

Reviewer Comments 

Concerning the definition of large water bodies, the authors responded that “The threshold is 

defined based on knowledge of the water bodies in the study area. A preliminary analysis on 

300 water bodies in the study area revealed that only surface areas 700 km2 induce significant 

effect on rainfall patterns”, but there is no explanation of this preliminary analysis or criteria 

in their response that is reflected in the manuscript. 

 

Authors response 

Paragraph now reads: “The threshold is defined based on knowledge of the water bodies in 

the Zambezi basin study area and criteria based on the detailed fieldwork the authors have 

conducted over the years in various other study areas in Africa (such as Lake Tana in Ethiopia 

and Lake Naivasha in Kenya). The relationship between lake surface area and CMORPH bias 
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on 300 water bodies in the study area shows that at a threshold of 700 km2, a signal is induced 

to warrant the removal from the analysis of all water bodies with surface area < 700 km2”. 

 

Reviewer Comments 

The improvements of the figures did not follow all my suggestions. Again, the authors do not 

need to follow my suggestions if they have a good reason for their original choice. Moreover, 

for some situations, the authors decided to follow my suggestions but using questionable 

methods to do it (e.g., the authors stretched Fig. 3 horizontally to adjust the x:y scale, and now 

it looks questionable). 

 

Authors response 

The authors are at times presented with so many reviewers who make multiple and contrasting 

suggestions on figures. At times some reviewers suggest removal of some figures, turning some 

figures into tables or supplement text with tables. Example is when Anonymous Referee #2 

suggested that authors consider using a table to expand Section 3.1.2 on gauge data 

description. Author’s Response and changes in the manuscript then:  

“We have included a table under supplementary data that shows the rain gauge stations in the 

Zambezi subbasins showing x and y location, sub-basin they belong to, year of data availability, 

% of missing gaps, station elevation and distance from large open water bodies”.  

 

When opposing comments are received, the authors use their own preference. Example is 

shown for Figure 1 comments where authors eventually used own discretion to come up with 

an improved map for Figure 1 (see below) after 3 reviewers made contrasting suggestions.   

 

Anonymous Referee #1 comment 

Figure 1……Also, it would practical to add small map showing where the Zambezi is located 

in Africa. 

 

Anonymous Referee #2 comment 

 

Figure 1, use differences in colours and symbols for the gauges to indicate in which height and 

distance category they fall. 

 

Referee #3 comment 

Figure 1: a) the map is polluted with unnecessary information: African country names (in the 

continental map – then this map can be reduced to give some more space to the main map), 

rainfall gauge station names; b) the elevation palette is not helping its visualization 

(suggestion: leave it as monochromatic); c) Please improve the river streamline; d) since the 

results are sectioned in lower, middle and upper Zambezi, it would be very useful show these 

regions in this map. 

 

Author’s changes on the figure in response to the comments by referees 1,2 and 3. 
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Figure 1 was improved to include different colours of the rain gauges according to the 3 

elevation zones. However, we could not differentiate the colours again for the distance zones 

since this would make Figure 1 unreadable. To improve visibility, we also could not add a map 

that shows where the Zambezi basin is in relation to Africa. We also added the Lower, Middle 

and Upper Zambezi basin boundaries but still kept the station names readable (see Figure 1 

below).  

 

 

Figure 1: Zambezi River Basin from Africa with sub basins, major lakes, elevation, and locations and names of the 60 rain 

gauging stations (in each respective elevation zone) used in this study. 

 

Figure 3 is now separated into (a) and (b) to improve visualisation and to maintain aspect 

ratio. 

 

Reviewer Comments 

Authors have now included some data related to the study, but I could not find any data 

statement reporting it. 

 

Author Response 
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Besides Appendices 1 and 2, a data statement is now included following reviewer comment as 

below. 

Supplementary data consists of shapefiles of the study area boundary, sub-basin boundary 

location of the 60 rain gauges and location of lakes (Fig. 1). Additional material provided is 

the raster files of uncorrected CMORPH bias (%) making up Fig. 2. Raster files of daily and 

yearly uncorrected CMORPH and gauge rainfall from 1998-2013 are also provided.  

 

Reviewer Comments 

At the same time, there is no metadata to explain necessary information such as units. 

 

Author Response 

A metadata has been included as supplementary file to explain necessary information such as 

units, temporal and spatial extent of data. 

Metadata 

Data Format Temporal 

extent 

Spatial extent Units Coordinate 

System 

Subbasins Shapefile  Zambezi basin  WGS 1984 

Lakes Shapefile  Zambezi basin  WGS 1984 

Rain gauge Shapefile  60 stations in 

Zambezi basin 

 WGS 1984 

Bias (%) Raster 

(tiff) 

1998-2013 Zambezi basin % WGS 1984 

Mean Annual 

Precipitation 

(Gauge and 

Uncorrected 

Rainfall) 

Raster 

(tiff) 

Annual from 

1998-2013 

Zambezi basin mm yr-1 WGS 1984 

Mean Daily 

Precipitation 

(Gauge and 

Uncorrected 

Rainfall) 

Raster 

(tiff) 

Daily from 

1998-2013 

Zambezi basin mm d-1 WGS 1984 
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…...................................................................................................................................... 

 

Response to Editor Comments 

 

Editor Decision: Publish subject to minor revisions (review by editor) (15 Jan 2019) by 

Hannah Cloke 

 

Editor Comments 

 

You will see that Referee #3 considers that the work is of poor quality and does not meet the 

standards for HESS and has recommended reject and resubmit. 

However, I have read the manuscript and all previous reviews now very carefully, and I believe 

that this manuscript is of higher quality than the reviewer. 

 

Author Response 

 

We thank the Editor for her judgement. We explored and exploited the available rain gauge 

data set so to obtain meaningful results for many aspects that relate to satellite rainfall 

performance. It is a pity that reviewer 3 has a very strong focus on only one aspect of our 

finding. At the same time, we became more aware that a much more dense and well-designed 

rain gauge network is preferred to assess bias effects at short distances to a large-scale water 

body. We address this aspect more explicit in the discussion section and hope to comply with 

the editors demands to place findings of this study in further context.  

 

Editor Comments 

I do however think that there remain some issues to deal with. Where the referee remains 

unhappy, for example the removal of the analysis on distance effects, please add in a 

substantially expanded section on the limitations of your approach and what further analysis 

you could do to enhance this work in further research. 

 

Author Response 

We thank the reviewer for the comments which we believe will help to improve and finalise this 

work. The authors have endeavoured to make sure all concerns raised by reviewer 3 are 

addressed to the best of their ability. On the issue of distance from large scale open water 

bodies, future research will look at the effects of rainfall variability at shorter distances from 

large scale open water bodies. As such the authors through ongoing research in the Zambezi 

basin are installing rain gauges at < 10km distances since field data used in this study clearly 
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show effects at much shorter distances to large scale open water bodies to assess the signal in 

bias in the satellite rainfall products. The already installed few rain gauges used for this study 

are not uniformly distributed to allow unbiased analysis hence the need to install new rain 

gauges for future research. 

  

Editor Comments 

Please reread the original referee comment mentioning Rientjes et al. (2013) and address this 

again as I believe there has been some misunderstanding. 

 

Author Response 

As preferred by reviewer 3, we have removed the citation Rientjes et al. (2013) since findings 

in that study do not strongly relate to the objectives in the current study.  

Editor Comments 

Please go through the referee comments one by one and respond to the remaining criticisms. I 

believe that most of these can be addressed in a similar way to above, by providing further 

scientific justification and explanation within the manuscript or by providing further specific 

details on limitations of your approach. 

 

Author Response 

We tried to answer to the criticism by reviewer 3. Following recommendation by the Editor, we 

have provided further description and explanation in the manuscript in discussion and 

conclusion sections. Not only is this for effects of distance to large scale open water bodies but 

also on other objectives for example the effects of length of sequential window sizes for selected 

bias correction schemes which is not investigated for the different bias correction schemes. 

 

Editor Comments 

 

I would also like you to check again that you have addressed fully the comments on the figures 

and data of the referee. 

 

Author Response 

We have meticulously improved all figures and tables and description of supplementary 

material. Figure 3 is now separated into (a) and (b) to improve visualisation and to maintain 

aspect ratio. 
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We have included a detailed data statement and a metadata to describe the nature of the data 

we have included to be published together with this manuscript. 

 

We have also made sure that Figures 3a, 3b and 6 have the same X and Y length scale that go 

from 0 to 12. Previously Figure 6 was going from 0 to 10.  

 

Editor Comments 

Non-public comments to the Author: 

 

With apologies for the delay in processing this manuscript. It has taken some time to read back 

all previous comments and reviews in order to come to a decision. 

 

Author Response 

 

We thank the Editor for the patience in reading through all different versions of this manuscript.  

 

 

Additional References 

Ciach, G. J. and Krajewski, W. F.: Analysis and modeling of spatial correlation structure in 

small-scale rainfall in Central Oklahoma, Adv. Water Resour., 29(10), 1450–1463, 

doi:https://doi.org/10.1016/j.advwatres.2005.11.003, 2006. 
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Abstract 

Satellite Rainfall Estimates (SRE) are prone to bias as they are indirect derivatives of the 

visible, infrared, and/or microwave cloud properties, hence SREs need correction. We evaluate 

the influence of elevation and distance from large scale open water bodies on bias for Climate 

Prediction Center-MORPHing (CMORPH) rainfall estimates in the Zambezi Basin. The 

effectiveness of five linear/non-linear and time-space variant/invariant bias correction schemes 

was evaluated for daily rainfall estimates and climatic seasonality. Schemes used are: Spatio-

temporal Bias (STB), Elevation zone bias (EZ), Power transform (PT), Distribution 

transformation (DT) and the Quantile mapping based on an empirical distribution (QME). We 

used daily time series (1998-2013) from 60 gauge stations and CMORPH SREs for the 

Zambezi Basin. To evaluate effectiveness of the bias correction techniques, spatial and 

temporal cross-validation was applied based on 8 stations and on the 1998-1999 CMORPH 

time series, respectively. For correction, STB and EZ schemes proved to be more effective in 

removing bias. STB improved the correlation coefficient and Nash Sutcliffe efficiency by 50 

% and 53 % respectively and reduced the root mean squared difference and relative bias by 25 

% and 33 % respectively. Paired t-tests showed that there is no significant difference (p < 0.05) 

in the daily means of CMORPH against gauge rainfall after bias correction. ANOVA post-hoc 

tests revealed that the STB and EZ bias correction schemes are preferable. Bias is highest for 

very light rainfall (< 2.5 mm d-1), for which most effective bias reduction is shown, in particular 

for the wet season. Similar findings are shown through quantile-quantile (q-q) plots. The spatial 

cross-validation approach revealed that the majority of the bias correction schemes removed 

bias by > 28 %. The temporal cross-validation approach showed effectiveness of the bias 

correction schemes. Taylor diagrams show that station elevation has an influence on CMORPH 

performance. Effects of distance >10 km from large scale open water bodies are minimum 

whereas the effect at shorter distances are indicated but not conclusive by lack of rain gauges. 

Findings of this study show the importance of applying bias correction to SREs. 

 

Keywords: distance zone, elevation zone, satellite rainfall estimates, spatio-temporal bias, 

Taylor diagram 
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1. Introduction 

Correction schemes for rainfall estimates are developed for climate models (Maraun, 2016; 

Grillakis et al., 2017; Switanek et al., 2017), for radar approaches (Cecinati et al., 2017;Yoo et 

al., 2014) and for satellite based, multi-sensor approaches (Najmaddin et al., 2017;Valdés-

Pineda et al., 2016). In this study focus is on satellite rainfall estimates (SREs) to improve 

reliability in spatio-temporal rainfall representation. 

Studies in satellite based rainfall estimation show that estimates are prone to systematic and 

random errors (Gebregiorgis et al., 2012;Habib et al., 2014;Shrestha, 2011; Tesfagiorgis et al., 

2011; Vernimmen et al., 2012;Woody et al., 2014). Errors result primarily from the indirect 

estimation of rainfall from visible (VIS), infrared (IR), and/or microwave (MW) based satellite 

remote sensing of cloud properties (Pereira Filho et al., 2010; Romano et al., 2017). Systematic 

errors in SREs commonly are referred to as bias, which is a measure that indicates the 

accumulated difference between rain gauge observations and SREs. Bias in SREs is expressed 

for rainfall depth (Habib et al., 2012b), rain rate (Haile et al., 2013) and frequency at which 

rain rates occur (Khan et al., 2014). Bias may be negative or positive where negative bias 

indicates underestimation whereas positive bias indicates overestimation (Liu, 2015; Moazami 

et al., 2013). 

 Recent studies on the National Oceanic and Atmospheric Administration (NOAA) Climate 

Prediction Center-MORPHing (CMORPH) (Wehbe et al., 2017;Jiang et al., 2016; Liu et al., 

2015; Haile et al., 2015) reveal that accuracy of this satellite rainfall product varies across 

different regions, but causes are not directly identifiable. As such correction schemes serve to 

reduce systematic errors and to improve applicability of SREs. Correction schemes rely on 

assumptions that adjust errors in space and/or time (Habib et al., 2014). Some correction 

schemes consider correction only for spatial distributed patterns in bias, commonly known as 

space variant/invariant. Approaches that correct for spatially averaged bias have roots in radar 

rainfall estimation (Seo et al., 1999) but are unsuitable for large scale basins (> 5,000 km2) 

where rainfall may substantially vary in space (Habib et al., 2014). Studies by Tefsagiorgis et 

al. (2011) in Oklahoma (USA) and Müller and Thompson (2013) in Nepal concluded that space 

variant correction schemes are more effective in reducing CMORPH and TRMM bias than 

space invariant correction schemes. In a study conducted in the Upper Blue Nile basin in 

Ethiopia, Bhatti et al. (2016) show that CMORPH bias correction is most effective when bias 

factors are calculated for 7-day sequential windows. 

Bias correction schemes based on regression techniques have reported distortion of frequency 

of rainfall rates (Ines and Hansen, 2006;Marcos et al., 2018). Multiplicative shift procedures 

tend to adjust SRE rainfall rates, but Ines and Hansen (2006) reported that they do not correct 

systematic errors in rainfall frequency of climate models. Non-multiplicative bias correction 

schemes preserve the timing of rainfall within a season (Fang et al., 2015;Hempel et al., 2013). 
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Studies that have applied non-linear bias correction schemes such as Power Function report 

correction of extreme values (depth, rate and frequency) thus mitigating the underestimation 

and overestimation of CMORPH rainfall (Vernimmen et al., 2012). The study by Tian (2010) 

in the United States noted that the Bayesian (likelihood) analysis techniques are found to over-

adjust both light and heavy CMORPH rainfall. 

 Bias often exhibits a topographic and latitudinal dependency as, for instance, shown for 

CMORPH product in the Nile Basin (Bitew et al., 2011; Habib et al., 2012a; Haile et al., 2013). 

For Southern Africa, Thorne et al. (2001), Dinku et al. (2008) and Meyer et al. (2017) show that 

bias in rainfall rate and frequency can be related to location, topography, local climate and 

season. First studies in the Zambezi Basin (Southern Africa) on SREs show evidence that 

necessitates correction of SREs. For example, Cohen Liechti (2012) show bias in CMORPH 

SREs for daily rainfall and for accumulated rainfall at monthly scale. Matos et al. (2013), 

Thiemig et al. (2012) and Toté et al. (2015) show that bias in rainfall depth at time intervals 

ranging from daily to monthly varies across geographical domains in the Zambezi Basin and 

may be as large as ±50 %. Besides elevation, there are indications that presence of Lake Tana 

(≈ 3050 km2, Ethiopia) affects rainfall at short distances (< 10km) (Haile et al., 2009). 

For less developed areas such as in the Zambezi Basin that is selected for this study, studies on 

SREs are limited. This is despite the strategic importance of the basin in providing water to 

over 30 million people (World Bank, 2010a). An exception is the study by Beyer et al. (2014) 

on correction of the TRMM-3B42 product for agricultural purposes in the Upper Zambezi 

Basin. Studies (Cohen Liechti et al., 2012; Meier et al., 2011) on use of SREs in the Zambezi 

River Basin mainly focused on accuracy assessment of the SREs using standard statistical 

indicators with little or no effort to perform bias correction despite the evidence of errors in 

these products. The use of uncorrected SREs is reported for hydrological modelling in the Nile 

Basin (Bitew and Gebremichael, 2011) and Zambezi Basin (Cohen Liechti et al., 2012), 

respectively, and for drought monitoring in Mozambique (Toté et al., 2015). The poor 

performance of SREs in above studies urges for bias correction to result in more accurate 

rainfall representation. The selection of CMORPH satellite rainfall for this study is based on 

successful applications of bias corrected CMORPH estimates in African basins for 

hydrological modelling (Habib et al., 2014) and flood predictions in West Africa (Thiemig et 

al., 2013). In first publications on CMORPH, Joyce et al. (2004) describe CMORPH as a 

gridded precipitation product that estimates rainfall with information derived from IR data and 

MW data. CMORPH combines the retrieval accuracy of passive MW estimates with IR 

measurements which are available at high temporal resolution but with low accuracy. The 

important distinction between CMORPH and other merging methods is that the IR data are not 

used for rainfall estimation but used only to propagate rainfall features that have been derived 

from microwave data. The flexible ‘morphing’ technique is applied to modify the shape and 

rate of rainfall patterns. CMORPH is operational since 2002 for which data is available at the 

CPC of the National Centers for Environmental Prediction (NCEP) (after 
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http://www.ncep.noaa.gov/). Recent publications on CMORPH in African basins exist (Wehbe 

et al., 2017; Koutsouris et al., 2016; Jiang et al., 2016; Haile et al., 2015). However, studies on 

bias correction of CMORPH in the semi-arid Zambezi Basin are limited. 

In this study we use daily CMORPH and rain gauge data for Upper, Middle, and Lower 

Zambezi basins to (1) evaluate if performance of CMORPH rainfall is affected by elevation 

and distance from large scale open water bodies (2) evaluate the effectiveness of linear/non-

linear and time-space variant/invariant bias correction schemes and (3) assess the performance 

of bias correction schemes to represent different rainfall rates and climate seasonality. Analysis 

serve to improve reliability of SREs applications in water resource applications in the Zambezi 

basin such as for rainfall-runoff modeling. 

 

1. Study area 

The Zambezi River is the fourth-longest river (~2,574 km) in Africa with basin area of 

~1,390,000 km2 (~4 % of the African continent). The river drains into the Indian Ocean and 

has mean annual discharge of 4,134 m3/s (World Bank, 2010a). The river has its source in 

Zambia with basin boundaries in Angola, Namibia Botswana, Zambia, Zimbabwe and 

Mozambique (Figure. 1). The basin is characterized by considerable differences in elevation 

and topography, distinct climatic seasons and presence of large-scale open water bodies and, 

as such, makes the basin well suited for this study. The basin is divided into three sub-basins 

i.e., the Lower Zambezi comprising the Tete, Lake Malawi/Shire, and Zambezi Delta basins, 

the Middle Zambezi comprising the Kariba, Mupata, Kafue, and Luangwa basins, and the 

Upper Zambezi comprising the Kabompo, Lungwebungo, Luanginga, Barotse, and 

Cuando/Chobe basins (Beilfuss, 2012). 

The elevation of the Zambezi basin ranges from < 200 m (for some parts of Mozambique) to 

>1500 m above sea level (for some parts of Zambia). Large scale open water bodies in and 

around the basin are Kariba, Cabora Bassa, Bangweulu, Chilwa and Nyasa. The Indian Ocean 

lies to the east of Mozambique. Typical landcover types are woodland, grassland, water 

surfaces and cropland (Beilfuss et al., 2000). The basin lies in the tropics between 10 and 20 

degrees South, encompassing humid, semi-arid and arid regions dominated by seasonal rainfall 

patterns associated with the Inter-Tropical Convergence Zone (ITCZ), a convective front 

oscillating along the equator (Cohen Liechti et al., 2012). The movement of the ITCZ in 

Southern hemisphere results in the peak rainy season that occurs during the summer (October 

to April) and the dry winter months (May-Sept) is a result of the shifting back of ITCZ towards 

the equator (Schlosser and Strzepek, 2015). The weather system in South Eastern parts such as 

Mozambique is dominated by Antarctic Polar Fronts (APF) and Tropical Temperate Troughs 

(TTTs) occurrence which is positively related to La Niña and Southern Hemisphere planetary 

waves, while El Niño-Southern Oscillation (ENSO) appears to play a significant role in causing 

dry conditions in the basin (Beilfuss, 2012). 

http://www.ncep.noaa.gov/
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Figure 1: Zambezi River Basin from Africa with sub basins, major lakes, elevation, and locations and names of the 60 rain 

gauging stations (in each respective elevation zone) used in this study. 

The basin is characterized by high annual rainfall (> 1 400 mm yr-1) in the northern and north-

eastern areas and by low annual rainfall (< 500 mm yr-1) in the southern and western parts 

(World Bank, 2010b). Due to this rainfall distribution, northern tributaries in the Upper 

Zambezi sub-basin contribute 60 % of the mean annual discharge (Tumbare, 2000). The river 

and its tributaries are subject to seasonal floods and droughts that have devastating effects on 

the people and economies of the region, especially the poorest members of the population 

(Tumbare, 2005). It is not uncommon to experience both floods and droughts within the same 

hydrological year. 

3.  Materials and Methodology 

3.1. Rainfall data 

3.1.1. CMORPH 

For this study, time series of CMORPH rainfall images (1998-2013)  at 8 km × 8 km, 30-minute 

resolution were selected and downloaded from the NOAA repository 

(ftp://ftp.cpc.ncep.noaa.gov/prep/CMORPH_V1.0/CRT/8km.30m/). Images are downloaded 

by means of the GeoNETCAST ISOD toolbox of ILWIS GIS software 

(http://52north.org/downloads/). Half hourly estimates were aggregated to daily totals to match 

the observation interval of gauge based daily rainfall. 

ftp://ftp.cpc.ncep.noaa.gov/prep/CMORPH_V1.0/CRT/8km.30m/
http://52north.org/downloads/
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3.1.2. Rain gauge network 

Time series of daily rainfall from 60 stations were obtained from meteorological departments 

in Botswana, Malawi, Mozambique, Zambia and Zimbabwe for stations that cover the study 

area. All the stations are standard type rain gauges with a measuring cylinder whose unit of 

measurement is millimetres (mm).   

Some stations are affected by data gaps but the available time series are of sufficiently long 

duration (see Appendix 1) to serve the objectives of this study. Stations are irregularly 

distributed across the vast basin and are located at elevation between 3 m to 1575 m (Figure 

1). The minimum, maximum and average distance between the rain gauges is 3.5 km (Zumbo 

in Mozambique-Kanyemba in Zimbabwe), 1570 km (Mwinilunga in Zambia-Marromeu in 

Mozambique) and 565 km respectively. Distances to large scale open water bodies range 

between 5 km and 615 km. This allows us to evaluate if elevation and distance to large scale 

open water bodies affect CMORPH performance. 

3.1.1. Comparison of CMORPH and gauge rainfall 

In this study, we compare gauge rainfall at point scale to CMORPH satellite derived rainfall 

estimates at pixel scale (point-to-pixel). Comparison is at a daily time interval covering the 

period 1998-2013, following Cohen Liechti et al. (2012), Dinku et al. (2008), Haile et al. 

(2014), Hughes (2006), Tsidu (2012) and Worqlul et al. (2014) who report on point-to-pixel 

comparisons in African basins. We apply point-to-pixel comparison to rule out any aspect of 

interpolation error as a consequence of the low-density network with unevenly distributed 

stations. We refer to Heidinger et al. (2012), Li and Heap (2011), Tobin and Bennett (2010) and 

Yin et al. (2008) who report that interpolation introduces unreliability and uncertainty to pixel-

based rainfall estimates. Also, Worqlul et al. (2014) describe that for pixel-to-pixel comparison, 

there is demand for a well distributed rain gauge network that would not hamper accurate 

interpolation. 

3.2. Elevation and distance from large scale open water bodies 

Habib et al. (2012a) and Haile et al. (2009) for the Nile Basin reveal that elevation affect 

performance of SREs. Findings in the latter two studies signal that performance possibly also 

may be affected by presence of Lake Tana. To assess both influences, we classified the Zambezi 

Basin into 3 elevation zones for which the hierarchical cluster ‘within-groups linkage’ method 

in the Statistical Product and Service Solutions (SPSS) software was used (Table 1). Based on 

Euclidian distance to large-scale open water bodies, 4 arbitrary distance zones are defined to 

group stations (Table 1). A detailed description on the individual stations, their elevation and 

distance to large-scale open water bodies is provided in Appendix 1. The Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) based DEM of 30 m resolution 

obtained from http://gdem.ersdac.jspacesystems.or.jp/, is used to represent elevation across the 

Zambezi Basin. The Euclidian distance of each rain gauge location to large-scale open water 

http://gdem.ersdac.jspacesystems.or.jp/
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bodies is defined in a GIS environment through the distance calculation algorithm. Large-scale 

open water bodies are defined as perennial open water bodies with surface area > 700 km2. The 

threshold is defined based on knowledge of the water bodies in the Zambezi basin study area 

and the detailed fieldwork the authors have conducted over the years in various other study 

areas in Africa (such as Lake Tana in Ethiopia and Lake Naivasha in Kenya). The relationship 

between lake surface area and CMORPH bias on 300 water bodies in the study area shows that 

at a threshold > 700 km2, a signal is induced to warrant the removal from the analysis of all 

water bodies with surface area < 700 km2. 

Table 1: Elevation and distance from large scale open water bodies 

Zone ID Elevation (m) No. of stations Mean elevation of stations (m) 

Zone 1 < 250 8 90 

Zone 2 250-950 21 510 

Zone 3 > 950 31 1140 

    

Zone ID Distance (km) No. of stations Mean distance to large-scale open water bodies (km) 

Zone 1 < 10 km 4 5 

Zone 2 10 - 50 10 35 

Zone 3 50 - 100 18 80 

Zone 4 > 100 28 275 

 

3.3. Bias correction schemes 

Bias correction schemes evaluated in this study are the Spatio-temporal bias (STB), Elevation 

zone bias (EZ), Power transform (PT), Distribution transformation (DT), and the Quantile 

mapping based on an empirical distribution (QME), this by our aim to correct for bias while 

daily rainfall variability is preserved.  The five schemes are chosen based on merits documented 

in literature (Bhatti et al., 2016; Habib et al., 2014; Teutschbein and Seibert, 2013; Themeßl et 

al., 2012; Vernimmen et al., 2012). We note that findings on the performance of selected bias 

correction schemes in literature do not allow for generalization but findings only apply to the 

respective study domains (Wehbe et al., 2017; Jiang et al., 2016; Liu et al., 2015; Haile et al., 

2015). 

In the procedure to define a time window for bias correction we follow Habib et al. (2014) and 

Bhatti et al. (2016) who in the Lake Tana Basin (Ethiopia) carried out a sensitivity analysis on 

moving time windows and on sequential time windows. Window lengths between of 3 and 31 

days are tested. Findings indicated that a 7-day sequential time window for bias factors is most 

appropriate but only when a minimum of five rainy days were recorded within the 7-day 

window with a minimum rainfall accumulation depth of 5 mm d-1, otherwise no bias is 

estimated (i.e. a value of 1 applies as bias correction factor). Preliminary tests in this study on 

5 and 7-day moving and sequential windows on 20 individual stations distributed over the three 
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elevation zones indicates that the 7-day sequential approach is well applicable in the Zambezi 

Basin. As such, the approach was selected. 

The bias correction factors are calculated using only rain days (rainfall ≥ 1 mm d-1). Otherwise 

in cases where both the gauge and satellite have zero values (Rain gauge (G)=0 and CMORPH 

(S) =0), correction is not applied and the SRE value remains 0 mm d-1. 

Following Bhatti et al. (2016), we spatially interpolate the bias correction factors of the rain 

gauges so that SREs at all pixels can be corrected. For interpolation, the Universal Kriging was 

applied. Thus, to systematically correct all CMORPH estimates, station based bias factors for 

each time window are spatially interpolated to arrive at spatial coverage across the study area 

and to allow for comparison with other approaches. 

3.3.1. Spatio-temporal bias correction (STB) 

This linear bias correction scheme has its origin in the correction of radar-based precipitation 

estimates (Tesfagiorgis et al., 2011) and downscaled precipitation products from climate 

models. The CMORPH daily rainfall estimates (S) are multiplied by the bias correction factor 

for the respective sequential time window for individual stations resulting in corrected 

CMORPH estimates (𝑆𝑇𝐵) in a temporally and spatially coherent manner (Equation [1]).  

 

  𝑆𝑇𝐵 =

( )

( )


=

=

=

=

l-dt

dt

l-dt

dt

ti,S

ti,G
S         [1] 

Where:   

G = gauged rainfall (mm d-1) 

i  =  gauge number 

d = day number 

t  = julian day number 

l  = length of a time window for bias correction 

 

The advantages of this bias correction scheme are that it is straightforward and easy to 

implement due to its simplicity and modest data requirements. However, just like any 

multiplicative shift procedures of bias correction, STB has challenges in correcting systematic 

errors in rainfall frequency particularly the wet-day frequencies (Lenderink et al., 2007; 

Teutschbein and Seibert, 2013). 

3.3.2. Elevation zone bias correction (EZ) 

This bias scheme is proposed in this study and aims at correcting satellite rainfall for elevation 

influences. This method groups rain gauge stations into 3 elevation zones based on station 

elevation. The grouping in this study is based on the hierarchical clustering technique, expert 
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knowledge about the study area but also guided by relevant past studies in the basin (e.g. World 

Bank, 2010b; Beilfuss, 2012). Each zone has the same bias correction factor but differs across 

the three zones. In the time domain bias factors vary following the 7-day sequential window 

approach. The corrected CMORPH estimates (EZ) at daily time interval are obtained by 

multiplying the uncorrected CMORPH daily rainfall estimates (S) by the daily bias correction 

factor of each elevation zone.  

 

EZ =
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The merit of this bias correction scheme is that the effects of elevation on rainfall depth are 

accounted for.  SREs often have difficulties in capturing rainfall events due to orographic effects 

and thus require elevation-based correction. 

 

3.3.3. Power transform (PT) 

The non-linear PT bias correction scheme has its origin in studies of climate change impact 

(Lafon et al., 2013). Vernimmen et al. (2012) show that the scheme could be applied to correct 

satellite rainfall estimates for use in hydrological modelling and drought monitoring. The PT 

method uses an exponential form to adjust the standard deviation of rainfall series. The daily 

bias corrected CMORPH rainfall (PT) for a pixel that overlays a station is obtained using 

equation: 

   

𝑃𝑇  = aG(i,t) b          [3] 

Where: 

G = gauged rainfall (mm d-1) 

a = prefactor such that the mean of the transformed CMORPH values is equal to the 

mean of rain gauge rainfall 

b = factor calculated such that for each rain gauge the coefficient of variation (CV) of    

CMORPH matches the gauge based counter parts 

i  = gauge number 

t  = day number 

Optimized values for a and b are obtained through the generalized reduced gradient algorithm 

(Fylstra et al., 1998). Values for a and b vary for the 7-day time sequential window since 

correction is at daily time base. In the case of utilizing the PT method in a certain area (or for a 

certain period), the bias correction factor is spatially interpolated to result in comparable 

estimates with other bias correction schemes. The advantage of the bias scheme is that it adjusts 
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extreme precipitation values in CMORPH estimates (Vernimmen et al., 2012). PT has reported 

limitations in correcting wet-day frequencies and intensities (Leander et al., 2008; Teutschbein 

and Seibert, 2013). 

 

3.3.4. Distribution transformation (DT) 

DT is an additive bias correction approach which has its origin in statistical downscaling of 

climate model data (Bouwer et al., 2004). The method transforms a statistical distribution 

function of daily CMORPH rainfall estimates to match the distribution by gauged rainfall. The 

procedure to match the CMORPH distribution function to gauge rainfall based counter parts is 

described in equations [4-8]. The principle to matching is that the difference in the mean value 

and differences in the variance are corrected for, in the 7-day sequential window. First, the bias 

correction factor for the mean is determined by equation [4]: 

𝐷𝑇𝑢 =
𝐺𝑢

𝑆𝑢
                     [4] 

𝐺𝑢 and S𝑢 are mean values of 7-day gauge and CMORPH rainfall estimates. 

 

Secondly, the correction factor for the variance (𝐷𝑇𝜏) is determined by the quotient of the 7-

day standard deviations, 𝐺𝜏 and S𝜏, for gauge and CMORPH respectively. 

 

𝐷𝑇𝜏 =
𝐺𝜏

S𝜏
           [5] 

Once the correction factors which vary within a 7-day time sequential window are established, 

they are then applied to correct all daily CMORPH estimates (S) through equation [6] to obtain 

corrected CMORPH rainfall estimate (DT ). The parameters DTu and are developed within a 

7-day sequential window but correction is at daily time intervals. 

 

𝐷𝑇 = (𝑆(𝑖, 𝑡) − 𝑆𝑢)𝐷𝑇𝜏 + 𝐷𝑇𝑢 ∗ 𝑆𝜏      [6] 

 

Uncorrected CMORPH daily values are returned if [6] results in negative values. The merit of 

this bias correction scheme is that it corrects wet-day frequencies and intensities. The 

disadvantage of this bias correction scheme is that adding the gauge based mean deviation to 

the satellite data destroys the physical consistency of the data. In addition, the method might 

result in the generation of too few rain days in the wet season, and sometimes the mean of daily 

intensities might be unrealistically corrected (Johnson and Sharma, 2011; Teutschbein and 

Seibert, 2013). 

 

3.3.5. Quantile mapping based on an empirical distribution (QME) 
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This is a quantile based empirical-statistical error correction method with its origin in empirical 

transformation and bias correction of regional climate model-simulated precipitation (Themeßl 

et al., 2012). The method corrects CMORPH precipitation based on empirical cumulative 

distribution functions (ecdfs) which are established for each 7-day time window and for each 

station. The bias corrected rainfall (QME) using quantile mapping are expressed in terms of the 

empirical cumulative distribution function (ecdf) and its inverse (ecdf-1). Parameters apply to a 

7-day sequential window but correction is then at daily time interval with bias spatially 

averaged for the entire domain to allow for comparison with other approaches 

 

𝑄𝑀𝐸 =  𝑒𝑐𝑑𝑓𝑜𝑏𝑠
−1(𝑒𝑐𝑑𝑓𝑟𝑎𝑤(𝑆(𝑖, 𝑡)))          [7] 

Where: 

𝑒𝑐𝑑𝑓𝑜𝑏𝑠= empirical cumulative distribution function for the gauge-based observation 

𝑒𝑐𝑑𝑓𝑟𝑎𝑤 = empirical cumulative distribution function for the uncorrected CMORPH  

The advantage of this bias scheme is that it corrects quantiles and preserves the extreme 

precipitation values (Themeßl et al., 2012). However, it also has its limitation due to the 

assumption that both the observed and satellite rainfall follow the same proposed distribution, 

which may introduce potential new biases. 

3.4. Rainfall rates and seasons 

To assess the performance of SREs for different classes of daily rainfall rates five classes are 

defined which indicate: very light (< 2.5 mm d-1), light (2.5-5.0 mm d-1), moderate (5.0-10.0 

mm d-1), heavy (10.0-20.0 mm d-1) and very heavy rainfall (> 20.0 mm d-1). 

Furthermore, gauged rainfall was divided into wet and dry seasonal periods to assess the 

influence of seasonality on performance of bias correction schemes. The wet season in the 

Zambezi Basin spans from October-March whereas the dry season spans from April-

September. 

3.5. Evaluation of CMORPH estimates 

Corrected and uncorrected CMORPH satellite rainfall estimates are evaluated with reference 

to rain gauge rainfall using statistics that measure systematic differences (i.e. percentage bias 

and Mean Absolute Error (MAE)), measures of association (e.g. correlation coefficient and 

Nash Sutcliffe Efficiency (NSE) and random differences (e.g. standard deviation of differences 

and coefficient of variation) (Haile et al., 2013). Bias is a measure of how the satellite rainfall 

estimate deviates from the rain gauge rainfall, and the result is normalised by the summation 

of the gauge values. A positive value indicates overestimation whereas a negative value 

indicates underestimation. The correlation coefficient (ranging between +1 and −1) represents 

the linear dependence of gauge and CMORPH data. MAE is the arithmetic average of the 
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absolute values of the differences between the daily gauge and CMORPH satellite rainfall 

estimates. The MAE is zero if the rainfall estimates are perfect and increases as discrepancies 

between the gauge and satellite become larger. NSE indicates how well the satellite rainfall 

matches the rain gauge observation and it ranges between - ∞ and 1, with NSE = 1 meaning a 

perfect fit (Nash and Sutcliffe, 1970). 

Equations [8-11] apply. 

 

𝑏𝑖𝑎𝑠 (%) =  
∑(𝑆−𝐺)

∑𝐺
∗ 100         [8] 

 

𝑅              =
∑( 𝐺− �̅�)(𝑆− �̅�)

√∑(𝐺− �̅�)2√∑(𝑆− �̅�)2
       [9] 

 

𝑀𝐴𝐸        =
1

𝑛
∑|𝑆 − 𝐺|                   [10] 

 

𝑁𝑆𝐸          =
∑(𝐺−𝑆)2

∑(𝐺− �̅�)2         [11] 

 

Where: 

S  = satellite rainfall estimates (mm d-1) 

𝑆̅  = mean of the satellite rainfall estimates (mm d-1) 

G  = rainfall by a rain gauge (mm d-1) 

�̅�  = mean values of rainfall recorded by a rain gauge (mm d-1) 

𝑛  =  number of observations 

 

3.6. Test for differences of mean 

To detect significant differences between gauge and satellite rainfall (corrected and 

uncorrected) and differences amongst the five bias correction methods described in Section 

3.3, we apply paired t-test and analysis of variance (ANOVA) tests. 

3.6.1. Paired t-tests 

A paired t-test was used to test whether there is a significant difference between rain gauge, 

uncorrected and bias corrected CMORPH satellite rainfall for the 52 rain gauges. Results are 

summarized for the Upper, Lower and Middle Zambezi. The paired t-test compares the mean 

difference of the values to zero. It depends on the mean difference, the variability of the 

differences and the number of data. The null hypothesis (H0) is that there is no difference in 

mean gauge and satellite daily rainfall (uncorrected and bias corrected). If the p-value is less 

than or equal 0.05 (5%), the result is deemed statistically significant, i.e., there is a significant 

relationship between the gauge and satellite rainfall (Wilks, 2006; Field, 2009). 

3.6.2. Analysis of Variance (ANOVA) test 
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The ANOVA-test aims to test whether there is a significant difference amongst the 5 bias 

correction techniques. The Null hypothesis (H0) is that there are no differences amongst the 

five bias correction schemes. We further determined which schemes differ significantly using 

3 post-hoc tests, namely: Tukey HSD, Scheffe and the Bonferroni (Brown, 2005; Kucuk et al., 

2018). Results are summarized for the Upper, Lower and Middle Zambezi. 

3.7. Taylor diagram 

We apply a Taylor diagram to evaluate differences in data sets generated by respective bias 

correction schemes by providing a summary of how well bias correction results match gauge 

rainfall in terms of pattern, variability and magnitude of the variability. Visual comparison of 

SRE performance is done by analysing how well patterns match each other in terms of the 

Pearson’s product-moment correlation coefficient (R), root mean square difference (E), and the 

ratio of variances on a 2-D plot (Lo Conti et al., 2014; Taylor, 2001). The reason that each point 

in the two-dimensional space of the Taylor diagram can represent the above three different 

statistics simultaneously is that the centered pattern of root mean square difference (𝐸𝑖), and 

the ratio of variances are related by the following: 

𝐸𝑖 = √σ𝑓
2 + σ𝑟

2 − 2σ𝑓σ𝑟𝑅                   [12] 

 

Where: 

σf and σr = standard deviation of CMORPH and rain gauge rainfall, respectively.   

 

Development and applications of Taylor diagrams have roots in climate change studies 

(Smiatek et al., 2016; Taylor, 2001) but also has frequent applications in environmental model 

evaluation studies (Cuvelier et al., 2007; Dennis et al., 2010; Srivastava et al., 2015).  Bhatti et 

al. (2016) propose the use of Taylor Diagrams for assessing effectiveness of SREs bias 

correction schemes. The most effective bias correction schemes will have data that lie near a 

point marked ‘reference’ on the x-axis, relatively high correlation coefficient and low root mean 

square difference. Bias correction schemes matching gauged based standard deviation have 

patterns that have the right amplitude. 

3.8. Quantile-quantile (q-q) plots 

A q-q plot is used to check if two datasets (in this case gauge vs CMORPH rainfall) can fit the 

same distribution (Wilks, 2006). A q-q plot is a plot of the quantiles of the first data set against 

the quantiles of the second data set. A 45-degree reference line is also plotted. If the satellite 

rainfall (corrected and uncorrected) has the same distribution as the rain gauge, the points 

should fall approximately along this reference line. The greater the departure from this 

reference line, the greater the evidence for the conclusion that the bias correction scheme is 

less effective (NIST/SEMATECH, 2001). 
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The main advantage of the q-q plot is that many distributional aspects can be simultaneously 

tested. For example, changes in symmetry, and the presence of outliers can all be detected from 

this plot. 

3.9. Cross validation of bias correction 

3.9.1.  Spatial cross-validation 

The spatial cross-validation procedure (hold-out sample) applied in this study, involves the 

withdrawal of 8 in-situ stations from the sample of 60 when generating bias corrected SREs 

for all pixels across the study area. Corrected SREs are then compared to the rain gauge rainfall 

of the withdrawn stations to evaluate closeness of match. From the sample of 8 we selected 2 

stations in the < 250 m elevation zone, 3 stations in the 250-950 m zone and 3 stations in > 950 

m elevation zone. Stations selected have elevation close to the average elevation zone value 

and are centred in an elevation zone. This left us with 52 stations for applying the bias 

correction methods and spatial interpolation. As performance indicators to evaluate results of 

cross-validation, we use the percentage bias, MAE, Correlation Coefficient and the estimated 

ratio which is obtained by dividing CMORPH rainfall totals and gauge-based rainfall totals for 

the 1999-2013 period. 

3.9.2.  Temporal cross-validation 

For evaluation of SREs in the time domain we followed Gutjahr and Heinemann (2013) to omit 

rainfall (both from gauge and satellite) for the 1998-1999 hydrological year to remain with 14 

years for bias correction of SREs. Bias corrected estimates for the 14 years are then evaluated 

against estimates for 1998-1999 period that served as reference. For evaluation we use the 

percentage bias, MAE, correlation coefficient and the estimated ratio, that all are averaged for 

the Upper, Middle and Lower Zambezi but also for the wet and dry seasons. 

4. Results and Discussion 

4.1.  Performance of uncorrected CMORPH rainfall 

The spatially interpolated values of bias (%) across the Zambezi Basin are shown in Figure 2. 

Areas in the central and western part of the basin have bias relatively close to zero suggesting 

good performance of the uncorrected CMORPH product. However, relatively large negative 

bias values (-20 %) are shown in the Upper Zambezi‘s high elevated areas such as Kabompo 

and northern Barotse Basin, in the south-eastern part of the basin such as Shire River Basin and 

in in the Lower Zambezi’s downstream areas where the Zambezi River enters the Indian Ocean. 

CMORPH overestimates rainfall locally in Kariba, Luanginga, and Luangwa basins by positive 

bias values. As such CMORPH estimates do not consistently provide results that match rain 

gauge observations. Since CMORPH estimates have pronounced error (-10 > bias (%) > 10), 

bias needs to be removed before the product can be applied for hydrological analysis and in 

water resources applications. Figure 2 also shows contours for rain gauge mean annual 
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precipitation (MAP) in the Zambezi Basin with higher values in the northern parts of the basin 

(Kabompo and Luangwa) compared to localised estimates of MAP such as in Shire River and 

Kariba sub-basins. 

 

Figure 2: The spatial variation of bias (%) for gauge vs uncorrected CMORPH daily rainfall (1998-2013) for the Zambezi 

Basin. The gauge-based isohyets for Mean Annual Precipitation (MAP) are shown in blue. 

 

4.1. Effects of elevation and distance from large-scale open water bodies on CMORPH 

bias 

Figure 3 shows Taylor diagrams with a comparison of basin lumped estimates of daily 

uncorrected time series (1999–2013) of CMORPH and gauge-based rainfall for the 3 elevation 

zones (Figure 3a) and 4 distance zones from large-scale open water bodies (Figure 3b). Here 

CMORPH performance is indicated by means of the root mean square difference (E), 

correlation coefficient (R) and standard deviation. Figures 3a and 3b show that standard 

deviations in the elevation zones and the distance zones (except for the < 10 km distance zone) 

are lower than the reference/rain gauge standard deviation which is indicated by the black arc 

(value of 8.45 mm d-1). The stations in the high elevation zone (> 950 m) and long-distance 

zone (> 100 km) reveal lower variability than stations at lower elevation and shorter distance 

zones. With respect to the reference line, CMORPH estimates that are lumped for respective 

elevation zones and distance to a large water body do not match standard deviation of rain 

gauge-based counterparts. Figure 3a and 3b also show that CMORPH standard deviations that 
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are close to gauge-based rainfall apply belongs to lower elevation and shorter distance zones. 

Based on the Taylor diagrams, the statistics (R and E) for uncorrected CMORPH show 

increasing performance for increasing elevation and increasing distance from large-scale water 

bodies. Specifically, stations in the lower elevation zones (< 250m) have lower R and higher E 

than the higher elevation zones (> 950 m). For shorter distance zones lower R and higher E is 

shown than for longer distance zones (> 100 km). These findings suggest that in general effects 

of distance to large scale water body are minimal except for distances <10 km.  

 

Figure 3a) Elevation zones                                                          
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Figure 3b) Distance zones                                                          

Figure 3. Time series of rain gauge (reference) vs CMORPH estimations, period 1999-2013, for elevation zones (Figure 

3a) and distance zones (Figure 3b) in the Zambezi Basin. The correlation coefficients for the radial line denote the 

relationship between CMORPH and gauge-based observations. Standard deviations on both the x and y axes show the 

amount of variance between the two-time series. The standard deviation of the CMORPH pattern is proportional to the 

radial distance from the origin. The angle between symbol and abscissa measures the correlation between CMORPH and 

rain gauge observations. The root mean square difference (red contours) between the CMORPH and rain gauge patterns is 

proportional to the distance to the point on the x-axis identified as "reference”. For details, see Taylor (2001). 

4.2. Evaluation of bias correction 

4.2.1. Standard statistics 

Figure 4 shows frequency-based statistics (mean and maximum) on accuracy of CMORPH 

rainfall estimates for each bias correction method. The ratio of cumulated estimates (1999-

2013) from rain gauge and CMORPH estimates for the Lower, Middle and Upper Zambezi 

sub-basins are shown. Results show that the bias of CMORPH moderately reduced for each of 

the five bias correction schemes. However, the effectiveness of the schemes varies spatially 
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with best performance in Lower and Upper Zambezi sub-basin and relatively poor performance 

in the Middle Zambezi sub-basin (see Figure 4). 

 

Figure 4: Frequency based statistics (mean, max and estimated ratio of gauged sum vs CMORPH sum for 1999-2013) of 

corrected CMORPH for Lower, Middle and Upper Zambezi Basin. 

Judging by the three performance indicators (mean, max and estimated ratio), results indicate 

that STB bias correction scheme is consistently effective in removing CMORPH rainfall bias 

in the Zambezi Basin. STB and PT effectively adjust for the mean of CMORPH rainfall 

estimates. Statistics in Figure 5 confirm these findings especially for the Upper Zambezi sub-

basin where the mean of corrected estimates improved by > 60 % from the mean of uncorrected 

estimates. In addition, PT in the Lower Zambezi, QME in both Middle and Upper Zambezi and 

STB in the Upper Zambezi were also effective (improvement by 16 %) in correcting for the 

highest values in the rainfall estimates. STB performs better than other bias schemes in 

reproducing rainfall for the Lower and Upper Zambezi sub-basin, where the ratio of gauge total 

to corrected CMORPH total is close to 1.0. 

Figure 5 shows the mean absolute error (MAE) and percentage bias (% bias) on the left axis 

and Nash Sutcliffe Efficiency (NSE) on the right axis as measures to evaluate performance of 

bias correction schemes in the Zambezi Basin. The effectiveness of the bias correction by all 

schemes varies over the different parts of the basin but is higher in the Lower and Upper 

Zambezi than in the Middle Zambezi. The STB, PT and EZ shows improved performance by 

exhibiting smaller MAEs compared to the uncorrected CMORPH (R-CMORPH). A greater 

improvement is shown for the Middle Zambezi where the uncorrected MAE of 1.89 mm d-1 is 

reduced to 0.86 mm d-1 after bias correction by the elevation zone bias correction scheme (EZ). 

The signal on improved performance for the Lower and Middle Zambezi as compared to the 

Upper Zambezi is also evident for the majority of the bias correction techniques. However, 

relatively large error remains in the MAE. 
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Figure 5: Percentage bias, Mean Absolute Error (left axis) and Nash Sutcliffe (NSE) (right axis) of corrected and uncorrected 

CMORPH (R-CMORPH) daily rainfall averaged for the Lower Zambezi, Middle Zambezi and Upper Zambezi. 

NSE for STB is larger than above 0.8 for all three Zambezi sub-basins. This is followed by EZ 

with NSE larger thanabove 0.7 for the three sub-basins.  The lowest NSE is for QME which is 

close to 0.65 for all three sub-basins. Best results for reducing bias (% bias) are obtained by 

EZ in the Lower Zambezi (% bias of 0.7 % ~ absolute bias of 0.10 mm d-1) and Upper Zambezi 

(0.22 % ~0.23 mm d-1), PT in the Lower and Middle Zambezi (-0.84 % ~0.18 mm d-1) and STB 

in all the basins (< 3.70 % ~0.24 mm d-1). Gao and Liu (2013) over the Tibetan Plateau asserts 

that EZ is valuable in correcting systematic biases to provide a more accurate precipitation 

input for rainfall-runoff modelling. Significant underestimation for the uncorrected (-21.16 % 

~0.44 mm d-1) and for bias corrected CMORPH are shown for the Upper Zambezi sub-basin. 

4.2.2. Significance testing 

Table 2 shows results of statistical tests to assess whether there is a significant difference (p< 

0.05) between rain gauge vs uncorrected and bias corrected CMORPH satellite rainfall for each 

of the 52 rain gauge stations. Results are summarised for the Upper, Middle and Lower 

Zambezi and in the Zambezi basin. The null hypothesis is rejected for PT (Lower Zambezi), 

DT (Upper Zambezi) and QME (all the 3 sub-basins) since p < 0.05. This means that 

statistically the above-mentioned bias correction schemes results deviate from the gauge. The 

null hypothesis is accepted for STB and EZ (all three sub-basins), DT (Lower and Upper 

Zambezi) and PT (Middle and Upper Zambezi), since p >0.05 showing the effectiveness of 
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these bias correction schemes. Compared to uncorrected satellite rainfall (R-MORPH), results 

also reveal that the bias corrected satellite rainfall is closer to the gauge-based rainfall. 

Table 2: Paired t-tests for the Upper, Middle and Lower Zambezi. The mean difference is significant at the 0.05 level. Bold 

shows significant values. 

Basin Rainfall Estimate t-value Mean Std. Error p-value (0.05) 

Lower Zambezi 

R-CMORPH 8.95 0.04 0.04 

DT 39.86 0.09 0.35 

PT 21.08 0.04 0.03 

QME 23.99 0.04 0.04 

EZ 36.43 0.03 0.27 

STB 14.7 0.04 0.46 

Middle 

Zambezi 

R-CMORPH 3.27 0.03 0.001 

DT 41.9 0.07 0.24 

PT 26.02 0.03 0.14 

QME 18.38 0.03 0.00 

EZ 26.60 0.02 0.07 

STB 23.6 0.03 0.09 

Upper Zambezi 

R-CMORPH 4.28 0.08 0.00 

DT 22.63 0.14 0.01 

PT 12.98 0.07 0.05 

QME 13.27 0.07 0.00 

EZ 13.73 0.07 0.14 

STB 13.62 0.07 0.08 

  

4.2.3. Analysis of variance (ANOVA test) 

The ANOVA test is similar to a t-test except that the test was used to compare mean values 

from three or more data samples. Results of ANOVA shows that there is a significant (p < 0.05) 

difference in the mean values of the 5 bias correction results across the three sub-basins. This 

warranted the running of a post-hoc test to determine which schemes differ significantly. The 

contingency matrix in Table 3 shows results of the post-hoc test results summarized for the 

Tukey HSD, Scheffe and the Bonferroni methods but also for the Upper, Lower and Middle 

Zambezi. Table 3 also show that STB, PT and EZ are significantly different from the 

distribution transformation technique (DT) for the three sub-basins. STB, the best performing 

bias correction scheme identified using majority of the indicators, is also significantly different 
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from QME and EZ. QME which has poorly performed is significantly different from EZ. 

Results are important for further application of the bias correction schemes for studies such as 

flood, drought and water resources modelling. 

Table 3: ANOVA post-hoc tests for the results of the five bias correction schemes (p<0.05). The checklist table gives a 

indication (symbol) where two bias correction scheme’s results are significantly different from each other. Where there is no 

symbol, it means that the schemes’ results are not significantly different. The different symbols represent the Upper, Middle 

and Lower Zambezi basins. 

  

4.2.4. Taylor Diagrams 

Figure 6 shows the Taylor diagram for time series of rain gauge (reference) observations vs 

CMORPH bias correction schemes averaged for the Lower Zambezi (UZ), Middle Zambezi 

(MZ) and Upper Zambezi (UZ). Absolute values used to develop the Taylor diagram are shown 

in Appendix 2. The position of each bias correction scheme and uncorrected satellite rainfall 

(R-MORPH) on Figure 6 shows how closely the rainfall by uncorrected CMORPH (R-

MORPH) matches rain gauge observations as well as effectiveness of each of the bias schemes. 

Overall, all bias correction schemes show intermediate performance in terms of bias removal. 

Only the PT and STB for the Lower Zambezi sub-basin lie on the line of standard deviation 

(brown dashed arc) and means the standard deviation of the data for the two bias correction 

schemes match the gauge observations. This also indicates that rainfall variations after PT and 

STB bias correction for the Lower Zambezi resembles gauge based standard deviation. Note 

however that STB performs better than EZ as shown by the superior correlation coefficient. 

Compared against the reference line of mean standard deviation (8.5 mm d-1), the rainfall 

standard deviation for most bias correction schemes is below this line and as such exhibit low 

variability across the Zambezi Basin. 

Figure 6 also shows that most of the bias correction schemes have standard deviation range of 

6.0 to 8.0 mm d-1. There is a consistent pattern between the bias correction schemes that have 

low R and high RMSE difference indicating that these schemes are not effective in bias 

removal. Overall, the best performing bias correction schemes (STB and EZ) have R > 0.6, 

standard deviation relatively close to the reference point and RMSE < 7 mm d-1. The 

uncorrected CMORPH (R-MORPH) lies far away from the marked reference (gauge) point on 
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the x-axis suggesting an intermediate overall effectiveness of the bias correction schemes such 

as STB, EZ, DT and PT in removing error as they are relatively closer to the marked reference 

point. 

 

Figure 6: Taylor’s diagram on Rain gauge (reference) observations and CMORPH bias corrected estimates (all 5 schemes) as 

averaged for the Lower Zambezi (LZ), Middle Zambezi (MZ), and Upper Zambezi (UZ) for the period 1999-2013. The 

distance of the symbol from point (1, 0) is also a relative measure of the bias correction scheme performance. The position of 

each symbol appearing on the plot quantifies how closely precipitation estimates by respective bias correction scheme’s 

matches counterparts by rain gauge. The dashed blue lines indicate the root mean square difference (mm d-1). 

The least performing bias correction scheme is QME with relatively large RSMD (> 8 mm d-

1) and with low R (< 0.49) and standard deviation (< 6.5 mm d-1). Inherent to the methodology 

of most of bias correction schemes (e.g. QME) is that the spatial pattern of the SRE does not 

change and therefore R for a specific station for daily precipitation does not necessarily 

improve. The bias correction results by the Taylor Diagram in Figure 6 corroborates with 
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findings shown in Figure 4 and Figure 5 for mean, max, ratio of rainfall totals and bias as 

performance indicators. 

4.2.5. q-q plots 

Figure 7 shows q-q plots for the Upper, Middle and Lower Zambezi for gauge rainfall against 

uncorrected and bias corrected CMORPH rainfall. Results show that STB’s q-q plots for bias 

corrected CMORPH across the 3 basins has majority of points that fall approximately along 

the 45-degree reference line. This means that the STB bias corrected satellite rainfall has closer 

distribution to the rain gauge as compared to the uncorrected CMORPH counterparts 

suggesting effectiveness of the bias correction scheme. Other bias correction schemes such as 

QME, EZ and PT have data points showing a greater departure from the 45-degree reference 

line so performance is less effective. 

In some instances, in both the Upper, Middle and Lower Zambezi, bias corrected values are 

significantly higher than the corresponding gauge values whereas in some instances there is 

serious underestimation. All q-q plots also show that for all bias correction schemes, the 

differences between gauge and satellite rainfall are smallest for low rainfall rates (< 2.5 mm d-

1) and increasing for very heavy rainfall (> 20.0 mm d-1). In more detail, all the bias correction 

schemes show a larger difference for the transition area from low to heavy rainfall. QME and 

PT are not in good agreement with the rest of the bias correction schemes for higher rainfall 

estimates (40 and 60 mm d-1). 

 

Figure 7: q-q plot for gauge vs satellite rainfall (uncorrected and bias corrected) for the Upper (top panes), Middle 

(middle panes) and Lower (bottom panes) Zambezi. 
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4.2.6. CMORPH rainy days 

Occurrence (%) of rainfall rates in the Zambezi Basin for each bias correction scheme is shown 

in Figure 8. The highest percentage (80-90 %) is shown for very light rainfall (0.0-2.5 mm d-

1). A smaller percentage is shown for 2.5-5.0 mm d-1 which is the light rainfall class. Smallest 

percentage (< 5 %) is shown for very heavy rainfall (> 20 mm d-1). The CMORPH rainfall 

corrected with STB, PT and DT matches the gauge basedgauge-based rainfall (%) in the Lower, 

Middle and Upper Zambezi suggesting good performance. All five bias correction schemes in 

the Zambezi Basin generally tend to overestimate very lightlow rainfall (< 2.5 mm d-1). There 

is a small difference for moderate rainy days classification of 10.0-20.0 mm d-1. For QME in 

the Middle and Upper Zambezi, there is overestimation by > 80 %. There is underestimation 

of rainfall greater than 20 mm d-1. 

 

 

 

Figure 8: Percentage occurrence for rainfall rate classes 

 

Figure 9 gives the bias correction performance for the different rainy-day classes. Results of 

bias removal varies for the Lower, Middle and Upper Zambezi. Comparatively, the STB and 

EZ show effectiveness in bias removal with an average bias correction of 0.97 % and 3.6 % in 

the whole basin respectively. Results show more effectiveness in reducing the percentage bias 

for light (2.5-5.0 mm d-1) and moderate (5.0-10.0 mm d-1) rainfall compared to the heavy (10.0-

20.0 mm d-1) and very heavy (> 20.0 mm d-1) rainfall across the whole basin.  Results show 
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more effectiveness in reducing the percentage bias for light rainfall and moderate rainfall (0-

2.5 and 5.0-10.0 mm d-1) than the high to very high rainfall (10.0-20.0 mm d-1 and >20 mm d-

1) across the whole basin. 

 

Figure 9: Bias correction (%) for respective rainfall rate (mm d-1) classes  

4.4. Spatial cross-validation 

Table 4 shows the cross-validation results on bias correction for 8 rain gauge stations in the 

wet and dry seasons. It is evident that CMORPH has a considerable bias, although this bias is 

not always consistent for all 8 validation stations. Overall, Mutarara station has the highest 

positive bias (overestimation) whereas Makhanga has the highest negative bias 

(underestimation) for uncorrected CMORPH. Bias is effectively being removed by the STB 

followed by the EZ bias correction schemes. Bias is more effectively removed for the wet 

season than for the dry season. For the dry season, the STB shows good performance for 

Mkhanga and Nchalo stations, whereas good performance is shown for Kabompo and Chichiri 

stations. However, the MAE is higher for the wet season than for the dry season. Correlation 

coefficient for bias corrected satellite rainfall is higher for the wet season than for the dry 

season. 

Table 4: Cross validation results for the bias correction procedure with 8 gauging stations for the dry and wet season. Stations 

lie at average elevation zone and sort of centred in an elevation zone. R-Morph CMORPH is the uncorrected R-CMOPRPH 

estimate. DT, PT, QME, EZ and STB are the bias corrected rainfall estimate. Bold values indicate best performance.  * = zone 

1: elevation of < 250 m, ** = zone 2: elevation range of 250 - 950 m and *** = zone 3: elevation > 950 m 
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    Dry Season (April-Sept)  Wet Season (Oct-March)  

Station Rainfall 

Estimate 
Bias 

(%) 
MAE 

mm d-1 Correlation Estimated 

Ratio Bias (%) MAE 

(mm d-1) Correlation 

Makhanga* 

R-CMORPH -28.69 1.23 0.42 0.87 -21.17 8.63 0.43 

DT -1.37 0.53 0.56 0.99 -1.66 3.96 0.65 

PT -5.62 0.52 0.54 0.95 -3.5 4.67 0.64 

QME 1.98 0.54 0.54 0.95 -0.64 4.86 0.65 

EZ 2.10 0.47 0.55 1.03 -0.11 4.08 0.58 

STB 0.77 0.61 0.56 1.04 0.5 5.06 0.62 

Nchalo* 

R-CMORPH -33.05 1.13 0.42 0.84 -25.18 8.05 0.38 

DT -0.23 0.73 0.56 0.96 -2.61 3.65 0.50 

PT -4.28 0.68 0.54 0.93 -6.48 5.05 0.59 

QME 1.90 0.72 0.53 0.81 -0.56 5.29 0.53 

EZ 0.35 0.63 0.54 0.99 0.22 4.4 0.60 

STB -0.43 0.73 0.58 0.96 -1.23 5.54 0.61 

Rukomichi** 

R-CMORPH -23.05 0.93 0.42 0.86 -21.18 6.69 0.31 

DT -0.23 0.90 0.56 0.94 -6.2 3.51 0.60 

PT -4.28 0.73 0.54 0.93 -2.48 3.62 0.59 

QME 1.90 0.75 0.53 1.03 -0.56 3.88 0.54 

EZ 0.35 0.71 0.54 0.99 0.22 3.5 0.60 

STB -0.43 0.76 0.58 0.94 -1.26 3.33 0.61 

Mutarara** 

R-CMORPH 20.15 0.24 0.49 1.10 20.1 2.34 0.50 

DT 11.4 0.18 0.60 1.03 8.7 1.23 0.63 

PT 8.4 0.12 0.55 0.91 4.3 1.28 0.68 

QME 5.7 0.14 0.63 1.1 8.1 1.4 0.65 

EZ -12.8 0.09 0.54 0.95 1.9 1.23 0.69 

STB 4.5 0.14 0.53 1.1 2.1 1.33 0.73 

Mfuwe** 

R-CMORPH 40.2 0.28 0.45 0.85 35.4 6.4 0.48 

DT 2.9 0.62 0.53 0.96 4.6 3.9 0.62 

PT 3.7 0.22 0.55 0.92 7.9 5.25 0.65 

QME 3.9 0.30 0.55 0.93 5.4 5.68 0.64 

EZ 6.1 0.24 0.54 0.92 3.8 5.18 0.56 
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STB 5.4 0.26 0.65 0.93 1.2 4.66 0.65 

Kabombo*** 

R-CMORPH 25.3 0.70 0.44 0.95 24.3 3.8 0.48 

DT 7.7 0.32 0.51 0.96 5.7 3.5 0.62 

PT 9.2 0.13 0.54 1.10 8.7 3.0 0.64 

QME 2.7 0.32 0.62 1.10 2.8 3.2 0.63 

EZ 5.6 0.22 0.53 0.91 3.3 2.7 0.54 

STB 19 0.13 0.62 1.01 9.3 2.7 0.64 

Chichiri*** 

R-CMORPH 34.5 1.56 0.47 0.8 -37.3 4.7 0.45 

DT 12.2 0.60 0.51 0.85 5.5 3.2 0.51 

PT 9.4 0.42 0.52 1.04 -7.8 4.1 0.54 

QME 8.4 0.92 0.56 1.05 -13.0 4.1 0.64 

EZ -13 0.61 0.60 0.94 -9.9 4.2 0.60 

STB 3.2 0.45 0.63 0.98 -14.3 2.1 0.65 

Chitedze*** 

R-CMORPH 41.5 0.90 0.47 1.06 42.3 5.4 0.48 

DT 16.7 0.53 0.54 0.98 -13.2 3.3 0.62 

PT -16.5 0.44 0.55 0.99 22.2 4.5 0.65 

QME 18.2 0.41 0.57 1.04 18.5 4.3 0.64 

EZ 11.7 0.32 0.57 1.02 8.4 4.6 0.55 

STB 3.9 0.23 0.60 0.03 -8.2 3.7 0.65 

 

4.5. Temporal cross-validation   

The same performance indicators in spatial cross-validation are calculated for the temporal 

cross-validation. Results are presented in Table 5. The MAE is higher for the wet season than 

for the dry season. The difference in effectiveness in the error removal between the dry and wet 

season is much larger. STB outperforms both bias correction methods but does also have 

problems correcting the estimated ratios. After the correction, the correlation coefficient is 

much improved. The fact that MAE remains relatively large indicates that errors remain locally 

large. These values are almost in same range to performance indicators obtained from the main 

performance assessment period (1999-2013). The estimated ratio shows improvement for the 

Middle Zambezi than forcompared to the Lower and Upper Zambezi.  

Table 5: Temporal-cross validation results for the period 1998-1999 for the wet and dry season 

    Dry Season (April-Sept)  Wet Season (Oct-March)  
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Rainfall 

Estimate 
Bias 

(%) 
MAE 

(mm d-1) Correlation Estimated 

Ratio 
Bias 

(%) 
MAE 

(mm d-1) Correlation 

Lower 

Zambezi 

R-CMORPH -28.26 1.10 0.42 0.86 -22.51 7.79 0.37 

DT -0.61 0.72 0.56 0.96 -3.49 3.71 0.58 

PT -4.73 0.64 0.54 0.94 -4.15 4.45 0.61 

QME 1.93 0.67 0.53 0.93 -0.59 4.68 0.57 

EZ 0.93 0.60 0.54 1.00 0.11 3.99 0.59 

STB -0.03 0.70 0.57 0.98 -0.66 4.64 0.61 

Middle 

Zambezi 

R-CMORPH 28.55 0.41 0.46 0.97 26.60 4.18 0.49 

DT 7.33 0.37 0.55 0.98 6.33 2.88 0.62 

PT 7.10 0.16 0.55 0.98 6.97 3.18 0.66 

QME 4.10 0.25 0.60 1.04 5.43 3.43 0.64 

EZ -0.37 0.18 0.54 0.93 3.00 3.04 0.60 

STB 9.63 0.18 0.60 1.01 4.20 2.90 0.67 

Upper 

Zambezi 

R-CMORPH 38 1.23 0.47 0.93 2.5 5.05 0.465 

DT 14.45 0.565 0.525 0.915 -3.85 3.25 0.565 

PT -3.55 0.43 0.535 1.015 7.2 4.3 0.595 

QME 13.3 0.665 0.565 1.045 2.75 4.2 0.64 

EZ -0.65 0.465 0.585 0.98 -0.75 4.4 0.575 

STB 3.55 0.34 0.615 0.505 -11.25 2.9 0.65 

 

5. Discussion 

We present methods to assess the performance of bias correction schemes for CMORPH 

rainfall estimates in the Zambezi River Basin. For correction we applied sequential windows 

of 7 days that count 5 rainy days with rainfall threshold of 5 mm d-1. First, we aimed to evaluate 

if performance of CMORPH rainfall is affected by elevation and distance from large scale open 

water bodies.  Results in Taylor diagrams show that effects of distances > 10 km are minimal 

in this study. For distance < 10 km, results in the same Taylor diagrams shows some effect with 

increased CMORPH estimation errors although not clearly identifiable by the limited number 

of gauging stations at distance < 10 km. The low number of gauge stations constrains clear 

identification of bias as effected by the short distance. The low number of stations also 

constrains detailed analysis on dependencies of observation time series. To assess bias effects 

at distances < 10 km we advocate installation of a well-designed network of rain gauges with 

stations located at preselected locations that would allow sound geostatistical analysis on small 

scale rainfall variability and spatial correlation analysis. We refer to (Ciach and Krajewski, 
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2006) who present such analysis for a dense experimental network of 53 stations. The inter-

station distance of the rain gauges in this study is too large to capture the effect of distance to 

large scale open water bodies on CMORPH rainfall error. For instance, such distance exceeds 

350 km for most of Upper Zambezi Basin. Findings in this study show that effects of distance 

would be captured at distances 10-25 km or shorter. Haile et al. (2009) indicates bias effects at 

short distances (<10 km) for the Lake Tana, Ethiopia.   

 

The rainfall-elevation bias correction as well is affected by the lack ofalso show minimal signal. 

Contrary to this finding, Romilly and Gebremichael (2011) showed that the accuracy of 

CMORPH at monthly time base is related to elevation for six river basins in Ethiopia. A similar 

finding was reported by Haile et al. (2009), Katiraie-Boroujerdy et al., (2013) and Wu and Zhai 

(2012) who found that performance of CMORPH is affected by elevation. Contrary to these 

findingsHowever, Vernimmen et al. (2012) concluded that TRMM Multi-satellite Precipitation 

Analysis (TMPA) 3B42RT performance was not affected by elevation (R2 = 0.0001) for 

Jakarta, Bogor, Bandung, Java, Kalimantan and Sumatra regions (Indonesia). The study by Gao 

and Liu (2013) showed that the bias in CMORPH rainfall over the Tibetan Plateau is affected 

by elevation. Whilst distance from large scale open water bodies and elevation have been 

assessed separately for this study, Habib et al. (2012a) revealed that both aspects interact in the 

Nile Basin to produce unique circulation patterns to affect the performance of SRE. 

 

Secondly, we evaluate the effectiveness of linear/non-linear and time-space variant/invariant 

bias correction schemes. The bias correction results by means of performance indicators such 

as Taylor Diagrams, q-q plots, ANOVA and standard statistics such as mean, max, ratio of 

rainfall totals and bias reveal that the STB is the best bias correction method. This method by 

its nature, consider correction only for spatial distributed patterns in bias, commonly known as 

space variant/invariant and thus forces the estimates to behave as observations. We did not 

investigate effects of the applied sequential windows of 7 days for each bias correction scheme 

sepratelyseparately but note that other window lengths possibly could yield more favourable 

results for bias schemes such as PT, DT and QME that commonly rely on larger sample sizes. 

As alluded to by Habib (2013), correction should improve hydrological applications by 

improved rainfall representation. This applies to Zambezi basin as well with demands for 

applications of the product such as for drought analysis, flood prediction, weather forecasting 

and rainfall- runoff modelling. The study is unique as we assess the importance of space and 

time aspects of CMORPH bias for rainfall-runoff modeling in a data scarce catchment. 

Findings in this study on cross and temporal validation contribute to efforts that aim towards 

enhancing the real-world applications bility of satellite rainfall products. The study site is the 

Zambezi Basin, -an example of many world regions that can benefit from satellite-based 

rainfall products for resource assessments and monitoring. 
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Thirdly, an assessment of the performance of bias correction schemes to represent different 

rainfall rates and climate seasonality is presented. Our findings show that bias is most 

overestimated for the very light rainfall (< 2.5 mm d-1), which is also the range that shows the 

best bias reduction, which in turn is most effective during the wet season. Results also show 

that there is underestimation of rainfall greater larger than 20 mm d-1. The poor performance 

of correction for the heavy rainfall class is caused by, sometimes, large mismatch of high rain 

gauge values versus low CMORPH values. This leads to unrealistically high CMORPH values 

which remain poorly corrected by bias schemes. Results are consistent with findings by Gao 

and Liu (2013) in the Tibetan Plateau who also found consistent under and overestimation of 

occurrence by CMORPH for rainfall rates >10.0 mm d-1. A study by Zulkafli et al. (2014) in 

French Guiana and North Brazil noted that the low sampling frequency and consequently 

missed short-duration precipitation events between satellite measurements results in 

underestimation, particularly for heavy rainfall > 20 mm d-1. 

Lastly, spatial and temporal cross validation reveal effectiveness of bias correction schemes. 

The hold-out sample of 8 stations in this work showed the applicability of different bias 

correction methods under different geographical domains. There is improved performance of 

satellite rainfall for the wet season than for the dry season based on correlation coefficient and 

MAE. The study by Ines and Hansen (2006) for semi-arid eastern Kenya showed that 

multiplicative bias correction schemes such as STB were effective in correcting the total of the 

daily rainfall grouped into seasons. Our results show that effectiveness in bias removal in the 

wet season is higher than in the dry season. This is contrary to Vernimmen et al. (2012) who 

showed that for the dry season, bias for PT decreased in Jakarta, Bogor, Bandung, East Java 

and Lampung regions after bias correction of monthly TMPA 3B42RT precipitation estimates 

over the period 2003–2008. Habib (2014) evaluated sensitivity of STB for the dry and wet 

season and concluded that the bias correction factor for CMOPRH shows lower sensitivity for 

the wet season as compared to the dry season. Our findings also reveal that bias factors for all 

the schemes are more variable in the dry season than in the wet season and lead to poor 

performance of the bias correction schemes in the dry season. 

6. Conclusions 

In this study four conclusions are drawn: 

1. Analysis on gauge and CMORPH rainfall estimates shows that performance increases for 

higher elevation (> 950 m) in the Zambezi Basin and that CMORPH has largest mismatch 

at low elevation. Such analysis was established for rain gauges within elevation classes of 

< 250 m, 250 - 950 m and > 950 m. The match between gauge and CMORPH estimates 

improved at increasing distance to large-scale open water bodies. This was established for 

rain gauges located within specified distances of 10 -50 km, 50 -100 km and > 100 km to 

a large-scale open water body. A detailed analysis on small spatial variability and spatial 

correlation analysis of rain gauged observations presumably is prerequisite before satellite 
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rainfall effects at short distance to a  water body can be assessed For distances < 10 km 

errors by CMORPH increased but the small sample size of stations and the weak signal 

require further study. To assess how bias is affected at short distance to a large-scale water 

body, a specifically designed and dense gauging network is s are advocated (see Ciach and 

Krajewski, 2006) that allow evaluation of small-scale rainfall variability. A detailed 

analysis on small spatial variability and spatial correlation analysis of rain gauged 

observations presumably is prerequisite before satellite rainfall effects at short distance to 

a large-scale water body can be assessed..     

2. For each of the five bias correction methods applied, accuracy of the CMORPH satellite 

rainfall estimates improved. Assessment through standard statistics, Taylor Diagrams, t-

tests, ANOVA and q-q plots shows that STB that accounts for space and time variation of 

bias, is found more effective in reducing rainfall bias in the basin than the rest of the bias 

correction schemes. This indicates that the temporal aspect of CMORPH bias is more 

important than the spatial aspect in the Zambezi Basin. Quantile-quantile (q-q) plots for all 

the bias correction schemes in general show that bias corrected rainfall is in good agreement 

with gauge-based rainfall for low rainfall rates but that high rainfall rates are largely 

overestimated. 

3. Differences in the mechanisms that drive precipitation throughout the year could result in 

different biases for each of the seasons, which motivated us to calculate the bias correction 

factors for dry and wet seasons separately. As such CMORPH rainfall time series were 

divided to assess the influence of seasonality on performance of bias correction schemes. 

Overall, the bias correction schemes reveal that bias removal is more effective in the wet 

season than in the dry season. 

3.4.We assessed whether bias correction varies for different rainfall rates of daily rainfall in the 

Zambezi Basin. There is overestimation of very light rainfall (< 2.5 mm d-1) and 

underestimation of very heavy rainfall (>20 mm d-1) after application of the bias correction 

schemes. Bias was more effectively reduced for the very light (< 2.5 mm d-1), to moderate 

(5.0-10.0 mm d-1) rainfall compared to the heavy (10.0-20.0 mm d-1) and very heavy (> 20 

mm d-1) rainfall. Overall, the STB and EZ more consistently removed bias in all the rainy 

days classification compared to the three other bias correction schemes. Effects of length 

of sequential window sizes for selected bias correction schemes is not investigated but 

different length possibly could yield more favourable results for PT, QME and DT bias 

correction schemes. 

Analysis serve to improve reliability of SREs applications in hydrological analysis and water 

resource applications in the Zambezi basin such as in drought analysis, flood prediction, 

weather forecasting and rainfall runoff modelling. In follow-up studies, we aim at hydrologic 

evaluation of bias corrected CMORPH rainfall estimates at the headwater catchment of the 

Zambezi River. 
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Data availability 

Supplementary data consists of shapefiles of the Zambezi study area boundary, sub-basin 

boundaries, location of the 60 rain gauges and lakes (Figure 1). Additional material provided 

is the raster files of uncorrected CMORPH bias (%) making up Figure 2. Raster files of daily 

and yearly uncorrected CMORPH and gauge rainfall from 1998-2013 are also provided. 
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Appendix 1: Rain gauge stations in the Zambezi sub-basins showing x and y location, sub-basin they belong to, year of data 

https://openknowledge.worldbank.org/handle/10986/2958
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availability, % of missing gaps, station elevation and distance from large-scale water bodies. 

Station 

Sub-

basin 

Zambezi 

classification 

X 

Coord 

Y 

Coord 

Start 

date 

End 

Date 

% gaps  

(missing 

records) 

Elevat

ion 

 (m) 

Distance 

from 

lake 

(km) 

MAP 

Gauge 

(mm yr-1) 

MAP 

CMORPH 

(mm yr-1) 

Marromeu 

Zambezi 

Delta Lower Zambezi 36.95 -18.28 

29/05/

2007 

31/12/

2013 0.37 3 

 

90 

 

1075 
 

1080 

Caia 

Zambezi 

Delta Lower Zambezi  35.38 -17.82 

29/05/

2007 

31/12/

2013 0.13 28 265 

 

970.5 
 

975 

Nsanje Shire Lower Zambezi 35.27 -16.95 

01/01/

1998 

31/12/

2013 3.49 39 157 

 

906.4 
 

874 

Makhanga Shire Lower Zambezi 35.15 -16.52 

01/01/

1998 

31/12/

2013 9.43 48 113 

 

778.3 
 

771 

Nchalo Shire Lower Zambezi 34.93 -16.23 

01/01/

1998 

31/12/

2013 0.60 64 96 

 

726.3 
 

725 

Ngabu Shire Lower Zambezi 34.95 -16.50 

01/01/

1998 

3112/

2010 0.74 89 123 

 

736 
 

752 

Chikwawa Shire Lower Zambezi 34.78 -16.03 

01/01/

1998 

31/12/

2010 0.93 107 77 

 

731.3 
 

725 
Tete 

(Chingodzi) Tete Lower Zambezi 33.58 -16.18 

29/05/

2007 

31/12/

2013 0.17 151 135 

 

684.3 
 

677 

Chingodzi Shire Lower Zambezi 34.63 -16.00 

29/05/

2007 

10/01/

2013 11.8 280 101 

 

737.7 
 

735 

Zumbo Shire Lower Zambezi 30.45 -15.62 

29/05/

2007 

12/09/

2012 0.16 345 <5 

 

859.3 
 

862 

Mushumbi Kariba Middle Zambezi 30.56 -16.15 

11/06/

2008 

11/12/

2013 7.47 369 43 

 

852.2 
 

1028 

Kanyemba Tete Middle Zambezi  30.42 -15.63 

01/01/

1998 

30/03/

2013 5.86 372 <5 

 

859.3 
 

862 

Morrumbala 

Zambezi 

Delta Lower Zambezi 35.58 -17.35 

29/05/

2007 

10/01/

2013 13.3 378 206 

 

1011.7 
 

1002 

Mágoè                Tete Middle Zambezi 31.75 -15.82 

01/01/

2009 

31/12/

2013 9.6 427 10 

 

821.7 
 

646 

Muzarabani Tete Middle Zambezi 31.01 -16.39 

01/01/

1998 

31/12/

2013 1.14 430 49 

 

821.3 
 

887 

Monkey Shire Lower Zambezi 34.92 -14.08 

01/01/

1998 

30/11/

2010 0.00 478 <5 

 

988.5 
 

1012 

Mangochi Shire Lower Zambezi 35.25 -14.47 

01/01/

1998 

31/12/

2010 0.02 481 <5 

 

1015 
 

1042 

Rukomechi Kariba Middle Zambezi 29.38 -16.13 

01/01/

1998 

31/12/

2013 6.40 530 68 

 

803.9 
 

800 

Mutarara Shire Lower Zambezi 33.00 -17.38 

29/05/

2007 

10/01/

2013 11.7 548 201 

 

888.2 
 

859 

Mfuwe 

Luangw

a Middle Zambezi 31.93 -13.27 

01/01/

1998 

31/12/

2010 2.70 567 246 

 

1092.5 
 

1112 

Mimosa Shire Lower Zambezi 35.62 -16.07 

01/01/

1998 

31/12/

2010 3.96 616 72 

 

964.4 
 

962 

Kariba Kariba Middle Zambezi 28.80 -16.52 

01/01/

1998 

31/12/

2013 0.01 618 21 

 

980.6 
 

767 

Balaka Shire Lower Zambezi 34.97 -14.98 

01/01/

1998 

30/04/

2010 0.78 618 24 

 

778.2 
 

754 

Thyolo Shire Lower Zambezi 35.13 -16.13 

01/01/

1998 

31/12/

2010 0.11 624 86 

 

789.6 
 

787 

Chileka Shire Lower Zambezi 34.97 -15.67 

01/01/

1998 

31/12/

2013 0.60 744 64 

 

720.7 
 

708 

Fingoe Tete Middle Zambezi 31.88 -15.17 

01/01/

2009 

31/12/

2013 5.9 881 44 

 

859.4 
 

867 

Muze Tete Zambezi 31.38 -14.95 

01/01/

2009 

31/12/

2013 8.8 888 75 

 

879 
 

800 

Neno Shire Lower Zambezi 34.65 -15.40 

01/01/

1998 

01/01/

2010 9.14 903 64 

 

810.7 
 

813 

Zámbue Tete Middle Zambezi 30.80 -15.11 

01/01/

2009 

31/12/

2013 9.8 950 56 

 

870.5 
 

1006 

Mt Darwin Tete Middle Zambezi 31.58 -16.78 

01/01/

1998 

02/03/

2008 5.00 962 94 

 

832.3 
 

839 

Chipata Shire Lower Zambezi 32.58 -13.55 

01/01/

1998 

13/08/

2003 1.11 995 179 

 

1009.4 
 

1028 
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Makoka Shire Lower Zambezi 35.18 -15.53 

01/01/

1998 

31/12/

2010 0.00 996 27 

 

716.9 
 

685 

Livingstone Kariba Middle Zambezi 25.82 -17.82 

01/01/

1998 

31/12/

2013 0.00 996 107 

 

761.2 
 

765 

Senanga Barotse Upper Zambezi 23.27 -16.10 

01/01/

1998 

31/12/

2013 8.90 1001 444 

 

856.1 
 

860 

Petauke 

Luangw

a Middle Zambezi 31.28 -14.25 

01/02/

1998 

31/12/

2013 0.40 1006 155 

 

936.9 
 

912 

Msekera 

Luangw

a Middle Zambezi 32.57 -13.65 

01/03/

1998 

31/12/

2015 19.7 1028 179 

 

1009.4 
 

1028 

Kalabo 

Lungue 

Bungo Upper Zambezi 22.70 -14.85 

01/01/

1998 

31/12/

2011 5.20 1033 582 

 

835.8 
 

838 

Mongu Barotse Upper Zambezi 23.15 -15.25 

01/01/

1998 

31/12/

2013 0.51 1052 518 

 

847.9 
 

843 

Kasungu Shire Lower Zambezi 33.47 -13.02 

01/01/

2003 

31/07/

2013 0.00 1063 89 

 

793.2 
 

783 
Victoria 

Falls Kariba Middle Zambezi 25.85 -18.10 

01/01/

1998 

31/12/

2013 2.26 1065 107 

 

740.8 
 

742 

Bolero 

Luangw

a Middle Zambezi 33.78 -11.02 

01/01/

2003 

31/05/

2013 0.00 1070 38 

 

639 
 

577 
Pandamaten

ga Kariba Middle Zambezi 25.63 -18.53 

01/01/

1998 

31/12/

2013 0.01 1071 151 

 

709 
 

771 

Zambezi 

Lungue 

Bungo Upper Zambezi 23.12 -13.53 

01/01/

1998 

31/12/

2013 1.60 1075 611 

 

982 
 

976 

Kabompo 

Kabomb

o Upper Zambezi 24.20 -13.60 

01/01/

1998 

30/04/

2005 0.08 1086 505 

 

1045.9 
 

1055 

Chichiri Shire Lower Zambezi 35.05 -15.78 

01/01/

1998 

31/12/

2010 0.00 1136 40 

 

717.3 
 

744 

Chitedze Shire Lower Zambezi 33.63 -13.97 

01/01/

2003 

30/04/

2013 0.00 1150 84 

 

808.5 
 

806 

Lundazi 

Luangw

a Middle Zambezi 33.20 -12.28 

01/01/

2003 

30/04/

2013 1.40 1151 91 

 

778.8 
 

774 

Guruve Tete Middle Zambezi 30.70 -16.65 

01/01/

1998 

30/03/

2013 0.02 1159 86 

 

866.1 
 

870 

Kaoma Barotse Upper Zambezi 24.80 -14.80 

01/01/

1998 

31/11/

2013 9.89 1162 358 

 

950 
 

956 

Bvumbwe Shire Lower Zambezi 35.07 -15.92 

01/01/

1998 

01/01/

2011 0.00 1172 59 

 

762.2 
 

744 

Kasempa Kafue Middle Zambezi 25.85 -13.53 

01/01/

1998 

31/12/

2013 9.10 1185 431 

 

1029.4 
 

1022 

Kabwe 

Luangw

a Middle Zambezi 28.47 -14.45 

01/01/

1998 

13/10/

2012 1.54 1209 230 

 

960.6 
 

956 

Chitipa Shire Lower Zambezi 33.27 -9.70 

01/01/

2003 

06/01/

2013 0.05 1288 62 

 

1133.5 
 

1156 

Mwinilunga 

Kabomp

o Upper Zambezi 24.43 -11.75 

01/01/

1998 

31/12/

2013 4.81 1319 520 

 

1001.3 
 

997 

Karoi Tete Middle Zambezi 29.62 -16.83 

01/01/

1998 

31/12/

2004 15.08 1345 88 

 

825.8 
 

819 

Solwezi Kafue Middle Zambezi 26.38 -12.18 

01/01/

1998 

31/12/

2013 0.02 1372 356 

 

1105.2 
 

1105 
Harare 

(Belvedere) Tete Middle Zambezi 31.02 -17.83 

01/01/

1998 

31/03/

2013 7.80 1472 209 

 

901.4 
 

902 
Harare(Kuts

aga) Tete Middle Zambezi 31.13 -17.92 

01/01/

2004 

30/09/

2010 0.55 1488 209 

 

901.4 
 

902 

Mvurwi Tete Middle Zambezi 30.85 -17.03 

01/01/

1998 

11/12/

2000 0.00 1494 102 

 

834.2 
 

828 

Dedza Shire Lower Zambezi 34.25 -14.32 

01/01/

2003 

31/10/

2012 0.00 1575 44 

 

762.8 
 

762 
 

 

Appendix 2: Bias correction scheme-based Taylor Diagram performance indicators (correlation coefficients, standard 

deviations and RMSE) of rain gauge (reference) vs CMORPH estimations (corrected and uncorrected), period 1998-2013, for 

Lower, Middle and Upper Zambezi Basin. 
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Sub-basin Rainfall estimate 

RMSE 

(mm d-1) 
Correlation 

Coefficient 

Standard Deviation 

(mm d-1) 

Lower 

Zambezi 

Gauge     9.38 

R-CMORPH 9.98 0.46 8.00 

PT 10.41 0.57 8.52 

QME 9.15 0.55 6.98 

EZ 10.48 0.62 6.35 

DT 9.30 0.56 6.55 

STB 8.59 0.72 7.17 

Middle 

Zambezi 

Gauge     7.94 

R-CMORPH 8.12 0.49 7.44 

PT 7.87 0.62 6.84 

QME 7.51 0.60 6.00 

EZ 10.69 0.65 6.93 

DT 8.04 0.59 6.96 

STB 7.49 0.76 6.81 

Upper 

Zambezi 

Gauge     8.29 

R-CMORPH 7.23 0.45 6.60 

PT 7.97 0.62 7.29 

QME 8.05 0.55 7.12 

EZ 11.50 0.60 8.13 

DT 7.85 0.55 6.45 

STB 0.54 0.74 7.29 

 

 


