
1 

 

Population Growth – Land Use Land Cover Transformations – Water 1 

Quality Nexus in Upper Ganga River Basin 2 

Anoop Kumar Shukla1, Chandra Shekhar Prasad Ojha1, Ana Mijic2, Wouter Buytaert2, Shray Pathak1, Rahul 3 

Dev Garg1 and Satyavati Shukla3 4 

1Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India 5 

2Department of Civil and Environmental Engineering, Imperial College London, London, UK 6 

3Centre of Studies in Resources Engineering (CSRE), Indian Institute of Technology Bombay, Mumbai, India 7 

E-mail- anoopgeomatics@gmail.com, cspojha@gmail.com, ana.mijic@imperial.ac.uk, 8 

w.buytaert@imperial.ac.uk, shraypathak@gmail.com, rdgarg@gmail.com, satyashukla@iitb.ac.in 9 

Abstract 10 

Upper Ganga River Basin is socio-economically the most important river basins in India, 11 

which is highly stressed in terms of water resources due to uncontrolled LULC activities. 12 

This study presents a comprehensive set of analyses to evaluate the population growth-land 13 

use land cover (LULC) transformations-water quality nexus for sustainable development in 14 

this river basin. The study was conducted at two spatial scales i.e. basin scale and district 15 

scale. First, population data was analyzed statistically to study demographic changes, 16 

followed by LULC change detection over the period of February/March 2001 to 2012 17 

[Landsat 7 Enhanced Thematic Mapper (ETM+) data] using remote sensing and 18 

Geographical Information System (GIS) techniques. Trends and spatio-temporal variations in 19 

monthly water quality parameters viz. Biological Oxygen Demand (BOD), Dissolve Oxygen 20 

(DO) %, Flouride (F), Hardness CaCO3, pH, Total Coliform bacteria and Turbidity were 21 

studied using Mann-Kendall rank test and Overall Index of Pollution (OIP) developed 22 

specifically for this region, respectively. Relationship was deciphered between LULC classes 23 

and OIP using multivariate techniques viz. Pearson’s correlation and multiple linear 24 

regression. From the results, it was observed that population has increased in the river basin. 25 

Therefore, significant and characteristic LULC changes are observed. River gets polluted in 26 
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both rural and urban areas. In rural areas, pollution is due to agricultural practices mainly 27 

fertilizers, whereas in urban areas it is mainly contributed from domestic and industrial 28 

wastes. Water quality degradation has occurred in the river basin, consequently the health 29 

status of the river has also changed from range of acceptable to slightly polluted in urban 30 

areas. Multiple linear regression models developed for Upper Ganga River basin could 31 

successfully predict status of the water quality i.e. OIP using LULC classes.   32 

 33 

Keywords: Demographic change, Land use/land cover, Overall Index of Pollution, Remote 34 

sensing, Upper Ganga River basin. 35 

 36 

1. Introduction 37 

Water quality is defined in terms of chemical, physical and biological (bacteriological) 38 

characteristics of the water. These characteristics may vary for different regions based on 39 

their topography, land use land cover (LULC) and climatic factors. Demographic changes, 40 

anthropogenic activities and urbanization are potential drivers affecting the quantity and 41 

quality of available water resources on local, regional and global scale. They pose threat to 42 

the quantity and quality of water resources, directly by increased anthropogenic water 43 

demands and water pollution. Indirectly, the water resources are affected by LULC changes 44 

and associated changes in water use patterns (Yu et al. 2016). In a region, urbanization occurs 45 

due to natural population growth and migration of people from rural to urban areas due to 46 

economic hardship (Bjorklund et al. 2011; Shukla and Gedam 2018). It may change natural 47 

landscape characteristics, river morphometry and increase pollutant load in water bodies. 48 

Anthropogenic activities are directly correlated with decline in the water quality (Haldar et al. 49 

2014).  In order to increase crop yield, farmers introduce various chemicals viz. fertilizers, 50 

pesticides, herbicides, etc., causing addition of pollutants to the river (Rashid and Romshoo 51 
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2013; Yang et al. 2013). In urban areas, pollutants are introduced from leachates of landfill 52 

sites, stormwater runoff and direct dumping of waste (Tsihrintzis and Hamid 1997). LULC 53 

and water quality indicator parameters are often used in water quality assessment studies 54 

(Kocer and Sevgili 2014; Liu et al. 2016; Sanchez et al. 2007; Tu 2011).  55 

 56 

LULC changes may alter the chemical, physical and biological properties of a river system 57 

viz. Biological Oxygen Demand (BOD), temperature, pH, Chloride (Cl), Colour, Dissolved 58 

Oxygen (DO), Hardness CaCO3, Turbidity, Total Dissolved Solids (TDS), etc. (Ballestar et 59 

al. 2003; Chalmers et al. 2007; Smith et al. 1999). Several studies are carried out across the 60 

world to understand this phenomenon. Hong et al. (2016) studied the effects of LULC 61 

changes on water quality of a typical inland lake of arid area in China. The study concluded 62 

that water pollution is positively correlated to agricultural land and urban areas whereas 63 

negatively correlated to water and grassland. Li et al. (2012) studied effects of LULC changes 64 

on water quality of the Liao River basin, China. In this river basin water quality of upstream 65 

was found better than downstream due to less influence from LULC changes in the region. 66 

Similarly, impact of LULC changes was studied on Likangala catchment, southern Malawi. 67 

Even though the water quality remained in acceptable class, the downstream of the river was 68 

found polluted with increase in the number of E.Coli and cation/anions (Pullanikkatil et al. 69 

2015). The composition and distribution of benthic macroinvertebrate assemblage were 70 

studied in the Upper Mthatha River, Eastern Cape, South Africa (Niba and Mafereka 2015). 71 

Results revealed that the distribution of the benthic macroinvertebrate assemblage is affected 72 

by season, substrate and habitat heterogeneity. LULC changes induce changes into the river 73 

water which affects their species distribution.  74 

 75 
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Water quality changes of the Ganga river, at various locations in Allahabad were studied for 76 

post-monsoon season by Sharma et al. (2014) using Water Quality Index (WQI) and 77 

statistical methods. Considerable water quality deterioration was observed at various 78 

locations due to the vicinity of the river to a highly urbanized city of Allahabad. A 79 

combination of water quality indices viz. Canadian WQI by Canadian Council of Ministers of 80 

the Environment (CCME-WQI), Oregon Water Quality Index, (OWQI) and National 81 

Sanitation Foundation Water Quality Index (NSF-WQI) were used to analyse the pollution of 82 

Sapanca Lake Basin (Turkey) and a good relationship was observed between the indices and 83 

parameters. Eutrophication was identified as a major threat to Sapanca Lake and stream 84 

system (Akkoyunlu and Akiner 2012). A river has capability to reduce its pollutant load, also 85 

known as self-purification (Hoseinzadeh et al. 2014). In extreme situations, degradation of 86 

river ecosystem caused by anthropogenic factors can be an irreversible. Hence, it is crucial to 87 

understand effects of demographic changes and LULC transformations on water quality for 88 

pollution control and sustainable water resources development in a river basin (Milovanovic 89 

2007; Teodosiu et al. 2013).  90 

 91 

Ganga River is extremely significant to its inhabitants as it supports various important 92 

services such as: (i) source of irrigation for farmers in agriculture and horticulture; (ii) 93 

provides water for domestic and industrial purposes in urban areas; (iii) source of hydro-94 

power; (iv) serves as a drainage for waste and helps in pollution control; (v) acts as support 95 

system for terrestrial and aquatic ecosystems, (vi) provides religious and cultural services; 96 

(vii) helps in navigation; (viii) supports fisheries and other livelihood options, etc. 97 

(Amarasinghe et al. 2016; SoE report, 2012; Watershed Atlas of India, 2014). However, for 98 

the past few decades Upper Ganga River basin has experienced rapid growth in population, 99 

urbanization, industrialization, infrastructure development activities and agriculture. Due to 100 
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these changes, maintaining the acceptable water quality for various uses is being challenged. 101 

Therefore, there is a need of comprehensive study to understand the causative connection 102 

(nexus) between the changing patterns of population, LULC and water quality in this river 103 

basin.  104 

 105 

Remote sensing and GIS are efficient aids in preparing and analyzing spatial datasets such as 106 

satellite data, Digital Elevation Model (DEM) data, etc. Remote sensing technology is often 107 

used in preparing LULC maps of a region whereas GIS helps in delineation of river basin 108 

boundaries, extraction of study area, hydrological modeling, spatial data analysis, etc. (Kindu 109 

et al. 2015; Kumar and Jhariya 2015; Wilson 2015). Selection of appropriate method for a 110 

study is based on the objectives and availability of the data/tools required for the study. Ban 111 

et al. (2014) observed that water quality monitoring programs monitor and produce large and 112 

complex water quality datasets. Water quality trends vary both spatially and temporally, 113 

causing difficulty in establishing relationship between water quality parameters and LULC 114 

changes (Phung et al. 2015; Russell 2015). Assessment of surface water quality of a river 115 

basin can be done using various water quality/pollution indices based on environmental 116 

standards (Rai et al. 2011). These indices are simplest and fastest indicators to evaluate the 117 

status of water quality in a river (Hoseinzadeh et al. 2014). Demographic growth, LULC 118 

changes and their effects on water quality in a region are very site specific. Hence, different 119 

regions/countries have developed their own water quality/pollution indices for different types 120 

of water uses based on their respective water quality standards/permissible pollution limits 121 

(Abbasi and Abbasi 2012; Rangeti et al. 2015).  122 

 123 

There are various water quality indices available worldwide that can be used for water quality 124 

assessment e.g. Composite Water Quality Identification Index (CWQII) (Ban et al. 2014); 125 
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River Pollution Index (RPI), Forestry Water Quality Index (FWQI) and NSF-WQI 126 

(Hoseinzadeh et al. 2014); Canadian Water Quality Index (CWQI) (Farzadkia et al. 2015); 127 

Comprehensive water pollution index of China (Li et al. 2015); Prati’s implicit index of 128 

pollution (Prati et al. 1971); Horton’s index, Nemerow and Sumitomo Pollution Index, 129 

Bhargava’s index, Dinius second index, Smith’s index, Aquatic toxicity index, Chesapeake 130 

Bay water quality indices, Modified Oregon WQI, Li’s regional water resource quality 131 

assessment index, Stoner’s index, Two-tier WQI, CCME-WQI, DELPHI water quality index, 132 

Universal WQI, Overall index of pollution (OIP), Coastal WQI for Taiwan, etc. (Abbasi and 133 

Abbasi 2012; Rai et al. 2011). Currently, not sufficient literature is available on comparisons 134 

between all the above mentioned water quality indices based on clusters, differences, validity, 135 

etc. However, in a study comparison was made between CCME and DELPHI water quality 136 

indices based on multivariate statistical techniques viz. coefficient of determination (R2), root 137 

mean square error, and absolute average deviation. Results revealed that the DELPHI method 138 

had higher predictive capability than the CCME method (Sinha and Das 2015). However, 139 

there is no universally accepted method for development of water quality indices. Therefore, 140 

there is no method by which 100% objectivity or accuracy can be achieved without any 141 

uncertainties. There is continuing interest across the world to develop accurate water quality 142 

indices that suit best for a local or regional area. Each water quality index has its own merits 143 

and demerits (Sutadian et al. 2016; Tyagi et al 2013). 144 

 145 

Water quality management and planning in a river basin requires an understanding of the 146 

cumulative pollution effect of all the water quality indicator parameters under consideration. 147 

This helps in assessing the overall water quality/pollution status of the river in a given space 148 

and time in a specific region. In this study, a WQI called ‘Overall Index of Pollution’ (OIP) 149 

developed specifically for Indian conditions by Sargoankar and Deshpande (2003) is used to 150 



7 

 

assess the health status of surface waters across Upper Ganga River basin. A number of 151 

studies have successfully used OIP to assess the surface water quality of various Indian 152 

rivers. The concentration ranges used in the class indices and Individual Parameter Indices 153 

(IPIs) assisted in evaluating the changes in individual water quality parameters whereas OIP 154 

assessed the overall water quality status of Indian rivers. This index helped to identify the 155 

parameters that are affected due to pollution from various sources. It is immensely helpful in 156 

studying the spatial and temporal variations in the surface water quality of both rural and 157 

urban subbasins due to the influence of demographic and LULC changes. The self-cleaning 158 

capacity of the river system investigated using OIP helped to comprehend the resilience 159 

capacity of the river system against the changes occurring in water quality due to 160 

anthropogenic activities. OIP has been used successfully to study the surface water quality 161 

status of the two most important and highly polluted rivers of the tropical Indian region viz. 162 

Ganga and Yamuna. It is also used for water quality assessment of comparatively smaller 163 

river like Chambal River and Sukhna lake of Chandigarh (Chardhry et al. 2013; Katyal et al. 164 

2012; Shukla et al. 2017; Sargaonkar and Deshpande 2003; Yadav et al. 2014). Therefore, 165 

OIP is used in the present study as an effective tool to communicate the water quality 166 

information. In the recent years, combinations of multivariate statistical techniques viz. 167 

Pearson’s correlation, regression analyses, etc. have been used successfully to study the links 168 

between LULC changes and water quality (Attua et al. 2014; Gyamfi et al. 2016; Hellar-169 

Kihampa et al. 2013).  170 

 171 

The main objective of this study is to understand the causative connection (nexus) between 172 

the changing patterns of population growth-LULC transformations-water quality of water 173 

stressed Upper Ganga River basin through a comprehensive set of analyses. The present 174 

study is conducted at two different spatial scales i.e. (a) at complete river basin level (small 175 
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scale), and (b) at district level (large scale) to evaluate the changes at both regional and local 176 

scales. The effect of different seasons viz. pre-monsoon, monsoon and post-monsoon on the 177 

water quality is also examined. A relationship is developed between LULC and OIP using 178 

Pearson’s correlation and multiple linear regression. Findings from this research work may 179 

help engineers, planners, policy makers and different stakeholders for sustainable 180 

development in the Upper Ganga River basin.   181 

  182 

2. Study area  183 

The Upper Ganga River basin (UGRB) is experiencing rapid rate of change in LULC and 184 

irrigation practices. A part of the Upper Ganga River basin is selected as the study area (Fig. 185 

1). It is located partly in Uttarakhand, Uttar Pradesh, Bihar and Himanchal Pradesh states of 186 

India and covers a total drainage area of 238348 km2. The geographical extent of the river 187 

basin is between 240 32' 16" ̶ 310 57' 48" N to 760 53' 33" ̶ 850 18' 25" E. The altitude ranges 188 

from 7500 m in the Himalayan region to 100 m in the lower Gangetic plains. Some mountain 189 

peaks in the headwater reaches are permanently covered with snow. Annual average rainfall 190 

in the UGRB is in the range of 550-2500 mm (Bharati and Jayakody 2010). Major rivers 191 

contributing this river basin are Bhagirathi, Alaknanda, Yamuna, Dhauliganga, Pindar, 192 

Mandakini, Nandakini, Ramganga, Tamsa (Tons), etc. Tehri Dam constructed on Bhagirathi 193 

River is an important multipurpose hydropower project along with several other smaller 194 

hydropower projects of low capacity. This region comprises of major cities and towns such as 195 

Allahabad, Kanpur, Varanasi, Dehradun, Rishikesh, Haridwar, Moradabad, Bareilly Bijnor, 196 

Garhmukteshwar, Narora, Farrukhabad, Badaun, Chandausi, Amroha, Kannauj, Unnao, 197 

Fatehpur, Mirzapur, etc. Most predominant soil groups found in this region are alluvial, sand, 198 

loam, clay and their combinations. Due to favorable agricultural conditions majority of the 199 

population practices agriculture and horticulture. However, a large portion of the total 200 
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population lives in cities located mainly along Ganga River. Most of them work in urban or 201 

industrial areas.  202 

 203 

 204 

Figure 1. Location map of the study area in northern India and water quality monitoring 205 

stations across Upper Ganga River basin 206 

 207 

3. Data acquisition 208 
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In this study, broadly two types of dataset were used which are listed below: (i) Spatial 209 

dataset: (a) Shuttle Radar Topography Mission (SRTM) 1 arc-second global Digital Elevation 210 

Model (DEM) of 30 m spatial resolution; and (b) Landsat 7 Enhanced Thematic Mapper Plus 211 

(ETM+) images, 23 in total, for the month of February/March in 2001 and 2012, having 30 m 212 

spatial resolution. Both SRTM DEM and time series Landsat dataset were collected from 213 

United States Geological Survey (USGS), United States of America (USA) (USGS 2016); (c) 214 

Survey of India toposheets of 1:50,000 scale from Survey of India (SoI), Government of 215 

India (GoI); (d) Published LULC, water bodies, urban landuse and wasteland maps from 216 

Bhuvan Portal, Indian Space Research Organization (ISRO), GoI (Bhuvan 2016). SoI 217 

toposheets and published maps were used as reference to improve the LULC classification 218 

results; and (e) For ground truthing of prepared LULC maps, Ground Control Points (GCPs) 219 

were collected using Global Positioning System (GPS) during the field visit and Google 220 

Earth.        221 

 222 

(ii) Non-spatial dataset were acquired from various departments of GoI: (a) Census records 223 

and related reports of the years 2001 and 2011 from Census of India (Census of India 2011); 224 

(b) Reports on LULC statistics from Bhuvan Portal, ISRO, GoI; (c) Monthly water quality 225 

datasets (BOD, DO%, Flouride (F), Hardness CaCO3, pH, Total Coliform Bacteria and 226 

Turbidity) of the year 2001-2012 from Central Water Commission (CWC); and (d) Water 227 

quality reports from Central Pollution Control Board (CPCB), Uttar Pradesh Pollution 228 

Control Board (UPPCB), CWC and National Remote Sensing Centre (NRSC), ISRO, GoI.  229 

 230 

4. Data preparation and methodology 231 

4.1 Delineation of the river basin 232 
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This section discusses the data preparation and step-by-step methodology carried out in this 233 

study. Flowchart of the methodology is illustrated in Fig. 2. First, a field reconnaissance 234 

survey was conducted in the Upper Ganga River basin, India to understand the study area. 235 

The global SRTM DEM (30 m spatial resolution) was pre-processed by filling sinks in the 236 

dataset using ArcGIS 10.1 Geo-processing tools. Further, Upper Ganga River basin boundary 237 

was delineated following a series of steps using ArcHydro tools. The following base layers 238 

were manually digitized for the study area viz. stream network, railway lines, road network, 239 

major reservoirs, canals and settlements using SoI topographic maps and updated further with 240 

recent available Landsat ETM+ dataset of the year 2012.  241 

 242 

Figure 2. Flowchart illustrating methodology and steps followed in the study 243 

         244 
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4.2 Population analysis 245 

Census of India, GoI provided village wise population data for rural areas and ward/city wise 246 

population data for urban areas for the years 2001 and 2011. Village and ward wise 247 

population data of 77 districts, falling into Upper Ganga River basin were identified and 248 

organized into rural and urban population. Total population and population growth rate 249 

(PGR) were statistically estimated for 77 individual districts and for the complete study area 250 

over the years 2001 and 2011. Population growth rates were also estimated for rural and 251 

urban populations. In addition, the total population and population growth rates were 252 

estimated for upper and lower reaches of the study area. These comprehensive analyses were 253 

done to understand the demographic changes occurring in the study region.  254 

 255 

4.3 LULC mapping and change detection  256 

For LULC mapping and change analysis, preprocessing of the time series satellite dataset is 257 

required (Lu and Weng 2007). Landsat 7 ETM+ dataset of the years 2001 and 2012 were 258 

downloaded from USGS website. Each year consisted of 23 images of February/March 259 

months. Images of same months were used to reduce errors in LULC change detection due to 260 

different seasons. Due to failure in Scan Line Corrector (SLC) of the Landsat 7 satellite, the 261 

images of year 2012 had scan line errors, which resulted in 22% of data gap in each scene. 262 

However, with only 78% of data availability per scene, it is some of the most radiometrically 263 

and geometrically accurate satellite dataset in the world and therefore it is still very useful for 264 

various studies (USGS 2018). For heterogeneous regions, Neighbourhood Similar Pixel 265 

Interpolator (NSPI) is the simple and most effective method to interpolate the pixel values 266 

within the gaps with high accuracy (Chen et al. 2011; Gao et al. 2016; Liu and Ding 2017; 267 

Zhu et al. 2012; Zhu and Liu 2014). Therefore to correct scan line errors, IDL code for NSPI 268 

algorithm developed by Chen et al. (2011) was run on ENVI version 5.1. This algorithm 269 
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filled the data gaps in the satellite images with high accuracy i.e. Root Mean Square Error 270 

(RMSE) of 0.0367.  271 

 272 

Further, satellite images were georeferenced to a common coordinate system i.e. World 273 

Geodetic System (WGS) 1984 Universal Transverse Mercator Zone 43 N for proper 274 

alignment of features in the study area. Total 75 control points were chosen from Survey of 275 

India (SoI) toposheets of scale 1:50,000 which were used as base map for georectification. To 276 

make the two satellite images comparable a good radiometric consistency and proper 277 

geometric alignment is required. But it is difficult to achieve due differences in atmospheric 278 

conditions, satellite sensor characteristics, phonological characteristics, solar angle, and 279 

sensor observation angle on different images (Shukla et al. 2017). A relative geometric 280 

correction (image to image coregistration) method was employed to maintain geometric 281 

consistency of both the satellite images using Polynomial Geometric Model and Nearest 282 

Neighbour resampling method. The recent Landsat ETM+ image of 2012 was used as 283 

reference image for coregistration and the image of 2001 was georectified with respect to it. 284 

Root Mean Square Error (RMSE) of less than 0.5 was used as criteria for geometric 285 

corrections of the images to ensure good accuracy (Gill et al 2010; Samal and Gedam 2015).  286 

 287 

To reduce the radiometric errors and get the actual reflectance values the Topographic and 288 

Atmospheric Correction for Airborne Imagery (ATCOR-2) algorithm available in ERDAS 289 

Imagine 2016 was used. SRTM DEM was used to derive the characteristics viz. slope, aspect, 290 

shadow and skyview. This algorithm provided a very good accuracy in removing haze, and in 291 

topographic and atmospheric corrections of the images (Gebremicael et al. 2017; Muriithi 292 

2016). Finally, image regression method was applied on the images to normalize the 293 

variations in the pixel brightness value due to multiple scenes taken on different dates.  294 
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 295 

The images were mosaicked and study area was extracted. Total 2014 Ground Control Points 296 

(GCPs) were collected from GPS (dual frequency receiver: SOKKIA: Model No. S-10) 297 

survey during the field visit and from Google Earth, with horizontal accuracy in the range of 298 

2-5 m. 1365 GCPs were used to train the Maximum Likelihood Classifier (MLC) and the 299 

remaining 649 points (collected from GPS) were later used for accuracy assessment. Out of 300 

1365 GCPs, 830 GCPs were collected using GPS survey and remaining 535 were collected 301 

from Google Earth images. In the present study, to account for spatial autocorrelation among 302 

different LULC features, before image classification an exploratory spectral analysis was 303 

done using histograms of each band to understand the spectral characteristics of the LULC 304 

classes. The spatial autocorrelation was analysed using semivariogram function which is 305 

measured by setting variance against variable distances (Brivio et al. 1993). The estimated 306 

semivariogram was plotted to assess the spatial autocorrelation in respective bands in the 307 

satellite image. The range and shape (piecewise slope) of the semivariograms were examined 308 

visually to determine the appropriate sizes for training data, window size and sampling 309 

interval for spatial feature extraction (Chen 2004; Xiaodong et al. 2009).  310 

 311 

A window size of 7 × 7 was chosen for sampling the training data, which gives the better 312 

classification results on Landsat ETM+ images (Wijaya et al. 2007). While developing the 313 

spectral signatures for different LULC classes, information acquired from band histograms 314 

and Euclidean distances were used for class separability. SoI topographic maps, Google Earth 315 

images, published LULC, water bodies, urban landuse and wasteland maps of Bhuvan Portal 316 

were used as reference to improve the LULC classification results. Due to higher confusion 317 

between barren land and urban areas at few places, urban areas were classified independently 318 

by masking it on the image. Uncertainties in misclassification between forest and agricultural 319 
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land were reduced by adding more training samples. This significantly improved the 320 

classification accuracy (Gebremicael et al. 2017). Hence, Maximum Likelihood Classifier 321 

(MLC) of supervised classification approach was used to classify the time series images into 322 

six LULC classes, viz. snow/glaciers, forests, built-up lands, agricultural lands, water bodies 323 

and wastelands. LULC distribution was estimated for the years 2001 and 2012. Due to lack of 324 

ground truth data of the year 2001, the accuracy assessment was done for the LULC of the 325 

year 2012. Both time series satellite dataset are of Landsat ETM+ with same spatial 326 

resolution of 30 m and a large number of GCPs are available for the year 2012.  Hence, 327 

LULC map of year 2012 would represent the overall accuracy of both the maps. A simple 328 

random sampling of 649 pixels belonging to corresponding image objects were selected and 329 

verified against reference data (649 GCPs).  330 

 331 

In this sampling method, selection of sample units was done in such a way that every possible 332 

distinct sample got the equal chance of selection. This sampling method provided 333 

comparatively better results on the large image size following the rule of thumb 334 

recommended by Congalton i.e. minimum 75-100 samples should be selected per LULC 335 

category for large Images (Congalton 1991; Foody 2002; Goncalves et al. 2007; Hashemian 336 

et al. 2004; Kiptala et al. 2013; Samal and Gedam 2015). Following the Congalton’s thumb 337 

rule for better accuracy in simple random sampling, GCPs were selected in the range of 94-338 

137 for each LULC class in proportion to their areal extent on the image. Therefore, 339 

sufficient spatial distribution of the sampling points was achieved for each LULC class. 340 

Accuracy assessment results were presented in confusion matrix showing characteristic 341 

coefficients viz. User's accuracy, Producer's accuracy, Overall accuracy and Kappa 342 

coefficients. The confusion matrix gave the ratio of number of correctly classified samples to 343 

the total number of samples in the reference data. The User's accuracy (errors of commission) 344 
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and Producer's accuracy (errors of omission) expressed the accuracy of each LULC types 345 

whereas the overall accuracy estimated the overall mean of user accuracy and producer 346 

accuracy (Campbell 2007; Congalton 1991; Jensen 2005). The Kappa coefficient denoted the 347 

agreement between two datasets corrected for the expected agreement (Gebremicael et al. 348 

2017). Further, post classification change detection method was employed for comparing 349 

LULC maps of 2001 and 2012. This method provided comparatively accurate results than 350 

image difference method (Samal and Gedam 2015). LULC distribution and change statistics 351 

between the years 2001 and 2012 were estimated for individual districts and for complete 352 

UGRB.      353 

 354 

4.4 Water quality analysis 355 

4.4.1 Selection of water quality monitoring stations 356 

To understand the impacts of LULC transformations on water quality of the UGRB, two 357 

water quality monitoring stations viz. Uttarkashi and Rishikesh were chosen in the upper 358 

reaches of the river basin. This part of the river basin comprises of hilly undulating terrain 359 

with moderately less anthropogenic influences. Moreover, three water quality monitoring 360 

stations viz. Ankinghat (Kanpur), Chhatnag (Allahabad), and Varanasi were selected in the 361 

lower reaches of the river basin. This part of the river basin falls under Gangetic plains with 362 

extreme anthropogenic activities. Spatio-temporal changes in the water quality of these 363 

monitoring stations were examined over a period of year 2001-2012 and LULC-OIP 364 

relationship was studied using various statistical analyses viz. Mann Kendall rank test, OIP, 365 

Pearson’s correlation and multiple linear regression. 366 

 367 

4.4.2 Mann Kendall test on monthly water quality data  368 

 369 
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A non-parametric Mann-Kendall rank test (Mann 1945; Kendall 1975) was performed on the 370 

seven monthly water quality parameters viz. BOD, DO%, F, Hardness CaCO3, pH, Total 371 

Coliform Bacteria and Turbidity, of the five water quality monitoring stations to understand 372 

the existing trends in the water quality parameters of the years 2001-2012. In this test, the 373 

null hypothesis Ho assumed that there is no trend (data is independent and randomly ordered) 374 

and it was tested against the alternative hypothesis H1, which assumed that there is a trend. 375 

The standard normal deviate (Z-statistic) was computed following a series of steps as given 376 

by Helsel and Hirsch 1992; and Shukla and Gedam 2018. The positive value of Z test showed 377 

a rising trend and a negative value of it indicates a falling trend in the water quality data 378 

series. The significance of Z test was observed on confidence level 90%, 95% and 99%. The 379 

test was performed on monthly water quality data of January to December of the years 2001-380 

2012. Standard Deviation (SD) was estimated separately for each month.   381 

  382 

4.4.3 Estimation of OIP  383 

For selecting water quality index the following criteria is followed (Abbasi and Abbasi, 2012; 384 

Horton 1965): (i) limited number of variables should be handled by the used index to avoid 385 

making the index unwieldy; (ii) the variables used in the index should be significant in most 386 

areas, (iii) only reliable data variables for which the data are available should be included. 387 

Hence, seven most relevant water quality parameters in Indian context i.e. BOD, DO%, Total 388 

Coliform (TC), F, Turbidity, pH and Hardness CaCO3 that are affected due to changes in 389 

LULC are chosen. BOD, DO%, and Total Coliform (TC) are the parameters mainly affected 390 

by urban pollution. F, Turbidity and pH are general water quality parameters affected by both 391 

natural and anthropogenic factors. However, Hardness CaCO3 is a parameter affected mainly 392 

by agricultural activities and urban pollution. 393 

 394 
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In the present study Overall Index of Pollution (OIP) developed by Sargaonkar and 395 

Deshpande (2003) was used which is a general water quality classification scheme 396 

specifically for tropical Indian conditions where, in the proposed classes (C1:Excellent; 397 

C2:Acceptable; C3:Slightly Polluted; C4:Polluted; and C5:Heavily Polluted water), the 398 

concentration levels/ranges of the significant water quality indicator parameters are defined 399 

based on the Indian and International water quality standards (Indian Standard Specification 400 

for Drinking Water, IS-10500, 1983; Central Pollution Control Board, Government of India, 401 

classification of inland surface water, CPCB- ADSORBS/3/78-79; water quality standards of 402 

European Community (EC); World Health Organization (WHO) guidelines; standards by 403 

WQIHSR; and Tehran Water Quality Criteria by McKee and Wolf). In this scheme, water 404 

quality status was reflected in terms of pollution effects caused by parameters considered 405 

under the study. In order to bring the different water quality parameters into a common unit, 406 

an integer value (also known as class index) 1, 2, 4, 8 and 16 was assigned to each class i.e. 407 

C1, C2, C3, C4 and C5 respectively in geometric progression. The class indices indicated the 408 

pollution level of water in numeric terms (Table 1). The concentration value of the parameter 409 

was then assigned to the respective mathematical equation of value function curves to obtain 410 

one number value called an Individual Parameter Index (IPI) or (Pi) (Table 2). Hence, IPIs 411 

were calculated for each parameter at a given time interval. Finally, the OIP was calculated as 412 

mean of IPIs of all the seven water quality parameters considered in the study and 413 

mathematically it is given by expression:  414 

                                                                           (1)                                                                                    415 

Where, Pi is the pollution index for the ith parameter, i=1, 2,…., n and n denotes the number 416 

of parameters. Finally, OIP was estimated for each water quality monitoring station across 417 

the UGRB over a period of 2001 to 2012. It gave the cumulative pollution effect of all the 418 

water quality parameters on the water quality status of a particular monitoring station in a 419 



19 

 

given time. For each water quality monitoring station of UGRB, the OIP was estimated for 420 

three primary seasons i.e. pre-monsoon, monsoon and post-monsoon seasons. In case some 421 

additional relevant water quality parameters are required to be considered, an updated OIP 422 

can be developed using methodology given by Sargaonkar and Deshpande (2003). The 423 

mathematical value function curves can be plotted for the new parameters to get the 424 

mathematical equations which will help to calculate IPIs. As OIP uses an additive 425 

aggregation method, the average of IPIs of all the parameters will estimate updated OIP.  426 
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 427 

Table 1. Classification scheme of water quality used in OIP (Source: Sargoankar and Deshpande 2003) 428 

Classification Class 

Class Index 

(Score) 

Concentration Limit / Ranges of Water Quality Parameters 

   

BOD 

(mg/L) 

DO  

(%) 

F               

(mg/L) 

Hardness 

CaCO3 (mg/L) 

pH 

(pH unit) 

Total Coliform 

(MPN/100 mL) 

Turbidity 

(NTU) 

Excellent C1 1 1.5 88-112 1.2 75 6.5-7.5 50 5 

Acceptable C2 2 3 75-125 1.5 150 6.0-6.5 and 7.5-8.0 500 10 

Slightly Polluted C3 4 6 50-150 2.5 300 5.0-6.0 and 8.0-9.0 5000 100 

Polluted C4 8 12 20-200 6.0 500 4.5-5 and 9-9.5 10000 250 

Heavily Polluted C5 16 24 <20 and >200 <6.0 >500 <4.5 and >9.5 15000 >250 

 429 
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Table 2. Mathematical expressions for value function curves (Source: Sargoankar and 430 

Deshpande 2003) 431 

S. No. Parameter Concentration Range Mathematical Expressions 

1.  BOD <2 

2-30                          

1x  

5.1/yx 
   

2. DO%                                   ≤50                        

50-100                   

≥100                      

)067.36/)33.98(exp(  yx  

667.14/)58.107(  yx  

054.19/)543.79(  yx  

3. F 0-1.2   

1.2-10                                               

1x  

5083.0/)3819.0)2.1/((  yx  

4. Hardness CaCO3 ≤75                            

75-500                       

>500                         

1x  

58.205/)5.42exp(  yx  

125/)500(  yx  

5. pH 7                                                                                               

>7 

<7                                                                  

1x  

)082.1/)0.7exp((  yx  

)082.1/)7exp(( yx   

6. Total Coliform               ≤50 

50-5000                  

5000-15000            

>15000                   

1x  

3010.0**)50/(yx   

071.16/)50)50/((  yx  

16)15000/(  yx  

7. Turbidity ≤10                            

10-500                      

1x  

5.34/)9.43(  yx  

 432 

4.5 Statistical analysis 433 

Due to religious, economic and historical importance of River Ganga, the most important 434 

cities/districts of UGRB are present in the proximity to River Ganga. The water quality of 435 
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selected monitoring stations is highly influenced by type of activities undergoing in the 436 

district where they are located. In a study, buffer zones of different thresholds were created 437 

surrounding a water quality monitoring station to determine the dominant LULC class that 438 

affects the water quality of that particular station (Kibena et al. 2014). However, in UGRB 439 

the population data was available at district level not at buffer level. Districts selected in this 440 

study consisted of both urban and rural areas. District wise LULC change was extremely 441 

helpful in comprehending the water quality changes at the local scale and to identify source 442 

of pollutants at a particular monitoring station. Whereas LULC changes at the basin level 443 

provided a broad outlook on the status of water quality of the study area which is also very 444 

useful for some applications. Though the spatial/mapped data could be more useful and 445 

relevant when compared with remote sensing data. But the monitoring stations in the UGRB 446 

were scarce. Therefore, over a relatively large study area the interpolation maps generated 447 

using OIP was not likely to provide very good comparison results with LULC changes. 448 

Hence, districts were chosen as a unit and district wise population and LULC distribution 449 

were related to water quality (OIP) of the monitoring stations to comprehend the nexus 450 

between them.  451 

 452 

Various methods/models are already developed to study effects of LULC changes on water 453 

quality. However, these methods could not be applied directly to a region because of the 454 

differences in the data availability, climatic, topographic and LULC variations that may 455 

introduce errors. Necessary modifications were made in the present evaluation methodology 456 

as required. Due to unavailability of the continuous population, satellite (LULC) and water 457 

quality data at desired interval in UGRB, establishing the interrelationship between these 458 

factors is not trivial. Therefore, to develop the relationship between LULC classes and water 459 

quality (OIP), a 2-time slice analysis was done for the years 2001 and 2012 with seasonal 460 
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component. Multivariate statistical analyses viz. Pearson’s Correlation and multiple linear 461 

regression were employed between LULC classes (independent variable) and OIP (dependent 462 

variable). Pearson’s Correlation determined strength of association between the variables 463 

whereas prediction regression model was developed using multiple linear regression.  464 

 465 

5. Results and discussion  466 

Section 5.1 presents the results of population changes in the districts of UGRB and complete 467 

study area. Section 5.2 presents the accuracy assessment results of LULC map, followed by 468 

Section 5.3, where the LULC distribution across the study area is discussed both at basin 469 

scale and at district scale. Section 5.4 presents the trend analysis results of monthly water 470 

quality data. In Section 5.5 population growth-LULC transformation-water quality nexus has 471 

been described for complete UGRB, whereas Section 5.6 presents the nexus for the five 472 

districts separately. Finally, Section 5.7 described the relationship between LULC and water 473 

quality (OIP).  474 

 475 

5.1 Population dynamics  476 

 477 

Analysis of the population dataset of the years 2001 and 2011, acquired from Census of 478 

India, GoI reveals that population has increased in all the 77 districts of the four different 479 

states, viz. Uttar Pradesh, Uttarakhand, Bihar and Himanchal Pradesh that lie in the UGRB. 480 

Consequently, the total population of UGRB has also increased (Table 3). The population 481 

growth rate (PGR) of 20.45% is observed in the total population of UGRB from 2001 to 482 

2011. Table 3 illustrates that the PGR has increased in 74 districts and it is ≥20% in the 483 

districts having bigger urban agglomerations or cities e.g. Agra, Allahabad, Bahraich, 484 

Ghaziabad, Lucknow, Kanpur (Dehat+Nagar), Varanasi, Patna, etc. However, Almora, Pauri 485 
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Garhwal and Shravasti are showing decreasing PGR. It is to be observed that these are either 486 

hilly or very small towns with poor employment opportunities. People migrate from these 487 

locations to nearby cities, therefore, decreasing the PGR. It was noticed from Census of India 488 

reports that the population density of Dehradun (Rishikesh), Kanpur, Allahabad and Varanasi 489 

districts are much higher against the average population density of Ganga River basin, i.e. 490 

520 per square km. Varanasi is the most populated districts in the country.  491 

 492 

Table 3. Table showing total population and Population Growth Rate (PGR)% in the census 493 

years 2001 and 2011 494 

 495 
S. No. Districts Total Population (2001) Total Population 

(2011) 

Population Growth Rate 

(PGR) % 

1 Agra 3620436 4418797 22.1 

2 Aligarh 2992286 3673889 22.8 

3 Allahabad 4936105 5954391 20.6 

4 Almora 630567 622506 -1.3 

5 Ambedkar Nagar 2026876 2397888 18.3 

6 Azamgarh 3939916 4613913 17.1 

7 Bageshwar 249462 259898 4.2 

8 Baghpat 1163991 1303048 11.9 

9 Bahraich 2381072 34,87,731 46.5 

10 Ballia 2761620 32,39,774 17.3 

11 Balrampur 1682350 2148665 27.7 

12 Barabanki 2673581 3260699 22.0 

13 Bareilly 3618589 4448359 22.9 

14 Basti 2084814 24,61,056 18.0 

15 Bhojpur 2243144 2728407 21.6 

16 Bijnor 3131619 36,82,713 17.6 

17 Budaun 3069426 3681896 20.0 

18 Bulandshahar 2913122 3499171 20.1 

19 Buxar 1402396 1706352 21.7 

20 Chamoli 370359 391605 5.7 

21 Champawat 224542 259648 15.6 

22 Dehradun 1282143 1696694 32.3 

23 Deoria 2712650 3100946 14.3 

24 Etah 15,61,705 1774480 13.6 

25 Faizabad 2088928 2470996 18.3 

26 Farrukhabad 1570408 1885204 20.0 

27 Fatehpur 2308384 26,32,733 14.1 

28 Firozabad 2052958 2498156 21.7 

29 Gautam Buddha Nagar 1202030 1648115 37.1 

30 Ghaziabad 3290586 4681645 42.3 

31 Ghazipur 3037582 3620268 19.2 

32 Gonda 2765586 3433919 24.2 

33 Gopalganj 2152638 2562012 19.0 

34 Gorakhpur 3769456 4440895 17.8 

35 Hardoi 3398306 4092845 20.4 

36 Haridwar 1447187 1890422 30.6 

37 Hathras 1336031 1564708 17.1 

38 Jaunpur 3911679 4494204 14.9 
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39 Jyotiba Phule Nagar 1499068 1840221 22.8 

40 Kannauj 1388923 1656616 19.3 

41 Kanpur Dehat 1563336 1796184 14.9 

42 Kanpur Nagar 4167999 4581268 9.9 

43 Kaushambi 1293154 1599596 23.7 

44 Kheri 3207232 4021243 25.4 

45 Kinnaur 78334 84121 7.4 

46 Kushinagar 2893196 3564544 23.2 

47 Lucknow 3647834 4589838 25.8 

48 Maharajganj 2173878 2684703 23.5 

49 Mainpuri 1596718 1868529 17.0 

50 Mau 1853997 2205968 19.0 

51 Meerut 2997361 3443689 14.9 

52 Mirzapur 2116042 2496970 18.0 

53 Moradabad 3810983 4772006 25.2 

54 Muzaffarnagar 3543362 4143512 16.9 

55 Nainital 762909 954605 25.1 

56 Patna 4718592 5838465 23.7 

57 Pauri Garhwal 697078 687271 -1.4 

58 Pilibhit 1645183 2031007 23.5 

59 Pithoragarh 462289 483439 4.6 

60 Pratapgarh 2731174 3209141 17.5 

61 Rae Bareli 2872335 3405559 18.6 

62 Rampur 1923739 2335819 21.4 

63 Rudraprayag 227439 242285 6.5 

64 Sant Kabir Nagar 1420226 1715183 20.8 

65 Sant Ravidas Nagar 1353705 1578213 16.6 

66 Saran 3248701 3951862 21.6 

67 Shahjahanpur 2547855 3006538 18.0 

68 Shravasti 1176391 1117361 -5.0 

69 Siddharthnagar 2040085 2559297 25.5 

70 Sitapur 3619661 4483992 23.9 

71 Siwan 2714349 3330464 22.7 

72 Sultanpur 3214832 3797117 18.1 

73 Tehri Garhwal 604747 618931 2.3 

74 Udhamsingh Nagar 1235614 1648902 33.4 

75 Unnao 2700324 3108367 15.1 

76 Uttarkashi 295013 330086 11.9 

77 Varanasi 3138671 3676841 17.1 

Total  Upper Ganga River basin 171186859 206188401 20.45 

 496 

Ganga River basin is the most sacred and populated river basins in India that is endowed with 497 

varying topography, climate and mineral rich alluvial soils in the Gangetic Plains area. Due to 498 

high soil fertility in the region, 60% of the population practice agricultural activities 499 

especially in the Gangetic Plains or lower reaches of the UGRB. This accounts for the high 500 

rural population in the region. Due to hilly terrain in the upper reaches of the basin, the 501 

population is less compared to the lower reaches of the basin. Due to its religious and 502 

economic significance a large number of densely populated cities and towns are located on 503 

the banks of the river mainly in the Gangetic Plain region. These cities have large growing 504 

populations and an expanding industrial sector (NRSC 2014).  505 
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 506 

Growth rates for urban and rural areas of upper and lower reaches of UGRB were calculated 507 

from official statistics (Fig. 3). It brings forth the clear picture of comparatively high rise in 508 

the rural population of lower reaches. Urban population has also increased along with rural 509 

population in the lower reaches (Fig. 3a). Both rural and urban populations have increased in 510 

upper reaches but the growth is relatively less than lower reaches. However, PGR is higher in 511 

urban areas of both reaches between 2001 -2011, which indicates urbanization of the region 512 

(Fig. 3b). After Dehradun city was declared capital of the Uttarakhand state and due to 513 

subsequent industrialization in the region, the PGR of the upper reaches has increased. 514 

Hence, population rise in UGRB is due to natural population growth and migration of the 515 

people from remote/rural areas to urban areas. 516 

 517 

(a) 518 

 519 

 520 

 521 

 522 
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(b) 523 

 524 

 525 

 526 

Figure 3: Growth in the rural and urban population of upper and lower reaches of Upper 527 

Ganga River basin between 2001-2011 (a) Total population, and (b) Population Growth Rate 528 

(PGR) 529 

 530 

5.2 Accuracy assessment of LULC map 531 

Post accuracy assessment, the cross-tabulation (confusion matrix) of the mapped LULC 532 

classes against that observed on the ground (or reference data) for a sample of cases at 533 

specified locations are presented in Table 4. From the results it is observed that spectral 534 

confusion is common between few classes. For e.g. frozen snow/glaciers are sometimes 535 

misclassified as built up or wastelands whereas melted ones are misinterpreted as water 536 

bodies. Similarly, forest are wrongly depicted as agricultural lands at few occasions. 537 

Sometimes barren rocky wastelands are misclassified as built up and wastelands having 538 

shrubs/grasses are misjudged as agricultural lands. Therefore, in terms of producer’s accuracy 539 
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all classes are over 90%, except for three classes i.e. forest, wastelands and snow/glacier, 540 

while in terms of user’s accuracy, all the classes are very close to or more than 90% (Table 541 

4). Both producer’s and user’s accuracy are found to be consistent for all LULC classes. For 542 

the past LULC map, a similar level of accuracy level can be expected with a very little 543 

deviation. An overall classification accuracy of 90.14% was achieved with Kappa statistics of 544 

0.88, showing good agreement between LULC classes and reference GCPs. From the 545 

accuracy assessment results, it is evident that the present classification approach has been 546 

effective in producing LULC maps with good accuracy.   547 

 548 

Table 4. Accuracy assessment of the 2012 LULC map produced from Landsat Enhanced 549 

Thematic Mapper Plus (ETM+) data, representing both the confusion matrix and the Kappa 550 

statistics     551 

Classified 

Data 

Reference Data Row  

Total 

User’s 

Accuracy 

(%) 

Overall 

Kappa 

Statistics 

Agricultural 

Land 

Built 

Up 

Forest Snow & 

Glacier 

Wastelands Water 

Bodies 

Agricultural 

Land 
128 0 6 0 3 0 137 93.43 

 

 

 

 

 

 

0.88 

Built Up 2 96 2 5 1 0 106 90.57 

Forest 11 0 88 3 0 3 105 83.81 

Snow & 

Glacier 
0 4 1 103 2 1 111 92.79 

Wastelands 1 2 0 7 82 2 94 87.23 

Water Bodies 0 0 1 1 6 88 96 91.67 

Column Total 142 102 98 119 94 94 649  

Producer’s 

Accuracy (%) 
90.14 94.12 89.80 86.55 87.23 93.62  

 

Overall 

Classification 

Accuracy (%) 

90.14  

 552 

5.3 Distribution of LULC 553 

The LULC maps of the UGRB for February/March 2001 and 2012 are shown in Fig. 4. 554 

District boundaries of the five districts i.e. Uttarkashi, Dehradun, Kanpur, Allahabad, and 555 

Varanasi chosen for district wise LULC analysis are highlighted in this figure. The gross 556 
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percentage area in each LULC class and their changes from 2001 to 2012 in UGRB are 557 

illustrated in Fig. 5. From the results it is observed that the agricultural lands, built-up, forest, 558 

and snow /glaciers have increased whereas the water bodies and wastelands have decreased. 559 

The highest % change is observed in built-up LULC class that has increased by 43.4%. In 560 

2001, 17.1% of wastelands were present in the study area which have reduced to 11.4%. 561 

Therefore, the wastelands are the second most dynamic category with the significant decrease 562 

of 33.6%. Agriculture land, forest and snow/glaciers have also increased by 2.9%, 14.5% and 563 

1.1% respectively. Conversely, Water bodies have decreased from 2.0% in 2001 to 1.8% in 564 

2012 (Fig. 5).  565 

 566 

      (a) 567 
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 568 

      (b) 569 

Figure 4. LULC maps of Upper Ganga River basin (a) LULC map of February/March 2001, 570 

and (b) LULC map of February/March 2012 571 

 572 

Figure 5. Graph showing LULC of the years 2001-2012 (a) LULC area in percentage (%) 573 

and (b) LULC changes from 2001-2012 in Upper Ganga River basin  574 

 575 
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Table 5 presents the change matrix, showing the conversion of one LULC class to other 576 

classes between the years 2001 to 2012. Results reveal that 1.7%, 1.7%, 2.2% and 0.1% of 577 

the wastelands in the basin area have converted to forest, agricultural land, built up and 578 

snow/glaciers respectively. Therefore, significant increase in these LULC classes are 579 

observed in UGRB on the expense of wastelands, resulting in high water demand. With 580 

increase in agricultural lands and built up, water requirements have increased in the river 581 

basin to meet irrigation, domestic and industrial water demands of rural and urban regions. 582 

About 0.2% of the water bodies in the region are converted to forest during summer season 583 

due to natural vegetation growth. Forest have also increased in the region due to 584 

implementation of various Government policies for forest protection and reforestation. 585 

Hence, slight reduction and increase in the water bodies and forest classes are observed 586 

respectively.  587 

 588 

Table 5. Change matrix showing LULC interconversion between the year 2001 and 2012 in 589 

Upper Ganga River basin 590 

 591 
LULC Class F WL WB AG BU SG LULC 2001 

F 13.3 0.0 0.0 0.0 0.0 0.0 13.3 

WL 1.7 11.4 0.0 1.7 2.2 0.1 17.1 

WB 0.2 0.0 1.8 0.0 0.0 0.0 2.0 

AG 0.0 0.0 0.0 58.3 0.0 0.0 58.3 

BU 0.0 0.0 0.0 0.0 5.3 0.0 5.3 

SG 0.0 0.0 0.0 0.0 0.0 4.0 4.0 

LULC 2012 15.2 11.4 1.8 60.0 7.5 4.1 100.0 

 592 

* Figures indicate the percentage (%) of basin area 593 

 594 

District wise LULC change study is useful in comprehending link between LULC-water 595 

quality at the local scale; and to identify source of pollutants at a particular monitoring 596 

station. Table 6 presents the LULC statistics of the five districts from 2001 to 2012, where 597 

water quality monitoring stations are located. It shows increase in built up and agricultural 598 
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lands in all the districts whereas wastelands have decreased. Forest have slightly increased in 599 

Uttarkashi and Varanasi, however they have remained unchanged in the remaining districts. 600 

Snow/glacier class is only present in Uttarkashi district and it has slightly increased from 601 

2001 to 2012. Water bodies have slightly increased in all the districts except Dehradun where 602 

it has very slightly reduced. Hence, significant LULC changes are observed in UGRB both at 603 

basin and district scales.          604 

 605 

Table 6. District wise changes in LULC (a) Uttarkashi, (b) Dehradun, (c) Kanpur, (d) 606 

Allahabad, and (e) Varanasi   607 

(a) 608 

Uttarkashi (LULC Class) 2001 % 2012% % Change (2001-2012) 

Forest 39.3 39.7 1.1 

Wastelands 10.3 8.3 -19.3 

Water Bodies 1.4 1.5 4.6 

Agricultural Land 0.6 1.4 122.8 

Built up Area 0.2 0.6 186.3 

Snow and Glacier 48.2 48.6 0.8 

Total Area % 100.0 100.0  

 609 

(b) 610 

Dehradun (LULC Class) 2001 % 2012% % Change (2001-2012) 

Forest 59.8 59.8 0.1 

Wastelands 18.8 3.4 -82.1 

Water Bodies 4.8 4.3 -9.8 

Agricultural Land 13.5 20.3 50.6 

Built up Area 3.2 12.2 283.9 

Total Area % 100.0 100.0  

 611 

(c) 612 

Kanpur (LULC Class) 2001 % 2012% % Change (2001-2012) 

Forest 0.3 0.3 8.7 

Wastelands 23.4 4.7 -79.8 

Water Bodies 2.5 2.6 3.8 

Agricultural Land 63.7 67.0 5.2 

Built up Area 10.1 25.3 152.1 

Total Area % 100.0 100.0  

 613 

(d) 614 

Allahabad (LULC Class) 2001 % 2012% % Change (2001-2012) 

Forest 1.5 1.5 -1.2 

Wastelands 22.1 16.0 -27.8 

Water Bodies 3.0 3.1 1.3 

Agricultural Land 70.5 73.4 4.2 
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Built up Area 2.8 6.0 111.7 

Total Area % 100.0 100.0  

 615 

(e) 616 

Varanasi (LULC Class) 2001 % 2012% % Change (2001-2012) 

Forest 0.6 0.7 24.4 

Wastelands 16.8 6.0 -64.5 

Water Bodies 3.1 3.3 7.1 

Agricultural Land 76.8 79.4 3.4 

Built up Area 2.7 10.5 291.8 

Total Area % 100.0 100.0  
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5.4 Trend analysis on monthly water quality data 617 

From the results of trend analysis (Mann Kendall rank test) it was observed that each water 618 

quality parameter varies with time and location (Table 7). These parameters change in all the 619 

months. Hence, they are very site-specific with no regular trends. Significant changes and 620 

comparatively high SD are observed in monsoon (July month) followed by pre-monsoon and 621 

post-monsoon months, respectively. Hence, three significant seasons are identified in the study 622 

area, viz. pre-monsoon (May), monsoon (July) and post-monsoon (November). Effect of 623 

different seasons on water quality is reported from various studies (Islam et al. 2017; Sharma and 624 

Kansal 2011; Singh and Chandna 2011). Hence, the water quality data is organized into three 625 

groups: pre-monsoon season (February-May), monsoon season (June-September) and post-626 

monsoon season (October-January).  627 

 628 

Then from each group one representative month is chosen which represents that particular season 629 

the best. It reduced the redundancy of the dataset and avoided the confusion to be created due to 630 

large insignificant dataset of varying trends that makes no sense. For e.g. SD in BOD of Kanpur 631 

station in May, July and November months are 2.01, 2.67 and 1.04 respectively. In other months, 632 

SD value of the BOD is close to the SD value of the representative months. In addition, from 633 

Table 7 it is evident that trends for BOD and Turbidity in July month are significant in almost all 634 

the stations against other water quality parameters. They are increasing over the years from 635 

2001-2012. Pre-monsoon (May) data signifies the water quality pollution from point sources of 636 

pollution from various sewage drains and industrial effluents. In addition to the point sources of 637 

pollution, monsoon (July) data took into account the non-point source of pollution, e.g. discharge 638 

of surface runoff from urban areas into the nearby streams during rainfall. Post-monsoon 639 
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(November) data helps to understand the water quality condition of the rivers after the rainfall is 640 

over. Therefore, further in this study water quality data analysis was done for the same three 641 

representative months.  642 

 643 

Table 7. Trends in monthly water quality parameters from 2001 to 2012 across Upper Ganga 644 

River basin (Z value, a Mann-Kendal statistics parameter is shown. (*), (**), (***) and +ve 645 

suffix indicate different significance levels) 646 

 647 

Station Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Uttarkashi 

BOD -2.4 (*) 1.3 -2.2 (*) 0.0 1.2 -0.4 (**) 2.8 -1.9 (+) -2.2 (*) 0.0 1.9 (+) 1.3 

DO% 1.2 -1.5 0.5 0.0 -3.3 (**) -2.8 (**) -2.2 (*) -3.3 (**) 1.4 0.0 -2.6 

(**) 

-1.5 

F -1.9 (+) 2.0 (*) -3.2 

(**) 

1.1 -3.0 (**) 0.8 2.0 (*) 2.0 (*) 1.1 1.9 (+) 1.1 -3.0 

(**) 

Hardness  1.3 -2.5 

(*) 

1.8 (+) -1.1 -1.9 (+) -2.1 (*) -2.5 (*) -1.9 (+) 1.2 1.8 (+) -1.1 -2.5 (*) 

pH 2.7 (**) -1.3 1.2 -0.1 -0.2 0.0 -1.5 -1.1 -0.2 -1.3 -1.3 -1.1 

TC - - - - - - - - - - - - 

Turbidity - - - - - - - - - - - - 

Rishikesh 

BOD -0.1 0.0 0.6 1.9 (+) 0.4 -2.5 (*) 2.4 (*) 2.0 (*) 2.6 (*) -1.3 1.3 -0.5 

DO% -1.3 1.5 2.3 (*) -2.3 

(*) 

3.0 (**) -2.3 (*) 2.9 (**) 0.6 0.5 3.4 

(***) 

3.2 (**) -3.6 

(***) 

F -1.0 -0.5 2.2 (*) -1.2 1.2 -1.7 (+) 1.7 (+) 2.7 (**) -0.8 -0.6 0.0 2.5 (*) 
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Hardness  1.4 -1.6 0.6 2.7 

(**) 

-2.3 (*) 0.6 -2.4 (*) 1.3 0.0 3.2 (**) -1.6 -2.7 

(**) 

pH -1.6 0.0 0.0 -0.7 -0.9 0.2 -0.2 1.1 1.9 (+) 1.6 -0.8 0.3 

TC - - - - - - - - - - - - 

Turbidity - - - - - - - - - - - - 

Kanpur 

BOD 2.0 (*) 2.7 

(**) 

2.6 (**) 2.3 (*) 3.0 (**) 3.4 

(***) 

3.4 

(***) 

2.7 (**) 1.7 (+) 0.6 1.6 2.2 (*) 

DO% -2.7 

(**) 

-2.0 

(*) 

-0.3 -1.1 -0.5 -0.3 -2.1 (*) -0.5 -0.1 -0.8 -1.0 -1.8 (+) 

F 1.5 2.0 (*) 1.7 (+) 1.6 1.2 2.1 (*) 2.4 (*) 2.2 (*) 2.6 

(**) 

2.4 (*) 1.7 (+) 2.0 (*) 

Hardness  0.4 0.2 0.1 0.1 0.0 1.2 1.7 (+) 0.0 0.0 -0.2 -1.0 -1.0 

pH 0.3 -0.2 0.7 1.9 (+) 1.7 (+) 0.2 1.2 -0.9 -0.3 -1.0 -0.4 -1.2 

TC - - - - - - - - - - - - 

Turbidity 3.5 

(***) 

1.7 (+) 1.7 (+) -0.4 -0.2 0.8 0.8 1.7 (+) -1.6 0.0 1.9 (+) 0.3 

Allahabad 

BOD 0.8 0.2 -1.3 0.3 -0.1 0.2 -1.0 -0.1 -0.5 -0.1 -0.4 0.0 

DO% 0.6 -0.5 0.6 0.0 -0.2 0.4 1.0 1.7 (+) 0.7 1.0 -0.3 -0.2 

F 1.6 1.2 2.0 (*) 2.6 

(**) 

1.6 1.4 2.2 (*) 2.2 (*) 2.7 (*) 1.7 (+) 1.6 1.0 

Hardness  -0.8 0.0 -1.3 -0.3 0.2 0.1 -0.1 0.3 -0.1 0.4 0.5 1.5 

pH -1.0 -1.3 0.1 -0.3 0.2 0.1 1.0 0.1 -1.1 -0.4 0.4 0.0 

TC -1.1 -1.0 -1.4 -1.0 -1.1 0.6 -0.5 -2.0 (*) -1.7 -1.4 -1.1 -0.3 
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(+) 

Turbidity -0.9 0.2 -0.6 -0.2 -1.4 0.9 0.4 0.6 0.4 -0.3 0.0 -1.4 

Varanasi 

BOD 2.4 (*) 1.5 1.1 1.4 2.2 (*) 2.8 (**) 2.7 (**) 1.9 (+) 2.4 (*) 2.9 (**) 2.6 (**) 3.0 (**) 

DO% 1.2 1.4 2.2 (*) 2.3 (*) 1.7 (+) 0.8 1.5 2.5 (*) 3.2 

(**) 

3.3 

(***) 

2.5 (*) 2.5 (*) 

F 2.5 (*) 2.1 (*) 2.4 (*) 2.4 (*) 1.6 1.8 (+) 2.1 (*) 2.1 (*) 3.0 

(**) 

2.2 (*) 1.2 2.2 (*) 

Hardness  -0.3 -0.3 0.0 0.1 -0.5 -0.7 -0.5 0.1 0.3 0.8 0.3 1.9 (+) 

pH 0.0 0.0 1.9 (+) 1.5 0.4 0.2 0.4 0.2 1.8 (+) 0.4 0.6 0.2 

TC 0.8 0.6 0.8 0.6 0.3 -0.1 0.5 0.9 1.0 1.4 1.4 1.4 

Turbidity -0.5 0.0 0.0 -0.2 -0.6 -1.8 (+) -0.9 0.9 0.0 -1.4 0.2 -0.2 

 648 

*** trend at α = 0.001 level of significance; ** trend at α = 0.01 level of significance; * trend at 649 

α = 0.05 level of significance; + trend at α = 0.1 level of significance; If there is no sign after 650 

values in the table then, the significance level is greater than 0.1 (Amnell et al. 2002). 651 

 652 

5.5 State of the population growth-LULC transformations-water quality nexus in UGRB 653 

In this section, the association between the three components population growth-LULC 654 

transformations-water quality are established. Seasonal water quality parameter values for 655 

UGRB over the periods of 2001-2012 are presented in Table 8. Their respective IPI values and 656 

OIP for each monitoring station are illustrated in Table 9. In UGRB the population increase in 657 

both rural and urban areas have resulted significant changes in LULC distribution. Increase in 658 

PGR of 20.45% in the complete basin has resulted in 43.4% and 2.9% increase in urban and rural 659 



38 

 

areas respectively. Therefore, this river basin is urbanizing gradually with increase in industrial 660 

operations. Urbanization, industrialization and intense agricultural activities have caused water 661 

quality degradation between the periods of 2001-2012. Nearly all the parameters are relatively 662 

higher in the July month, which is rainy season. Hence, their subsequent IPI values and resulting 663 

OIP are also high in this month. Hardness CaCO3 and pH values are higher in monsoon month as 664 

bicarbonates, hydroxides and phosphates from rock weathering are transported to the river water 665 

by surface runoff. Turbidity is also high due to addition of organic matter from land surfaces to 666 

the nearby stream through surface runoff. F is introduced into the river by surface runoff carrying 667 

F from industrial regions. High DO% values are attributed to increased diffusion of Oxygen into 668 

the water during increased stream flow caused by storm events. Increase in BOD and Total 669 

Coliform bacteria is a result of increased transportation of municipal sewage containing organic 670 

matter and various strains of Coliform bacteria. Similar results were reported from the studies 671 

done by various researchers (Attua et al. 2014; Chapman 1992; Hellar-Kihampa et al. 2013; Jain 672 

et al. 2006).  673 

 674 

Table 8. Water quality parameters across Upper Ganga River basin for pre-monsoon, monsoon 675 

and post-monsoon seasons over periods of 2001-2012 676 

(i) 677 

Parameters 

(Year 2001) 

Water Quality Monitoring Stations 

Uttarkashi Rishikesh Kanpur Allahabad Varanasi 

May Jul Nov May Jul Nov May Jul Nov May Jul Nov May Jul Nov 

BOD 1.1 1.1 1.1 1.1 1.0 1.1 2.8 1.7 2.4 4.0 4.2 3.7 2.5 2.2 1.8 

DO% 88 104 89 71 60 64 89 96 93 92 84 95 90 92 85 

F 0.19 0.04 0.22 0.23 0.16 0.26 0.61 0.21 0.34 0.09 0.50 0.51 0.3 0.05 0.51 
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Hardness CaCO3 65 60 68 76 67 74 99 78 86 95 194 159 99 176 142 

pH 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.3 8.1 8.2 8.3 8.2 8.2 8.4 8.2 

Total Coliform - - - - - - - - - 3000 6200 6500 5100 5300 2400 

Turbidity - - - - - - 2.0 3.1 2.3 0.1 0.2 0.1 0.1 0.1 0.1 

 678 

(ii) 679 

 680 

Parameters 

(Year 2012) 

Water Quality Monitoring Stations 

Uttarkashi Rishikesh Kanpur Allahabad Varanasi 

May Jul Nov May Jul Nov May Jul Nov May Jul Nov May Jul Nov 

BOD 1.1 1.2 1.0 1.0 1.2 1.2 7.0 10.0 4.0 2.9 3.2 2.4 3.0 3.9 2.9 

DO% 73 64 73 81 75 77 86 75 90 85 108 98 101 98 98 

F 0.45 0.26 0.44 0.09 0.19 0.06 0.70 0.80 0.51 0.51 0.67 0.56 0.57 0.54 0.52 

Hardness CaCO3 45 24 34 33 23 56 110 102 90 97 85 92 89 75 81 

pH 7.8 7.7 7.6 7.8 8.0 7.8 8.7 8.4 8.1 8.2 8.5 8.2 8.7 8.4 8.7 

Total Coliform - - - - - - - - - 5200 5800 4600 5600 7300 4700 

Turbidity - - - - - - 4.0 6.0 5.4 0.1 0.5 0.1 0.1 0.2 0.1 

 681 

*Units: BOD=mg/L; DO%=%; F= mg/L; Hardness CaCO3= mg/L; pH=No unit; Total 682 

Coliform=MPN; Turbidity=NTU 683 

 684 

 685 

 686 

 687 

 688 
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Table 9. Individual parameter indices (IPIs) and overall indices of pollution (OIPs) computed at 689 

various water quality monitoring stations of Upper Ganga River basin over periods of 2001 and 690 

2012 for pre-monsoon, monsoon and post-monsoon seasons 691 

(i) 692 

 693 
Parameters Water Quality Monitoring Stations 

Uttarkashi Rishikesh Kanpur Allahabad Varanasi 

May Jul Nov May Jul Nov May Jul Nov May Jul Nov May Jul Nov 

BOD 1.00 1.00 1.00 1.00 1.00 1.00 2.87 2.40 2.60 2.67 2.80 2.47 1.67 1.47 1.20 

DO%                                   1.33 1.28 1.27 2.49 3.24 2.97 1.27 0.79 0.99 1.06 1.61 0.86 1.20 1.06 1.54 

F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Hardness 

CaCO3 

1.00 1.00 1.00 1.78 1.00 1.00 1.99 1.80 1.87 1.95 3.16 2.66 1.99 2.89 2.45 

pH 2.76 2.76 2.76 2.76 2.76 2.76 2.52 3.33 2.76 3.03 3.33 3.03 3.03 3.65 3.03 

Total Coliform               - - - - - - - - - 3.43 4.60 4.98 4.02 3.48 3.21 

Turbidity - - - - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

OIP (2001) 1.42 1.41 1.41 1.81 1.80 1.75 2.61 2.49 2.54 2.02 2.50 2.29 1.99 2.08 1.92 

 694 
(ii)       695 

 696 
Parameters Water Quality Monitoring Stations 

Uttarkashi Rishikesh Kanpur Allahabad Varanasi 

May Jul Nov May Jul Nov May Jul Nov May Jul Nov May Jul Nov 

BOD 1.00 1.00 1.00 1.00 1.00 1.00 4.67 6.67 2.67 1.93 2.13 1.60 2.00 2.60 1.93 

DO%                                   2.36 2.97 2.36 1.81 2.22 2.08 1.47 2.22 1.20 1.54 1.49 0.65 1.13 0.65 0.65 

F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Hardness 

CaCO3 

1.00 1.00 1.00 1.00 1.00 1.00 2.10 2.02 2.91 1.97 1.86 1.92 1.90 1.00 1.82 

pH 2.09 1.91 1.74 2.09 2.52 2.09 4.81 3.65 2.76 3.03 4.00 3.03 4.81 3.65 4.81 

Total Coliform               - - - - - - - - - 4.05 4.11 3.90 4.14 5.97 3.93 

Turbidity - - - - - - 1.00 1.20 1.08 1.00 1.00 1.00 1.00 1.00 1.00 

OIP (2012) 1.49 1.58 1.42 1.38 1.55 1.44 2.51 2.79 2.77 2.07 2.23 1.87 2.28 2.27 2.16 

 697 
* Bold IPI and Italic OIP values are significant. 698 

 699 
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(a) 707 

 708 

 709 

(b) 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 

 718 
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(c) 719 

 720 

Figure 6. Spatial variations in the overall indices of pollution (OIP) of Upper Ganga River basin 721 

from 2001-2012 for (a)  Pre-monsoon period (b) Monsoon period, (c) Post-monsoon period 722 

 723 

In UGRB, the population growth and LULC transformations are lower in the upper reaches 724 

therefore, the water quality of the monitoring stations located in this region (Uttarkashi and 725 

Rishikesh) has remained in acceptable class range (OIP: 1.38-1.58) from 2001-2012. Conversely 726 

in the lower reaches, the water quality has deteriorated from acceptable class to slightly polluted 727 

class (OIP: 1.87-2.79) at the motoring stations (Ankinghat, Chhatnag and Varanasi) due to 728 

increasing pollutants in the river water from urban, agriculture and industrial sectors (Fig. 6 and 729 

Table 9). Further, explanation on the connection between population growth-LULC 730 

transformations-water quality in UGRB is given at the district or local scale in Section 5.6.  731 

  732 

5.6 State of the population growth-LULC transformations-water quality nexus in the 733 

districts of UGRB  734 
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Besides analysis at river basin level, the district level studies are also important. Each district has 735 

different topography, climate, population and LULC distribution. Therefore, the water 736 

management strategies in these districts should be based on the sources of pollutants and the 737 

health status of the river. Spatio-temporal variations in the water quality of the UGRB are studied 738 

using OIPs for three different seasons viz. pre-monsoon (May), monsoon (July) and post-739 

monsoon (November) from the year 2001-2012. Rainfall amount, duration and intensity are 740 

important drivers affecting surface water quality parameters of a water body primarily during 741 

monsoon and post-monsoon seasons. For e.g. OIP at Ankinghat (Kanpur) has slightly increased 742 

from 2.51 in pre-monsoon season to 2.79 in monsoon season in the year 2012. In post-monsoon 743 

season, it has further decreased to 2.77. Similarly, at Chhatnag (Allahabad) station higher OIP 744 

(2.23) is noticed in monsoon season than other two stations in the year 2012 (Table 9). Other 745 

factors such as type of LULC, type of soils, amount and type of waste generation, treatment 746 

facilities, etc. also affect the water quality. At Varanasi station, OIP values are higher in pre-747 

monsoon season (2.28) than other two seasons in 2012. Reduced values in monsoon season are 748 

probably due to relatively lower rainfall at this station. It indicates more influence of 749 

anthropogenic activities on the river water than natural drivers such as rainfall. But at the same 750 

station, in the year 2001 the OIP values were higher in monsoon season (2.08) than other 751 

remaining seasons. Hence, high spatio-temporal variations are observed in the water quality 752 

status of a river (Table 9). Water quality parameters viz. Hardness CaCO3, F, pH and Turbidity 753 

generally increase during post-monsoon season due to addition of various pollutants and 754 

sediments in the river water during monsoon period.  755 

 756 
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Water quality monitoring stations of Uttarkashi (PGR=11.9%) and Rishikesh (Dehradun 757 

PGR=32.3%) are located in the foothills of Himalaya with relatively low gross population in 758 

small towns. These stations are least influenced by human intervention among all the stations. 759 

They are mainly influenced from the generation of silts (due to steep hilly slopes) and climatic 760 

factor such as rainfall. For example, IPI for pH in 2001 remained 2.76 in both the stations. In 761 

2012 the pH ranged between 1.74 (post-monsoon season) to 2.09 (pre-monsoon season) at 762 

Uttarkashi station. At Rishikesh station it ranged between 2.09 (pre and post-monsoon season) to 763 

2.52 (monsoon season) which is slightly better than the IPI values in 2001. Therefore, all the 764 

water quality parameters at these stations are in acceptable range with no significant variations in 765 

the IPI values of the parameters over time. As the Ganga River descends down to Gangetic 766 

Plains a large number of tributaries e.g. river Yamuna that passes from metropolitan city of New 767 

Delhi and many other Class-I cities (population>100000) joins river Ganga at Allahabad. It 768 

carries a large amount of untreated pollutant load from both municipal and industrial areas of 769 

these cities on its way and adds to the river Ganga. During rainfall, toxic urban runoff is 770 

discharged to the river directly or through storm water drains. Similarly, water pollution at 771 

Kanpur is caused by urban domestic wastes and industries mainly tanneries. At Varanasi river 772 

water again gets affected by municipal and industrial discharges into the river. Varanasi being 773 

the last monitoring station collects pollutants from all the above cities, hence it is identified as 774 

the most severely polluted station in UGRB but it keeps varying with time. In 2001, Allahabad is 775 

the most polluted station followed by Varanasi and Kanpur. However, in 2012, Kanpur is the 776 

most polluted station followed by Varanasi and Allahabad indicating LULC changes. The water 777 

quality remained in the acceptable to slightly polluted class range.  778 

 779 



45 

 

Total population of all the three cities is very high and Kanpur has the highest population 780 

(6,377,452) amongst them. Varanasi has the highest population density in the region. Similarly, 781 

Allahabad has a PGR of 20.6% between 2001-2011. These cities are the biggest centres of 782 

commercial activities in UGRB. The main industrial types found in Allahabad district are glass, 783 

wire products, battery, etc. whereas the Varanasi consists of textile, printing, electrical 784 

machinery related industries. In the lower reaches of the Ganga River, major industrialization has 785 

occurred in and around Kanpur. Tanneries are the major types of industries in Kanpur, majority 786 

of them are located in the Jajmau area which is close to River Ganga. The wastewater generated 787 

from various tanning operations, viz. soaking, liming, deliming and tanning, etc. result in 788 

increased levels of organic loading, salinity and specific pollutants such as sulfide and 789 

chromium. These are very toxic for pollutants and affect the parameters, viz. BOD, Hardness 790 

CaCO3, pH and Turbidity (Rajeswari 2015). Hence, due to wastewater from tanneries and 791 

municipal discharges, high IPI values of Hardness CaCO3 (2.10) and pH (4.81) are observed for 792 

Kanpur station in 2012. Hardness CaCO3 (1.90) and pH (4.81) IPI of Varanasi is just lower to 793 

Kanpur followed by Allahabad which showed a close IPI value of 1.97 and 4.00, respectively. 794 

These cities do not have tanneries but their urban sewage and industrial effluents affect water 795 

quality of the river.  796 

 797 

Other than tanneries, agro-based, textile, paper, mineral, metal and furniture based industries are 798 

also present. Unnao is other industrial town located close to Kanpur. Large amount of municipal 799 

sewage generated in the urban residential areas and industrial effluents are discharged into the 800 

water. In total, 6087 MLD of wastewater is discharged into Ganga River. Out of the complete 801 

river basin, six sub regions namely Kanpur, Unnao, Rai-Bareeilly, Allahabad, Mirazapur and 802 
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Varanasi alone discharge 3019 MLD of wastewater directly/indirectly into the river. Particularly, 803 

cities of Kanpur, Allahabad and Varanasi contribute about 598.19 MLD, 293.5 MLD and 410.79 804 

MLD of wastewater into the river respectively (CPCB 2013; NRSC 2014). Municipal sewage 805 

water is characterized by high BOD and Total Coliform bacteria count. Table 9 illustrates a very 806 

high IPI value in the BOD of Kanpur (6.67), Allahabad (2.13) and Varanasi (2.60) for the year 807 

2012. It has increased from 2001 to 2012. Similarly in the year 2012, IPI of Total Coliform 808 

bacteria count is found in the range of minimum 3.90 (Allahabad) to 5.97 (Varanasi). It falls in 809 

the class of slightly polluted to polluted. F, pH and Turbidity are the factors mainly affected by 810 

natural drivers. IPI is within acceptable to slightly polluted range in all the three stations in 2012. 811 

F (1.0) and Turbidity have remained in excellent and acceptable classes over the years. Various 812 

other studies have reported that the water quality of Ganga River near Kanpur, Allahabad and 813 

Varanasi cities is highly polluted (Gowd et al. 2010; Rai et al. 2010; Sharma et al. 2014). Rapid 814 

urbanization and industrialization has highly affected the water quality of River Ganga in these 815 

districts.  816 

 817 

5.7 Relationship between LULC and water quality (OIP) 818 

Pearson’s correlation analysis between OIP and different LULC classes in UGRB helped in 819 

studying strength of association between these variables (Table 10). In all the three seasons of 820 

the year 2001, wastelands, built up and agricultural lands significantly correlated positively 821 

(moderate to strong association) to OIP. Water bodies have shown very weak positive correlation 822 

whereas moderate to strong negative correlation is observed with forest class. Due to change in 823 

the LULC distribution and water quality parameters between 2001-2012, variations are observed 824 

in the strength of association in the year 2012. In this year, OIP showed very strong negative and 825 



47 

 

a very weak negative correlationship with forest and water bodies classes respectively. A very 826 

strong positive association is observed with agricultural lands. Moderate to strong positive 827 

correlationship is observed with built up class. Association of OIP with wastelands is in the 828 

broad range of very weak positive to very weak negative.         829 

 830 

Table 10. Pearson’s correlation coefficients relating LULC to water quality (OIP) in the Upper 831 

Ganga River basin (Pre-monsoon, Monsoon and Post-monsoon seasons of 2001 and 2012) 832 

 833 

Stations OIP Pre-monsoon (2001) F% WL% WB% AG% BU% 

Uttarkashi  1.42 39.3 10.3 1.4 0.6 0.2 

Rishikesh 1.81 59.8 18.8 4.8 13.5 3.2 

Kanpur 2.61 0.3 23.4 2.5 63.7 10.1 

Allahabad  2.02 1.5 22.1 3.0 70.5 2.8 

Varanasi 1.99 0.6 16.8 3.1 76.8 2.7 

Pearson’s correlation coefficients -0.65 0.87 0.12 0.71 0.95 

 834 

Stations OIP Monsoon (2001) F% WL% WB% AG% BU% 

Uttarkashi  1.41 39.3 10.3 1.4 0.6 0.2 

Rishikesh 1.80 59.8 18.8 4.8 13.5 3.2 

Kanpur 2.49 0.3 23.4 2.5 63.7 10.1 

Allahabad  2.50 1.5 22.1 3.0 70.5 2.8 

Varanasi 2.08 0.6 16.8 3.1 76.8 2.7 

Pearson’s correlation coefficients -0.77 0.93 0.15 0.87 0.69 

 835 

Stations OIP Post-monsoon (2001) F% WL% WB% AG% BU% 

Uttarkashi  1.41 39.3 10.3 1.4 0.6 0.2 

Rishikesh 1.75 59.8 18.8 4.8 13.5 3.2 

Kanpur 2.54 0.3 23.4 2.5 63.7 10.1 

Allahabad  2.29 1.5 22.1 3.0 70.5 2.8 

Varanasi 1.92 0.6 16.8 3.1 76.8 2.7 

Pearson’s correlation coefficients -0.73 0.93 0.09 0.78 0.83 

 836 

Stations OIP Pre-monsoon (2012) F% WL% WB% AG% BU% 

Uttarkashi  1.49 39.7 8.3 1.5 1.4 0.6 

Rishikesh 1.38 59.8 3.4 4.3 20.3 12.2 

Kanpur 2.51 0.3 4.7 2.6 67.0 25.3 

Allahabad  2.07 1.5 16.0 3.1 73.4 6.0 

Varanasi 2.28 0.7 6.0 3.3 79.4 10.5 

Pearson’s correlation coefficients -0.94 0.10 -0.09 0.88 0.63 

 837 

Stations OIP Monsoon (2012) F% WL% WB% AG% BU% 

Uttarkashi  1.58 39.7 8.3 1.5 1.4 0.6 

Rishikesh 1.55 59.8 3.4 4.3 20.3 12.2 
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Kanpur 2.79 0.3 4.7 2.6 67.0 25.3 

Allahabad  2.23 1.5 16.0 3.1 73.4 6.0 

Varanasi 2.27 0.7 6.0 3.3 79.4 10.5 

Pearson’s correlation coefficients -0.89 0.08 -0.09 0.83 0.72 

 838 

Stations OIP Post-monsoon (2012) F% WL% WB% AG% BU% 

Uttarkashi  1.42 39.7 8.3 1.5 1.4 0.6 

Rishikesh 1.44 59.8 3.4 4.3 20.3 12.2 

Kanpur 2.77 0.3 4.7 2.6 67.0 25.3 

Allahabad  1.87 1.5 16.0 3.1 73.4 6.0 

Varanasi 2.16 0.7 6.0 3.3 79.4 10.5 

Pearson’s correlation coefficients -0.79 -0.14 -0.07 0.75 0.82 

 839 

This study found that increase in forest cover can decrease OIP due to increased aeration of 840 

flowing river water. High sediment load, generally from surface runoff causes increase in 841 

turbidity. Forest control turbidity, Hardness CaCO3 and pH parameters by acting as a buffer 842 

against these parameters. Similarly, increase in the water bodies decrease OIP by diluting the 843 

pollutants with excess water, thus improving the water quality. In UGRB, increase in OIP i.e 844 

deterioration of water quality is observed with increase in agricultural lands and built up due to 845 

introduction of pollutants from various agro-chemicals, municipal sewage, industrial effluents 846 

and other types of organic matter. They lower the DO% level and increase BOD. Correlation 847 

between wastelands and OIP are not much significant. Another study by Attua et al. 2014, 848 

reported similar results for the study conducted on African rivers. Multiple linear regression 849 

analysis can efficiently predict the OIP using one or combination of LULC classes (Table 11). 850 

OIP of 2001 could be predicted by the combined coverage area of forest, wastelands, agricultural 851 

land and built up area (adjusted R2=0.94) and OIP of 2012 by forest, agricultural land and built 852 

up area (adjusted R2=0.95). High R2 and adjusted R2 values in both the years showed strong 853 

relationship between OIP and LULC classes of the respective models. However, these 854 

relationships may vary for different regions or time periods.         855 

 856 
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Table 11. Multiple linear regression models for OIP and LULC classes in the Upper Ganga 857 

River basin 858 

Year Independent variable Regression model equation R2 Adjusted R2 

OIP (2001) Forest, Wastelands, 

Agricultural Land and Built 

Up area 

OIP= 1.1354 - 0.6331 F + 5.08 

WL - 0.0828 AG + 2.7425 BU 

0.94 

 

0.94 

 

OIP (2012) Forest, Agricultural Land and 

Built Up area 

OIP = 2.1266 - 1.6296 F - 0.2756 

AG + 2.9894 BU   

0.96 

 

0.95 

 

 859 

6. Summary and conclusions 860 

Upper Ganga River basin is suffering from chronic water shortages since past few decades. 861 

Population growth is the primary driver behind gradual urbanization and industrialization in this 862 

region. In addition, infrastructure development activities and agriculture have also intensified. 863 

Hence, the natural resources of UGRB are over-exploited. Sustainable water resources planning 864 

and management by policy makers and planners need understanding of nexus between 865 

components of population growth-LULC transformations-water quality at both regional and local 866 

scale. 20.45% increase in PGR leads to 43.4% increase in built up. It was identified as most 867 

dynamic LULC class in the region followed by wastelands. Mann-Kendall rank test revealed that 868 

water quality parameters are highly variable in time and space with no significant trends. Even 869 

though gross rural population is much higher in the lower reaches of the river basin, but the PGR 870 

is higher in the urban population of upper reaches. The water quality of majority of the stations 871 

was most degradable in monsoon season. Water quality of upper reaches (Uttarkashi and 872 

Rishikesh) remained in excellent to acceptable (1.38-1.81) class from 2001-2012 whereas it 873 

changed from acceptable class to slightly polluted class (1.87-2.79) in lower reaches (Kanpur, 874 

Allahabad and Varanasi). In UGRB, BOD, DO% and Total Coliform are the parameters most 875 

influenced by anthropogenic activities. Conversely, the remaining parameters viz. pH, F, 876 

Hardness CaCO3 and Turbidity are mainly influenced by climatic factors. The highest increase in 877 



50 

 

built up of 291.8% observed in the Varanasi district, is directly related to the highest 878 

deterioration of water quality in UGRB. But Allahabad and Kanpur are identified as most 879 

polluted stations in 2001 and 2012 respectively. Sewage, industrial effluents and runoff from 880 

urban/rural areas introduce pollutants at these stations. Future population growth and LULC 881 

changes in UGRB may further jeopardize their nexus with water. Forests and water bodies are 882 

negatively correlated with OIP. However, built up and agricultural lands are positively 883 

correlated. Wastelands are not significantly correlated to OIP. Multiple linear regression models 884 

developed for UGRB could successfully predict OIP (water quality) using LULC classes. The 885 

future scope of this study comprises the understanding of hydro-ecological response of the water 886 

quality changes across the river basin. The following recommendations are made for judicious 887 

regulation and control of water quality pollution in UGRB: (a) control of deforestation and 888 

encouraging afforestation; (b) efficient town planning for better LULC distribution in the river 889 

basin; (c) reduction in the use of agro-chemicals in the fields (use of organic alternatives); (d) 890 

proper waste disposal and management system; (e) strategies to control runoff from fields 891 

(construction of bunds/canals ); and (f) spreading water pollution awareness and strict policies on 892 

pollution control.  893 
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