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Abstract		1 

Rapid population and economic growth in South-East-Asia has been accompanied by extensive land 2 

use change with consequent impacts on catchment hydrology.  Modelling methodologies capable of 3 

handling changing land use conditions are therefore becoming ever more important, and are 4 

receiving increasing attention from hydrologists.  A recently developed Data Assimilation based 5 

framework that allows model parameters to vary through time in response to signals of change in 6 

observations is considered for a medium sized catchment (2880 km2) in Northern Vietnam 7 

experiencing substantial but gradual land cover change.  We investigate the efficacy of the method 8 

as well as the importance of the chosen model structure in ensuring the success of a time varying 9 

parameter method.  The method was used with two lumped daily conceptual models (HBV and 10 

HyMOD) that gave good quality streamflow predictions during pre-change conditions. Although both 11 

time varying parameter models gave improved streamflow predictions under changed conditions 12 

compared to the time invariant parameter model, persistent biases for low flows were apparent in 13 

the HyMOD case.  It was found that HyMOD was not suited to representing the modified baseflow 14 

conditions, resulting in extreme and unrealistic time varying parameter estimates.   This work shows 15 

that the chosen model can be critical for ensuring the time varying parameter framework 16 

successfully models streamflow under changing land cover conditions.  It can also be used to 17 

determine whether land cover changes (and not just meteorological factors) contribute to the 18 

observed hydrologic changes in retrospective studies where the lack of a paired control catchment 19 

precludes such an assessment.    20 
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1. Introduction				21 

Population and economic growth in South-East Asia has led to significant land use change, with rapid 22 

deforestation occurring largely for agricultural purposes [Kummer and Turner, 1994]. Forest cover in 23 

the Greater Mekong Sub-region (comprising Myanmar, Thailand, Cambodia, Laos, Vietnam, and 24 

South China) has decreased from about 73% in 1973 to about 51% in 2009 [WWF, 2013].  Vietnam in 25 

particular has had the second highest rate of deforestation of primary forest in the world, based on 26 

estimates from the Forest Resource Assessment by the United Nations Food and Agriculture 27 

Organization [FAO, 2005].  Such extensive land use change has the potential to significantly alter 28 

catchment hydrology (in terms of both quantity and quality), with its effects sometimes not 29 

immediate but occurring gradually over a lengthy period of time.  Recent estimates from satellite 30 

measurements indicate that rapid deforestation continues in the region, although at lower rates [e.g. 31 

Kim et al., 2015]. Persistent land use change necessitates modelling methodologies that are capable 32 

of providing accurate hydrologic forecasts and predictions, despite non-stationarity in catchment 33 

processes.  This is also particularly relevant for water resource management which requires reliable 34 

estimates of water availability, both in terms of volume and timing, to properly allocate the resource 35 

between different water uses and to prevent flood damages. Vietnam has built many reservoirs in 36 

the last decades and more are planned because they are considered to be fundamentally important 37 

for electricity production, flood control, water supply and irrigation, ultimately contributing to the 38 

development of the country [Giuliani et al., 2016].  39 

 40 

The literature on land-use change and its impacts on catchment hydrology is extensive, with studies 41 

examining the effects of 1) conversion to agricultural land-use [Thanapakpawin et al, 2007; 42 

Warburton et al., 2012]; 2) deforestation [Costa et al., 2003; Coe et al, 2011]; 3) afforestation [e.g. 43 

Yang et al., 2012; Brown et al, 2013] and 4) urbanization [Bhaduri et al., 2001; Rose & Peters, 2001].  44 

Fewer studies have examined how traditional modelling approaches must be modified to handle 45 
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non-stationary conditions, or how modelling methods can be used to assess impacts of land use 46 

change.  Split sample calibration has been used frequently to retrospectively examine changes to 47 

model parameters due to land use or climatic change [Seibert & McDonnell, 2010; Coron et al., 2012; 48 

McIntyre & Marshall, 2010; Legesse et al, 2003].  Several other studies have employed scenario 49 

modelling, whereby hydrologic models are parameterized to represent different possible future land 50 

use conditions [e.g. Niu & Sivakumar, 2013; Elfert & Borman, 2010].  A related approach involves 51 

combining land use change forecast models with hydrologic models [e.g. Wijesekara et al., 2012].  52 

However, the aforementioned approaches are unsuited to hydrologic forecasting in changing 53 

catchments, as the predicted land use change may not reflect actual changes.  A potentially more 54 

suitable approach in such a setting is to allow model parameters to vary in time, rather than 55 

assuming a constant optimal value or stationary probability distribution. Many existing methods 56 

utilising such a framework require some apriori knowledge of the land use change in order to inform 57 

variations in model parameters (see for instance Efstratiadis, 2015; Brown et al., 2006; and Westra et 58 

al., 2014).  Recent efforts have examined the potential for time varying parameter models to 59 

automatically adapt to changing conditions using information contained in hydrologic observations 60 

and sequential Data Assimilation, without requiring explicit knowledge of the changes [see for 61 

example Taver et al., 2015, Pathiraja et al., 2016a&b].  Such approaches can objectively modify 62 

model parameters in response to signals of change in observations in real time, whilst simultaneously 63 

providing uncertainty estimates of parameters and streamflow predictions.  They can also be used to 64 

determine whether land cover changes (and not solely meteorological factors) contribute to 65 

observed changes in streamflow dynamics in retrospective studies where the lack of a paired control 66 

catchment precludes such an assessment.   67 

 68 

Pathiraja et al. [2016a] presented an Ensemble Kalman Filter based algorithm (the so-called Locally 69 

Linear Dual EnKF) to estimate time variations in model parameters.  The method sequentially 70 

assimilates observations into a numerical model in real time to generate improved estimates of 71 
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model states, fluxes and parameters based on their respective uncertainties.  Its purpose is to infer 72 

changes to catchment properties (e.g. land cover change) from hydrologic observations, without 73 

prior knowledge of such changes, at the time scale of the available observations.  It can therefore be 74 

used for various applications: 1) to retrospectively estimate time variations in model parameters; 2) 75 

for short-term predictive modelling (days to weeks), e.g. flood forecasting; and 3) for on-line/real 76 

time water resource management, e.g. determining releases from reservoirs in catchments with 77 

changing land cover conditions.  In retrospective mode, the method is advantageous compared to 78 

split-sample calibration type approaches since no apriori knowledge of land use change is needed, 79 

and the modeller does not have to make somewhat arbitrary decisions about how to segregate the 80 

data.  When used for prediction or forecasting, states and parameters are updated sequentially using 81 

all available observations up until the current time.  These updated states and parameters are then 82 

used along with the prior parameter generating model to produce hydrologic predictions over a short 83 

time horizon.  This allows one to seamlessly obtain predictions without the modeller needing to 84 

explicitly modify the model to account for any catchment changes. The efficacy of the method was 85 

demonstrated in Pathiraja et al. [2016b] through an application to small experimental catchments (< 86 

350 ha) with drastic land cover changes and strong signals of change in streamflow observations.   87 

 88 

Here we investigate two issues related to the use of time varying parameter models for prediction in 89 

realistic catchments with changing land cover conditions.  Firstly, we investigate the efficacy of the 90 

time varying parameter method for sparsely observed, medium-sized catchments with spatially 91 

complex and gradual land use change (occurring over months/years).  Several authors have 92 

demonstrated that impacts of land use change on the hydrologic response are dependent on many 93 

factors including the type and rate of land cover conversion as well the spatial pattern of different 94 

land uses within the catchment [Dwarakish & Ganasri, 2015; Warburton et al., 2012].  In such 95 

situations, the effects of unresolved spatial heterogeneities in model inputs (e.g. rainfall) and the 96 

relatively less pronounced changes in land surface conditions make time varying parameter detection 97 
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and accurate hydrologic prediction more difficult.    The second objective is to examine the role of 98 

the hydrologic model in determining the ability of the time varying parameter framework to provide 99 

high quality predictions in changing conditions.  Often there may be several candidate hydrologic 100 

models (with time invariant parameters) that have similar predictive performance for a catchment 101 

when calibrated and validated over a time series of static land cover conditions [Marshall et al., 102 

2006].  This work examines whether all such candidate models in time varying parameter mode are 103 

also capable of providing accurate predictions under changing conditions.   104 

 105 

These issues are investigated for the Nammuc catchment (2880 km2) in Northern Vietnam which has 106 

experienced deforestation largely due to increasing agricultural development.  It serves as an ideal 107 

test catchment to study the efficacy of the time varying parameter algorithm due to its size, spatially 108 

complex pattern of land use changes, and lack of information on the precise timing of such changes.  109 

Land cover change is estimated to have occurred at varying rates, with cropland accounting for 110 

roughly 23% between 1981 and 1994, and 52% by 2000.  We also consider two lumped conceptual 111 

hydrologic models (given the availability of point rainfall, temperature, and streamflow data) 112 

operating at daily time step to address the second objective.  Both models demonstrate similar 113 

performance in representing streamflow at the outlet during the pre-change calibration period 114 

(1975-1979), although their performance during/after land use change is unknown.  Therefore, the 115 

effect of the model structure (i.e. model equations) on hydrologic predictions from the time varying 116 

parameter models is studied.  This work represents the first application of a continuously time 117 

varying parameter approach for modelling a real medium sized catchment with no apriori (or partial) 118 

knowledge of the type and timing of land use change.     119 

 120 

The remainder of this paper is structured as follows. Details of the study catchment and the impact 121 

of land cover change are analysed in Section 2.  Section 3 summarizes the experimental setup 122 

including the hydrological models and the time varying parameter estimation method used.  Results 123 
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are provided in Section 4, along with an analysis of whether the time varying model structures reflect 124 

the observed catchment dynamics.  Finally, we conclude with a summary of the main outcomes of 125 

the study as well as proposed future work. 126 

2. The	Nammuc	Catchment		127 

The Nammuc catchment (2880 km2) is located in the Red River Basin, the second largest drainage 128 

basin in Vietnam which also drains parts of China and Laos.  The local climate is tropical monsoon 129 

dominated with distinct wet (May to October) and dry (November to April) seasons.  The wet season 130 

tends to have high temperatures (on average 27 to 29 °C) due to south-south easterly winds that 131 

bring humid air masses.  Conversely, during the dry season, circulation patterns reverse carrying 132 

cooler dry air masses to the basin (leading to average temperatures of 16 to 21°C).  Streamflow 133 

response is consequently monsoon driven, with high flows occurring between June and October 134 

(generally peaking in July/August) and low flows in the December to May period (Vu, 1993).  Average 135 

annual rainfall at Nammuc varies between 1300 and 2000 mm (on average 1600 mm) and catchment 136 

elevation ranges between 350 and 1500 m asl.  A summary of catchment properties is provided in 137 

Table 1 for pre-change (prior to 1994) and post-change (after 1994) conditions.  This separation was 138 

based on available land cover information as described below.    139 

2.1. Data	&	Land	Cover	Change		140 

Figure 1 shows the available land cover information for the Nammuc catchment.  Land cover 141 

information for the catchment is scant, we were able to locate only two sources which unfortunately 142 

do not give a complete picture over the entire time period of interest (1970 to 2004).  The first land 143 

cover map refers to the period 1981-1994 and was obtained by the Vietnamese Forest Inventory and 144 

Planning Institute (http://fipi.vn/Home-en.htm). The second land cover map refers to year 2000 and 145 

was obtained from the FAO Global Land Cover database 146 

(http://www.fao.org/geonetwork/srv/en/metadata.show?id=12749&currTab=simple). A comparison 147 
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of the two maps shows a reduction in forest cover in favor of cropland; Evergreen Leaf decreases 148 

from about 60% to 30% whilst cropland increases from about 23% to 52%. The change in land cover 149 

is patchy, although mostly concentrated in the northern part of the catchment. Because of the scant 150 

information available, it is not easy to identify the precise time period of these changes. Based on the 151 

available land cover map information and the changes to observed runoff (see Section 2.2), we posit 152 

that a period of rapid extensive deforestation occurred in early to mid-1990s.  153 

 154 

Daily point rainfall data is available at four precipitation stations surrounding the catchment (Dien 155 

Bien, Tuan Giao, Quynh Nhai and Nammuc, see Figure 1).  Catchment averaged rainfall was 156 

developed as a weighted sum of the four stations with weights determined by Thiessen Polygons.  157 

Daily mean temperature was calculated in a similar fashion using temperature records from the 2 158 

closest gauges (Lai Chau and Quynh Nhai, see Figure 1).  This was used to estimate Potential 159 

Evapotranspiration through the empirical temperature-latitude based Hamon PET method [Hamon, 160 

1961].  Daily rainfall, temperature and streamflow data was provided by the Vietnamese Institute of 161 

Water Resources Planning. 162 

2.2. Impact	of	Land	Cover	Change	on	Streamflow		163 

The annual runoff/direct runoff coefficient and Baseflow Index were used to assess the impact of 164 

land cover change on the hydrologic regime.  Baseflow was estimated using the two parameter 165 

recursive baseflow filter of Eckhardt [2005] (see equation 1), with on-line updating of baseflow 166 

estimates to match low flows: 167 

𝑏" =	
1

(1 − 𝑎. 𝐵𝐹𝐼-./)
[(1 − 𝐵𝐹𝐼-./). 𝑎. 𝑏"23 + (1 − 𝑎).𝐵𝐹𝐼-./. 𝑦"]											 ( 1 ) 

where 𝑏" is the estimated baseflow at time 𝑘, 𝑦" is the total observed streamflow at time 𝑘, 𝐵𝐹𝐼-./  168 

is the maximum value of the BFI (long term ratio of baseflow to total streamflow) and 𝑎 is a filter 169 

parameter.  In this study, we adopt 𝐵𝐹𝐼-./ = 0.5 and 𝑎 = 0.988 based on manual optimization.  170 

  171 
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An examination of the observed streamflow and rainfall records shows that distinct changes to the 172 

hydrologic regime are evident after the mid-1990s.  The annual runoff coefficient < =>?@AA
=.B?A.CC

	D  varies 173 

between 0.4 and 0.6 prior to 1994, after which it increases to between 0.6 and 0.8 until 2004 (see 174 

Figure 2a).  However, increases to annual yields are driven mostly by changes to baseflow volume.  175 

This is evident in Figure 2a, which shows that the increase in the annual direct runoff coefficient 176 

<=>?@AA2E.FGAC@H
=.B?A.CC

	D is less than the increase in the total runoff coefficient (roughly 0.1 increase 177 

compared to 0.2 respectively).  A small increase in the Annual Baseflow Index <E.FGAC@H
=>?@AA

D is apparent 178 

also, from about 0.32 on average in the period 1970 to 1982 to 0.39 on average after 1994 (Figure 179 

2b).  This indicates that the annual increases to baseflow volume exceed the increases to direct 180 

runoff volume.   Similar changes were found by Wang et al. [2012] who analyzed records in the 181 

entire Da River basin which drains the largest river in the Red River catchment.  The exact physical 182 

processes behind the observed increase in baseflow are not precisely known, particularly since 183 

effects of land use change from forest to cropland are not unequivocal [Price, 2011]. Deforestation 184 

may be associated to an increase in mean annual flow and baseflow because of lower interception 185 

and evapotranspiration rates [e.g., Keppeler and Ziemer, 1990]. Nevertheless, permanent forest 186 

removal may decrease baseflow because of soil compaction and lower infiltration rates [e.g., 187 

Zimmermann et al., 2006; Bormann and Klaassen; 2008]. Some authors also show that tillage 188 

practices, associated to forest conversion to cropland, can increase soil porosity, soil water content, 189 

and infiltration, thus ultimately contributing to baseflow formation [e.g., Alam et al., 2014]. 190 

  191 

At a seasonal time scale, it is apparent that both wet and dry season flows exhibit temporal 192 

variations.  We utilized the Moving Average Shifting Horizon (MASH) [Anghileri et al., 2014] and 193 

Mann-Kendall test to assess seasonal trends in observed streamflow, precipitation, and temperature 194 

data.  The MASH tool can be used to qualitatively assess inter-annual variations in the seasonal 195 

pattern of a variable.  It works by calculating a statistic of the data (e.g. mean) over the same block of 196 
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days in consecutive years.  A steady increase in baseflow is again apparent (see February to April in 197 

Figure 2c), as well as increases to wet season flows (see June to September in Figure 2c).  Mann-198 

Kendall test (with significance level equal to 5%) on annual and monthly streamflow time series 199 

shows increasing trends in almost all months, i.e., from October to July. No concurrent increases are 200 

apparent in rainfall (see Figure 2d). Also, the Mann-Kendall test applied to precipitation time series 201 

does not show any statistically significant trend, except a decrease in September for Nammuc and 202 

Quynh Nhai station and an increase in July for Dien Bien station. Temperature variations are not 203 

evident from the MASH analysis (not shown) and no significant trend can be detected by applying the 204 

Mann-Kendall test. These results indicate that changes in streamflow dynamics are likely due to land 205 

use change rather than climatic impacts.  206 

3. Experimental	Setup		207 

3.1. Hydrologic	Models	208 

Conceptual lumped models operating at a daily time step were adopted due to the availability of 209 

point rather than distributed hydro-meteorological data of sufficient length.  We considered the 210 

HyMOD [Boyle, 2001] and Hydrologiska Byrans Vattenbalansavdelning (HBV) [Bergstrom et al., 1995] 211 

models.  They differ mainly in the way components of the response flow are separated (HBV has near 212 

surface flow, interflow, and baseflow components whilst HyMOD has a quickflow and slow flow 213 

component only) and how these flows are routed. A schematic of the models is shown in Figure 3.  214 

 215 

In the HyMOD model, spatial variations in catchment soil storage capacity are represented by a 216 

Pareto distribution with shape parameter 𝑏 and maximum point soil storage depth 𝑐-./.  Excess 217 

rainfall (𝑉) is partitioned into three cascading tanks representing quick flow and a single slow flow 218 

store through the splitting parameter	𝛼.  Outflow from these linear routing tanks is controlled by 219 
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parameters 𝑘L  (for the quick flow stores) and 𝑘F (for the slow flow store).  The model has a total of 5 220 

states and 5 parameters.   221 

 222 

In the HBV model, input to the soil store is represented by a power-law function (see Figure 3, note 223 

the snow store is neglected for this study).  Excess rainfall enters a shallow layer store which 224 

generates: 1) near surface flow (𝑞N) whenever the shallow store state (𝑠𝑡𝑤1) is above a threshold 225 

(ℎ𝑙1) and 2) interflow (𝑞3) by a linear routing mechanism controlled by the 𝐾1 parameter. 226 

Percolation from the shallow layer store to the deep layer store (controlled by 𝑝𝑒𝑟𝑐 parameter) then 227 

leads to the generation of baseflow also via linear routing (controlled by the 𝐾2 parameter). Finally, a 228 

triangular weighting function of base length 𝑀𝑎𝑥𝑏𝑎𝑠 is used to route the sum of all three flow 229 

components.  There are a total of 9 parameters and 3 states.  230 

 231 

The Shuffled Complex Evolution Algorithm (SCE-UA) [Duan et al., 1993] was used to calibrate HyMOD 232 

and the Borg Evolutionary Algorithm [Hadka & Reed, 2013] was used to calibrate HBV.  The 233 

calibration algorithms were selected based on previous studies that had successfully used them for 234 

calibration of these models [Reed et al., 2013; Moradkhani et al., 2005]. The calibration procedure 235 

itself is however not critical in our study, because the optimal parameter values are only used as 236 

initial values for the time varying parameter method.  Both models were calibrated to pre-change 237 

conditions.  The period 1973 to 1979 was selected for calibration (with 2 years for spin-up) as it was 238 

expected to have minimal land cover changes (and is therefore representative of pre-change 239 

conditions), and also to ensure sufficient data on pre-change conditions is available for assimilation.  240 

Both models had very similar performance in terms of reproducing observed runoff (an NSE of 0.75 241 

and 0.77 for HyMOD and HBV respectively).  HBV was slightly better at reproducing low flows whilst 242 

HyMOD was slightly better at mid-range flows (see Table 2).  Here the low flow threshold was 243 

defined as the average annual 50th percentile flow and the high flow threshold as the average annual 244 

85th percentile flow.    245 
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3.2. Time	Varying	Parameter	Estimation		246 

A Data Assimilation based framework for estimating time varying parameters was presented in 247 

Pathiraja et al. [2016a].  The approach relies on an Ensemble Kalman Filter (EnKF) [Evensen,1994] to 248 

perform sequential joint state and parameter updating.  EnKFs were developed to extend the 249 

applicability of the celebrated Kalman Filter [Kalman, 1960] to non-linear systems, although they 250 

provide a sub-optimal update as only the mean and covariance are considered in generating the 251 

posterior.  However, they have been used with much success in many hydrologic applications [see for 252 

example Reichle et al., 2002; Gu et al., 2005; Komma et al., 2008; Sun et al., 2009; Xu et al., 2016]. 253 

EnKFs offer a practical alternative to Sequential Monte Carlo/Particle Filter methods that propagate 254 

the full probability density through time, but suffer from several implementation issues even in 255 

moderate dimensional systems.  The Locally Linear Dual EnKF method of Pathiraja et al. [2016a] 256 

works by sequentially proposing parameters, updating these using the Ensemble Kalman filter and 257 

available observations, and subsequently using these updated parameters to propose and update 258 

model states.  An approach for proposing parameters in the time varying setting was also presented, 259 

for cases where no prior knowledge of parameter variations is available.  The method was verified 260 

against multiple synthetic case studies as well as for 2 small experimental catchments experiencing 261 

controlled land use change [Pathiraja et al., 2016a and Pathiraja et al., 2016b].  The algorithm is 262 

summarised below, for full details refer to Pathiraja et al. [2016a].    263 

3.2.1. Locally	Linear	Dual	EnKF	264 

Suppose a dynamical system can be described by a vector of states 𝒙\ and outputs 𝒚\  and a vector of 265 

associated model parameters 𝜽\ at any given time t.  The uncertain system states and parameters 266 

are represented by an ensemble of states _𝒙\B `	Ba3:? and parameters _𝜽\B `Ba3:? each with n members.  267 

The prior state and parameter distributions _𝒙\B2`	Ba3:? and _𝜽\B2`	Ba3:? respectively represent our 268 

prior knowledge of the system, usually derived as the output from a numerical model.  Suppose also 269 

that the system outputs are observed (𝒚\@) but that there is also some uncertainty associated with 270 
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these observations.  The purpose of the data assimilation algorithm (here the EnKF) is to combine the 271 

prior estimates with measurements, based on their respective uncertainties, to obtain an improved 272 

estimate of the system states and parameters.   A single cycle of the Locally Linear Dual EnKF 273 

procedure for a given time t is undertaken as follows.  Note in the following, the overbar notation is 274 

used to indicate the ensemble mean. 275 

 276 

1. Propose a prior parameter ensemble.  This involves generating a parameter ensemble using 277 

prior knowledge.  In this case, our prior knowledge comes from the updated parameter 278 

ensemble from the previous time (𝜽\23Bc ) and how it has changed over recent time steps.  The 279 

assumed parameter dynamics is a Gaussian random walk with time varying mean and 280 

variance, given by: 281 

𝜽\B2	~	𝑁f𝜽\23Bc +	𝒎\. ∆𝑡	, 𝑠j𝚺\23l m		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 2 ) 

𝚺\23l =	
1

𝑛 − 1
rf𝜽\23Bc −	𝜽\23cssssssm
?

Ba3

f𝜽\23Bc − 	𝜽\23cssssssm
t

 ( 3 ) 

where 𝚺\23l  is the sample covariance matrix of the updated parameter ensemble at time 𝑡 −282 

1; 𝜽\23cssssss indicates the ensemble mean of the updated parameters at time 𝑡 − 1; (	)t 283 

represents the transpose operator; and 𝑠j is a tuning parameter.  The prior ensemble mean 284 

is determined as the linear extrapolation of the updated ensemble means from the previous 285 

two time steps, i.e.: 286 

𝒎\[𝑘] = 	 u
𝒎\23[𝑘],				|𝒎\23[𝑘]| 	≤ 	𝑚-./
𝒎\2j[𝑘],				|𝒎\23[𝑘]| 	> 	𝑚-./

		 ( 4 ) 

𝒎\23 = 	
𝜽\23cssssss − 𝜽\2jcssssss

∆𝑡
 ( 5 ) 

𝒎\2j = 	
𝜽\2jcssssss − 𝜽\2zcssssss

∆𝑡
 ( 6 ) 

 where 𝒎\[𝑘] indicates the kth component of the vector 𝒎\, the estimated rate of change.  287 

Note that the extrapolation is forced to be less than a pre-defined maximum rate of change 288 

𝑚-./ to minimise overfitting and avoid parameter drift due to isolated large updates.  The 289 
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maximum rate of change is model specific and will depend on the modeller’s judgement 290 

regarding expected extreme changes.  291 

2. Consider observation and forcing uncertainty.  This is done by perturbing measurements of 292 

forcings and system outputs with random noise sampled from a distribution representing the 293 

uncertainty in those measurements.  The result is an ensemble of forcings (𝒖\B ) and 294 

observations (𝒚\B ) each with n members.  For example, if random errors in measurements of 295 

system outputs (herein also referred as observations)  are characterized  by a zero mean 296 

Gaussian distribution, the ensemble of observations  is given by: 297 

𝒚\B 	~	𝑁 <𝒚\@	, 𝚺\
|}|}D 		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 7 ) 

where 𝒚\@  is the recorded measurement at time 𝑡 and 𝚺\
|}|}  is the error covariance matrix of 298 

the measurements.  299 

3. Generate simulations using prior parameters.  The prior parameters from Step 1, 𝜽\B2  and 300 

updated states from the previous time, 𝒙\23Bc  are forced through the model equations to 301 

generate an ensemble of model simulations of states (𝒙~\B ) and outputs (𝒚~\B ): 302 

𝒙~\B = 𝑓f𝒙\23Bc , 𝜽\B2, 𝒖\B m		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 8 ) 

𝒚~\B = ℎf𝒙~\B , 𝜽\B2m		𝑓𝑜𝑟	𝑖 = 1: 𝑛 
( 9 ) 

4. Perform the Kalman update of parameters. Parameters are updated using the Kalman 303 

update equation and the prior parameter and simulated output ensemble from Step 1 and 3:  304 

𝜽\Bc = 𝜽\B2 	+ 𝐊\lf𝒚\B −	𝒚~\B m		𝑓𝑜𝑟	𝑖 = 1: 𝑛 ( 10 ) 

𝐊\l = 	𝚺\
l|� �𝚺\

|�|� + 	𝚺\
|}|}�

23
 ( 11 ) 

where 𝚺\
l|� is a matrix of the sample cross covariance between errors in parameters 𝜽\B2 and 305 

simulated output 𝒚~\B  ; and 𝚺\
|�|� is the sample error covariance matrix of the simulated output:  306 

𝚺\
l|� = 	

1
𝑛 − 1

rf𝜽\B2 − 	𝜽\2ssssm
?

Ba3

f𝒚~\B − 	𝒚~\sssm
t
 ( 12 ) 

𝚺\
|�|� = 	

1
𝑛 − 1

rf𝒚~\B − 	𝒚~\sssm
?

Ba3

f𝒚~\B −	𝒚~\sssm
t
 ( 13 ) 
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5. Generate simulations using updated parameters. Step 3 is repeated with the updated 307 

parameter ensemble 𝜽\Bc to generate the prior ensemble of model simulations of states (𝒙\B2) 308 

and outputs (𝒚�\B ): 309 

𝒙\B2 = 𝑓f𝒙\23Bc , 𝜽\Bc, 𝒖\B m		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 14 ) 

𝒚�\B = ℎf𝒙\B2, 𝜽\Bcm		𝑓𝑜𝑟	𝑖 = 1: 𝑛 
( 15 ) 

6. Perform the Kalman update of states and outputs. Use the Kalman update equation for 310 

correlated measurement and process noise (equations 16 to 19) and the simulated state 311 

(𝒙\B2) and output (𝒚�\B ) ensembles from Step 5 to update them.  Since the measurements have 312 

already been used to generate 𝒚�\B , the errors in model simulations and measurements are 313 

now correlated.   The standard Kalman update equation (as in the form of equations 10 and 314 

11) can no longer be used as it relies on the assumption that errors in measurements and 315 

model simulations are independent.   316 

𝒙\Bc = 𝒙\B2 	+ 𝐊\/f𝒚\B − 	𝒚�\B m		𝑓𝑜𝑟	𝑖 = 1: 𝑛						 ( 16 ) 

𝐊\/ = 	 �𝚺\
/|� + 	𝚺\

��|}� �𝚺\
|�|� + 𝚺\

���|} +	<𝚺\
���|}D

t
+	𝚺\

|}|}�
23

 ( 17 ) 

𝜺/\
B = 	𝒙\B2 −	𝒙~\B  ( 18 ) 

𝜺|�\
B = 	 𝒚�\B −	𝒚~\B  ( 19 ) 

where 𝚺\
/|�  is a matrix of the sample cross covariance between simulated states _𝒙\B2`Ba3:? 317 

and outputs _𝒚�\B `Ba3:? from Step 5; 𝚺\
��|}represents the sample covariance between 318 

_𝜺/\
B `
Ba3:?

  and the observations; and 𝚺\
���|}  represents the sample covariance between the 319 

�𝜺|� \
B �
Ba3:?

  and the observations.   320 

The above algorithm specifies the updating of states and parameters at any given time, based on 321 

available observations.  This allows one to retrospectively estimate time variations in model 322 

parameters, as well as provide one time step ahead forecasts of states & outputs (as per equations 8 323 

and 9).  Forecasts at longer time horizons (i.e. longer than one time step ahead) would be made by 324 
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generating prior parameters and states as detailed in Steps 1 to 3, although the local linear 325 

extrapolations are only valid close to the current time point.   326 

3.2.2. Application	to	the	Nammuc	Catchment	327 

Joint state and parameter estimation was undertaken for the Nammuc Catchment over the period 328 

1979 to 2004 by assimilating streamflow observations into the HyMOD and HBV models at a daily 329 

time step.  Estimating a large number of parameters from limited data is problematic in that the 330 

system is highly under-determined, making it difficult to ensure the estimated parameters are 331 

meaningful.  Given the fairly low parameter dimensionality of HyMOD, all model parameters were 332 

allowed to vary in time whilst for HBV we applied the Sobol method to identify the most sensitive 333 

parameters to be included in the time varying parameter estimation.  The Sobol method is a global 334 

sensitivity analysis method based on variance decomposition. It identifies the partial variance 335 

contribution of each parameter to the total variance of the hydrological model output [see for 336 

example Saltelli et al., 2008, Nossent et al. 2011]. The method, implemented through the SAFE  337 

toolbox [Pianosi et al., 2015], found the 𝑙𝑝 and 𝑀𝑎𝑥𝑏𝑎𝑠 parameters to be the least sensitive and 338 

least important in defining variations to catchment hydrology (see Table 3). These were held fixed (𝑙𝑝 339 

= 1 and 𝑀𝑎𝑥𝑏𝑎𝑠 = 1 day) in the following analysis. Note that although the ℎ𝑙1 parameter was found 340 

to have low sensitivity, it was retained as a time varying parameter due to its conceptual importance 341 

in separating interflow and near surface flow (refer Figure 3). 342 

 343 

Unbiased normally distributed ensembles of the parameters and states are required to initialise the 344 

LL Dual EnKF.  Initial parameter ensembles were generated by sampling from a Gaussian distribution 345 

with mean equal to the calibrated parameters over the pre-change period and variance estimated 346 

from parameter sets with similar objective function values.  Parameter sets with similar objective 347 

function values were obtained when using different starting points to the optimization algorithm 348 

during the model calibration stage.  Initial state ensembles were also sampled from normal 349 
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distributions with mean equal to the simulated state at the end of the calibration period.  An 350 

ensemble size of 100 members was adopted and assumed sufficiently large based on the findings of 351 

Moradkhani et al. [2005] and Aksoy et al. [2006].  Due to the stochastic-dynamic nature of the 352 

method, ensemble statistics were calculated over 20 separate realisations of the LL Dual EnKF.  The 353 

prior parameter generating method described in Step 1 of Section 3.2 requires specification of the 354 

tuning parameter 𝑠j to define the variance of the perturbations.  This was tuned by selecting the 𝑠j 355 

value that optimized the quality of forecast streamflow over the calibration period. Forecast quality 356 

was assessed using the logarithmic score (LS) [Good, 1952] of background streamflow predictions 357 

(𝑦�\B) using updated parameters (equation 15), which was averaged over the calibration period of 358 

length T: 359 

𝐿𝑆sss =r𝐿𝑆\

�

\a3

			 ( 20 ) 

𝐿𝑆\ = 	 log 	f𝑓(𝑦 = 	𝑦\@)m ( 21 ) 

where 𝑓(𝑦) is the probability density function of the background streamflow predictions 360 

(represented by the empirical pdf of the sample points _𝑦�\B`Ba3:?); and 𝑦\@ is the measurement of the 361 

system outputs.  The 𝑠j value that gave the largest 𝐿𝑆sss was adopted for the assimilation period.  The 362 

maximum allowable daily rate of change in the ensemble mean was based on assuming a linear rate 363 

of change within the entire feasible parameter space over a three year period.  364 

 365 

As detailed in Section 3.2, observation and forcing uncertainty is considered by perturbing 366 

measurements with random noise.  Here streamflow errors were assumed to be zero-mean normally 367 

distributed (truncated to ensure positivity) and heteroscedastic.  The variance is defined as a 368 

proportion of the observed streamflow, to reflect the fact that larger flows tend to have greater 369 

errors than low flows:   370 

𝑦\B	~	𝑇𝑁(𝑦\@	, 𝑑. 𝑦\@)		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 22 ) 
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where TN indicates the truncated normal distribution to ensure positive flows and 𝑑 = 0.1.  A 371 

multiplier of 0.1 was chosen based on estimates adopted for similar gauges in hydrologic DA studies 372 

[e.g. Clark et al., 2008; Weerts & Serafy, 2006; Xie et al., 2014]. 373 

 374 

Several studies have noted that a major source of rainfall uncertainty arises from scaling point 375 

rainfall to the catchment scale [Villarini & Krajewski, 2008; McMillan et al., 2011] and that 376 

multiplicative errors models are suited to describing such errors [e.g. Kavetski et al., 2006]. Rainfall 377 

uncertainties were therefore described using unbiased, lognormally distributed multipliers: 378 

𝑃\B = 𝑃\.𝑀B		 ( 23 ) 

𝑀B~𝐿𝑁(𝑚, 𝑣)	and	𝑋B = 	 logf𝑀Bm	~	𝑁(𝜇, 𝜎j) 				𝑓𝑜𝑟	𝑖 = 1: 𝑛	 
( 24 ) 

where 𝑃𝑡 is the measured rainfall at time 𝑡; 𝑚 and 𝑣 are the mean and variance of the lognormally 379 

distributed rainfall multipliers 𝑀 respectively; and 𝜇 and 𝜎j are the mean and variance of the 380 

normally distributed logarithm of the rainfall multipliers 𝑀.  For unbiased perturbations, we let 𝑚 = 381 

1.  The variance of the rainfall multipliers (𝑣) was estimated by considering upper and lower bound 382 

error estimates in the Thiessen weights assigned to the four rainfall stations (see Section 2.1 for 383 

calculation of catchment averaged rainfall, 𝑃𝑡).  The resulting upper and lower bound catchment 384 

averaged rainfall data were then used to estimate error parameters due to spatial variation in 385 

rainfall: 386 

𝑣 =	 𝑒(j�c	��). f𝑒�� − 1m ( 25 ) 

𝜎j =	𝜎j	  = 	𝑣𝑎𝑟 ¡log ¢
𝑃>££G=,3N
𝑃C@HG=,3N

¤¥								 ( 26 ) 

𝜇 = 	 log(𝑚) −	
𝜎j

2
= 	−	

𝜎j

2
								 ( 27 ) 

where 𝑃>££G=,3N indicates catchment averaged rainfall data estimated using the upper bound 387 

Thiessen weights with daily depth greater than 10mm (similar for 𝑃C@HG=,3N).  A 10mm rainfall depth 388 

threshold was chosen to avoid large rainfall fractions due to small rainfall depths.  𝜎j	   was found to 389 

be 0.05 in this case study.  Similarly, we assume the dominant source of uncertainty in temperature 390 
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data arises from spatial variation.  Differences in temperature records at Lai Chau and Quynh Nhai 391 

(only available gauges with temperature records) were analysed and found to be approximately 392 

normally distributed with sample mean 0.2 deg C and variance of 1.4 deg C.  A perturbed 393 

temperature ensemble was then generated according to equation 28: 394 

𝑇\B	~	𝑇𝑁f𝑇\
.¦§, 1.4m			𝑓𝑜𝑟		𝑖 = 1: 𝑛				 ( 28 ) 

where 𝑇\
.¦§  represents catchment averaged temperature data (see Section 2.1).  Note that 395 

perturbations were taken to be unbiased (zero mean) as the sample mean of the differences in the 396 

temperature records was close to zero.  The same perturbed input and observation sequences were 397 

used for the HyMOD and HBV runs for the sake of comparison. A summary of the values adopted for 398 

the various components of the Locally Linear Dual EnKF for each model is provided in Table 4 and 399 

Table 5.     400 

4. Results	and	Discussion		401 

Temporal variations in the estimated parameter distributions from the LL Dual EnKF are evident for 402 

both models (see Figure 4 and 5).  In the case of the HBV model, changes at an inter-annual time 403 

scale are evident for the 𝑝𝑒𝑟𝑐	and 𝛽 (see Figure 4).  The decrease in the 𝛽 parameter means that a 404 

greater proportion of rainfall is converted to runoff (i.e. more water entering the shallow layer 405 

storage).  Additionally, the increase in the 𝑝𝑒𝑟𝑐 parameter means that a greater volume of water is 406 

made available for baseflow generation.  These changes correspond with the observed increase in 407 

the annual runoff coefficient (Figure 2) and increase in baseflow volume (as discussed in Section 2.2).  408 

From an algorithm perspective, these parameters are most strongly correlated with streamflow (as 409 

well as the most sensitive, see Table 3), meaning that they will receive the greatest proportional 410 

updates.    Similar parameter adjustments are seen for HyMOD, at least at a qualitative level (see 411 

Figure 5). The sharp increase in the 𝑏 parameter during the post-change period means that a greater 412 

volume of water is available for routing (as larger 𝑏 values mean that a smaller proportion of the 413 
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catchment has deep soil storage capacity) and the downward inter-annual trend in 𝛼 means that a 414 

greater portion of excess runoff is routed through the baseflow store.  Intra-annual variations in 415 

updated model parameters for both HyMOD and HBV are also apparent (refer Figure 4 and Figure 5).  416 

This is due to the inability of a single parameter distribution to accurately model both wet and dry 417 

season flows.  Such variations were not observed when using the time varying parameter framework 418 

for small deforested catchments (< 350ha) [see Pathiraja et al., 2016b].  The comparatively less clear 419 

parameter changes for the Nammuc catchment are due to a combination of the increased difficulty 420 

in accurately modelling the hydrologic response (even in pre-change conditions) and due to the 421 

relatively more subtle and gradual changes to land cover.  Nonetheless, the method is shown to 422 

generate a temporally varying structure that is conceptually representative of the observed changes.        423 

 424 

Despite the overall correspondence between changes to model parameters and observed 425 

streamflow, a closer examination shows that the hydrologic model structure is critical in determining 426 

whether the time varying parameter models accurately reflect changes in all aspects of the 427 

hydrologic response (not just total streamflow).  In order to examine the impact of parameter 428 

variations on the model dynamics, we generated model simulations with the time varying parameter 429 

ensemble from the LL Dual EnKF, but without state updating (hereafter referred to as TVP-HBV and 430 

TVP-HyMOD). Streamflow predictions from the LL Dual EnKF (i.e. with state and parameter updating) 431 

for both the HyMOD and HBV are generally of similar quality and superior to those from the 432 

respective time invariant parameter models, although a slight bias in baseflow predictions from 433 

HyMOD is evident (see for example Figure 6).  However, differences in predictions from TVP-HBV and 434 

TVP-HyMOD are more striking due to the lack of state updating. Figure 7 shows annual statistics of 435 

simulated streamflow from the TVP-HBV and TVP-HyMOD models and observed runoff.  The TVP-436 

HBV gives direct runoff and baseflow predictions that are consistent with runoff observations, 437 

meaning that the parameter adjustments reflect the observed changes in the runoff response.  This 438 

however is not the case for the TVP-HyMOD. The annual runoff coefficient and annual direct runoff 439 
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coefficient are severely under-estimated in the post-change period by the TVP-HyMOD, whilst the 440 

Annual Baseflow Index has an increasing trend of magnitude far greater than observed (Figure 7c).  441 

All three quantities on the other hand are well represented by the TVP-HBV (Figure 7).  Similar 442 

conclusions can be drawn from Figure 8, which shows the results of a Moving Average Shifting 443 

Horizon (MASH) analysis (see Section 2.2) on total and direct runoff (observed and simulated).  444 

Observed increases in January to April flows (see Figure 8a) and wet season direct flows (July to 445 

September) (see Figure 8e) are well represented by the TVP-HBV but not TVP-HyMOD.   446 

 447 

The reason for the differences in performance between the TVP-HBV and TVP-HyMOD lies in the 448 

structure of the hydrologic model.  The TVP-HyMOD is incapable of representing the observed 449 

increase in annual runoff/direct runoff coefficient due to the increased baseflow during dry periods, 450 

despite having an Annual Baseflow Index far greater than the observed.  This occurs due to an 451 

inability to generate flow volume during periods of no rain.   In joint state-parameter updating using 452 

HyMOD, underestimated runoff predictions during dry periods lead to adjustments to the 𝑘F and 𝛼 453 

parameters to increase baseflow depth (since these are the only parameters that are associated to 454 

an active store).  Unlike HBV, HyMOD has no continuous supply of water to the routing stores (i.e. 455 

the quick flow and slow flow stores) during recession periods (which typically have extended periods 456 

of no rainfall, so that 𝑉 in Figure 3 is zero).  This means that 𝑘F and 𝛼 are updated to extreme values 457 

to compensate for the volumetric shortfall.  The HBV structure, on the other hand, has a continuous 458 

percolation of water into the deep layer store even during periods of no rain (so long as the shallow 459 

water store is non-empty).  In summary, the HyMOD model structure is poorly suited to simulating 460 

streamflow dynamics in post-change conditions, although it gave reasonable simulations in pre-461 

change conditions.  This highlights that need to select a sufficiently flexible model structure prior to 462 

undertaking forecasting/predictive modelling using the time varying parameter approach.  In 463 

particular, the model structure must be capable of effectively simulating all potential future 464 

catchment conditions.    465 
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 466 

Having established that the TVP-HBV provided a good representation of the observed streamflow 467 

dynamics, we used a modelling approach to determine whether the observed changes were solely 468 

driven by forcings and which (if any) components of runoff were also affected by land use change.  A 469 

resampled rainfall and temperature time series was generated by sampling the data without 470 

replacement across years for each day (for instance rainfall and temperature for 1st January 1990 is 471 

found by randomly sampling from all records on 1st January).  This maintains the intra-annual (e.g. 472 

seasonal) variability but destroys any inter-annual trends in the meteorological data.  Streamflow 473 

simulations were then generated using this resampled meteorological sequence as inputs to the TVP-474 

HBV (i.e. without state updating).  If the resulting streamflow simulations do not reproduce the 475 

observed changes to streamflow dynamics, then this indicates that changes to meteorological 476 

forcings are the main contributor.  However, if it is able to at least partially (or fully) reproduce the 477 

observed streamflow changes, this means that land cover changes are impacting catchment 478 

hydrology (but potentially in addition to forcing changes, due to the presence of ecosystem 479 

feedbacks).  Figure 8d&h show the results of a MASH undertaken on the resulting simulations of total 480 

and direct runoff using the resampled forcing time series and TVP-HBV model.  Observed increases in 481 

baseflow during the January – April period (see Figure 8a) and increases in direct runoff in the June – 482 

September period (see Figure 8e) are reproduced.  The magnitude of increase in direct runoff in July 483 

is slightly lower, indicating the potential for some climatic influences also. This is consistent with 484 

findings from the Mann-Kendall test which identified a statistically significant increase in July rainfall 485 

(see Section 2.2).  Overall however, these results lend further weight to the conclusion that land 486 

cover change has impacted the hydrologic regime of the Nammuc catchment.  These results also 487 

demonstrate that parameter changes correspond to actual changes in catchment hydrology, and are 488 

not just random fluctuations that reproduce the observed streamflow statistics only when the 489 

observed forcing time series is used. 490 
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5. Conclusions		491 

As our anthropogenic footprint expands, it will become increasingly important to develop modelling 492 

methodologies that are capable of handling changing catchment conditions.  Previous work proposed 493 

the use of models whose parameters vary with time in response to signals of change in observations. 494 

The so-called Locally Linear Dual EnKF time varying parameter estimation algorithm [Pathiraja et al., 495 

2016a] was applied to 2 sets of small (< 350 ha) paired experimental catchments with deforestation 496 

occurring under experimental conditions (rapid clearing of 100% and 50% of land surface) [Pathiraja 497 

et al., 2016b].  Here we demonstrate the efficacy of the method for a larger catchment experiencing 498 

more realistic land cover change, whilst also investigating the importance of the chosen model 499 

structure in ensuring the success of the time varying parameter estimation method.  We also 500 

demonstrate that the time varying parameter framework can be used in a retrospective fashion to 501 

determine whether land cover changes (and not just meteorological factors) contribute to the 502 

observed hydrologic changes. 503 

 504 

Experiments were undertaken on the Nammuc catchment (2880 km2) in Vietnam, which experienced 505 

a relatively gradual conversion from forest to cropland over a number of years (cropland increased 506 

from roughly 23% of the catchment between 1981 and 1994 to 52% by 2000).  Changes to the 507 

hydrologic regime after the mid-1990s were detected and attributed mostly to an increase in 508 

baseflow volume.  Application of the LL Dual EnKF with two conceptual models (HBV and HyMOD) 509 

showed that the time varying parameter framework with state updating improved streamflow 510 

prediction in post-change conditions compared to the time invariant parameter case.  However, 511 

baseflow predictions from the LL Dual EnKF with HBV were generally superior to the HyMOD case 512 

which tended to have a slight negative bias.  It was found that the structure (i.e. model equations) of 513 

HyMOD was unsuited to representing the modified baseflow conditions, resulting in extreme and 514 

unrealistic time varying parameter estimates.  This work shows that the chosen model is critical for 515 
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ensuring the time varying parameter framework successfully models streamflow in unknown future 516 

land cover conditions, particularly when used in a real time forecasting mode.  Appropriate model 517 

selection can be a difficult task due to the significant uncertainty associated with future land use 518 

change, and can be even more problematic when multiple models have similar performance in pre-519 

change conditions (as was the case in this study).  One possible way to ensure success of the time 520 

varying parameter approach is to use models whose fundamental equations explicitly represent key 521 

physical processes (for instance, modelling sub-surface flow using Richard’s equation with hydraulic 522 

conductivity allowed to vary with time).  In this way, time variations in model parameters would 523 

more closely reflect changes to physiographic properties, rather than also having to account for 524 

missing processes.   The drawback of such physically based models is that they are generally data 525 

intensive, both in generating model simulations (i.e. detailed inputs) and specifying parameters.  526 

Additionally, it may be necessary to reduce the dimensionality of the time varying parameter vector 527 

by keeping less sensitive model parameters fixed in order to make the estimation problem tractable.  528 

Models of intermediate complexity that have explicit process descriptions may be the most 529 

promising, although this also remains to be demonstrated.  530 
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Tables	730 

 Pre 1994 Post 1994 
Land Use 

Evergreen Forest  
(including evergreen needle and 

evergreen leaf) (%) 
77% 48% 

Cropland (%) 23% 52% 
Hydro-Meteorological Properties 

Mean Annual Rainfall (mm) 1630 1660 
Mean Annual Runoff (mm) 838 1190 

Mean Annual Runoff Coefficient 0.5 0.7 
Mean Annual PET (mm) 1300 1300 

Estimated Mean Annual BFI  0.33 0.39 

Table 1 Study catchment properties 731 
 732 

 733 

 734 

 735 

 736 

  737 
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 738 

 HYMOD HBV 

NSE [ ] 0.77 0.75 

Peak flows (q > 5mm/d) 

MAE [mm/d] 3.11 2.85 

RMSE [mm/d] 4.55 4.72 

Medium flows (1 mm/d <= q <= 5mm/d) 

MAE [mm/d] 0.66 0.80 

RMSE [mm/d] 0.86 1.09 

Low flows (q < 1mm/d) 

MAE [mm/d] 0.35 0.20 

RMSE [mm/d] 0.42 0.34 

Table 2 Model performance in pre-change conditions used for calibration (1975 – 1979).  Bold face 739 
numbers correspond to the model with superior performance for the particular metric. 740 

 741 

 742 

  743 
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 744 

 Sensitivity Index 

hl1 0.10 

lp 0.12 

Maxbas 0.14 

fcap 0.18 

K0 0.23 

K2 0.23 

K1 0.38 

beta 0.41 

perc 0.47 

Table 3 Variance Based Sensitivity Analysis Results for HBV parameters: first order sensitivity index 745 
representing the contribution of varying a single parameter to the variance of the model output.  746 

Lower values indicate lower sensitivity. 747 

 748 

 749 

 750 

  751 
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 752 

Parameters 

 Description Units Initial Sampling 
Distribution 

Feasible 
Range 𝒔𝟐  

Max allowable 
daily rate of 

change (𝑚-./) 

𝛽 Soil Moisture 
exponent [ ] N(2, 0.1) 0 – 7  0.003 1.8x10-3 

𝑓𝑐𝑎𝑝 
Maximum soil 
moisture store 

depth 
[mm] N(467, 10) 10 – 2000  0.003 0.4 

ℎ𝑙1 

Threshold for 
generation of 
near surface 

flow 

[mm] N(120, 10) 0 – 400   0.003 0.1 

𝐾0 
Near Surface 
Flow Routing 

Coefficient 
[ ] N(0.3, 0.005) 0.0625 – 1  0.003 2x10-4 

𝐾1 
Interflow 
Routing 

Coefficient 
[ ] N(0.09, 5x10-4) 0.02 – 0.1  0.003 9x10-6 

𝑝𝑒𝑟𝑐 Percolation rate [mm/d] N(1.3, 10-4) 0 – 3  0.003 10-3 

𝐾2 
Baseflow 
Routing 

Coefficient 
[ ] N(0.01, 10-6) 5x10-5– 0.02  0.003 9x10-6 

States 

𝑠𝑜𝑤𝑎𝑡 Soil Moisture 
Store [mm] N(0,1) (0, 𝑓𝑐𝑎𝑝) 

 𝑠𝑡𝑤1 Shallow Layer 
Store [mm] N(0,1) (0, ∞) 

𝑠𝑡𝑤2 Deep Layer 
Store [mm] N(0,0.1) (0, ∞) 

Table 4 Locally Linear EnKF inputs for the HBV model case 753 

 754 
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Parameters 

 Description Units Initial Sampling 
Distribution Feasible Range 𝒔𝟐  

Max allowable 
daily rate of 

change (𝑚-./)  

𝑏 

Pareto-
distributed soil 
storage shape 

parameter 

[ ] N(0.37, 10-4) 0 – 0.3 0.004 3x10-4 

𝑐-./ 
Maximum point 

soil storage 
depth 

[mm] N(651, 10) 300 – 1500 0.004 0.3 

𝑘L  
Quick flow 

Routing 
Coefficient 

[ ] N(0.6, 5x10-4) 0.55 – 0.99 0.018 3x10-4 

𝑘F 
Slow flow 
Routing 

Coefficient 
[ ] N(0.04, 5x10-4) 0.001 – 0.54 0.018 4x10-5 

𝛼 
Excess Runoff 

Splitting 
Parameter 

[ ] N(0.47, 5x10-4) 0.001 – 0.99 0.018 4x10-4 

States 

𝑆 Soil Store [mm] N(180, 0.1*180) 
(0, 𝑆-./ =
E®¯°c	®±�

Ec3
) 

 
𝑆L3,j,z Quick Flow 

Stores [mm] N(0,1) (0, ∞) 

𝑆F Slow Flow Store [mm] N(0,1) (0, ∞) 

Table 5 Locally Linear EnKF inputs for the HYMOD model case 756 
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Figures	762 
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 764 
 765 

Figure 1 Study Catchment showing gauges and changes in land cover over time. 766 
 767 
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 779 
 780 
 781 

Figure 2 Impact of land use change on observed streamflow: a) Annual Runoff Coefficient, b) 782 
Annual Baseflow Index (BFI), c) Moving Average Shifting Horizon (MASH) results for total observed 783 

runoff, d) MASH for observed rainfall. 784 
 785 
 786 
 787 
 788 
 789 
 790 
 791 
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Figure 3 Schematic of the models used in this study: a) HBV and b) HyMOD.  Parameters are shown 795 
in blue and states are shown in green. 796 
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 802 
Figure 4 Parameter Trajectories using the HBV model.  The dark grey shaded areas indicate the 803 
middle 90% of the ensemble, bounded by the 5th and 95th percentiles.  The light grey shaded 804 

areas indicate the middle 50% of the ensemble, bounded by the 25th and 75th percentiles.  The 805 
ensemble mean is indicated by the blue line.  The vertical green panel indicates the assumed time 806 

period of rapid deforestation.   807 
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 812 
Figure 5 Parameter Trajectories using the HyMOD model.  The dark grey shaded areas indicate the 813 

middle 90% of the ensemble, bounded by the 5th and 95th percentiles.  The light grey shaded 814 
areas indicate the middle 50% of the ensemble, bounded by the 25th and 75th percentiles.  The 815 

ensemble mean is indicated by the blue line.  The vertical green panel indicates the assumed time 816 
period of rapid deforestation.   817 
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 823 

Figure 6 Representative Hydrographs of background streamflow from the LL Dual EnKF (black line), 824 
Time varying parameter model with no state updating (blue line), time invariant parameter model 825 
with no DA (green line) and observed streamflow (red line).  Results for HBV are shown in the top 826 

row and HyMOD in the bottom row.  A pre-change year (1974) is shown on the left and a post 827 
change year (1998) on the right.   828 
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 832 

 833 

 834 

Figure 7 Influence of time varying parameters on model output (i.e. without state updating) 835 
summarized in terms of the Annual Runoff Coefficient (top row), Annual Direct Runoff Coefficient 836 
(second row) and Annual Baseflow Index (BFI) (third row).  Results for HyMOD are shown in the 837 

first column, HBV are shown in the second column.   838 
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 841 

 842 

Figure 8 Moving Average Shifting Horizon (MASH) results for observed streamflow (first column), 843 
simulated streamflow from time varying parameter model (without state DA) for HYMOD (2nd 844 
column), HBV (third column), resampled climate HBV (fourth column).  These are split into total 845 

runoff (first row) and direct runoff or surface runoff (2nd row). 846 
 847 


