
Response to the Editor 

Dear Dr. Hrachowitz, 

Thank you for evaluating our manuscript and review responses and providing constructive 
comments.  We have modified our manuscript to address all review comments.  We hope that the 
modifications to the manuscript help clarify the research gaps and novelty of our work.  Specifically, 
the research gaps are (please note all line references refer to the document with tracked changes): 

1) To test the efficacy of the time varying parameter method for realistic catchments that are 
more heterogeneous, larger, and with more gradual land use change than the test 
catchments used to demonstrate the proof of concept in Pathiraja et al. [2016b].  This is 
discussed in Lines 93-118 of the revised manuscript. 

2) To examine the role of the hydrologic model in determining the success of the time varying 
parameter approach.  This is discussed in Lines 118-124 of the revised manuscript.  

The research questions are also summarised in the conclusions (see Lines 647-652). 

In regards to the novelty of the study compared to other studies, we have inserted the following 
discussion (lines 137-139): 

“This work represents the first application of a continuously time varying parameter approach for 
modelling a real medium sized catchment with no apriori (or partial) knowledge of the type and 
timing of land use change.”     

Additionally, we have discussed the novelty of the approach also in terms of the advantages of the 
proposed approach over existing methods: 

Lines 55-58: “However, the aforementioned approaches are unsuited to hydrologic forecasting in 
changing catchments, as the predicted land use change may not reflect actual changes.  A potentially 
more suitable approach in such a setting is to allow model parameters to vary in time, rather than 
assuming a constant optimal value or stationary probability distribution.” 

Lines 82-85: “In retrospective mode, the method is advantageous compared to split-sample 
calibration type approaches since no apriori knowledge of land use change is needed, and the 
modeller does not have to make somewhat arbitrary decisions about how to segregate the data.”   

And more specifically, the novelty/advantage of the proposed time varying parameter approach 
compared to other methods that also utilise the notion of time varying parameters: 

Lines 58-64: “Many existing methods utilising such a framework require some apriori knowledge of 
the land use change in order to inform variations in model parameters (see for instance Efstratiadis, 
2015; Brown et al., 2006; and Westra et al., 2014).  Recent efforts have examined the potential for 
time varying parameter models to automatically adapt to changing conditions using information 
contained in hydrologic observations and sequential Data Assimilation, without requiring explicit 
knowledge of the changes [see for example Taver et al., 2015, Pathiraja et al., 2016a&b].” 

 



 

 

In regards to the request for an improved benchmark, we respectfully note that we have not used a 
benchmark in our study (and a benchmark is not needed for the analyses that we are undertaking).    

Full details of our revisions can be found in the response to reviewer document. 

Thank you for your time and consideration.  

Best Regards, 

Sahani Pathiraja  
Daniela Anghileri 
Paolo Burlando  
Ashish Sharma 
Lucy Marshall 
Hamid Moradkhani  
 



Response to Reviewer 1  
 
Please note that all line references refer to the document with tracked changes.  
Modifications to the manuscript are shown in below in blue. 
 
This study applies the time varying parameter method previously developed by the 
authors to a Vietnamese catchment and two lumped daily hydrological models. The 
authors test the suitability of their method to reflect observed land use changes within the 
catchment as well as the compatibility of the method with different model structures. The 
manuscript is well written, the results very interesting and I appreciate the author’s efforts 
to present their method in a very clear and concise manner.  That said, I consider the 
manuscript can still be improved on several aspects. 
 
We thank the reviewer for their time and comments.  Please see below our responses to the 
comments. 
 
1) The reader could benefit from more precise explanations on the following points. The 
fact that the method is applied to two lumped, conceptual, daily models needs to be 
stated from the beginning (abstract and introduction) of the article. These are specific 
methodological choices and could impact the conclusions.  

The following text has been inserted in the abstract and introduction: 

At line 10: “The method was used with two lumped daily conceptual models (HBV and 
HyMOD) that gave good quality streamflow predictions during pre-change conditions.” 

At line 131: “We also consider two lumped conceptual hydrologic models (given the 
availability of point rainfall, temperature, and streamflow data) operating at daily time step 
to address the second objective.”   

The scope of the paper needs to be more clearly stated by underlining what research gap 
this study fills (i.e. how your specific contribution will advance understanding) and the 
novelty of the approach (i.e. what can the time variable parameters method do that 
existing methods can’t when studying the impacts of land use changes).  

We have modified the introduction of the manuscript so that the research gap is more 
explicitly defined.  The research questions we are examining in this paper are: 

1) To test the efficacy of the time varying parameter method for realistic catchments 
that are more heterogeneous, larger, and with more gradual land use change than 
the test catchments used to demonstrate the proof of concept in Pathiraja et al. 
[2016b].  This is discussed in Lines 93-118: 

“Here we investigate two issues related to the use of time varying parameter models for 
prediction in realistic catchments with changing land cover conditions.  Firstly, we 
investigate the efficacy of the time varying parameter method for sparsely observed, 
medium-sized catchments with spatially complex and gradual land use change (occurring 
over months/years).  Several authors have demonstrated that impacts of land use change on 



the hydrologic response are dependent on many factors including the type and rate of land 
cover conversion as well the spatial pattern of different land uses within the catchment 
[Dwarakish & Ganasri, 2015; Warburton et al., 2012].  In such situations, the effects of 
unresolved spatial heterogeneities in model inputs (e.g. rainfall) and the relatively less 
pronounced changes in land surface conditions make time varying parameter detection and 
accurate hydrologic prediction more difficult.”     

2) To examine the role of the hydrologic model in determining the success of the time 
varying parameter approach.  This is discussed in Lines 118-124: 

“The second objective is to examine the role of the hydrologic model in determining the 
ability of the time varying parameter framework to provide high quality predictions in 
changing conditions.  Often there may be several candidate hydrologic models (with time 
invariant parameters) that have similar predictive performance for a catchment when 
calibrated and validated over a time series of static land cover conditions.  This work 
examines whether all such candidate models in time varying parameter mode are also 
capable of providing accurate predictions under changing conditions.”   

The research questions are also summarised in the conclusions (see Lines 647-652). 

In regards to the novelty of the study compared to other studies, we have inserted the 
following discussion (lines 137-139): 

“This work represents the first application of a continuously time varying parameter 
approach for modelling a real medium sized catchment with no apriori (or partial) 
knowledge of the type and timing of land use change.”     

Additionally, we have discussed the novelty of the approach also in terms of the advantages 
of the proposed approach over existing methods: 

Lines 55-58: “However, the aforementioned approaches are unsuited to hydrologic 
forecasting in changing catchments, as the predicted land use change may not reflect actual 
changes.  A potentially more suitable approach in such a setting is to allow model 
parameters to vary in time, rather than assuming a constant optimal value or stationary 
probability distribution.” 

Lines 82-85: “In retrospective mode, the method is advantageous compared to split-sample 
calibration type approaches since no apriori knowledge of land use change is needed, and 
the modeller does not have to make somewhat arbitrary decisions about how to segregate 
the data.”   

And more specifically, the novelty/advantage of the proposed time varying parameter 
approach compared to other methods that also utilise the notion of time varying 
parameters: 

Lines 58-64: “Many existing methods utilising such a framework require some apriori 
knowledge of the land use change in order to inform variations in model parameters (see for 
instance Efstratiadis, 2015; Brown et al., 2006; and Westra et al., 2014).  Recent efforts have 
examined the potential for time varying parameter models to automatically adapt to 



changing conditions using information contained in hydrologic observations and sequential 
Data Assimilation, without requiring explicit knowledge of the changes [see for example 
Taver et al., 2015, Pathiraja et al., 2016a&b].” 

The perspectives of the study could be better articulated with the paper’s scope and better 
motivated given the outputs of the study. More specifically, the authors propose to apply 
the time varying parameter method (TVPM) to physically-based models. However, the 
lines 294-296 state that parameter dimensionality can be an issue and, as acknowledged 
by the authors, physically-based models are usually less parsimonious than conceptual 
models. Likewise, the other perspective is to applied the TVPM within a multi-model 
framework. According to the findings of the analysis, model structure is a key factor in 
assuring the success of the time varying parameter method: wouldn’t it be the same 
problem to find a single model compatible with the TVPM than to find a compatible multi- 
model?  

The discussion surrounding physically based models and multi-model framework in the 
conclusion was aimed at providing potential solutions to the issue of model specification.  
We have provided additional discussion regarding physically based models. Specifically, that 
the dimension of the time varying parameter vector may need to be reduced to make the 
estimation problem tractable, and that models of intermediate complexity may be more 
promising (see lines 671-681): 

“One possible way to ensure success of the time varying parameter approach is to use 
models whose fundamental equations explicitly represent key physical processes (for 
instance, modelling sub-surface flow using Richard’s equation with hydraulic conductivity 
allowed to vary with time).  In this way, time variations in model parameters would more 
closely reflect changes to physiographic properties, rather than also having to account for 
missing processes.   The drawback of such physically based models is that they are generally 
data intensive, both in generating model simulations (i.e. detailed inputs) and specifying 
parameters.  Additionally, it may be necessary to reduce the dimensionality of the time 
varying parameter vector by keeping less sensitive model parameters fixed in order to make 
the estimation problem tractable.  Models of intermediate complexity that have explicit 
process descriptions may be the most promising, although this also remains to be 
demonstrated.”  

The discussion regarding a multi-model framework has been removed. The idea here was 
that a suite of models would be used (e.g. in this case both HBV and HyMOD, since both 
gave reasonable simulation performance in pre-change conditions) and any model that was 
unable to represent key features of the hydrologic response would be given less weight (in 
this case, HyMOD).          

2) The temporal scales in the introduction and throughout the manuscript need to be 
defined more consistently. Please quantify : L53: “short-term” (one time step 
ahead/days/week/month?), L54 “dynamic” (daily dynamic/weekly...?), L63 and 71: “real 
time”, L72: “given time”, L87: “gradual”, L288: “longer time horizons”.  

Short-term: days to weeks, this has been added: “2) for short-term predictive modelling 
(days to weeks), e.g. flood forecasting;” (line 80) 



Dynamic: this word was used to refer to catchments whose properties are changing with 
time.  This has been replaced with “changing.” (line 55) 

Real time: this is a commonly used term to refer to “at the actual time the process is 
occurring.”  

Given time: this was meant to refer to “at each time in the assimilation cycle.”  This phrase 
has been deleted. (line 73) 

Gradual:  The following text has been inserted: “medium-sized catchments with spatially 
complex and gradual (occurring over months/years) land use change.” (lines 95-96). 

Longer time horizon: in this context, this phrase is referring to forecasts at longer than one 
time step ahead.  The following text has been inserted: “Forecasts at longer time horizons 
(i.e. longer than one time step ahead) would be made by generating prior parameters and 
states as detailed in Steps 1 to 3,…” (line 401). 

The pre-change conditions are different between L206-207 (1973-1979) and Table 1 (1970-
1994). The observed results (Figure 2) are presented between 1970 and 2004 when the 
modeling results (Figure 3) are presented for the 1975-2004 period. Likewise why 
calibrate the models between 1973 and 1979 and not between 1970 and 1994?  

It is quite difficult in the present manuscript to gather the different time resolutions.  

We apologise for the confusion in this regard and have made the following clarifications. 

The data in Table 1 is presented for pre and post 1994 based on the available land cover 
map information.  Hence 1970-1994 is taken as the entire pre-change period and post 1994 
as the post-change period.  The following text has been inserted to clarify (see Lines 162-
164): “A summary of catchment properties is provided in Table 1 for pre-change (prior to 
1994) and post-change (after 1994) conditions.  This separation was based on available land 
cover information as described below.”    

Only part of the pre-change period was selected for calibration, since it is of interest to 
undertake assimilation on pre-change data also (to see if parameters stay constant).  We 
have modified the text to make clear that the period 1973-1979 is only a part of the pre-
change period (see lines 292-294): “The period 1973 to 1979 was selected for calibration 
(with 2 years for spin-up) as it was expected to have minimal land cover changes (and is 
therefore representative of pre-change conditions), and also to ensure sufficient data on pre-
change conditions is available for assimilation.”   

The observed data have been analysed for the entire period of record in Figure 2, since here 
we are interested in presenting statistics for the entire data set.  This is needed so we can 
determine when changes occur, as discussed in Lines 179-181: “Based on the available land 
cover map information and the changes to observed runoff (see Section 2.2), we posit that a 
period of rapid extensive deforestation occurred in early to mid-1990s.” 

Finally, Figure 4 and 5 contain results of the assimilation for the period after calibration 
(1980 to 2004). These have been modified so that they show the results from 1980 to 2004.  



As mentioned earlier, it is of interest to undertake time varying parameter estimation even 
in the pre-change conditions (up to 1994) to see if it is able to detect constant parameters 
during the period of minimal change.  Significant parameter variations in during this period 
indicate the presence of model structural issues.   

3) Section 2.2 mixes methods with results. I would suggest to keep the methodological 
parts (computation of the base flow index, description of the MASH method and the 
Mann-Kendall test) as section 2.2 and move the result parts (analysis of figure 2) as a new 
section 3.1. It would also be easier for the reader to recall the outputs of the observed 
changes analysis while moving to the analysis of the time varying parameter method 
(L367: “as discussed in section 2.2”). Regarding the computation of the BFI please 
consider adding the equation as well as the chosen values for the two parameters to the 
text as it can impact the BFI values.  

We thank the reviewer for the suggestion regarding Section 2.2, but feel that its present 
state is most appropriate since the aim here is to provide a discussion on the impact of land 
cover change, prior to undertaking the time varying parameter estimation which is the main 
focus of this manuscript.    

The recursive filter used to estimate baseflows has been inserted (see equation 1), as well as 
the values of the 2 parameters (see Line 198).  The equation for the annual baseflow index 
was provided in Line 218. 

4) The benchmark used in this study appears quite weak for two reasons. First, the study 
is retrospective which means both the benchmark and the TVPM should be based on the 
whole streamflow record. Secondly, the authors mentioned the use of split sample 
calibration for retrospective studies in the introduction (lines 47-49), why not choose a 
benchmark based on split sample calibration? The use of such a benchmark could better 
highlight the benefits of the TVPM over existing methodologies. In particular, it could 
supplement the discussion the authors provided on the benefits of updating both 
parameters and states over updating solely the model parameters. If changing the 
benchmark is not feasible, the results analysis and discussion should at least acknowledge 
that better-performing benchmarks already exist and nuance the relative assessment of 
the efficacy of the TVPM accordingly.  

We are unclear as to what exactly the reviewer is referring to when they discuss “the 
benchmark.”  In this manuscript, we are analysing the output from the time varying 
parameter estimation algorithm only, we have made no reference to a benchmark.  
Additionally, we are unclear about the reviewer’s request to undertake TVPM on the whole 
streamflow record.  We have undertaken the time varying parameter estimation on the 
period 1979 to 2004, which is almost the entire streamflow record.   

In regards to the reviewer’s request to examine split sample calibration: we respectfully 
note that the purpose of this article is to examine specific application issues related to the 
use of the TVPM, not to highlight its benefit over existing methodologies.  The scope of the 
article is discussed in Lines 93-124, which is: 

1) To test the efficacy of the time varying parameter method for realistic catchments 



that are more heterogeneous, larger, and with more gradual land use change than 
the test catchments used to demonstrate the proof of concept in Pathiraja et al. 
[2016b].   

2) To examine the role of the hydrologic model in determining the success of the time 
varying parameter approach. 

Secondly, split sample calibration is not a suitable benchmark here because we are focused 
on modelling approaches that can also be used in forecasting and predictive mode, without 
any apriori knowledge of the catchment changes as stated in Lines 82-85: 

“In retrospective mode, the method is advantageous compared to split-sample calibration 
type approaches since no apriori knowledge of land use change is needed, and the modeller 
does not have to make somewhat arbitrary decisions about how to segregate the data.”  

5) I believe the paper could benefit from a more detailed discussion on two aspects.  

Could you please expand the explanation of the observed increase of BFI with regard to 
the physical processes involved. Indeed as stated by the authors, forest coverage decrease 
for the benefit of cropland. If this is the case, I would expect an observed decrease of BFI 
since forests usually favor infiltration while cropland are usually characterized by more 
compact soils and managed to maximize the use of soil water by crops. Are these newly 
agricultural soils drained or irrigated? It could result respectively in increased soil 
infiltration and increased available water without changes in the precipitation signal.  

Unfortunately, not much information about the agricultural practices in the region is 
available, but, to our knowledge, there are no significant water storing facilities in that 
region which could support extensive irrigation schemes. We included the following 
discussion about the physical processes potentially involved with BFI increase (lines 222-
230): 
 
“The exact physical processes behind the observed increase in baseflow are not precisely 
known, particularly since effects of land use change from forest to cropland are not 
unequivocal [Price, 2011]. Deforestation may be associated to an increase in mean annual 
flow and baseflow because of lower interception and evapotranspiration rates [e.g., 
Keppeler and Ziemer, 1990]. Nevertheless, permanent forest removal may decrease 
baseflow because of soil compaction and lower infiltration rates [e.g., Zimmermann et al., 
2006; Bormann and Klaassen; 2008]. Some authors also show that tillage practices, 
associated to forest conversion to cropland, can increase soil porosity, soil water content, 
and infiltration, thus ultimately contributing to baseflow formation [e.g., Alam et al., 2014].” 
 
 
Provide some more context to evaluate the results on the model structure impact. On 
Figure 3 please ensure that all parameters and states are represented, at least those 
involved in the TVPM. For example the b parameter (HyMOD) is primarily impacted by the 
TVPM but not presented in the model scheme so that the reader cannot understand how it 
is used by the model. Be more specific in the legend of Figure 3: for example, on Fig 3b 
there is a qb in the legend but none in the scheme, it is also unclear whether sowat, stw1, 
Sq1... are the store names or the store content (i.e. the state variable to be updated)? On 



Figure 5, there is a kb parameter which is not displayed on Figure 3. If possible, please 
display parameters using one color and states using another color to help the reader 
understand model structure quickly. 

Thank you for the suggestions to improve Figure 3.  All states and parameters have now 
been included in Figure 3 and the naming of the parameters (e.g. kb vs ks) has now been 
made consistent both within the text and between Figure 3 and Figure 5.  States and 
parameters have also been represented in different colours in Figure 3 to make each 
clearer. 

For the HBV model, perc and β are the two most heavily impacted by TVPM but are also 
the two most sensitive. I do not find surprising that TVPM would preferably adjust 
sensitive parameters but a discussion of the relation between model sensitivity and effects 
of TVPM is missing.  

A discussion on sensitivity and correlation with the observed variables has been provided 
(see Lines 522-526): 

“These changes correspond with the observed increase in the annual runoff coefficient 
(Figure 2) and increase in baseflow volume (as discussed in Section 2.2).  From an algorithm 
perspective, these parameters are most strongly correlated with streamflow (as well as the 
most sensitive, see Table 3), meaning that they will receive the greatest proportional 
updates.”    

To this aim, it would also be very interesting to have the results of the sensitivity analysis 
for the HyMOD model. Which lead to the following point. Can the authors elaborate on 
lines 399-401: “The annual runoff and annual direct runoff are severely under-estimated in 
the post-change period by the TVP-HyMOD, whilst the Annual Baseflow Index has an 
increasing trend of magnitude far greater than observed (Figure 7c).”? As stated by the 
authors (l191-192), the three cascading tanks represent quick flows while slow flow is 
represented by the Ss store. In Figure 5 the mean alpha parameter is inferior to 0,5 in the 
post-change period, meaning more flow is routed through the slow flow store, hence the 
increase of BFI in Figure 7c. My understanding of these results is that it is easier for the 
model to adjust its response (simulated streamflow) by modifying the Ss store behavior 
than to adjust the quick flow response. This could be due to: (i) a high model sensitivity 
towards ks (especially when alpha is low and b high) and/or (ii) incompatibility between 
cascading tanks (need of multiple time steps to have an impact on streamflow) and data 
assimilation frameworks (Markov chain). If this is indeed the case, I would argue that 
based on their results, the authors should make some concrete recommendations on 
which type of model structure is compatible with TVPM (parallel tanks, high sensitivity for 
all parameters, low parameter cross correlation...)  

We have provided additional discussion to clarify the interpretation of the estimated time 
varying parameters in the HyMOD.  The reviewer is correct in identifying that the alpha 
parameter is reduced below 0.5 in the post-change period, so that more water is routed 
through the slow flow store.  However, the reason for this is due to the observed increase in 
persistent flows during periods of no rain, and the fact that the slow flow is the only active 
store during such periods, because the quick flow store has been depleted.  This means that 



the only parameters that have any impact on streamflow are 𝑘" and 𝛼, which is why these 
are adjusted.  The following discussion has been provided to explain this further (see lines 
577-589):  

“The reason for the differences in performance between the TVP-HBV and TVP-HyMOD lies 
in the structure of the hydrologic model.  The TVP-HyMOD is incapable of representing the 
observed increase in annual runoff/direct runoff coefficient due to the increased baseflow 
during dry periods, despite having an Annual Baseflow Index far greater than the observed.  
This occurs due to an inability to generate flow volume during periods of no rain.   In joint 
state-parameter updating using HyMOD, underestimated runoff predictions during dry 
periods lead to adjustments to the 𝑘" and 𝛼 parameters to increase baseflow depth (since 
these are the only parameters that are associated to an active store).  Unlike HBV, HyMOD 
has no continuous supply of water to the routing stores (i.e. the quick flow and slow flow 
stores) during recession periods (which typically have extended periods of no rainfall, so that 
𝑉 in Figure 3 is zero).  This means that 𝑘" and 𝛼 are updated to extreme values to 
compensate for the volumetric shortfall.  The HBV structure, on the other hand, has a 
continuous percolation of water into the deep layer store even during periods of no rain (so 
long as the shallow water store is non-empty).”  

In regards to the reviewer’s request to provide concrete recommendations, this is non-
trivial because the issue is not the compatibility of the hydrologic model with the TVPM, but 
rather the suitability of the model to simulate changed streamflow dynamics.  The model 
structure is incapable of generating persistent flows during periods of no rain, regardless of 
the parameter setting (as explained above).  The recommendations that we can provide are 
that a sufficiently flexible model structure must be chosen prior to undertaking TVP in real 
time.  The following discussion has been inserted (see lines 589-594):    

“In summary, the HyMOD model structure is poorly suited to simulating streamflow 
dynamics in post-change conditions, although it gave reasonable simulations in pre-change 
conditions.  This highlights that need to select a sufficiently flexible model structure prior to 
undertaking forecasting/predictive modelling using the time varying parameter approach.  
In particular, the model structure must be capable of effectively simulating all potential 
future catchment conditions.”    

 

Minor comments  

Line 64-67: “It can also...an assessment.” The link with the above paragraph is not obvious 
at this point of the introduction. 

This statement is just adding to the discussion on the capabilities of the method.  

Line 72: “given time”, do you mean in forecasting mode?   

Yes, this would be in forecasting mode. 

Lines 74-76: please rephrase “the time scale of the observation frequency” 



This has been replaced with “at the time scale of the available observations.” 

Lines 75-77: Regarding the applications of the method for 1): please clarify the advantages 
of the approach compared to existing split sample calibration procedures you mentioned (l 
48-49), 2) and 3): seam out of the paper scope since the method/results do not include a 
part on forecasts. Please justify more clearly the use of the method for forecasting. 
Regarding 3) is on-line water resource water management on the same time scale as the 
time varying parameter method?  

Additional discussion on the advantages of the method over split sample calibration has 
been included (see Lines 82-85): 

“In retrospective mode, the method is advantageous compared to split-sample calibration 
type approaches since no apriori knowledge of land use change is needed, and the modeller 
does not have to make somewhat arbitrary decisions about how to segregate the data.” 

This is in addition to the discussion in Lines 58-64: 

“Many existing methods utilising such a framework require some apriori knowledge of the 
land use change in order to inform variations in model parameters (see for instance 
Efstratiadis, 2015; Brown et al., 2006; and Westra et al., 2014).  Recent efforts have 
examined the potential for time varying models to automatically adapt to changing 
conditions using information contained in hydrologic observations and sequential Data 
Assimilation, without requiring explicit knowledge of the changes [see for example Taver et 
al., 2015, Pathiraja et al., 2016a&b].” 

Additional discussion on the use of the method for prediction/forecasting has been 
provided (see Lines 85-89): 

“When used for prediction or forecasting, states and parameters are updated sequentially 
using all available observations up until the current time.  These updated states and 
parameters are then used along with the prior parameter generating model to produce 
hydrologic predictions over a short time horizon.  This allows one to seamlessly obtain 
predictions without the modeller needing to explicitly modify the model to account for any 
catchment changes.” 

The advantage of using the method in forecasting mode compared to existing approaches 
has also been discussed (lines 53-64): 

“A related approach involves combining land use change forecast models with hydrologic 
models [e.g. Wijesekara et al., 2012].  However, the aforementioned approaches are 
unsuited to hydrologic forecasting in changing catchments, as the predicted land use change 
may not reflect actual changes.  A potentially more suitable approach in such a setting is to 
allow model parameters to vary in time, rather than assuming a constant optimal value or 
stationary probability distribution… Recent efforts have examined the potential for time 
varying parameter models to automatically adapt to changing conditions using information 
contained in hydrologic observations and sequential Data Assimilation, without requiring 
explicit knowledge of the changes [see for example Taver et al., 2015, Pathiraja et al., 
2016a&b].” 



Finally, when used for on-line water management, this would indeed be at the same time 
scale as the parameters are updated.  This is reflected by the use of the phrase “real-time” 
in Line 80. 

Line 103: Is the efficiency of the method dependent on catchment size? Please specify in 
the text.  

The reference to size here is related to efficacy rather than efficiency, since larger 
catchments are usually more difficult to model well compared to smaller catchments 
(particularly with lumped conceptual models).   

Line 109: Please specify to which dates you are referring  

The following has been inserted (see Line 134-135): “during the pre-change calibration 
period (1975-1979).” 

Line 134: Could you explain the reason behind using two different data sets to assess land 
use? Are the two datasets equally reliable? Please specify in the text 

It was not easy to find (continuous in time and from the same source) land cover maps for 
that area. These were the only two sources we could find.  The following text has been 
inserted (see Lines 166-168): “Land cover information for the catchment is scant, we were 
able to locate only two sources which unfortunately do not give a complete picture over the 
entire time period of interest (1970 to 2004).” 

Line 143: Can you describe the variation of altitude within the catchment, as it can help 
understand the uncertainties associated with the meteorological forcing.  

The following text has been inserted (see lines 161-162): “and catchment elevation ranges 
between 350 and 1500 m asl.” 

Line 158: Please insert the BFI equation and specify the chosen values for the two 
parameters  

The recursive filter used to estimate baseflows has been inserted (see equation 1), as well as 
the values of the 2 parameters (see Line 198).  The equation for the annual baseflow index 
was provided in Line 218. 

Line 182: Please specify that the daily time step is used  

The following text has been inserted (line 258): “Conceptual lumped models operating at a 
daily time step…” 

Lines 205-206: Did you use both algorithms on each model or the SCE was used to calibrate 
HBV and BEA for HyMOD (or reversed)? If a different algorithm was used to calibrate the 
models, please include the importance of the calibration procedure in the discussion of 
your results  

The following discussion has been inserted to clarify how the models were calibrated, and 



also to note that the calibration procedure is not critical in our study (Lines 286-291): 

“The Shuffled Complex Evolution Algorithm (SCE-UA) [Duan et al., 1993] was used to 
calibrate HyMOD and the Borg Evolutionary Algorithm [Hadka & Reed, 2013] was used to 
calibrate HBV.  The calibration algorithms were selected based on previous studies that had 
successfully used them for calibration of these models [Reed et al., 2013; Moradkhani et al., 
2005]. The calibration procedure itself is however not critical in our study, because the 
optimal parameter values are only used as initial values for the time varying parameter 
method.”  

Line 210: Can you explain why these streamflow threshold values were retained?  

Explanation of how the streamflow threshold values were obtained have been added to the 
manuscript (see Lines 297-299): 

“Here the low flow threshold was defined as the average annual 50th percentile flow and the 
high flow threshold as the average annual 85th percentile flow.”    

Line 247 (eq1): Please name mt  

The following text has been inserted (line 352): “𝒎&, the estimated rate of change.”   

Line 254: Is mmax the same as the “allowable rate of change” in tables 4 and 5? If yes 
please unify the notations. Could you also specify how mmax is set (experience with the 
model, external data...)? 

The notation in tables 4 and 5 has been updated to say 𝑚()*.  Specifying the max allowable 
rate of change requires knowledge of the model and some educated judgement as to the 
likely changes of the catchment.  The following text has been inserted (see lines 354-361): 
“The maximum rate of change is model specific and will depend on the modeller’s 
judgement regarding expected extreme changes.”    

Line 295: Is a large number of parameters a limit to the application of the method? If yes, 
please acknowledge it in the text 

The issue of estimating a high dimensional parameter vector from low dimensional data is 
problematic for any parameter estimation method.  The following text has been inserted 
(lines 419-421): “Estimating a large number of parameters from limited data is problematic 
in that the system is highly under-determined, making it difficult to ensure the estimated 
parameters are meaningful.”  

Line 296: Could you briefly explain the Sobol method?  

We have provided additional discussion on the Sobol method, although the discussion is 
kept brief since it is a minor step in our study (lines 421-431): 

“Given the fairly low parameter dimensionality of HyMOD, all model parameters were 
allowed to vary in time whilst for HBV we applied the Sobol method to identify the most 
sensitive parameters to be included in the time varying parameter estimation.  The Sobol 



method is a global sensitivity analysis method based on variance decomposition. It identifies 
the partial variance contribution of each parameter to the total variance of the hydrological 
model output [see for example Saltelli et al., 2008, Nossent et al. 2011]. The method, 
implemented through the SAFE toolbox [Pianosi et al., 2015], found the 𝑙𝑝 and 𝑀𝑎𝑥𝑏𝑎𝑠 
parameters to be the least sensitive and least important in defining variations to catchment 
hydrology (see Table 3). These were held fixed (𝑙𝑝 = 1 and 𝑀𝑎𝑥𝑏𝑎𝑠 = 1 day) in the following 
analysis. Note that although the ℎ𝑙1 parameter was found to have low sensitivity, it was 
retained as a time varying parameter due to its conceptual importance in separating 
interflow and near surface flow (refer Figure 3).” 

Line 361: Please refer to Figure 4  

The following text has been inserted (line 518): “(see Figure 4 and 5).”  

Lines 375-376: Is the problem the difference between dry and wet seasons or catchment 
size and heterogeneity? Please clarify. 

The issue is the difficulty in modelling wet and dry season flows, reference to catchment size 
and heterogeneity has been deleted.  

Lines 379-380: “increased difficulty in accurately modeling the hydrologic response (even 
in pre- change conditions)”: does this mean bad calibration for both models? Please clarify 

This statement is referring to the fact that the streamflow from this catchment is 
comparatively more difficult to model accurately using the lumped models compared to the 
smaller catchments referenced in the previous sentence.  This is not necessarily just 
calibration, since there is a portion of the pre-change period that is also considered in the 
assimilation period.     

Line 412: Can the extreme updated values be prevented with smaller allowable change 
values?  

The max allowable change value is for proposing prior parameters, whilst this statement is 
referring to updated parameters.  Updated parameters means parameters that are modified 
by the Kalman update equation (equation 9).  Extreme updated values may occur when the 
prior parameters produce streamflow values that are a poor fit to the observations, thereby 
requiring large changes to the parameters to which the streamflow is most correlated.  

Line 451: “the time varying parameter method”  

Corrected to (line 649): “time varying parameter estimation method.”   

Line 463: “(i.e. model equation)” could maybe be moved to the beginning of the article to 
help the reader  

The statement (i.e. model equations) has been added at line 135-137 in the Introduction: 
“Therefore, the effect of the model structure (i.e. model equations) on hydrologic predictions 
from the time varying parameter models is studied.”    



Line 464: Is HyMOD unsuited or the association of the time varying method with the 
HyMOD structure proves inefficient?  

The structure of the HyMOD model equations is not suited, as discussed in Lines 577 to 594.  
The issue relates specifically to the persistent flows during dry flows that occurs only after 
land use change.  The structure of HyMOD is such that there is no continuous supply of 
water to the routing stores during dry periods or recession periods (Line 584).  This means 
that the 𝑉 variable in Figure 3 is zero, so that 𝑘" and 𝛼 have to be set to extreme values in 
order to generate any outflow (in this time period, the value of the other parameters is 
irrelevant) (Lines 582-584, 586-587).  This issue is entirely a consequence of the model, and 
would be present even in standard calibration.  The structure of HBV is more amenable to 
producing persistent flows during dry flows, hence this issue is not seen.   

Line 466: “unknown future”: please rephrase since (i) data assimilation cannot be 
performed without streamflow measurements (“unknown”) and (ii) the “future” has not 
been explored in this study  

We respectfully note that this statement is referring to the choice of the model structure, 
which has to be made before the time varying parameter estimation is carried out.  Whilst 
in this study we have undertaken a retrospective analysis, the same approach can be 
undertaken in real time, meaning that a model has to be selected before any potential land 
use change occurs (hence unknown future land use change).  We have added the following 
to clarify this (Line 664-671):     

“This work shows that the chosen model is critical for ensuring the time varying parameter 
framework successfully models streamflow in unknown future land cover conditions, 
particularly when used in a real time forecasting mode.  Appropriate model selection can be 
a difficult task due to the significant uncertainty associated with future land use change, and 
can be even more problematic when multiple models have similar performance in pre-
change conditions (as was the case in this study).” 

References: The formatting of the doi appears different between the citations. 

The formatting of the doi has been made consistent. 

Line 644: Table 1: please add the mean observed BFI values in the Hydro-Meteorological 
Properties since it is a key variable in your study  

The estimated mean annual BFI has been added to Table 1. 
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Abstract		1 

Rapid population and economic growth in South-East-Asia has been accompanied by extensive land 2 

use change with consequent impacts on catchment hydrology.  Modelling methodologies capable of 3 

handling changing land use conditions are therefore becoming ever more important, and are 4 

receiving increasing attention from hydrologists.  A recently developed Data Assimilation based 5 

framework that allows model parameters to vary through time in response to signals of change in 6 

observations is considered for a medium sized catchment (2880 km2) in Northern Vietnam 7 

experiencing substantial but gradual land cover change.  We investigate the efficacy of the method 8 

as well as the importance of the chosen model structure in ensuring the success of a time varying 9 

parameter method.  The method was used with two lumped daily conceptual models (HBV and 10 

HyMOD) that gave good quality streamflow predictions during pre-change conditions. Although both 11 

time varying parameter models gave improved streamflow predictions under changed conditions 12 

compared to the time invariant parameter model, persistent biases for low flows were apparent in 13 

the HyMOD case.  It was found that HyMOD was not suited to representing the modified baseflow 14 

conditions, resulting in extreme and unrealistic time varying parameter estimates.   This work shows 15 

that the chosen model can be critical for ensuring the time varying parameter framework 16 

successfully models streamflow under changing land cover conditions.  It can also be used to 17 

determine whether land cover changes (and not just meteorological factors) contribute to the 18 

observed hydrologic changes in retrospective studies where the lack of a paired control catchment 19 

precludes such an assessment.    20 
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1. Introduction				23 

Population and economic growth in South-East Asia has led to significant land use change, with rapid 24 

deforestation occurring largely for agricultural purposes [Kummer and Turner, 1994]. Forest cover in 25 

the Greater Mekong Sub-region (comprising Myanmar, Thailand, Cambodia, Laos, Vietnam, and 26 

South China) has decreased from about 73% in 1973 to about 51% in 2009 [WWF, 2013].  Vietnam in 27 

particular has had the second highest rate of deforestation of primary forest in the world, based on 28 

estimates from the Forest Resource Assessment by the United Nations Food and Agriculture 29 

Organization [FAO, 2005].  Such extensive land use change has the potential to significantly alter 30 

catchment hydrology (in terms of both quantity and quality), with its effects sometimes not 31 

immediate but occurring gradually over a lengthy period of time.  Recent estimates from satellite 32 

measurements indicate that rapid deforestation continues in the region, although at lower rates [e.g. 33 

Kim et al., 2015]. Persistent land use change necessitates modelling methodologies that are capable 34 

of providing accurate hydrologic forecasts and predictions, despite non-stationarity in catchment 35 

processes.  This is also particularly relevant for water resource management which requires reliable 36 

estimates of water availability, both in terms of volume and timing, to properly allocate the resource 37 

between different water uses and to prevent flood damages. Vietnam has built many reservoirs in 38 

the last decades and more are planned because they are considered to be fundamentally important 39 

for electricity production, flood control, water supply and irrigation, ultimately contributing to the 40 

development of the country [Giuliani et al., 2016].  41 

 42 

The literature on land-use change and its impacts on catchment hydrology is extensive, with studies 43 

examining the effects of 1) conversion to agricultural land-use [Thanapakpawin et al, 2007; 44 

Warburton et al., 2012]; 2) deforestation [Costa et al., 2003; Coe et al, 2011]; 3) afforestation [e.g. 45 

Yang et al., 2012; Brown et al, 2013] and 4) urbanization [Bhaduri et al., 2001; Rose & Peters, 2001].  46 

Fewer studies have examined how traditional modelling approaches must be modified to handle 47 
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non-stationary conditions, or how modelling methods can be used to assess impacts of land use 48 

change.  Split sample calibration has been used frequently to retrospectively examine changes to 49 

model parameters due to land use or climatic change [Seibert & McDonnell, 2010; Coron et al., 2012; 50 

McIntyre & Marshall, 2010; Legesse et al, 2003].  Several other studies have employed scenario 51 

modelling, whereby hydrologic models are parameterized to represent different possible future land 52 

use conditions [e.g. Niu & Sivakumar, 2013; Elfert & Borman, 2010].  A related approach involves 53 

combining land use change forecast models with hydrologic models [e.g. Wijesekara et al., 2012].  54 

However, the aforementioned approaches are unsuited to hydrologic forecasting in changing 55 

catchments, as the predicted land use change may not reflect actual changes.  A potentially more 56 

suitable approach in such a setting is to allow model parameters to vary in time, rather than 57 

assuming a constant optimal value or stationary probability distribution. Many existing methods 58 

utilising such a framework require some apriori knowledge of the land use change in order to inform 59 

variations in model parameters (see for instance Efstratiadis, 2015; Brown et al., 2006; and Westra et 60 

al., 2014).  Recent efforts have examined the potential for time varying parameter models to 61 

automatically adapt to changing conditions using information contained in hydrologic observations 62 

and sequential Data Assimilation, without requiring explicit knowledge of the changes [see for 63 

example Taver et al., 2015, Pathiraja et al., 2016a&b].  Such approaches can objectively modify 64 

model parameters in response to signals of change in observations in real time, whilst simultaneously 65 

providing uncertainty estimates of parameters and streamflow predictions.  They can also be used to 66 

determine whether land cover changes (and not solely meteorological factors) contribute to 67 

observed changes in streamflow dynamics in retrospective studies where the lack of a paired control 68 

catchment precludes such an assessment.   69 

 70 

Pathiraja et al. [2016a] presented an Ensemble Kalman Filter based algorithm (the so-called Locally 71 

Linear Dual EnKF) to estimate time variations in model parameters.  The method sequentially 72 

assimilates observations into a numerical model in real time to generate improved estimates of 73 
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model states, fluxes and parameters based on their respective uncertainties.  Its purpose is to infer 76 

changes to catchment properties (e.g. land cover change) from hydrologic observations, without 77 

prior knowledge of such changes, at the time scale of the available observations.  It can therefore be 78 

used for various applications: 1) to retrospectively estimate time variations in model parameters; 2) 79 

for short-term predictive modelling (days to weeks), e.g. flood forecasting; and 3) for on-line/real 80 

time water resource management, e.g. determining releases from reservoirs in catchments with 81 

changing land cover conditions.  In retrospective mode, the method is advantageous compared to 82 

split-sample calibration type approaches since no apriori knowledge of land use change is needed, 83 

and the modeller does not have to make somewhat arbitrary decisions about how to segregate the 84 

data.  When used for prediction or forecasting, states and parameters are updated sequentially using 85 

all available observations up until the current time.  These updated states and parameters are then 86 

used along with the prior parameter generating model to produce hydrologic predictions over a short 87 

time horizon.  This allows one to seamlessly obtain predictions without the modeller needing to 88 

explicitly modify the model to account for any catchment changes. The efficacy of the method was 89 

demonstrated in Pathiraja et al. [2016b] through an application to small experimental catchments (< 90 

350 ha) with drastic land cover changes and strong signals of change in streamflow observations.   91 

 92 

Here we investigate two issues related to the use of time varying parameter models for prediction in 93 

realistic catchments with changing land cover conditions.  Firstly, we investigate the efficacy of the 94 

time varying parameter method for sparsely observed, medium-sized catchments with spatially 95 

complex and gradual land use change (occurring over months/years).  Several authors have 96 

demonstrated that impacts of land use change on the hydrologic response are dependent on many 97 

factors including the type and rate of land cover conversion as well the spatial pattern of different 98 

land uses within the catchment [Dwarakish & Ganasri, 2015; Warburton et al., 2012].  In such 99 

situations, the effects of unresolved spatial heterogeneities in model inputs (e.g. rainfall) and the 100 

relatively less pronounced changes in land surface conditions make time varying parameter detection 101 
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and accurate hydrologic prediction more difficult.    The second objective is to examine the role of 118 

the hydrologic model in determining the ability of the time varying parameter framework to provide 119 

high quality predictions in changing conditions.  Often there may be several candidate hydrologic 120 

models (with time invariant parameters) that have similar predictive performance for a catchment 121 

when calibrated and validated over a time series of static land cover conditions [Marshall et al., 122 

2006].  This work examines whether all such candidate models in time varying parameter mode are 123 

also capable of providing accurate predictions under changing conditions.   124 

 125 

These issues are investigated for the Nammuc catchment (2880 km2) in Northern Vietnam which has 126 

experienced deforestation largely due to increasing agricultural development.  It serves as an ideal 127 

test catchment to study the efficacy of the time varying parameter algorithm due to its size, spatially 128 

complex pattern of land use changes, and lack of information on the precise timing of such changes.  129 

Land cover change is estimated to have occurred at varying rates, with cropland accounting for 130 

roughly 23% between 1981 and 1994, and 52% by 2000.  We also consider two lumped conceptual 131 

hydrologic models (given the availability of point rainfall, temperature, and streamflow data) 132 

operating at daily time step to address the second objective.  Both models demonstrate similar 133 

performance in representing streamflow at the outlet during the pre-change calibration period 134 

(1975-1979), although their performance during/after land use change is unknown.  Therefore, the 135 

effect of the model structure (i.e. model equations) on hydrologic predictions from the time varying 136 

parameter models is studied.  This work represents the first application of a continuously time 137 

varying parameter approach for modelling a real medium sized catchment with no apriori (or partial) 138 

knowledge of the type and timing of land use change.     139 

 140 

The remainder of this paper is structured as follows. Details of the study catchment and the impact 141 

of land cover change are analysed in Section 2.  Section 3 summarizes the experimental setup 142 

including the hydrological models and the time varying parameter estimation method used.  Results 143 
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are provided in Section 4, along with an analysis of whether the time varying model structures reflect 149 

the observed catchment dynamics.  Finally, we conclude with a summary of the main outcomes of 150 

the study as well as proposed future work. 151 

2. The	Nammuc	Catchment		152 

The Nammuc catchment (2880 km2) is located in the Red River Basin, the second largest drainage 153 

basin in Vietnam which also drains parts of China and Laos.  The local climate is tropical monsoon 154 

dominated with distinct wet (May to October) and dry (November to April) seasons.  The wet season 155 

tends to have high temperatures (on average 27 to 29 °C) due to south-south easterly winds that 156 

bring humid air masses.  Conversely, during the dry season, circulation patterns reverse carrying 157 

cooler dry air masses to the basin (leading to average temperatures of 16 to 21°C).  Streamflow 158 

response is consequently monsoon driven, with high flows occurring between June and October 159 

(generally peaking in July/August) and low flows in the December to May period (Vu, 1993).  Average 160 

annual rainfall at Nammuc varies between 1300 and 2000 mm (on average 1600 mm) and catchment 161 

elevation ranges between 350 and 1500 m asl.  A summary of catchment properties is provided in 162 

Table 1 for pre-change (prior to 1994) and post-change (after 1994) conditions.  This separation was 163 

based on available land cover information as described below.    164 

2.1. Data	&	Land	Cover	Change		165 

Figure 1 shows the available land cover information for the Nammuc catchment.  Land cover 166 

information for the catchment is scant, we were able to locate only two sources which unfortunately 167 

do not give a complete picture over the entire time period of interest (1970 to 2004).  The first land 168 

cover map refers to the period 1981-1994 and was obtained by the Vietnamese Forest Inventory and 169 

Planning Institute (http://fipi.vn/Home-en.htm). The second land cover map refers to year 2000 and 170 

was obtained from the FAO Global Land Cover database 171 

(http://www.fao.org/geonetwork/srv/en/metadata.show?id=12749&currTab=simple). A comparison 172 
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of the two maps shows a reduction in forest cover in favor of cropland; Evergreen Leaf decreases 176 

from about 60% to 30% whilst cropland increases from about 23% to 52%. The change in land cover 177 

is patchy, although mostly concentrated in the northern part of the catchment. Because of the scant 178 

information available, it is not easy to identify the precise time period of these changes. Based on the 179 

available land cover map information and the changes to observed runoff (see Section 2.2), we posit 180 

that a period of rapid extensive deforestation occurred in early to mid-1990s.  181 

 182 

Daily point rainfall data is available at four precipitation stations surrounding the catchment (Dien 183 

Bien, Tuan Giao, Quynh Nhai and Nammuc, see Figure 1).  Catchment averaged rainfall was 184 

developed as a weighted sum of the four stations with weights determined by Thiessen Polygons.  185 

Daily mean temperature was calculated in a similar fashion using temperature records from the 2 186 

closest gauges (Lai Chau and Quynh Nhai, see Figure 1).  This was used to estimate Potential 187 

Evapotranspiration through the empirical temperature-latitude based Hamon PET method [Hamon, 188 

1961].  Daily rainfall, temperature and streamflow data was provided by the Vietnamese Institute of 189 

Water Resources Planning. 190 

2.2. Impact	of	Land	Cover	Change	on	Streamflow		191 

The annual runoff/direct runoff coefficient and Baseflow Index were used to assess the impact of 192 

land cover change on the hydrologic regime.  Baseflow was estimated using the two parameter 193 

recursive baseflow filter of Eckhardt [2005] (see equation 1), with on-line updating of baseflow 194 

estimates to match low flows: 195 

𝑏" =	
1

(1 − 𝑎. 𝐵𝐹𝐼-./)
[(1 − 𝐵𝐹𝐼-./). 𝑎. 𝑏"23 + (1 − 𝑎).𝐵𝐹𝐼-./. 𝑦"]											 ( 1 ) 

where 𝑏" is the estimated baseflow at time 𝑘, 𝑦" is the total observed streamflow at time 𝑘, 𝐵𝐹𝐼-./  196 

is the maximum value of the BFI (long term ratio of baseflow to total streamflow) and 𝑎 is a filter 197 

parameter.  In this study, we adopt 𝐵𝐹𝐼-./ = 0.5 and 𝑎 = 0.988 based on manual optimization.  198 

  199 
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An examination of the observed streamflow and rainfall records shows that distinct changes to the 212 

hydrologic regime are evident after the mid-1990s.  The annual runoff coefficient <
=>?@AA
=.B?A.CC

	D  varies 213 

between 0.4 and 0.6 prior to 1994, after which it increases to between 0.6 and 0.8 until 2004 (see 214 

Figure 2a).  However, increases to annual yields are driven mostly by changes to baseflow volume.  215 

This is evident in Figure 2a, which shows that the increase in the annual direct runoff coefficient 216 

<
=>?@AA2E.FGAC@H

=.B?A.CC
	D is less than the increase in the total runoff coefficient (roughly 0.1 increase 217 

compared to 0.2 respectively).  A small increase in the Annual Baseflow Index <
E.FGAC@H
=>?@AA D is apparent 218 

also, from about 0.32 on average in the period 1970 to 1982 to 0.39 on average after 1994 (Figure 219 

2b).  This indicates that the annual increases to baseflow volume exceed the increases to direct 220 

runoff volume.   Similar changes were found by Wang et al. [2012] who analyzed records in the 221 

entire Da River basin which drains the largest river in the Red River catchment.  The exact physical 222 

processes behind the observed increase in baseflow are not precisely known, particularly since 223 

effects of land use change from forest to cropland are not unequivocal [Price, 2011]. Deforestation 224 

may be associated to an increase in mean annual flow and baseflow because of lower interception 225 

and evapotranspiration rates [e.g., Keppeler and Ziemer, 1990]. Nevertheless, permanent forest 226 

removal may decrease baseflow because of soil compaction and lower infiltration rates [e.g., 227 

Zimmermann et al., 2006; Bormann and Klaassen; 2008]. Some authors also show that tillage 228 

practices, associated to forest conversion to cropland, can increase soil porosity, soil water content, 229 

and infiltration, thus ultimately contributing to baseflow formation [e.g., Alam et al., 2014]. 230 

  231 

At a seasonal time scale, it is apparent that both wet and dry season flows exhibit temporal 232 

variations.  We utilized the Moving Average Shifting Horizon (MASH) [Anghileri et al., 2014] and 233 

Mann-Kendall test to assess seasonal trends in observed streamflow, precipitation, and temperature 234 

data.  The MASH tool can be used to qualitatively assess inter-annual variations in the seasonal 235 

pattern of a variable.  It works by calculating a statistic of the data (e.g. mean) over the same block of 236 
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days in consecutive years.  A steady increase in baseflow is again apparent (see February to April in 246 

Figure 2c), as well as increases to wet season flows (see June to September in Figure 2c).  Mann-247 

Kendall test (with significance level equal to 5%) on annual and monthly streamflow time series 248 

shows increasing trends in almost all months, i.e., from October to July. No concurrent increases are 249 

apparent in rainfall (see Figure 2d). Also, the Mann-Kendall test applied to precipitation time series 250 

does not show any statistically significant trend, except a decrease in September for Nammuc and 251 

Quynh Nhai station and an increase in July for Dien Bien station. Temperature variations are not 252 

evident from the MASH analysis (not shown) and no significant trend can be detected by applying the 253 

Mann-Kendall test. These results indicate that changes in streamflow dynamics are likely due to land 254 

use change rather than climatic impacts.  255 

3. Experimental	Setup		256 

3.1. Hydrologic	Models	257 

Conceptual lumped models operating at a daily time step were adopted due to the availability of 258 

point rather than distributed hydro-meteorological data of sufficient length.  We considered the 259 

HyMOD [Boyle, 2001] and Hydrologiska Byrans Vattenbalansavdelning (HBV) [Bergstrom et al., 1995] 260 

models.  They differ mainly in the way components of the response flow are separated (HBV has near 261 

surface flow, interflow, and baseflow components whilst HyMOD has a quickflow and slow flow 262 

component only) and how these flows are routed. A schematic of the models is shown in Figure 3.  263 

 264 

In the HyMOD model, spatial variations in catchment soil storage capacity are represented by a 265 

Pareto distribution with shape parameter 𝑏 and maximum point soil storage depth 𝑐-./.  Excess 266 

rainfall (𝑉) is partitioned into three cascading tanks representing quick flow and a single slow flow 267 

store through the splitting parameter	𝛼.  Outflow from these linear routing tanks is controlled by 268 
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parameters 𝑘M  (for the quick flow stores) and 𝑘F (for the slow flow store).  The model has a total of 5 274 

states and 5 parameters.   275 

 276 

In the HBV model, input to the soil store is represented by a power-law function (see Figure 3, note 277 

the snow store is neglected for this study).  Excess rainfall enters a shallow layer store which 278 

generates: 1) near surface flow (𝑞O) whenever the shallow store state (𝑠𝑡𝑤1) is above a threshold 279 

(ℎ𝑙1) and 2) interflow (𝑞3) by a linear routing mechanism controlled by the 𝐾1 parameter. 280 

Percolation from the shallow layer store to the deep layer store (controlled by 𝑝𝑒𝑟𝑐 parameter) then 281 

leads to the generation of baseflow also via linear routing (controlled by the 𝐾2 parameter). Finally, a 282 

triangular weighting function of base length 𝑀𝑎𝑥𝑏𝑎𝑠 is used to route the sum of all three flow 283 

components.  There are a total of 9 parameters and 3 states.  284 

 285 

The Shuffled Complex Evolution Algorithm (SCE-UA) [Duan et al., 1993] was used to calibrate HyMOD 286 

and the Borg Evolutionary Algorithm [Hadka & Reed, 2013] was used to calibrate HBV.  The 287 

calibration algorithms were selected based on previous studies that had successfully used them for 288 

calibration of these models [Reed et al., 2013; Moradkhani et al., 2005]. The calibration procedure 289 

itself is however not critical in our study, because the optimal parameter values are only used as 290 

initial values for the time varying parameter method.  Both models were calibrated to pre-change 291 

conditions.  The period 1973 to 1979 was selected for calibration (with 2 years for spin-up) as it was 292 

expected to have minimal land cover changes (and is therefore representative of pre-change 293 

conditions), and also to ensure sufficient data on pre-change conditions is available for assimilation.  294 

Both models had very similar performance in terms of reproducing observed runoff (an NSE of 0.75 295 

and 0.77 for HyMOD and HBV respectively).  HBV was slightly better at reproducing low flows whilst 296 

HyMOD was slightly better at mid-range flows (see Table 2).  Here the low flow threshold was 297 

defined as the average annual 50th percentile flow and the high flow threshold as the average annual 298 

85th percentile flow.    299 

Deleted: Figure 3300 

Deleted: ere301 

Deleted: the302 

Deleted:  (1973 to 1979)303 

Deleted:  sufficient data availability304 
Deleted:  the305 
Deleted:  period306 

Deleted: Table 2307 



12 
 

3.2. Time	Varying	Parameter	Estimation		308 

A Data Assimilation based framework for estimating time varying parameters was presented in 309 

Pathiraja et al. [2016a].  The approach relies on an Ensemble Kalman Filter (EnKF) [Evensen,1994] to 310 

perform sequential joint state and parameter updating.  EnKFs were developed to extend the 311 

applicability of the celebrated Kalman Filter [Kalman, 1960] to non-linear systems, although they 312 

provide a sub-optimal update as only the mean and covariance are considered in generating the 313 

posterior.  However, they have been used with much success in many hydrologic applications [see for 314 

example Reichle et al., 2002; Gu et al., 2005; Komma et al., 2008; Sun et al., 2009; Xu et al., 2016]. 315 

EnKFs offer a practical alternative to Sequential Monte Carlo/Particle Filter methods that propagate 316 

the full probability density through time, but suffer from several implementation issues even in 317 

moderate dimensional systems.  The Locally Linear Dual EnKF method of Pathiraja et al. [2016a] 318 

works by sequentially proposing parameters, updating these using the Ensemble Kalman filter and 319 

available observations, and subsequently using these updated parameters to propose and update 320 

model states.  An approach for proposing parameters in the time varying setting was also presented, 321 

for cases where no prior knowledge of parameter variations is available.  The method was verified 322 

against multiple synthetic case studies as well as for 2 small experimental catchments experiencing 323 

controlled land use change [Pathiraja et al., 2016a and Pathiraja et al., 2016b].  The algorithm is 324 

summarised below, for full details refer to Pathiraja et al. [2016a].    325 

3.2.1. Locally	Linear	Dual	EnKF	326 

Suppose a dynamical system can be described by a vector of states 𝒙] and outputs 𝒚]  and a vector of 327 

associated model parameters 𝜽] at any given time t.  The uncertain system states and parameters 328 

are represented by an ensemble of states `𝒙]B a	Bb3:? and parameters `𝜽]B aBb3:? each with n members.  329 

The prior state and parameter distributions `𝒙]B2a	Bb3:? and `𝜽]B2a	Bb3:? respectively represent our 330 

prior knowledge of the system, usually derived as the output from a numerical model.  Suppose also 331 

that the system outputs are observed (𝒚]@) but that there is also some uncertainty associated with 332 
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these observations.  The purpose of the data assimilation algorithm (here the EnKF) is to combine the 336 

prior estimates with measurements, based on their respective uncertainties, to obtain an improved 337 

estimate of the system states and parameters.   A single cycle of the Locally Linear Dual EnKF 338 

procedure for a given time t is undertaken as follows.  Note in the following, the overbar notation is 339 

used to indicate the ensemble mean. 340 

 341 

1. Propose a prior parameter ensemble.  This involves generating a parameter ensemble using 342 

prior knowledge.  In this case, our prior knowledge comes from the updated parameter 343 

ensemble from the previous time (𝜽]23Bd ) and how it has changed over recent time steps.  The 344 

assumed parameter dynamics is a Gaussian random walk with time varying mean and 345 

variance, given by: 346 

𝜽]B2	~	𝑁g𝜽]23Bd +	𝒎]. ∆𝑡	, 𝑠k𝚺]23m n		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 2 ) 

𝚺]23m =	
1

𝑛 − 1sg𝜽]23Bd −	𝜽]23dttttttn
?

Bb3
g𝜽]23Bd − 	𝜽]23dttttttn

u
 ( 3 ) 

where 𝚺]23m  is the sample covariance matrix of the updated parameter ensemble at time 𝑡 −347 

1; 𝜽]23dtttttt indicates the ensemble mean of the updated parameters at time 𝑡 − 1; (	)u 348 

represents the transpose operator; and 𝑠k is a tuning parameter.  The prior ensemble mean 349 

is determined as the linear extrapolation of the updated ensemble means from the previous 350 

two time steps, i.e.: 351 

𝒎][𝑘] = 	 v
𝒎]23[𝑘],				|𝒎]23[𝑘]| 	≤ 	𝑚-./
𝒎]2k[𝑘],				|𝒎]23[𝑘]| 	> 	𝑚-./

		 ( 4 ) 

𝒎]23 = 	
𝜽]23dtttttt − 𝜽]2kdtttttt

∆𝑡
 ( 5 ) 

𝒎]2k = 	
𝜽]2kdtttttt − 𝜽]2{dtttttt

∆𝑡
 ( 6 ) 

 where 𝒎][𝑘] indicates the kth component of the vector 𝒎], the estimated rate of change.  352 

Note that the extrapolation is forced to be less than a pre-defined maximum rate of change 353 

𝑚-./ to minimise overfitting and avoid parameter drift due to isolated large updates.  The 354 
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maximum rate of change is model specific and will depend on the modeller’s judgement 360 

regarding expected extreme changes.  361 

2. Consider observation and forcing uncertainty.  This is done by perturbing measurements of 362 

forcings and system outputs with random noise sampled from a distribution representing the 363 

uncertainty in those measurements.  The result is an ensemble of forcings (𝒖]B ) and 364 

observations (𝒚]B ) each with n members.  For example, if random errors in measurements of 365 

system outputs (herein also referred as observations)  are characterized  by a zero mean 366 

Gaussian distribution, the ensemble of observations  is given by: 367 

𝒚]B 	~	𝑁 <𝒚]@	, 𝚺]
}~}~D 		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 7 ) 

where 𝒚]@  is the recorded measurement at time 𝑡 and 𝚺]
}~}~  is the error covariance matrix of 368 

the measurements.  369 

3. Generate simulations using prior parameters.  The prior parameters from Step 1, 𝜽]B2  and 370 

updated states from the previous time, 𝒙]23Bd  are forced through the model equations to 371 

generate an ensemble of model simulations of states (𝒙�]B ) and outputs (𝒚�]B ): 372 

𝒙�]B = 𝑓g𝒙]23Bd , 𝜽]B2, 𝒖]B n		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 8 ) 

𝒚�]B = ℎg𝒙�]B , 𝜽]B2n		𝑓𝑜𝑟	𝑖 = 1: 𝑛 
( 9 ) 

4. Perform the Kalman update of parameters. Parameters are updated using the Kalman 373 

update equation and the prior parameter and simulated output ensemble from Step 1 and 3:  374 

𝜽]Bd = 𝜽]B2 	+ 𝐊]mg𝒚]B −	𝒚�]B n		𝑓𝑜𝑟	𝑖 = 1: 𝑛 ( 10 ) 

𝐊]m = 	𝚺]
m}� �𝚺]

}�}� + 	𝚺]
}~}~�

23
 ( 11 ) 

where 𝚺]
m}� is a matrix of the sample cross covariance between errors in parameters 𝜽]B2 and 375 

simulated output 𝒚�]B  ; and 𝚺]
}�}� is the sample error covariance matrix of the simulated output:  376 

𝚺]
m}� = 	

1
𝑛 − 1sg𝜽]B2 − 	𝜽]2ttttn

?

Bb3
g𝒚�]B − 	𝒚�]tttn

u
 ( 12 ) 

𝚺]
}�}� = 	

1
𝑛 − 1sg𝒚�]B − 	𝒚�]tttn

?

Bb3
g𝒚�]B −	𝒚�]tttn

u
 ( 13 ) 
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5. Generate simulations using updated parameters. Step 3 is repeated with the updated 384 

parameter ensemble 𝜽]Bd to generate the prior ensemble of model simulations of states (𝒙]B2) 385 

and outputs (𝒚�]B ): 386 

𝒙]B2 = 𝑓g𝒙]23Bd , 𝜽]Bd, 𝒖]B n		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 14 ) 

𝒚�]B = ℎg𝒙]B2, 𝜽]Bdn		𝑓𝑜𝑟	𝑖 = 1: 𝑛 
( 15 ) 

6. Perform the Kalman update of states and outputs. Use the Kalman update equation for 387 

correlated measurement and process noise (equations 16 to 19) and the simulated state 388 

(𝒙]B2) and output (𝒚�]B ) ensembles from Step 5 to update them.  Since the measurements have 389 

already been used to generate 𝒚�]B , the errors in model simulations and measurements are 390 

now correlated.   The standard Kalman update equation (as in the form of equations 10 and 391 

11) can no longer be used as it relies on the assumption that errors in measurements and 392 

model simulations are independent.   393 

𝒙]Bd = 𝒙]B2 	+ 𝐊]/g𝒚]B − 	𝒚�]B n		𝑓𝑜𝑟	𝑖 = 1: 𝑛						 ( 16 ) 

𝐊]/ = 	 �𝚺]
/}� + 	𝚺]

��}~� �𝚺]
}�}� + 𝚺]

���}~ +	<𝚺]
���}~D

u
+	𝚺]

}~}~�
23

 ( 17 ) 

𝜺/]
B = 	𝒙]B2 −	𝒙�]B  ( 18 ) 

𝜺}�]
B = 	 𝒚�]B −	𝒚�]B  ( 19 ) 

where 𝚺]
/}�  is a matrix of the sample cross covariance between simulated states `𝒙]B2aBb3:? 394 

and outputs `𝒚�]B aBb3:? from Step 5; 𝚺]
��}~represents the sample covariance between 395 

`𝜺/]
B aBb3:?  and the observations; and 𝚺]

���}~  represents the sample covariance between the 396 

�𝜺}� ]
B �
Bb3:?

  and the observations.   397 

The above algorithm specifies the updating of states and parameters at any given time, based on 398 

available observations.  This allows one to retrospectively estimate time variations in model 399 

parameters, as well as provide one time step ahead forecasts of states & outputs (as per equations 8 400 

and 9).  Forecasts at longer time horizons (i.e. longer than one time step ahead) would be made by 401 
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generating prior parameters and states as detailed in Steps 1 to 3, although the local linear 414 

extrapolations are only valid close to the current time point.   415 

3.2.2. Application	to	the	Nammuc	Catchment	416 

Joint state and parameter estimation was undertaken for the Nammuc Catchment over the period 417 

1979 to 2004 by assimilating streamflow observations into the HyMOD and HBV models at a daily 418 

time step.  Estimating a large number of parameters from limited data is problematic in that the 419 

system is highly under-determined, making it difficult to ensure the estimated parameters are 420 

meaningful.  Given the fairly low parameter dimensionality of HyMOD, all model parameters were 421 

allowed to vary in time whilst for HBV we applied the Sobol method to identify the most sensitive 422 

parameters to be included in the time varying parameter estimation.  The Sobol method is a global 423 

sensitivity analysis method based on variance decomposition. It identifies the partial variance 424 

contribution of each parameter to the total variance of the hydrological model output [see for 425 

example Saltelli et al., 2008, Nossent et al. 2011]. The method, implemented through the SAFE  426 

toolbox [Pianosi et al., 2015], found the 𝑙𝑝 and 𝑀𝑎𝑥𝑏𝑎𝑠 parameters to be the least sensitive and 427 

least important in defining variations to catchment hydrology (see Table 3). These were held fixed (𝑙𝑝 428 

= 1 and 𝑀𝑎𝑥𝑏𝑎𝑠 = 1 day) in the following analysis. Note that although the ℎ𝑙1 parameter was found 429 

to have low sensitivity, it was retained as a time varying parameter due to its conceptual importance 430 

in separating interflow and near surface flow (refer Figure 3). 431 

 432 

Unbiased normally distributed ensembles of the parameters and states are required to initialise the 433 

LL Dual EnKF.  Initial parameter ensembles were generated by sampling from a Gaussian distribution 434 

with mean equal to the calibrated parameters over the pre-change period and variance estimated 435 

from parameter sets with similar objective function values.  Parameter sets with similar objective 436 

function values were obtained when using different starting points to the optimization algorithm 437 

during the model calibration stage.  Initial state ensembles were also sampled from normal 438 
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distributions with mean equal to the simulated state at the end of the calibration period.  An 455 

ensemble size of 100 members was adopted and assumed sufficiently large based on the findings of 456 

Moradkhani et al. [2005] and Aksoy et al. [2006].  Due to the stochastic-dynamic nature of the 457 

method, ensemble statistics were calculated over 20 separate realisations of the LL Dual EnKF.  The 458 

prior parameter generating method described in Step 1 of Section 3.2 requires specification of the 459 

tuning parameter 𝑠k to define the variance of the perturbations.  This was tuned by selecting the 𝑠k 460 

value that optimized the quality of forecast streamflow over the calibration period. Forecast quality 461 

was assessed using the logarithmic score (LS) [Good, 1952] of background streamflow predictions 462 

(𝑦�]B) using updated parameters (equation 15), which was averaged over the calibration period of 463 

length T: 464 

𝐿𝑆ttt =s𝐿𝑆]

�

]b3

			 ( 20 ) 

𝐿𝑆] = 	 log 	g𝑓(𝑦 = 	𝑦]@)n ( 21 ) 

where 𝑓(𝑦) is the probability density function of the background streamflow predictions 465 

(represented by the empirical pdf of the sample points `𝑦�]BaBb3:?); and 𝑦]@ is the measurement of the 466 

system outputs.  The 𝑠k value that gave the largest 𝐿𝑆ttt was adopted for the assimilation period.  The 467 

maximum allowable daily rate of change in the ensemble mean was based on assuming a linear rate 468 

of change within the entire feasible parameter space over a three year period.  469 

 470 

As detailed in Section 3.2, observation and forcing uncertainty is considered by perturbing 471 

measurements with random noise.  Here streamflow errors were assumed to be zero-mean normally 472 

distributed (truncated to ensure positivity) and heteroscedastic.  The variance is defined as a 473 

proportion of the observed streamflow, to reflect the fact that larger flows tend to have greater 474 

errors than low flows:   475 

𝑦]B	~	𝑇𝑁(𝑦]@	, 𝑑. 𝑦]@)		𝑓𝑜𝑟	𝑖 = 1: 𝑛				 ( 22 ) 
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where TN indicates the truncated normal distribution to ensure positive flows and 𝑑 = 0.1.  A 480 

multiplier of 0.1 was chosen based on estimates adopted for similar gauges in hydrologic DA studies 481 

[e.g. Clark et al., 2008; Weerts & Serafy, 2006; Xie et al., 2014]. 482 

 483 

Several studies have noted that a major source of rainfall uncertainty arises from scaling point 484 

rainfall to the catchment scale [Villarini & Krajewski, 2008; McMillan et al., 2011] and that 485 

multiplicative errors models are suited to describing such errors [e.g. Kavetski et al., 2006]. Rainfall 486 

uncertainties were therefore described using unbiased, lognormally distributed multipliers: 487 

𝑃]B = 𝑃].𝑀B		 ( 23 ) 

𝑀B~𝐿𝑁(𝑚, 𝑣)	and	𝑋B = 	 logg𝑀Bn	~	𝑁(𝜇, 𝜎k) 				𝑓𝑜𝑟	𝑖 = 1: 𝑛	 
( 24 ) 

where 𝑃𝑡 is the measured rainfall at time 𝑡; 𝑚 and 𝑣 are the mean and variance of the lognormally 488 

distributed rainfall multipliers 𝑀 respectively; and 𝜇 and 𝜎k are the mean and variance of the 489 

normally distributed logarithm of the rainfall multipliers 𝑀.  For unbiased perturbations, we let 𝑚 = 490 

1.  The variance of the rainfall multipliers (𝑣) was estimated by considering upper and lower bound 491 

error estimates in the Thiessen weights assigned to the four rainfall stations (see Section 2.1 for 492 

calculation of catchment averaged rainfall, 𝑃𝑡).  The resulting upper and lower bound catchment 493 

averaged rainfall data were then used to estimate error parameters due to spatial variation in 494 

rainfall: 495 

𝑣 =	 𝑒(k�d	� ). g𝑒�
  − 1n ( 25 ) 

𝜎k =	𝜎k	¡ = 	𝑣𝑎𝑟 ¢log £
𝑃>¤¤G=,3O
𝑃C@HG=,3O

¥¦								 ( 26 ) 

𝜇 = 	 log(𝑚) −	
𝜎k

2
= 	−	

𝜎k

2
								 ( 27 ) 

where 𝑃>¤¤G=,3O indicates catchment averaged rainfall data estimated using the upper bound 496 

Thiessen weights with daily depth greater than 10mm (similar for 𝑃C@HG=,3O).  A 10mm rainfall depth 497 

threshold was chosen to avoid large rainfall fractions due to small rainfall depths.  𝜎k	¡  was found to 498 

be 0.05 in this case study.  Similarly, we assume the dominant source of uncertainty in temperature 499 
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data arises from spatial variation.  Differences in temperature records at Lai Chau and Quynh Nhai 506 

(only available gauges with temperature records) were analysed and found to be approximately 507 

normally distributed with sample mean 0.2 deg C and variance of 1.4 deg C.  A perturbed 508 

temperature ensemble was then generated according to equation 28: 509 

𝑇]B	~	𝑇𝑁g𝑇]
.§¨, 1.4n			𝑓𝑜𝑟		𝑖 = 1: 𝑛				 ( 28 ) 

where 𝑇]
.§¨  represents catchment averaged temperature data (see Section 2.1).  Note that 510 

perturbations were taken to be unbiased (zero mean) as the sample mean of the differences in the 511 

temperature records was close to zero.  The same perturbed input and observation sequences were 512 

used for the HyMOD and HBV runs for the sake of comparison. A summary of the values adopted for 513 

the various components of the Locally Linear Dual EnKF for each model is provided in Table 4 and 514 

Table 5.     515 

4. Results	and	Discussion		516 

Temporal variations in the estimated parameter distributions from the LL Dual EnKF are evident for 517 

both models (see Figure 4 and 5).  In the case of the HBV model, changes at an inter-annual time 518 

scale are evident for the 𝑝𝑒𝑟𝑐	and 𝛽 (see Figure 4).  The decrease in the 𝛽 parameter means that a 519 

greater proportion of rainfall is converted to runoff (i.e. more water entering the shallow layer 520 

storage).  Additionally, the increase in the 𝑝𝑒𝑟𝑐 parameter means that a greater volume of water is 521 

made available for baseflow generation.  These changes correspond with the observed increase in 522 

the annual runoff coefficient (Figure 2) and increase in baseflow volume (as discussed in Section 2.2).  523 

From an algorithm perspective, these parameters are most strongly correlated with streamflow (as 524 

well as the most sensitive, see Table 3), meaning that they will receive the greatest proportional 525 

updates.    Similar parameter adjustments are seen for HyMOD, at least at a qualitative level (see 526 

Figure 5). The sharp increase in the 𝑏 parameter during the post-change period means that a greater 527 

volume of water is available for routing (as larger 𝑏 values mean that a smaller proportion of the 528 
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catchment has deep soil storage capacity) and the downward inter-annual trend in 𝛼 means that a 536 

greater portion of excess runoff is routed through the baseflow store.  Intra-annual variations in 537 

updated model parameters for both HyMOD and HBV are also apparent (refer Figure 4 and Figure 5).  538 

This is due to the inability of a single parameter distribution to accurately model both wet and dry 539 

season flows.  Such variations were not observed when using the time varying parameter framework 540 

for small deforested catchments (< 350ha) [see Pathiraja et al., 2016b].  The comparatively less clear 541 

parameter changes for the Nammuc catchment are due to a combination of the increased difficulty 542 

in accurately modelling the hydrologic response (even in pre-change conditions) and due to the 543 

relatively more subtle and gradual changes to land cover.  Nonetheless, the method is shown to 544 

generate a temporally varying structure that is conceptually representative of the observed changes.        545 

 546 

Despite the overall correspondence between changes to model parameters and observed 547 

streamflow, a closer examination shows that the hydrologic model structure is critical in determining 548 

whether the time varying parameter models accurately reflect changes in all aspects of the 549 

hydrologic response (not just total streamflow).  In order to examine the impact of parameter 550 

variations on the model dynamics, we generated model simulations with the time varying parameter 551 

ensemble from the LL Dual EnKF, but without state updating (hereafter referred to as TVP-HBV and 552 

TVP-HyMOD). Streamflow predictions from the LL Dual EnKF (i.e. with state and parameter updating) 553 

for both the HyMOD and HBV are generally of similar quality and superior to those from the 554 

respective time invariant parameter models, although a slight bias in baseflow predictions from 555 

HyMOD is evident (see for example Figure 6).  However, differences in predictions from TVP-HBV and 556 

TVP-HyMOD are more striking due to the lack of state updating. Figure 7 shows annual statistics of 557 

simulated streamflow from the TVP-HBV and TVP-HyMOD models and observed runoff.  The TVP-558 

HBV gives direct runoff and baseflow predictions that are consistent with runoff observations, 559 

meaning that the parameter adjustments reflect the observed changes in the runoff response.  This 560 

however is not the case for the TVP-HyMOD. The annual runoff coefficient and annual direct runoff 561 
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coefficient are severely under-estimated in the post-change period by the TVP-HyMOD, whilst the 569 

Annual Baseflow Index has an increasing trend of magnitude far greater than observed (Figure 7c).  570 

All three quantities on the other hand are well represented by the TVP-HBV (Figure 7).  Similar 571 

conclusions can be drawn from Figure 8, which shows the results of a Moving Average Shifting 572 

Horizon (MASH) analysis (see Section 2.2) on total and direct runoff (observed and simulated).  573 

Observed increases in January to April flows (see Figure 8a) and wet season direct flows (July to 574 

September) (see Figure 8e) are well represented by the TVP-HBV but not TVP-HyMOD.   575 

 576 

The reason for the differences in performance between the TVP-HBV and TVP-HyMOD lies in the 577 

structure of the hydrologic model.  The TVP-HyMOD is incapable of representing the observed 578 

increase in annual runoff/direct runoff coefficient due to the increased baseflow during dry periods, 579 

despite having an Annual Baseflow Index far greater than the observed.  This occurs due to an 580 

inability to generate flow volume during periods of no rain.   In joint state-parameter updating using 581 

HyMOD, underestimated runoff predictions during dry periods lead to adjustments to the 𝑘F and 𝛼 582 

parameters to increase baseflow depth (since these are the only parameters that are associated to 583 

an active store).  Unlike HBV, HyMOD has no continuous supply of water to the routing stores (i.e. 584 

the quick flow and slow flow stores) during recession periods (which typically have extended periods 585 

of no rainfall, so that 𝑉 in Figure 3 is zero).  This means that 𝑘F and 𝛼 are updated to extreme values 586 

to compensate for the volumetric shortfall.  The HBV structure, on the other hand, has a continuous 587 

percolation of water into the deep layer store even during periods of no rain (so long as the shallow 588 

water store is non-empty).  In summary, the HyMOD model structure is poorly suited to simulating 589 

streamflow dynamics in post-change conditions, although it gave reasonable simulations in pre-590 

change conditions.  This highlights that need to select a sufficiently flexible model structure prior to 591 

undertaking forecasting/predictive modelling using the time varying parameter approach.  In 592 

particular, the model structure must be capable of effectively simulating all potential future 593 

catchment conditions.    594 
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 612 

Having established that the TVP-HBV provided a good representation of the observed streamflow 613 

dynamics, we used a modelling approach to determine whether the observed changes were solely 614 

driven by forcings and which (if any) components of runoff were also affected by land use change.  A 615 

resampled rainfall and temperature time series was generated by sampling the data without 616 

replacement across years for each day (for instance rainfall and temperature for 1st January 1990 is 617 

found by randomly sampling from all records on 1st January).  This maintains the intra-annual (e.g. 618 

seasonal) variability but destroys any inter-annual trends in the meteorological data.  Streamflow 619 

simulations were then generated using this resampled meteorological sequence as inputs to the TVP-620 

HBV (i.e. without state updating).  If the resulting streamflow simulations do not reproduce the 621 

observed changes to streamflow dynamics, then this indicates that changes to meteorological 622 

forcings are the main contributor.  However, if it is able to at least partially (or fully) reproduce the 623 

observed streamflow changes, this means that land cover changes are impacting catchment 624 

hydrology (but potentially in addition to forcing changes, due to the presence of ecosystem 625 

feedbacks).  Figure 8d&h show the results of a MASH undertaken on the resulting simulations of total 626 

and direct runoff using the resampled forcing time series and TVP-HBV model.  Observed increases in 627 

baseflow during the January – April period (see Figure 8a) and increases in direct runoff in the June – 628 

September period (see Figure 8e) are reproduced.  The magnitude of increase in direct runoff in July 629 

is slightly lower, indicating the potential for some climatic influences also. This is consistent with 630 

findings from the Mann-Kendall test which identified a statistically significant increase in July rainfall 631 

(see Section 2.2).  Overall however, these results lend further weight to the conclusion that land 632 

cover change has impacted the hydrologic regime of the Nammuc catchment.  These results also 633 

demonstrate that parameter changes correspond to actual changes in catchment hydrology, and are 634 

not just random fluctuations that reproduce the observed streamflow statistics only when the 635 

observed forcing time series is used. 636 
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5. Conclusions		640 

As our anthropogenic footprint expands, it will become increasingly important to develop modelling 641 

methodologies that are capable of handling changing catchment conditions.  Previous work proposed 642 

the use of models whose parameters vary with time in response to signals of change in observations. 643 

The so-called Locally Linear Dual EnKF time varying parameter estimation algorithm [Pathiraja et al., 644 

2016a] was applied to 2 sets of small (< 350 ha) paired experimental catchments with deforestation 645 

occurring under experimental conditions (rapid clearing of 100% and 50% of land surface) [Pathiraja 646 

et al., 2016b].  Here we demonstrate the efficacy of the method for a larger catchment experiencing 647 

more realistic land cover change, whilst also investigating the importance of the chosen model 648 

structure in ensuring the success of the time varying parameter estimation method.  We also 649 

demonstrate that the time varying parameter framework can be used in a retrospective fashion to 650 

determine whether land cover changes (and not just meteorological factors) contribute to the 651 

observed hydrologic changes. 652 

 653 

Experiments were undertaken on the Nammuc catchment (2880 km2) in Vietnam, which experienced 654 

a relatively gradual conversion from forest to cropland over a number of years (cropland increased 655 

from roughly 23% of the catchment between 1981 and 1994 to 52% by 2000).  Changes to the 656 

hydrologic regime after the mid-1990s were detected and attributed mostly to an increase in 657 

baseflow volume.  Application of the LL Dual EnKF with two conceptual models (HBV and HyMOD) 658 

showed that the time varying parameter framework with state updating improved streamflow 659 

prediction in post-change conditions compared to the time invariant parameter case.  However, 660 

baseflow predictions from the LL Dual EnKF with HBV were generally superior to the HyMOD case 661 

which tended to have a slight negative bias.  It was found that the structure (i.e. model equations) of 662 

HyMOD was unsuited to representing the modified baseflow conditions, resulting in extreme and 663 

unrealistic time varying parameter estimates.  This work shows that the chosen model is critical for 664 
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ensuring the time varying parameter framework successfully models streamflow in unknown future 667 

land cover conditions, particularly when used in a real time forecasting mode.  Appropriate model 668 

selection can be a difficult task due to the significant uncertainty associated with future land use 669 

change, and can be even more problematic when multiple models have similar performance in pre-670 

change conditions (as was the case in this study).  One possible way to ensure success of the time 671 

varying parameter approach is to use models whose fundamental equations explicitly represent key 672 

physical processes (for instance, modelling sub-surface flow using Richard’s equation with hydraulic 673 

conductivity allowed to vary with time).  In this way, time variations in model parameters would 674 

more closely reflect changes to physiographic properties, rather than also having to account for 675 

missing processes.   The drawback of such physically based models is that they are generally data 676 

intensive, both in generating model simulations (i.e. detailed inputs) and specifying parameters.  677 

Additionally, it may be necessary to reduce the dimensionality of the time varying parameter vector 678 

by keeping less sensitive model parameters fixed in order to make the estimation problem tractable.  679 

Models of intermediate complexity that have explicit process descriptions may be the most 680 

promising, although this also remains to be demonstrated.  681 
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Tables	908 

 Pre 1994 Post 1994 
Land Use 

Evergreen Forest  
(including evergreen needle and 

evergreen leaf) (%) 
77% 48% 

Cropland (%) 23% 52% 
Hydro-Meteorological Properties 

Mean Annual Rainfall (mm) 1630 1660 
Mean Annual Runoff (mm) 838 1190 

Mean Annual Runoff Coefficient 0.5 0.7 
Mean Annual PET (mm) 1300 1300 

Estimated Mean Annual BFI  0.33 0.39 

Table 1 Study catchment properties 909 
 910 
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 917 

 HYMOD HBV 

NSE [ ] 0.77 0.75 

Peak flows (q > 5mm/d) 

MAE [mm/d] 3.11 2.85 

RMSE [mm/d] 4.55 4.72 

Medium flows (1 mm/d <= q <= 5mm/d) 

MAE [mm/d] 0.66 0.80 

RMSE [mm/d] 0.86 1.09 

Low flows (q < 1mm/d) 

MAE [mm/d] 0.35 0.20 

RMSE [mm/d] 0.42 0.34 

Table 2 Model performance in pre-change conditions used for calibration (1975 – 1979).  Bold face 918 
numbers correspond to the model with superior performance for the particular metric. 919 

 920 

 921 
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 923 

 Sensitivity Index 

hl1 0.10 

lp 0.12 

Maxbas 0.14 

fcap 0.18 

K0 0.23 

K2 0.23 

K1 0.38 

beta 0.41 

perc 0.47 

Table 3 Variance Based Sensitivity Analysis Results for HBV parameters: first order sensitivity index 924 
representing the contribution of varying a single parameter to the variance of the model output.  925 

Lower values indicate lower sensitivity. 926 
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 931 

Parameters 

 Description Units Initial Sampling 
Distribution 

Feasible 
Range 𝒔𝟐  

Max allowable 
daily rate of 

change (𝑚-./) 

𝛽 Soil Moisture 
exponent [ ] N(2, 0.1) 0 – 7  0.003 1.8x10-3 

𝑓𝑐𝑎𝑝 
Maximum soil 
moisture store 

depth 
[mm] N(467, 10) 10 – 2000  0.003 0.4 

ℎ𝑙1 

Threshold for 
generation of 
near surface 

flow 

[mm] N(120, 10) 0 – 400   0.003 0.1 

𝐾0 
Near Surface 
Flow Routing 

Coefficient 
[ ] N(0.3, 0.005) 0.0625 – 1  0.003 2x10-4 

𝐾1 
Interflow 
Routing 

Coefficient 
[ ] N(0.09, 5x10-4) 0.02 – 0.1  0.003 9x10-6 

𝑝𝑒𝑟𝑐 Percolation rate [mm/d] N(1.3, 10-4) 0 – 3  0.003 10-3 

𝐾2 
Baseflow 
Routing 

Coefficient 
[ ] N(0.01, 10-6) 5x10-5– 0.02  0.003 9x10-6 

States 

𝑠𝑜𝑤𝑎𝑡 Soil Moisture 
Store [mm] N(0,1) (0, 𝑓𝑐𝑎𝑝) 

 𝑠𝑡𝑤1 Shallow Layer 
Store [mm] N(0,1) (0, ∞) 

𝑠𝑡𝑤2 Deep Layer 
Store [mm] N(0,0.1) (0, ∞) 

Table 4 Locally Linear EnKF inputs for the HBV model case 932 
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Parameters 

 Description Units Initial Sampling 
Distribution Feasible Range 𝒔𝟐  

Max allowable 
daily rate of 

change (𝑚-./)  

𝑏 

Pareto-
distributed soil 
storage shape 

parameter 

[ ] N(0.37, 10-4) 0 – 0.3 0.004 3x10-4 

𝑐-./ 
Maximum point 

soil storage 
depth 

[mm] N(651, 10) 300 – 1500 0.004 0.3 

𝑘M  
Quick flow 

Routing 
Coefficient 

[ ] N(0.6, 5x10-4) 0.55 – 0.99 0.018 3x10-4 

𝑘F 
Slow flow 
Routing 

Coefficient 
[ ] N(0.04, 5x10-4) 0.001 – 0.54 0.018 4x10-5 

𝛼 
Excess Runoff 

Splitting 
Parameter 

[ ] N(0.47, 5x10-4) 0.001 – 0.99 0.018 4x10-4 

States 

𝑆 Soil Store [mm] N(180, 0.1*180) 
(0, 𝑆-./ =
E®¯°±d	®¯²�

Ed3
) 

 
𝑆M3,k,{ Quick Flow 

Stores [mm] N(0,1) (0, ∞) 

𝑆F Slow Flow Store [mm] N(0,1) (0, ∞) 

Table 5 Locally Linear EnKF inputs for the HYMOD model case 937 
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 949 

Figure 1 Study Catchment showing gauges and changes in land cover over time. 950 
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 964 
 965 

Figure 2 Impact of land use change on observed streamflow: a) Annual Runoff Coefficient, b) 966 
Annual Baseflow Index (BFI), c) Moving Average Shifting Horizon (MASH) results for total observed 967 

runoff, d) MASH for observed rainfall. 968 
 969 
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  978 

Figure 3 Schematic of the models used in this study: a) HBV and b) HyMOD.  Parameters are shown 979 
in blue and states are shown in green. 980 
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 987 
Figure 4 Parameter Trajectories using the HBV model.  The dark grey shaded areas indicate the 988 
middle 90% of the ensemble, bounded by the 5th and 95th percentiles.  The light grey shaded 989 

areas indicate the middle 50% of the ensemble, bounded by the 25th and 75th percentiles.  The 990 
ensemble mean is indicated by the blue line.  The vertical green panel indicates the assumed time 991 

period of rapid deforestation.   992 
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 997 

 998 
Figure 5 Parameter Trajectories using the HyMOD model.  The dark grey shaded areas indicate the 999 

middle 90% of the ensemble, bounded by the 5th and 95th percentiles.  The light grey shaded 1000 
areas indicate the middle 50% of the ensemble, bounded by the 25th and 75th percentiles.  The 1001 

ensemble mean is indicated by the blue line.  The vertical green panel indicates the assumed time 1002 
period of rapid deforestation.   1003 
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 1010 

Figure 6 Representative Hydrographs of background streamflow from the LL Dual EnKF (black line), 1011 
Time varying parameter model with no state updating (blue line), time invariant parameter model 1012 
with no DA (green line) and observed streamflow (red line).  Results for HBV are shown in the top 1013 

row and HyMOD in the bottom row.  A pre-change year (1974) is shown on the left and a post 1014 
change year (1998) on the right.   1015 
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 1020 

 1021 

Figure 7 Influence of time varying parameters on model output (i.e. without state updating) 1022 
summarized in terms of the Annual Runoff Coefficient (top row), Annual Direct Runoff Coefficient 1023 
(second row) and Annual Baseflow Index (BFI) (third row).  Results for HyMOD are shown in the 1024 

first column, HBV are shown in the second column.   1025 
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 1027 

 1028 

 1029 

Figure 8 Moving Average Shifting Horizon (MASH) results for observed streamflow (first column), 1030 
simulated streamflow from time varying parameter model (without state DA) for HYMOD (2nd 1031 
column), HBV (third column), resampled climate HBV (fourth column).  These are split into total 1032 

runoff (first row) and direct runoff or surface runoff (2nd row). 1033 
 1034 
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