
Response to reviewer 1 

Responses to the comments are shown in black and proposed changes to the 

manuscript are shown in blue. 

The authors are performing data assimilation (DA), for a dynamical hydrological model 
with time-varying parameters. I fully agree that, in hydrology, time-varying parameters 
very often lead to a more realistic description of reality than constant ones, with the 
caveat that a good stochastic model for their dynamics is used. That being said, I have 
serious doubts about the validity of the method used in this paper. 
 
We thank the reviewer for their time.  Please see below our responses to the comments. 
 
First of all, there is no clear separation between the hydrological model assumptions 
and the numerical method that is used for DA. The model assumptions should not only 
comprise the deterministic hydrological equations and the observational error 
assumptions, but here also a precise definition of the assumed stochastic dynamics of 
the model parameters. These assumptions have nothing to do with DA, but are part of 
our prior knowledge about the system. Together with prior probability distributions, e.g. 
for initial conditions, and measured data they completely define the posterior as well as 
predictive distributions of states and parameters.  
 
We respectfully note that the assumed stochastic dynamics of the model parameters were 
detailed in Step 1 of the algorithm in Section 3.2.  The assumed parameter dynamics are a 
Gaussian random walk with time varying mean and variance. This is a reasonable assumption 
for cases where no prior knowledge of the parameter dynamics (or changes to catchment 
properties) is available.  The prior mean is assumed to evolve locally linearly in time, such that 
it is estimated by the drift rate from the previous two time steps (as indicated in Line 204).  This 
is shown in Figure 1.  The prior variance is assumed to be also time dependent, and based on 
the variance at the previous time (as indicated in Lines 205-207).  The statistics of the prior 
parameter ensemble are also updated sequentially by the DA algorithm based on assimilated 
observations.   
 
We note that these details are not the main focus of the paper, as they have already been 
investigated and discussed in detail in Pathiraja et al. (2016).  We have provided references to 
these publications in the manuscript (see Lines 184, 191-192).  However, we will provide 
additional discussion in the revised manuscript, as detailed below.   
   
We propose to add the following to Step 1 of Section 3.2 so that the assumed stochastic 
dynamics are clearer: “The parameters are assumed to evolve through a Gaussian random 
walk with time varying mean and variance.  The prior mean is assumed to evolve locally linearly 
in time, such that it is estimated by the drift rate from the previous two time steps.  The prior 
variance is based on the variance of the update from the previous time.”  This discussion would 
be inserted in Line 202 before “The prior (or background)…”   
 



 
Figure 1. Schematic showing how the mean of the prior parameter ensemble �̅�𝒕+𝟏

−  is 
proposed at a given time t+1. [taken from Pathiraja et al. (2016)] 

 
 
All DA methods must lead to the same distributions and the choice is only a matter of 
computational efficiency. If this separation is not clearly made, there is a risk that 
inference (here DA) and prediction is done under different model assumptions, which 
would be inconsistent and lead to a loss of interpretability of the results. I’ve been trying 
to do this separation and unveil the assumptions behind the dynamics of the parameters 
from step 1 of the numerical DA algorithm, but it is not obvious to me what these 
assumptions are. Without constraining data (i.e. in a predictive mode), what would be 
the dynamics of the parameter distribution? 
 
DA methods in general do not lead to the same posterior distributions, particularly when applied 
to complex non-linear/non-Gaussian problems.  This is even when one is specifying the prior, 
initial conditions and observation error in exactly the same way.  One only has to look at the 
plethora of existing DA algorithms to appreciate this (Ensemble Kalman Filter, Ensemble 
Transform Kalman Filter, Ensemble Adjustment Kalman Filter, Particle Filter-SIR, Particle 
Filter-MCMC, Auxiliary Particle Filter, just to name a few).  They do not differ solely in terms of 
computational efficiency (e.g. Arulampalam et al., 2002; Liu et al., 2007).    
 
The assumed parameter stochastic dynamics were discussed in the response to the previous 
comment; these apply in predictive mode also.  In this case, the proposed local linear 
extrapolation is only valid close to the current time point.  This is acceptable given that the 
Locally Linear Dual EnKF is designed for short term predictive modelling.  This will be 
emphasised in the revised manuscript.    
 
We propose to insert the following sentence at Line 64: “It can be used to either retrospectively 
estimate time variations in model parameters or for short-term predictive modelling.”  
 
 
Putting aside my concerns about these model assumptions, I have even more serious 
concerns about the chosen DA method, which seems to violate the assumptions 
behind Kalman filters in at least two ways:  
 
(i) Kalman filters assume normality of the distribution of the augmented state (incl. 
parameters). Is there any reason to believe that the non-linearity of the chosen 
hydrological model is weak enough for this assumption to be approximately valid? 
Given the dimensionality of the model and the data, respectively, I’m almost certain that 
it will be grossly violated.  
 



We note that the method relies on an Ensemble Kalman Filter, not a standard Kalman Filter.  
Ensemble Kalman Filters were specifically designed to handle the non-linear/non-Gaussian 
case, although they are sub-optimal in that only the mean and covariance are considered in the 
update.  Nevertheless, they are a practical alternative to Sequential Monte Carlo methods 
(which approximate the full Bayesian posterior), as these methods suffer from several practical 
implementation issues.  We also note that Ensemble Kalman Filters have been used with 
considerable success in a wide range of complex non-linear/non-Gaussian problems (see for 
Reichle et al., 2002; Gu et al., 2005; Komma et  al., 2008; Sun et al., 2009; Xu et al., 2016).   
 
(ii) Updating the states, based on prior predictions that have been made with parameters 
that have already been updated seems to use the data twice. This again seems to violate 
model assumptions, or in other words, I have no idea what the model assumptions are, 
for which the proposed method is a valid DA. 
 
In regards to the second issue, in Pathiraja et al. (2016), we demonstrated that the dual update 
filter accounts for correlations between observation and process noise associated with the use 
of a dual update (see Step 6 in Section 3.2).  Full details of the dual update procedure were 
provided in Pathiraja et al. (2016).  The purpose of this manuscript is not to revisit details of this 
method, references to the relevant publications were provided in Lines 184 and 191-192 of this 
manuscript.   
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