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Abstract. Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal time scales. In 10 

seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. However, for hydrological 

applications, GCM forecasts are often biased and unreliable in uncertainty spread, and therefore calibration is required before 

use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, 

calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue 

methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts 15 

and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal 

forecasts (RPP-S) based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake 

Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S 

forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly 

reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are more skilful and reliable than forecasts 20 

derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal 

accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-

processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications. 

1 Introduction 

Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal time scales (Bennett et 25 

al., 2016; Crochemore et al., 2017; Wang et al., 2011). Inclusion of climate information in seasonal streamflow forecasts 

enhances streamflow predictability (Wood et al., 2016). One strategy for integrating climate information into hydrological 

models is to conditionally resample historical rainfall (e.g. Beckers et al., 2016; Wang et al., 2011). An alternative approach is 

to use rainfall forecasts from dynamical climate models. 
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Ensemble rainfall forecasts from GCMs (global climate models) are attractive for hydrological prediction in that they forecast 

multiple seasons ahead and have a well-established spatial and temporal forecast structure. On the other hand, a major issue 

with GCM forecasts at sub-seasonal to seasonal time scales is that the forecasts are often biased and lacking in predictability 

of local climate (e.g.Kim et al., 2012; Tian et al., 2017). It is therefore necessary to post-process GCM rainfall forecasts using 

statistical or dynamical methods before they can be used in hydrological models (Yuan et al., 2015). 5 

Several conceptually simple statistical correction methods are used for directly post-processing daily GCM rainfall forecasts 

including: additive bias correction, multiplicative bias correction and quantile mapping (Ines and Hansen, 2006). For example, 

Crochemore et al. (2016) recently evaluated linear scaling and quantile mapping for post-processing ECMWF System4 rainfall 

forecasts in France. Quantile mapping adjusts forecast means and ensemble spread but it is not a full calibration method 

because it does not account for the correlation between forecasts and observations (Zhao et al., 2017). It is useful for bias 10 

correction of climate change projections where a full statistical calibration is inappropriate (Teutschbein and Seibert, 2012). 

Since additive and multiplicative bias correction and quantile mapping methods do not account for intrinsic GCM skill they 

are ineffective to use as post-processing tools when GCM forecasts are unskilful. 

Post-processing methods that take into account model skill typically fall under the model output statistics (MOS; Glahn and 

Lowry, 1972) banner. MOS type approaches are well established in the weather forecasting community for short term 15 

forecasting and modern variants are normally probabilistic. For example Wilks and Hamill (2007) studied ensemble MOS 

approaches for post-processing global forecast system (GFS) forecasts of rainfall and temperature up to 14 days ahead.  

MOS methods can also be thought of as full calibration methods. In this regard, several Bayesian calibration approaches are 

known to be effective at post-processing GCM rainfall totals aggregated to monthly and seasonal time scales (Hawthorne et 

al., 2013; Luo et al., 2007; Schepen et al., 2014).  However, it is apparent that full calibration methods aren’t normally applied 20 

to the post-processing of daily GCM forecasts of rainfall in the sub-seasonal to seasonal period.  

That said, some studies have explored more sophisticated methods for post-processing daily rainfall forecasts from GCMs. 

For example, Pineda and Willems (2016) applied a non-homogenous hidden Markov model (NHHMM) to forecasts in the 

northwestern region of South America. Their method extracted information from GCM forecasts of rainfall fields and SSTs. 

Their study built on the NHHMM method originally developed by Robertson et al. (2004) for prediction of rainfall occurrence 25 

in Brazil. In Australia, Shao and Li (2013) and Charles et al. (2013) applied an analogue downscaling method (Timbal and 

McAvaney, 2001) to produce downscaled daily rainfall forecasts from POAMA (the Predictive Ocean Atmosphere Model for 

Australia). The NHHMM and analogue methods are not straightforward to apply operationally, as they require the 

identification of optimal climate predictors in different climatic regions. The methods do not by design lead to forecasts that 

are always reliable in ensemble spread and at least not worse than climatology forecasts. 30 

Statistical post-processing of daily rainfall forecasts is a formidable challenge, perhaps explaining the lack of sophisticated 

methods. Barriers include short GCM hindcast records, a high prevalence of zero rainfall amounts, seasonal variations in 

rainfall patterns, and intrinsically low GCM skill. Amplifying the challenge is that GCM skill decays rapidly as the lead time 

increases. For example, Lavers et al. (2009) examined temperature and rainfall forecasts using DEMETER and CFS GCMs, 
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and found that, in an idealized scenario, skill in the first 30 days is primarily attributable to skill in the first 15 days and much 

less to skill over the next 15 days. Post-processing methods should therefore be designed to capture as much skill as possible 

in the first fortnight and take into account GCM skill when post-processing forecasts further ahead. 

In this study, we seek to develop a new, more direct daily rainfall post-processing method that operates solely on rainfall output 

from GCMs and provides a full forecast calibration taking into account GCM skill. We build a new sub-seasonal to seasonal 5 

rainfall post-processor, which has some similarities to the rainfall forecast post-processor (RPP) developed by Robertson et al. 

(2013b) and Shrestha et al. (2015) for post-processing numerical weather prediction (NWP) forecasts for short-term streamflow 

forecasting. The new system is hereafter called RPP-S, which stands for rainfall forecast post-processor – seasonal.  

The proposed RPP-S method applies the Bayesian joint probability (BJP) modelling approach to post-process daily GCM 

forecasts of rainfall. BJP has never before been used in this situation and it is therefore important to fully evaluate the merits 10 

of BJP as a component of a daily forecast post-processing system. As GCMs can produce ensemble forecasts for over 100 

days ahead, RPP-S is developed to generate daily rainfall amounts that aggregate to intra-seasonal and seasonal totals.  To this 

end, the Schaake Shuffle (Clark et al., 2004) is also included as a component of RPP-S. 

We apply RPP-S to post-process raw catchment rainfall forecasts from ACCESS-S, Australia’s new seasonal forecasting 

GCM. We evaluate bias, reliability and skill for 12 ephemeral and perennial catchments across Australia. RPP-S catchment 15 

rainfall forecasts are compared to catchment rainfall forecasts derived from the Bureau of Meteorology’s bias-corrected 

product for ACCESS-S. Opportunities to develop the method further are discussed. 

2 Data and catchments 

2.1 ACCESS-S rainfall forecasts 

Raw, gridded GCM rainfall forecasts are obtained from the BoM’s new ACCESS-S forecasting system. Raw catchment rainfall 20 

forecasts are derived through a process of area-weighted averaging of the ensemble mean.  

ACCESS-S is a customised version of the UK Met Office’s seasonal forecasting system. It contains a fully coupled model 

representing the interactions among the Earth's atmosphere, oceans and land surface and including sea ice. The current 

horizontal spatial resolution of the ACCESS-S atmospheric model is approximately 60 km in the mid-latitudes. Full details of 

the current system are provided by (Hudson et al., 2017) . 25 

Available ACCESS-S hindcasts are initialised at midnight UTC on days 1 and 25 of each month (additional start dates will 

become available in the future). A burst ensemble comprising 11 ensemble members is generated. Hindcasts are available for 

the period 1990–2012 (23 years). A longer hindcast set is not possible because of a lack of suitable initial conditions. The next 

version of ACCESS-S will be delivered with more sets of initial conditions and longer hindcasts. 
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2.2 Observed rainfall 

Observed rainfall is derived from the Australian Bureau of Meteorology’s 5km daily rainfall analysis (AWAP). We make use 

of AWAP data from 1950 onwards. Catchment rainfall is derived through a process of area-weighted averaging.  

An important note on time zones: Australian rainfall is recorded as 24 hour totals to 9 am local time. Consequently, AWAP 

data are not perfectly synchronised with the ACCESS-S forecasts, which are initialised at midnight UTC. The asynchronism 5 

is compounded by time zone differences and daylight savings. 

We align the GCM data and observed data as best we can. For east coast locations, an ACCESS-S forecast overlaps with the 

following day’s AWAP rainfall analysis with a discrepancy of 1-2 hours. The time discrepancy for west coast locations is 

approximately 2 hours more. 

2.3 Catchments 10 

Twelve perennial and ephemeral catchments spread over Australia are selected for application and evaluation. Catchment 

information including name, gauge ID, regional location and size are shown in Table 1. Catchment locations and climate zones 

are mapped in Fig. 1. The catchments reside in highly distinct climate zones and vary markedly in size from 100 km2 to 119034 

km2. Evaluation across climate zones and for varying catchment sizes helps to comprehensively evaluate the effectiveness of 

the post-processing methods. 15 

3 Methods 

3.1 Bayesian joint probability models 

Our post-processing method embeds the Bayesian joint probability (BJP) modelling approach, which was originally designed 

for forecasting seasonal streamflow totals  (Robertson et al., 2013a; Wang and Robertson, 2011; Wang et al., 2009). BJP has 

since been applied to calibrate hourly rainfall forecasts (Robertson et al., 2013b; Shrestha et al., 2015) and seasonal rainfall 20 

forecasts (Hawthorne et al., 2013; Khan et al., 2015; Peng et al., 2014; Schepen and Wang, 2014; Schepen et al., 2014). BJP 

was most recently adapted for sub-seasonal to seasonal streamflow forecasting (Schepen et al., 2016; Zhao et al., 2016).  

BJP formulates a joint probability distribution to characterize the relationship between forecast ensemble means (predictors) 

and corresponding observations (predictands). The joint distribution is modelled as a bivariate normal distribution after 

transformation of the marginal distributions. Data transformation is handled using the flexible log-sinh transformation (Wang 25 

et al., 2012). The log-sinh transformation transforms y  by 

1( ) ln(sinh( )f y y             (1) 

where   and   are transformation parameters. A predictor x  is transformed to g . Likewise, a predictand y  is 

transformed to h . The relationship between g  and h  is formulated by a bivariate normal distribution: 
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3.2 Daily rainfall post-processing 10 

We note some specifics of the BJP implementation used in this study. To allow the use of the continuous bivariate normal 

distribution, values of zero rainfall are treated as censored, meaning the true value is assumed to be less than or equal to zero. 

To simplify the inference of model parameters, data rescaling is used within the modelling process. To prevent undesirable 

extrapolation effects in forecasting mode, predictor values are limited to twice the maximum predictor value used to fit the 

model (future research will address this limitation). 15 

Model parameters may be poorly estimated when there are insufficient nonzero data values used in data inference. We find 

that in very dry catchments, certain days of the year may have forecasts or observations with no non-zero values at all. In such 

cases, inference is not possible. To overcome this problem, predictor and predictand data sets are created by pooling data for 

nearby days and for multiple GCM initialisation dates. We choose to pool data within an 11-day sliding window to be consistent 

with the Bureau of Meteorology’s bias correction scheme (see section 3.4); for the first 5 days the window is fixed to the first 20 

11 days. However, the RPP-S method places no restriction on the configuration, and alternative configurations are discussed 

in section 5. We choose to pool data for ACCESS-S hindcasts initialised on days 1 of each month and day 25 of the month 

prior. Predictor and predictand data are subsequently paired according to the number of days since forecast initialisation. 

Consider, for example, post-processing of forecasts initialised on 1 February. Days 5–15 from the 1 February run and days 5–

15 from the 25 January run are used to fit a model that is used to post-process forecasts for 10 February. 25 
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We note that pooled data are not completely independent meaning there is potential to underestimate parameter uncertainty 

using BJP. Nevertheless, we expect the effect to be limited by the weak predictor-predictand relationships and weak persistence 

in daily rainfall.  

 

We now describe the model fitting and forecasting steps. After pooling the data, model fitting proceeds as follows: 5 

(1) Rescale predictor and predictand data so that each series ranges within [0,5] 

(2) Estimate the log-sinh transformation parameters for the predictors using the maximum a posteriori (MAP) estimation 

(3) Estimate the log-sinh transformation parameters for the predictands in the same way 

(4) Apply the transformations to normalise the predictor and predictand data 

(5) Apply the transformations to transform the predictor and predictand censoring thresholds  10 

(6) Sample parameter sets representing the posterior distribution of the bivariate normal distribution parameters using 

MCMC sampling, the transformed data and transformed censoring thresholds. 

Forecasting proceeds as follows:  

(1) Transform the predictor value using the log-sinh transformation for predictors 

(2) Sample one newh  for each parameter set 15 

(3) Back-transform the ensemble members using the transformation for predictands 

(4) Rescale the ensemble members to the original space (opposite of step (1) in model fitting). 

(5) Set negative values to zero 

3.3 Forming ensemble time-series forecasts 

BJP forecast ensemble members are initially random and are not linked across days. To deal with the problem, we apply the 20 

Schaake Shuffle (Clark et al., 2004), which uses historical data to link ensemble members and create sequences with realistic 

temporal patterns. The Schaake Shuffle works by imposing the rank correlation of observations on the forecast ensembles by 

using the trajectories of historical observations as a dependence template. Several variations on the Schaake Shuffle exist and 

choices can be made about how to construct a temporal dependence template, For example, Schefzik (2016) propose selecting 

historical observations using a similarity criterion. The steps of the Schaake Shuffle as implemented in this study are as follows: 25 

(1) Select a large number of years from the past with the same month and day as the forecast initialisation date (excluding 

the date of the current forecast) 

(2) Construct a two-dimensional dependence template by incrementing the dates by one day for each day ahead to be 

forecast 

(3) Extract the observed data for each date in the dependence template 30 

(4) For each day, reorder the ensemble according to the rank of the historical data for that day. For example, if the second 

year selected has the smallest observed value, place the smallest ensemble member in second position. 
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(5) Repeat steps (2)–(4) for blocks of ensemble members until the full ensemble has been shuffled. 

After applying the Schaake Shuffle to all ensemble members across all lead times, the forecasts can be considered ensemble 

time-series forecasts. 

An example RPP-S forecast for the BRS catchment is shown in Fig. 2. The top panel is the forecast of daily amounts and the 

bottom panel is the forecast of accumulated totals. Hereafter, a daily amount is taken to mean a 24-hour rainfall total on any 5 

given day. An accumulated total is the sum of daily rainfall amounts over a number of days. In this example, the forecast 

correctly predicts a dry beginning to the forecast period. The quantile ranges of the daily forecasts are reasonably consistent 

with the observed values. The accumulated forecast is somewhat narrower than the climatology reference forecast at monthly 

and seasonal time scales and the forecast is predicting a seasonal rainfall total less than the climatological median.  

3.3. Verification 10 

We use RPP-S to post-process all available ACCESS-S forecasts initialised on day 1 of each month for 100 days ahead (the 

sub-seasonal to seasonal forecast period). For water resources management, whilst it is important that daily amounts are 

realistic, it is vital that the accumulated totals are as reliable and as skilful as possible. Forecasts are verified against both daily 

amounts and accumulated totals. 

RPP-S forecasts are generated using leave-one-year-out cross-validation. RPP-S forecasts are compared with the BoM’s QM 15 

forecasts (see section 3.4), which are also generated using leave-one-year-out cross-validation.  

Bias is recognised as the correspondence between the mean of forecasts and the mean of observations. Bias is visually assessed 

by plotting the bias for a set of events against the average forecast for the same set of events. We calculate bias as the mean 

error  

 20 

 , ,

1

1
:

T
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t
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T 

           (6) 

     

where ,fcst ty  is the forecast ensemble mean for event t  and ,obs ty is the corresponding observation. Bias is calculated separately 

for each catchment, initialisation date and day. The bias is calculated across 23 events. For a given lead time, we also calculate 

the average absolute bias (AB) across all 12 catchments and 12 initialisation dates. Notwithstanding that the bias is scale 25 

dependent, the average absolute bias is used to compare the magnitude of biases for different model forecasts and for different 

lead times. 

Reliability is the statistical consistency of forecasts and observations — a reliable forecasting system will accurately estimate 

the likelihood of an event. Reliability is checked by analysing the forecast probability integral transforms (PITs) of rainfall 

observations. The PIT for a forecast-observation pair is defined by ( )obsF y   where F  is the forecast cumulative 30 
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distribution function (CDF). In the case that 0obsy  , a pseudo-PIT value is sampled from a uniform distribution with a range 

[0, ]  (Wang and Robertson, 2011). If a forecasting system is reliable,   follows a standard uniform distribution. Reliability 

can be visually examined by plotting the set of t  (t=1,2,…,T) with the corresponding theoretical quantile of the uniform 

distribution using the PIT uniform probability plot (or simply PIT plot). A perfectly reliable forecast follows the 1:1 line. In 

this study, we do not plot individual PIT diagrams. Instead, reliability is summarised using the α-index (Renard et al., 2010) 5 
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where 
*

t is the sorted t  in increasing order. The α-index represents the total deviation of 
*

t from the corresponding 

uniform quantile (i.e. the tendency to deviate from the 1:1 line in PIT diagrams). The α-index ranges from 0 (worst reliability) 10 

to 1 (perfect reliability). 

Forecast skill is evaluated using the continuous ranked probability score (CRPS; Matheson and Winkler, 1976).  The CRPS 

for a given forecast and observation is defined as 

 
2

CRPS ( ) ( )obsF y H y y dy           (8) 

where y  is the forecast variable; obsy  is the observed value; F  is the forecast CDF ; and H  is the Heaviside step function,  15 

which equals 0 if obsy y    and equals 1 otherwise. Model forecasts are compared to reference forecasts by calculating skill 

scores: 

ref

ref

CRPS CRPS
CRPS skill score = 100      (%)

CRPS


        (9) 

where the overbar indicates averaging across a set of events. Reference forecasts for each day are produced using a BJP model 

fitted to observed data within an 11-day window. The Schaake Shuffle is also applied to instil correct temporal characteristics 20 

into the reference forecasts. The CRPS skill score is positively oriented (whereas CRPS is negatively oriented). As a 

percentage, a maximum score of 100 is indicative of perfectly sharp and accurate forecasts.  A score of 0 indicates no overall 

improvement compared to the reference forecast. A negative score indicates poor quality forecasts in the sense that the naïve 

reference forecast is more skilful.  

 25 
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3.4 Comparison with forecasts post-processed by using quantile mapping 

We compare RPP-S forecasts with forecasts that have been post-processed at the ACCESS-S grid scale using quantile mapping 

(QM).  The gridded QM forecasts are supplied by the Bureau of Meteorology and we derive the catchment forecasts through 

area-weighting. QM matches the statistical distribution of past forecasts to the distribution of observations to reduce errors in 

the forecast mean and improve forecast spread (Crochemore et al., 2016; Zhao et al., 2017). A post-processed forecast value 5 

is obtained by first working out the quantile fraction (cumulative probability) of the new forecast using the CDF of past 

forecasts, then inverting the quantile fraction using the CDF of observations. The Bureau of Meteorology applied a separate 

quantile mapping model to each day. The CDF of the past forecasts is formed using 11 ensemble members in an 11-day sliding 

window and 22 years of data in leave-one-year-out cross-validation. The statistical distribution of the observations is formed 

using the observations in an 11-day sliding window and 22 years of data. For the first 5 days the window is fixed to the first 10 

11 days.  If the raw forecast ensemble member is above the previously known maximum forecast value, then the forecast value 

is instead linearly rescaled by max max/o f   where maxo is the maximum observed value and maxf is the maximum past forecast 

value.  

4 Results 

4.1 Bias in forecasts of daily amounts 15 

Biases in forecasts of daily amounts are analysed for selected days using Fig. 3. Each circle represents the bias for a catchment 

and initialisation date. The bias is plotted against the average forecast (averaged over all events). As expected, raw forecasts 

are more biased than post-processed forecasts. The AB for raw forecasts ranges, for the examples given, from about 1.3mm to 

1.5mm. The bias for raw forecasts tends to be negative, indicating that ACCESS-S has a propensity to underestimate daily 

rainfall amounts. 20 

QM and RPP-S are similarly effective at reducing biases in daily amounts and both reduce bias substantially. After post-

processing, some residual bias remains for any single day since the bias is corrected using pooled observations. The AB for 

QM forecasts ranges from about 0.8mm to 1.1mm. The AB for RPP-S forecasts ranges from about 0.7mm to 1.1mm. The 

differences in bias between QM and RPP-S for daily amounts are evidently insignificant. Visual examination of the QM and 

RPP-S scatter plots shows no wholesale bias in either the QM or RPP-S forecasts of daily amounts. 25 

4.2. Bias in forecasts of accumulated totals 

Biases in forecasts of accumulated totals are analysed using Fig. 4 after rescaling to mm/day. As with the results for daily 

amounts, the raw forecasts are more biased than post-processed forecasts and the bias tends to be negative.  Visual examination 

of the scatterplots for the raw forecasts reveals, particularly for days 30, 60 and 90, that for some catchments and initialisation 

times, the raw forecasts are unbiased for sub-seasonal to seasonal rainfall totals; which suggests that the GCM performs well 30 
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in some regions. Nevertheless, it is evident that post-processing is necessary before using the ACCESS-S forecasts in 

hydrological forecasting. 

In contrast to the results for daily amounts, QM and RPP-S have differing efficacy for reducing biases in accumulated totals, 

although both still reduce bias substantially. Visual examination of the QM and RPP-S scatter plots shows that the RPP-S 

points fit more tightly around the zero line than the QM points. The better ability of the RPP-S forecasts to reduce biases is 5 

reflected in the AB; for example, for day 90 the AB for QM forecasts is 0.28 mm/day and for RPP-S forecasts the AB is 0.13 

mm/day (c.f. the AB for raw forecasts of 0.93 mm/day).  

4.3 Reliability 

Reliability is analysed using Fig. 5, which presents boxplots of α-index for forecasts of daily rainfall amounts (left panel) and 

accumulated totals (right panel). The boxplots describe the distribution of α-index values for the same cases as we evaluated 10 

bias in section 4.2 except that we omit the day 1 result from the accumulated totals analysis. Results are presented for RPP-S 

before and after the Schaake Shuffle has been applied. 

Raw forecasts have the poorest reliability for both daily amounts and accumulated totals. RPP-S has better reliability overall 

than QM for daily amounts. It is noted that the Schaake Shuffle has no effect on forecast reliability for daily amounts since it 

is plainly a reordering of already randomised ensemble members.  15 

RPP-S forecasts are more reliable than raw forecasts and QM forecasts for accumulated totals. The RPP-S forecasts become 

significantly more reliable after applying the Schaake Shuffle and linking the ensemble members so that they have realistic 

temporal patterns (discussed further in section 5). 

4.4 Skill scores – overall performance 

Skill scores for QM forecasts are plotted against skill scores for RPP-S forecasts in a scatterplot (Fig. 6). Skill scores for daily 20 

amounts are plotted in the left panel; skill scores for accumulated totals are plotted in the right panel. Accumulated totals are 

for two days or more. RPP-S forecasts and QM forecasts tend to be positively skill for the same cases, although there is 

considerable variation in the magnitude of the skill scores. A striking feature of the scatterplots is that when QM forecasts are 

negatively skilful, the RPP-S forecasts tend to be neutrally skilful, particularly for the accumulated totals. It is evident that 

skill for daily amounts can be sharply negative. The skill for daily amounts can be difficult to estimate because of the small 25 

sample size and the inability to accurately forecast daily amounts beyond about 10 days. In contrast, the skill for accumulated 

totals is easier to estimate as it benefits from temporal averaging and the accumulation of skill from earlier periods. 

4.5 Skill scores - detailed evaluation 

Skill scores are partitioned according to catchment, lead time and initialisation date in Figs. 7, 8 and 9, respectively. Since 

forecasts of accumulated totals are more informative for water resources management and forecast skill is generally known to 30 

be limited beyond the first week or two, we focus the remainder of the results on accumulated totals. 
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CRPS skill scores are plotted for each catchment in Fig. 7. Skill scores for RPP-S forecasts are vastly positive except for, most 

noticeably, some cases in ORO, NMN and HLG. Negative skill can be caused by insufficient information to fit a stable RPP-

S model and can also be an artefact of cross-validation in the presence of extreme events. In several catchments, e.g., WLC 

and DRT, RPP-S forecasts are seen to significantly outperform QM forecasts by virtue of QM forecasts frequently being 

significantly negatively skilful and RPP-S forecasts rarely being negatively skilful. In several catchments, for example, BRP 5 

and CTG, both QM and RPP-S skill scores are predominantly positive, demonstrating that simple bias correction techniques 

can appear sufficient in localised cases. 

CRPS skill scores are plotted for groups of lead times in Fig. 8. For days 2–10, the RPP-S and QM forecasts are similarly 

skilful and vastly positively skilful.  There are some instances of negative skill, which are likely to be artefacts of cross-

validation. For days 11–19 and 20–28, the positive relationship between QM and RPP-S forecasts gradually weakens.  From 10 

day 29 onwards, the QM forecasts become negatively skilful in many instances whereas the RPP-S skill scores tend to level 

out around zero and are rarely negative to the same degree. For very long lead times, QM skill scores can be higher than RPP-

S skill scores although overall the skill scores for accumulated seasonal totals are quite low (< 30%). Both these factors signal 

further improvement is possible in the RPP-S forecasts. 

CRPS skill scores are plotted for each initialisation date in Fig. 9. Forecasts initialised from 1 September to 1 November have 15 

the highest proportion of cases where both QM and RPP-S forecasts are positively skilful, suggesting the ACCESS-S produces 

it’s best sub-seasonal to seasonal forecasts during the Austral spring and summer. 

5 Discussion 

We demonstrate that RPP-S is able to improve daily GCM rainfall forecasts by: reducing bias (Figs. 3–4); improving reliability 

(Fig 5); and ensuring that forecasts are typically at least as skilful as a climatological reference forecast (Figs 6–9). RPP-S 20 

forecasts are comprehensively compared with quantile mapping (QM) forecasts. RPP-S forecasts outperform QM forecasts, 

primarily because QM does not take into account the correlation between forecasts and observations nor corrects for 

autocorrelation problems. Since RPP-S is built upon the Bayesian joint probability (BJP) modelling approach, it explicitly 

models the correlation between the forecasts and observations, and thus takes into account model skill in the calibration. Our 

results add to the findings of Zhao et al. (2017) who studied the post-processing of monthly rainfall forecasts from POAMA 25 

(Australia’s GCM preceding ACCESS-S). While Zhao et al. (2017) demonstrated that QM is very effective for bias correction, 

they did not consider accumulated totals. In our study, we find that the RPP-S forecasts are less biased and more reliable than 

QM forecasts for accumulated totals.  

Fig. 5 illustrates the importance of the Schaake Shuffle for producing reliable forecasts using RPP-S. If the forecasts are not 

shuffled, then the forecasts of accumulated totals will tend to be too narrow in terms of ensemble spread, making the forecasts 30 

over-confident and less reliable. Related to this, RPP-S forecasts are more reliable for daily amounts than QM forecasts, yet 

QM and RPP-S forecasts do not exhibit any obvious differences in the magnitude of biases (Fig. 3) — evidence that the RPP-
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S forecasts have a more appropriate ensemble spread, since the α-index integrates information about forecast bias and ensemble 

spread. 

We applied a consistent methodology to perennial and ephemeral catchments and established BJP models separately for each 

day, catchment and initialisation date. Alternative configurations are possible.  For example, we trialled establishing only six 

models by pooling data within week 1, week 2, weeks 3–4, and subsequent 4 week periods (not shown). The data in week 1 5 

were used to fit model BJP1, the data in week 2 were used to fit model BJP2, and so on. Fewer days were pooled close to the 

initialisation date in an attempt to extract skill from the initial conditions and more days were pooled for longer lead times to 

better approximate the climatological distribution. We found significant efficiency gains with little loss in performance, except 

for dry catchments, where a small increase in the frequency of negative skill scores occurred. Therefore, performance and 

efficiency need to be considered when establishing RPP-S models in new catchments.  10 

The RPP-S method is sophisticated in that it is a full calibration approach. However, there are opportunities to improve the 

methodology. For example, by pooling the data for many days in model parameter inference, it is assumed that rainfall from 

one day to the next is independent, which is an oversimplification. New inference methods that treat the rainfall data as 

conditionally independent ought to be investigated. Future studies will seek to address the matters of independence and 

overlapping data in more sophisticated ways.  15 

We make use of ACCESS-S runs initialised on day 1 of the month and day 25 of the previous month. These initialisation dates 

are only 4–7 days apart and therefore the climatology of daily rainfall is unlikely to change significantly over that period of 

time. It is technically possible to establish an RPP-S model using initialisation dates spanning several months. If far apart 

initialisation dates are included in model parameter inference, new strategies may be needed to ensure that the effects of 

seasonality are minimised.  One possible approach is to standardise the forecasts and observations prior to fitting the BJP 20 

model. In this way, the model transformation and climatological parameters will be allowed to vary by day of year. Such 

strategies for building more robust RPP-S models and coincidentally minimising the effect of seasonality will be investigated 

in follow up work.  

RPP-S and QM CRPS scores are calculated using ensembles of different sizes and we consider the effect of ensemble size on 

our results. When a forecasting system is perfectly reliable, a larger ensemble should yield a better CRPS score (Ferro et al., 25 

2008). However, CRPS has a weakness in that it discourages forecasting extremes (Fricker et al., 2013); indeed it is our 

experience that ensembles that are unbiased but too narrow (like the QM forecasts) can score overly well in terms of CRPS. 

Our position is that because the RPP-S and QM forecasts are not similarly reliable, we are unable to make meaningful 

adjustments to CRPS scores to allow for the effect of ensemble size. In any case, we understand that QM forecasts can be 

significantly negatively skilful and unreliable, and small adjustments to the CRPS of QM forecasts will not affect those 30 

conclusions. 

RPP-S is designed to post-process forecasts of daily amounts. An alternative strategy is to post-process accumulated totals and 

subsequently disaggregate to daily amounts.  BJP models may be applied to post-process monthly and seasonal totals, which 

are then disaggregated them to daily time scales. Future work will investigate the relative merits of direct daily post-processing 
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versus a seasonal calibration and disaggregation approach. This follow-up work is of particular interest as our study has shown 

daily post-processing skill is limited beyond 10-15 days. It is not clear how much of the seasonal forecasting skill is attributable 

to skill in the initial period and how much of the skill is attributable to seasonal climate signals in the GCM. 

While our study has focused on rainfall, other variables are important in hydrology. For example, temperature forecasts are 

required in areas of snowmelt. Therefore, future research will investigate the extension of the RPP-S ideas to other 5 

meteorological variables. 

An alternative to statistical post-processing of GCM outputs is to run a regional climate model (RCM) to provide much more 

localised information than a global GCM. A review study by (Xue et al., 2014) found that RCMs have limited downscaling 

ability for sub-seasonal to seasonal forecasts. In that regard, RCM outputs may be statistically post-processed also, which may 

lead to better forecasts in some regions. RCMs are suited to specialised studies and less suited to post-processing operational 10 

GCM forecasts in support of national scale hydrological forecasting services. 

6 Conclusion 

We have developed a novel method for post-processing daily rainfall amounts from seasonal forecasting GCMs. RPP-S is a 

full calibration approach that makes use of the Bayesian joint probability (BJP) modelling approach to account for predictor-

predictand skill relationships in the post-processing. Reliable forecasts of sub-seasonal and seasonal accumulated totals are 15 

produced by linking ensemble members together using the Schaake Shuffle. 

We applied RPP-S to 12 catchments across Australia in diverse climate zones and to 12 ACCESS-S initialisation dates. The 

method is robust in terms of being capable of post-processing forecasts in all cases, even in very dry catchments.  

Compared to raw forecasts and quantile mapping (QM) post-processing (which does not account for predictor-predictand skill 

relationships), RPP-S performs significantly better in terms of correcting bias, reliability and skill. The only exception to this 20 

conclusion is that QM and RPP-S are similarly effective for correcting biases in daily amounts. RPP-S is particularly effective 

at delivering reliable, skilful, monthly and seasonal rainfall forecasts. Thus RPP-S forecasts are highly suitable for feeding into 

hydrological models for seasonal streamflow forecasting and other water resources management applications. Pooling multiple 

GCM runs and data for adjacent days in model parameter inference is a practical measure that can enable statistical post-

processing across a range of perennial and ephemeral streams. There are many avenues of research that could significantly 25 

improve the robustness and performance of RPP-S forecasts. In the future, more effort can be devoted to applying RPP-S more 

widely and relating forecast performance to catchment characteristics and to yield better understandings of the forecast bias, 

reliability and skill. 
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Table 1 Catchment ID, catchment name (river and gauging location), gauge ID, region and catchment size  

ID Catchment name Gauge ID Region Area (km2) 

BRP Barron River above Picnic Crossing 110003A Queensland 228 

BRS Burdekin River above Sellheim 120002 Queensland 36260 

DIB Diamantina River at Birdsville A0020101 Queensland 119034 

NMN Namoi River above North Cuerindi 419005 New South 

Wales 

2532 

WLC Wollomombi River above Coninside 206014 New South 

Wales 

377 

CTG Cotter River above Gingera 410730 Murray-Darling 

Basin 

148 

MRB Murray River above Biggara 401012 Murray-Darling 

Basin 

1165 

DVC Davey River D/S Crossing River 473 Tasmania 698 

HLG Hellyer River above Guilford Junction 61 Tasmania 100 

DRT Deep River above Teds Pool 606001 Western 

Australia 

474 

HRD Harvey River above Dingo Road 613002 Western 

Australia 

148 

ORO Ord River at Old Ord Homestead 809316 Northern 

Australia 

19513 
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Figure 1. Map of Australian climate zones overlaid by gauging locations plotted as red triangles and labelled with catchment ID. 

Details of the catchments, including size, are presented in Table 1. 
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Figure 2. Example RPP-S rainfall forecast for the Burdekin River at Sellheim, initialised on the 1 October 2001 and forecasting 100 5 
days ahead.  Forecasts of daily amounts are shown in the top panel and forecasts of accumulated totals are shown in the bottom 

panel.  Dark blue is the forecast [0.25,0.75] quantile range, medium blue is the forecast [0.10,0.90] quantile range and light blue is 

the forecast [0.05, 0.95] quantile range. Grey lines are the climatological reference forecast [0.05, 0.95] quantile range. The black 

line is the climatological reference forecast median. The red line is the observation. 

  10 
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Figure 3. Bias in daily rainfall forecasts for raw, QM and RPP forecasts (rows) and selected days ahead / lead times (columns). The 

scatterplots are of forecast mean (x-axis) versus observation (y-axis). Both axes are in mm. There is one blue circle for each catchment 

and forecast initialisation time. The average absolute bias (AB) is printed in the top left corner. 5 
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Figure 4. As for Figure 4, except for accumulated totals 

 

 

 5 
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Figure 5. α-index of reliability for forecast daily rainfall amounts (left panel) and forecast accumulated rainfall totals (right panel).  

Results for four types of forecasts are presented: raw, QM, RPP-S before Schaake Shuffle (pre SS) and RPP-S forecasts after the 5 
Schaake Shuffle. Higher α-index indicates better reliability. The boxplots display the median as a black line. The box spans the 

interquartile range and the whiskers span the [0.1,0.9] quantile range. 
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Figure 6. Scatterplots of CRPS skill scores for daily amounts (left panel) and accumulated totals (right panel).  Results for QM are 

on the horizontal axis and results for RPP-S are on the vertical axis. Higher CRPS skills scores reflect better forecast performance. 

Red text preceded by a “+” symbol indicates the number of points plotted outside the axis limits in the quadrant nearest the text.  

 5 

  



24 

 

 

 

Figure 7. Scatterplots of CRPS skill scores for accumulated totals for each catchment. The scatterplots plot QM skill scores 

(horizontal axis) against RPP-S skill scores (vertical axis). Each scatterplot combines results for all initialisation dates and all lead 

times. 5 
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Figure 8. Scatterplots of CRPS skill scores for groups of days (lead times). The scatterplots plot QM skill scores (horizontal axis) 

against RPP-S skill scores (vertical axis). Each scatterplot combines results for all initialisation dates and all catchments. 
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Figure 9. Scatterplots of CRPS skill scores for accumulated totals for each initialisation date. The scatterplots plot QM skill scores 

(horizontal axis) against RPP-S skill scores (vertical axis). Each scatterplot combines results for all catchments and all lead times. 
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