
Dear Editor and Reviewer,

We thank you for your comments and for giving us the opportunity to greatly improve our 
manuscript. Below are our answers on how the different comments were addressed (in blue and 
italic). As the Editor comments present a summarized version of Referee 3 comments, they are not
repeated below. 

General comments of Referee 3
This work, at least, in its current form is unacceptable. I believe that three main points
are needed to be solved to consider the manuscript for publication. 

First, a considerable English improvement should be made. There are many language issues 
which make the manuscript hard to be reviewed. 

We have done our best to address that. In particular, the manuscript has been proofread by native 
English speakers at each revision stage: Emily Voytek (Major revisions 1 & 3), and Andrew 
Greenwood (Major revision 2).

Second, a deep restructure of the paper should be considered, particularly for introduction. 
The motivation and novelty of the paper are still unclear. In introduction, the authors use a lot of 
words to present the classifications of methods to identify contaminant source, while only few 
sentences are prepared for the Bayesian global optimization approach. Moreover, it is better that 
authors can classify reasons why the use of Bayesian global optimization is more attractive in 
comparison to its alternatives in the introduction, right? 

Thanks to the comments of referee 3, we have deeply revised the Abstract and Introduction (by 
entirely rewritting parts of them) with the aims to clarify the motivations, novelties and objectives 
of the paper. The presentation of methods to identify contaminant source and optimization 
approaches is more balanced. Strong arguments to use Bayesian optimization methods are given. 
Yet, the overall structure of the paper was preserved, as it clearly identifies respective parts where
the synthetic problem is described, where the Bayesian optimization algorithm is explained, and 
where the results are presented.

Third, authors should add some comparisons of efficiency and effectiveness between different 
methods tested. To show the settings can be used as a benchmark, this point is important. In this 
case, authors can move the sensitivity analyses of optimization results to the number of 
measurements and the magnitude of the observation error into a supplementary.

As explained in the newly formulated introduction, we opted for a discretized version of the 
problem for several reasons touching notably upon open data and repeatability (yet, users have 
the possibility to use re-interpolated versions of the data set so as to use it them with continuous 
optimizers, e.g. for benchmarking global optimization algorithms). In the present discrete case, 
there are not really many competitors available. In a previous phase, we made some comparisons 
with gradient-based methods relying on re-interpolated objective functions that highlighted the 
superior performance of Bayesian optimization. But is was for granted as such descent 
algorithms are intrinsically local; besides, this created a number of complications in terms of fair 
comparison as it was not clear how to count gradient evaluations, not only in terms of cost but 
also since they relied on an approximation of f that was based on a fine grid of evaluations; we 
could have appealed to finite differences, but that opens new questions as well and in the end it 
just appeared not so relevant to go into such trouble for limited information: global beats local. 
Hence, and in accordance with comments from another reviewer, we favored instead exploring the
robustness of Bayesian Optimization to a number of departures from the default case, ranging 
from discretized settings to noise within the objective function definition and also changing 
geology, etc. We made our best in the novel introduction to motivate and explain that clearly and 
in appropriate detail.     



The sensitivity analysis, asked during Major revision 2 provides significant results that we think 
should be kept inside the paper. 

Specific comments
Line 2 page 1: specify that you use deterministic hydraulic conductivity fields, right? 

We do not understand the comment; by definition, a synthetic case is explicitly characterized.

Line 6 page 1: please be very careful of the use of ‘benchmark’, because only one approach is used 
in the paper which didn’t show reader that such settings can tell the abilities and inabilities of some 
existed alternatives. It is unclear that such settings can be used as a benchmark or not.

Renamed ‘benchmark case’ following the Cambridge dictionary
Lines 4-7 page 2: please rephrase this sentence

The sentence has been It has been removed during rewriting of the introduction.

Line 28 page 2: please check the terminology “Parameter models”
It has been updated as ‘Parameter sets’

Line 4 page 3: please add references respectively after “homogeneous” and “multi-Gaussian”
References have been added.

Lines 3-8 page 2: be very careful of these sentences. It should be very clear that why the geological 
medium you use is more proper than the others, for example, the multi-Gaussian like random field? 
I mean you should provide more related details. In addition, I believe that the use of “realistic” may 
be improper.

It has been removed
Line 10-11 page 3: please rephrase this sentence and check the terminology “simulated 
measurements”

It has been removed

Lines 20-23 page 3: please rephrase this sentence
The whole introduction having been reworked, these sentences have been removed.Lines 32-34 
page 3: again, at least now, you can’t say that the settings can be used as a benchmark to tell 
which optimization method is better, right?
‘benchmark case’

Line 4: replace “model” with “aquifer” or “field of hydraulic conductivity”?
It has been updated

Lines 4-6: the synthetic aquifer is used to simulate the braided-river aquifer. You should declare this
early, right after Line 8 page 2.

This comment is not clear or point to wrong locations in the paper.
Lines 8-12 page 4: please rephrase these sentences.

 Same as the response to the point on Lines 20-23 (page 3) above.
Lines 17-20 page 4: check the punctuations Introduction: can you trim the text for classifying the 
methods to identify contaminant source characteristics? And it would be better that more text 
concerning Bayesian global optimization is specified, especially, why you choose this approach?
This point too has been accounted for within the deep changes that have been performed on the 
introduction.   Line 26 page 4: What is MPS? You should say it is multi-point statistics.

It has been added

Lines 27-29 page 4: this sentence is unclear. What do you mean by “contaminant spreading is 
mainly modeled by the explicit description of geological heterogeneity”? the logic of this sentence 
is incorrect. I can’t understand why “longitudinal dispersivity is taken as the smallest possible value
with the grid size” is attributed to “contaminant spreading is mainly modeled by the explicit 
description of geological heterogeneity”? Additionally, what do authors mean by “the smallest 
possible value”? Please be clear.

The sentence has been rephrased to clarify this point.

https://dictionary.cambridge.org/dictionary/english/benchmark


Algorithm 1: please specify that N = 100 and n0 = 9, right? You also need to tell the reader what are
n, n0 and N? Please be clear.

It has been added

Line 10 page 8: as you now take the measurement errors into account, the minimum of this function
may not equal to 0.

It has been corrected.
Line 10 page 8: “which corresponds to an l p norm.” is unclear. Please rephrase it. You mean the l p 
norm of what? Please be clear. Furthermore, replace “an” with “the”.

We thank the referee for pointing out that more precision is desirable here. In order to remove any
ambiguity, we formulated this into 
“which corresponds to the $\ell^p$ distance between the matrices $(c_{obs}
(i,t))_{i=1,\dots,25,t=1,\dots,T}$ and 
$(c_{sim}(\mathbf{x},i,t))_{i=1,\dots,25,t=1,\dots,T}$, where $p\geq 1$ is a parameter that can 
be arbitrarily chosen by the modeller (in our experiments both $p=1$ and $p=2$ were 
considered, as mentioned later).  

Line 4 page 10: K should be in bold, because it is a symbol indicating a matrix. Please check this 
issue throughout the manuscript.

Done. 
Equation (2): What’s “p”?

See penultimate response: p is a parameter that governs the distance between reference 
measurements and simulation results obtained with candidate contaminant source locations. 

Line 5 page 9: please add references for “machine learning”
→ This part of the sentence has been rephrased as “relies on a machine learning approach 
relying on Gaussian Process (GP) models \cite{rasmussen2006}”

Line 16 page 9: please add references for “Gaussian Processes”
Following up the change in response to the last point, the concerned sentence has been replace by
“GPs constitute a very popular class of probabilistic models that are fully specified by a mean 
function $m\left(\mathbf{x}\right)$ and a covariance function 
$k\left(\mathbf{x},\mathbf{x}'\right)$ \cite{rasmussen2006}”. Lines 17-19 page 10: remove 
“First” and rephrase this sentence
It has been updated

Line 25 page 10: the l 2 norm of what?
For more clarity, we have reformulated the concerned piece of sentence into “where the noise 
level $\kappa$ (of Eq.~\ref{eqCobsnoisy}) is set to $0$ and the parameter $p$ of the objective 
function $f(x)$ is set to $2$”. Lines 8-10 page 12: please rephrase this sentence
It has been updated

Line 11 page 12: what do you mean by “replications”? Please check this terminology.
Replaced by ‘runs’

Lien 12 page 12: Please rephrase this sentence.
It has been updated

Line 15 page 12: what do you mean by “true minimum”
The word ‘true’  has been It has been removed.

Lines 12-13 page 16: rephrase this sentence.
It has been updated

Line 16 page 16: I didn’t fine where you show the results you mention. 
This has been clarified: these results are not shown.

Line 16 page 16, what do it mean by “for l 1 norm objective functions”?
For the sake of clarity, we have reformulated the whole concerned part as follows: The results 
presented here are based on an objective function $f$ computed with $p=2$, which corresponds 
to an $\ell^2$ distance between reference and candidate concentration values (See 



Eq.~\ref{eqObjFunc}). As the choice of $p$ may substantially influence the flat or deep aspect of 
valleys (low value zones) of the objective function, we additionally tested the EI algorithm on the 
4 scenarios for objective functions with $p=1$. We found that building $f$ onto the $\ell^2$ 
distance leads to flatter wide valleys of low values for the objective functions, which might not 
favor the efficiency of the EI optimizer. However, the results and performances of the EI algorithm
are very similar between the two norms tested. This is why we decided not to show the results of 
the algorithm objective functions built upon the $\ell^1$ distance. Lines 35-37 page 17: Please 
rephrase this sentence
It has been updated

Lines 13-15 page 17: Please rephrase these sentences
It has been updated

Editorial comments
Line 6 page 1: replace “or” with “and”

It has been updated

Line 20 page 1: classified
It has been removed

Line 22 page 1: replace “are” with “is” and check this throughout the manuscript
It has been updated

Line 14 page 2: remove “as defined above”
It has been removed

Line 32 page 2: contains
It has been updated

Line 17 page 3: remove “A”
It has been updated

Line 3 page 7: replace “the figure” with Figure 3
It has been updated

Line 6 page 8: is denoted as
It has been updated

Line 20 page 8: contaminant source identification problem
It has been updated

Line 19 page 10: analyses
No, we mean ‘sensitivity analysis’

The first line page 12: the explorations of the objective functions
It has been updated

Line 5 page 12: the explored locations
It has been updated

Line 7 page 12: replace “&” with “and”
It has been updated

Line 16 page 12: Figures 6A to D?
It has been updated as 6A-D

Line 18 page 12: Figures 6E to H?
It has been updated as 6E-H
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Abstract. A
::::::::::
Contaminant

::::::
source

::::::::::
localization

::::::::
problems

::::::
require

:::::::
efficient

::::
and

:::::
robust

::::::::
methods

::::
that

:::
can

:::::::
account

:::
for

:::::::::
geological

::::::::::::
heterogeneities

::::
and

::::::::::
accomodate

::::::::
relatively

::::
small

::::
data

::::
sets

::
of

:::::
noisy

:::::::::::
observations.

:::
As

::::::
realism

:::::::::
commands

::::::::
hi-fidelity

:::::::::::
simulations,

::::::::::
computation

:::::
costs

::::
call

:::
for

::::::
global

:::::::::::
optimization

:::::::::
algorithms

:::::
under

::::::::::::
parcimonious

:::::::::
evaluation

::::::::
budgets.

::::::::
Bayesian

:::::::::::
optimization

:::::::::
approaches

:::
are

:::::::::::
well-adapted

::
to

::::
such

:::::::
settings

::
as

::::
they

:::::
allow

::::::::
exploring

:::::::::
parameter

:::::
spaces

:::
in

:
a
:::::::::
principled

::::
way

::
so

::
as

::
to

:::::::::
iteratively

:::::
locate

:::
the

:::::::
point(s)

::
of

::::::
global

::::::::
optimum

:::::
while

:::::::::::
maintaining

::
an

:::::::::::::
approximation

::
of

:::
the

:::::::::
objective

:::::::
function

::::
with

:::
an

:::::::::::
instrumental5

:::::::::::
quantification

::
of

:::::::::
prediction

::::::::::
uncertainty.

:::::
Here,

:::
we

::::
adapt

::
a Bayesian optimization approach to localize a contaminant source is

proposed
::
in

:
a
::::::::::
discretized

:::::
spatial

::::::::
domain.

:::
We

::::
thus

::::::::::
demonstrate

:::
the

::::::::
potential

::
of

::::
such

:::::::
method

:::
for

:::::::::::::
hydrogeological

:::::::::::
applications

:::
and

::::
also

::::::
provide

::::
test

:::::
cases

::
for

::::
the

::::::::::
optimization

::::::::::
community. The localization problem is illustrated with two

::
for

:::::
cases

::::::
where

::
the

:::::::
geology

::
is
::::::::
assumed

::
to

::
be

::::::::
perfectly

::::::
known.

::::
Two

:
2D synthetic cases that display sharp hydraulic conductivity contrasts and

specific connectivity patterns
::
are

::::::::::
investigated. These cases generate highly non-linear objective functions that present multiple10

local minima. A derivative-free global optimization algorithm relying on a Gaussian Process model and on the Expected Im-

provement criterion is used to efficiently localize the
::::
point

::
of minimum of the objective function

::::::::
functions, which corresponds

to the contaminant source location, even though concentration measures contain an important .
:::::
Even

::::::
though

::::::::::::
concentration

:::::::::::
measurements

:::::::
contain

::
a
:::::::::
significant

:
level of proportional noise. ,

::::
the

::::::::
algorithm

:::::::
localize

:::::::::
efficiently

:::
the

:::::::::::
contaminant

::::::
source

:::::::
location.

:::
The

:::::::::
variations

::
of

:::
the

:::::::
objective

:::::::
function

:::
are

:::::::::
essentially

::::::
driven

::
by

:::
the

:::::::
geology,

::::::::
followed

::
by

:::
the

:::::
design

:::
of

::
the

::::::::::
monitoring15

:::
well

::::::::
network. The data and script

:::::
scripts used to generate objective functions are shared as a benchmark.

::
to

:::::
favour

:::::::::::
reproducible

:::::::
research.

:
This contribution is important because the functions present multiple local minima and are inspired from a practical

field application. Sharing these complex objective functions provides a benchmark
::::::
source

::
of

:::
test

:::::
cases for global optimization

techniques
::::::::::
benchmarks and should help designing new and efficient methods to solve this type of problem.

1 Introduction20

The concept of polluter pays is not new (OECD, 1972) and holds for groundwater protection laws in many countries (USA, 1972; Swiss Confederation, 1983; European Union, 2000).

A polluter can sometimes be identified by a specific chemical signature (Mansuy et al., 1997; Rachdawong and Christensen, 1997; Venkatramanan et al., 2016).
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However, when the signature is not unique, the ability to localize the contaminant source (s) can make defining responsibilities

or reducing decontamination costs easier. The topic is not recent and several approaches have been developed and proposed

:::::
Many

:::::::::::::
hydrogeological

::::::::
processes

:::
are

::::::::
governed

::
by

::::::::
nonlinear

::::::::
equations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. unsaturated flow problems, heat and transport problems; De Marsily, 1986).

::::
This

::::
often

::::::
results

::
in

::::::
highly

:::::::::
non-linear

:::
and

::::::::::
non-convex

::::::::
responses

::
in
:::
the

::::::::
objective

::::::::
functions

:::
of

::::::
related

::::::::::
optimization

:::::::::
problems.

:::::
Often,

::::::::
however,

::::::
default

::::::::::
optimization

:::::::::
algorithms

::::::::
employed

::
in
:::
the

::::::::::::::
hydrogeological

::::::::::
community,

::::::
notably

:::::::::
concerning

:::::::::::
contaminant5

:::::
source

::::::::::
localization

::::::::
problems,

:::
are

:::::
based

::
on

:::::
local

:::::
search

::::::::
principles

::::::
(using

::::::::
analytical

::::::::
gradients

::
or

::::::::
estimates

::::::
thereof)

::::::::::::::::::::::::::::::::
(Mahar and Datta, 2000; Ayvaz, 2016).

::
In

:::::::
contrast,

::::::::::::
derivative-free

::::::
global

::::::::::
optimization

::::::::
methods

::::
such

::
as

:::::::::::
evolutionary

:::::::::
algorithms,

::::::::
simulated

:::::::::
annealing

:::
and

:::::
others

:::::
have

:::
also

:::::::
become

::::::::::::
commonplace

:
in the last three decadesto identify contaminant source characteristics such as source location or

history release. In this paper, we show the ability of a Bayesian optimization approach to localize the source of
:::::::
decades.

::::
Yet,

::::
these

:::
are

:::::::
typically

::::::::
regarded

::::
with

::::::
caution

::
as

::::
they

:::
do

:::
not

::::::::::::
systematically

:::::
come

::::
with

::::
much

::::::::::
guarantees,

:::
and

::::
can

:::::::::
potentially

::::::
require10

::::
large

:::::::
numbers

:::
of

:::::::
function

::::::::::
evaluations,

:
a
::::::::
situation

:::
that

::
is
::
to

:::
be

:::::::
avoided

::
in

:::
the

::::
case

:::::
where

:::::::
forward

::::
runs

:::
are

:::::::::::::
CPU-intensive.

:::
On

::
the

:::::
other

:::::
hand,

::::::::
so-called

::::::::
Bayesian

::::::::::
optimization

:::::::::
algorithms

:::::
have

::::
been

:::::::::::
considerably

::::::
gaining

::::::::::
importance

::
in

::::::
several

:::::
fields

:::::
lately

::
as

::::
they

:::::
enjoy

:
a
:::::::
number

::
of

:::::::
practical

::::::::::
advantages

:::::
while

::::::
having

::::
been

:::::::
recently

::::::
proven

::
to

:::::::
possess

:::::::
desirable

::::::::::
consistency

:::::::::
properties

:::::::::::::::::::::::::::::::::::
(Vazquez and Bect, 2010; Bect et al., 2018).

::::
One

::
of

:::
the

:::::::
greatest

:::::::
strengths

:::
of

:::::::
common

::::::::
Bayesian

::::::::::
optimization

:::::::::
algorithms

::
is
::::
that

:::
they

:::
do

:::
not

::::
only

:::::
guide

:::::::::
evaluations

:::::::
towards

:::
the

:::::
global

::::::::
optimum

:::
but

:::
also

::::::::
maintain

::
an

::::::::::
approximate

::::::::::::
representation

::
of

:::
the

::::::::
objective15

:::::::
function

:::::::
together

::::
with

:
a
:::::::::::
quantification

::
of
:::::::::
prediction

::::::::::
uncertainty.

::::
This

::::::
enables

:::::
space

::::::::::
exploration

::::
with

:
a
:::::::
memory

::
so

::
as

::
to
:::::::
prevent

::
or

:::::::
mitigate

::::::::::
evaluations

::
at

::::::::
redundant

:::::::::
locations.

::
In

::::::::
addition,

:::::
recent

::::::::::
adaptations

::
of
:::::::

popular
::::::::
Bayesian

:::::::::::
optimization

::::::::::
approaches

::::
allow

::::::::::::::
accommodating

:::::::::
evaluation

:::::
noise

:::::::::::::::::::::::::::::
(Picheny and Ginsbourger, 2014a),

:::::::
parallel

::::::::::
evaluations

::::::::::::::::::
(Marmin et al., 2015),

:::::
high

:::::::::
dimensions

::::::::::::::::
(Wang et al., 2018),

::::::::::::::
non-stationarity

::::::::::::::::
(Snoek et al., 2014),

::::::::
gradient

::::::::::
observations

:::::::::::::::
(Wu et al., 2017),

:::
and

:::::
many

:::::
more

::::::
features

::::
(see

:::
for

:::::::
instance

::::::::::::::::::::::
Ginsbourger (To appear) for

::
a
::::::
broader

::::::::
overview

::
of

::::::::
sequential

::::::
design

:::::::::
algorithms

:::
for

::::::::
computer

:::::::::::
experiments).20

::::::
Despite

:::
the

:::::::
fantastic

:::
rise

::
of

::::::::
Bayesian

:::::::::::
optimization

::
in

:::::::
machine

:::::::
learning

:::
and

:::
for

::
the

::::::
design

::
of

::::::::
computer

::
in

::::::
various

:::::::::::
communities,

::
its

::::::
spread

::
in

:::
the

::::::::::
geosciences

:::::::
remains

::::::::
relatively

:::::::
modest

::
so

:::
far,

:::::::
perhaps

::
in
::::

part
:::::::
because

:::::::::
contrarily

::
to

::::::::
analytical

::::
test

::::::::
functions

::::::
inspired

:::
by

::::::::::
engineering

::::::::
problems

:::
or

::::::::::
off-the-shelf

::::::::
machine

:::::::
learning

:::::::::
algorithms

:::::::
trained

::
on

::::::
openly

::::::::
available

::::
data

::::::
bases,

::
it

::
is

::::
often

:::
the

::::
case

::::
(e.g.,

::
in

:::::
heavy

::::
flow

:::::::::::
simulations)

:::
that

:::::::::::
geoscientific

:::
data

::::::
and/or

::::::::
computer

:::::
codes

::::::
cannot

::
be

:::::::
publicly

::::::
shared

::
or

:::::
easily25

::::::
handled

:::
for

::::
one

::
or

:::
the

:::::
other

::::::
reason.

::::
One

::::
way

::::::
around

::::
that

::
is

::
to

:::::
share

::::::
instead

:
a
:::::

finite
:::::::
number

::
of

:::::::::
evaluation

::::::
results

:::::::::
performed

:::::
onsite

:::
by

:::
the

:::::::
authors,

:::
so

:::
that

:::::
users

:::
do

::::
not

::::
need

:::
to

:::
run

::::
new

::::::::::
simulations

:::::
when

::::::
testing

:::::
their

::::::::::
algorithms.

::::
Yet,

:::::::::::
optimization

:::::::::
algorithms

:::::::
typically

::::
used

::
in

:::::::::::::
hydrogeological

::::::
inverse

::::
and

:::::
related

::::::::
problems

:::::::
assume

:
a
:::::::::
continuous

::::::
search

:::::
space.

:::::
When

::::::
relying

::
on

::
a

:::::::::::
discretization

::
of

:::
the

::::
input

::::::
space,

:::::::
possible

::::::
options

::::
that

::::
come

::
to
:::::
mind

::::::
include

::
i)
:::::
using

:::::::
discrete

::::::::::
optimization

::::::::::
algorithms,

::
ii)

:::::
using

:::::::::
continuous

:::::::::::
optimization

:::::::::
algorithms

::
on

::
a
::::::::::::
re-interpolated

::::::::
function

:::::
based

:::
on

:::::::
available

:::::::::
evaluation

:::::::
results,

:::
and

:::
iii)

:::::::::::
constraining30

:::::::::
continuous

::::::::::
optimization

::::::::
methods

::
by

:::::::
forcing

:::::
novel

::::::::
evaluation

::::::
points

::
to

::::::
remain

::::::
among

:::
the

:::::::::
considered

:::::
finite

:::
set.

::::
Our

::::::::
approach

::::
here,

::::::
guided

:::
by

:::
the

:::::::::
willingness

::
to
:::::
share

::::
data

::::
with

::::
both

::::::::::
geosciences

::::
and

:::::::::::
optimization

:::::::::::
communities

:::
and

:::::::
produce

:::::::::::
reproducible

:::::::
research,

::
is

::
to

::::
rely

::
on

::
a

:::
fine

::::
grid

::
of

:::::::::
evaluation

:::::
results

::::
that

::::::
allows

::::::::
appealing

::
to

:::
any

::
of

:::
the

:::::::::::::
aforementioned

:::::
three

::::::::::
approaches.

:::
By

::::::::
remaining

::
in

:
a contaminant in a synthetic medium characterized by realistic property features.
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In their review of mathematical methods for groundwater pollution source identification, Atmadja and Bagtzoglou (2001) classify35

existing approaches into four categories: 1) Optimization approaches, in which forward simulations are run successively and

:::::::::::::
two-dimensional

::::::::::
framework,

::::
our

:::::::::
discretized

::::::::::::
2601-element

::::
data

::
set

::
is
:::::::

actually
::::

fine
:::::::
enough

::
to

::::::
capture

::::
the

:::::::
complex

::::::::
behavior

::
of the simulated concentrations are compared to measured concentrations (e.g., ??Datta et al., 2011); 2) Probabilistic and

geostatistical approaches, in which the Advection Dispersion Equation (ADE) are solved backward in time based on the

random walk particle methods (?) or on stochastic differential equations (?); 3) Analytical solution and regression approaches,5

in which a set of equations can be solved analytically or whose parameters can be estimated by least-square regression

(e.g., Ala and Domenico, 1992; Alapati and Kabala, 2000); and 4) Direct approaches, in which the ADE are solved backward

in time based on deterministic direct approaches such as Tikhonov regularisation (??), quasi-reversibility (Skaggs and Kabala, 1995),

minimum relative entropy (?) or the backward beam equation (?).

A complementary classification is proposed by Amirabdollahian and Datta (2013) in their overview on contaminant source10

characteristics identification. Their classification is based on computational complexity and refines the Optimization approaches

class mentioned above into three sub-classes: 1) Response Matrix, in which unit responses are assembled linearly (e.g., ?);

2) Embedded Optimization, in which the objective function embeds directly mathematical equations of flow and transport

(e.g., ?) and 3) Linked Simulation-Optimization, in which the optimization procedure calls numerical flow and transport

simulators (e.g., Ayvaz, 2016).
::::::::
considered

:::::
misfit

::::::::
function

::
so

:::
that

:::::::::::
optimization

:::::::::
algorithms

:::
can

:::
be

:::::::
possibly

:::::::::
compared

::
by

:::::
users15

::
on

::::::::::
high-fidelity

:::::::::::::
approximations

::
of

:::
the

:::::::::
objective.

::::
This

::::
being

:::::
said,

::
we

::::::
rather

::::
insist

::::::::::
throughout

::
the

:::::
paper

:::
on

:
a
::::::
natural

::::::::
adaption

::
of

:
a
:::::::
popular

::::::::
Bayesian

::::::::::
optimization

:::::::::
algorithm

::
to

:::
the

:::::::
discrete

::::
case,

:::::
hence

:::::::::::::
simultaneously

:::::::::
addressing

::::::
points

::
i)

:::
and

:::
iii)

:::::
above

::::
and

:::
thus

::::::::::::
demonstrating

:::
the

:::::::::::
applicability

::
of

::::
this

::::::
family

::
of

:::::::::
techniques

::::
both

:::
to

:
a
::::::::::
challenging

:::::::::::
contaminant

:::::::::
localization

:::::::::
problems

::
in

::::::
general

:::
and

::
to

:::::::
discrete

::::::::
situations

::
in

::::::::
particular

:::::
(that

:::::
could

::
be

:::::::
relevant

::
in

:
a
:::::::
number

::
of

:::::::
practical

:::::::::
situations,

:::
e.g.

::::
well

::::::::::
placement).

:

The approach that we consider here is an example of the Linked Simulation-Optimization class as defined above, where the20

procedure driving successive simulator evaluations relies on Bayesian optimization principles. While Bayesian methods have

been massively used throughout groundwater sciences and notably for contaminant source localization , let us emphasize that

the term ‘Bayesian optimization’does not refer to any arbitrary method that combines ‘optimization’and ‘Bayesian statistics’.

Instead, the term refers to a specific family of optimization algorithms where a prior distribution is put on the objective

function (See e.g. Shahriari et al., 2016, and references therein for an overview)
::::::
Coming

::::
back

::
to

:::::
more

::::::
specific

::::::::::::::
hydrogeological25

:::::::
concerns

:::::::::
underlying

:::
our

::::::::::
application

:::
test

::::
case,

:::::::::::
contaminant

:::::::::::::
characterization

::::::::
problems

:::
are

::::::::
motivated

::
by

:::
the

::::
fact

:::
that

:::
the

:::::::
concept

::
of

::::::
polluter

::::
pays

:::::::::::::::::
(OECD, 1972) holds

:::
for

::::::::::
groundwater

:::::::::
protection

::::
laws

::
in

:::::
many

:::::::
countries

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(USA, 1972; Swiss Confederation, 1983; European Union, 2000).

:
A
:::::::
polluter

:::
can

:::::::::
sometimes

::
be

::::::::
identified

:::
by

:
a
::::::
specific

::::::::
chemical

::::::::
signature

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mansuy et al., 1997; Rachdawong and Christensen, 1997; Venkatramanan et al., 2016).

::::::::
However,

::::
when

:::
the

::::::::
signature

::
is

:::
not

:::::::
unique,

::
the

::::::
ability

::
to

:::::::
localize

:::
the

::::::::::
contaminant

::::::::
source(s)

:::
can

:::::
make

:::::::
defining

:::::::::::::
responsibilities

::
or

:::::::
reducing

::::::::::::::
decontamination

::::
costs

::::::
easier.

:::::::::
Moreover,

::::::::::
contaminant

:::::::
transport

::
is
:::::::::
dominated

:::
by

::
the

::::::::::::
heterogeneity

::
of

:::
the

:::::::::
subsurface30

::::::::
properties.

:::
In

:::::::::
particular,

:
it
::

is
:::::::::

controlled
:::
by

:::
the

::::::::::
connectivity

:::
of

:::::::::
geobodies

::::
(e.g.

:::::::::::
characterized

:::
by

:::::::::
lithofacies

::
or

:::
by

:
a
:::::
range

:::
of

::::::::
hydraulic

::::::::::
conductivity

::::::
values)

::::
and

::
by

:::
the

::::::::
sharpness

::
of
::::::::
geobody

:::::::
property

::::::::
contrasts.

In practice, geological media are heterogeneous and analytical solutions
::::
Thus,

:::::::
solving

:::::::::::
contaminant

::::::
source

::::::::::
localization

:::::::
problems

:::
in

:::::::
complex

:::::::::::
environments

::::::::::::
characterized

::
by

::::::
strong

:::::::
property

::::::::
contrasts

:::::::
requires

:::::::
methods

::::
that

:::
are

::::::
robust,

::::
time

:::::::
efficient

3



:::
and

::::
able

::
to

:::::
handle

:::::
input

:::
data

::::::::::
uncertainty.

::::::
Several

::::::::::
approaches

::::
have

::::
been

::::::::
proposed

::
in

:::
the

:::
last

::::
three

:::::::
decades

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Atmadja and Bagtzoglou, 2001; Amirabdollahian and Datta, 2013).35

::::::::
Analytical

::::::::
solutions

::::::::::::::::::::::::::::::::::::::::::::
(Ala and Domenico, 1992; Alapati and Kabala, 2000) are limited to homogeneous geological mediato identify

contaminant source characteristics. To simplify the classification proposed in the two reviews described above, we gather the

different classes
:
.
:::::::
Methods

::::
able

::
to

::::::
handle

::::::::::::
heterogeneous

::::::::
geological

:::::::
medium

::::
can

::
be

::::::::
classified into two groups: backward or for-

ward solver based approaches. Methods based on
:::
The backward solvers consist of reversing the flow problem (Skaggs and Ka-

bala, 1995; Milnes and Perrochet, 2007; Ababou et al., 2010) , which means that the ADE are solved
:::
and

::::::
solving

:::
the

:::::::::
Advection5

:::::::::
Dispersion

::::::::
Equation backward in time . The transport physical processes are simulated ‘backward’ to localize the source

and identify the release history. This classification regroups classes 2 and 4 as defined by Atmadja and Bagtzoglou (2001).

In this classification
::
In

::::
this

:::::
group

::
of

::::::::
methods, both the flow-field and the contaminant plume are assumed perfectly known.

Methods using forward solvers are based on an inverse problem formulation (Aral et al., 2001; Yeh et al., 2007; Mirghani

et al., 2012), where the source location and release history are inferred from concentration samples. Parameter models
:::
sets10

are proposed and used as input
:::::
inputs

:
in a forward solver to simulate concentration breakthrough curves at the sample

locations; when the mismatch between the simulated concentrations and the observed ones is within an acceptable level

of error, the proposed model is accepted as a solution. This class of methods contains optimization methods as described

by Atmadja and Bagtzoglou (2001); Amirabdollahian and Datta (2013), but additionally contain posterior sampling methods

which provide posterior probabilities of the solutions
:::
The

::::
best

:::::::
solution

::
is
::::

the
:::
one

::::::::::
minimizing

::::
the

::::
error

::::::::
function. In this15

class
:::::
group

::
of

:::::::
methods, less information about the contaminant plume is required and the method can be adapted to uncer-

tain geology (Zhang et al., 2016).

Previous studies performed a characterization of contaminant sources in 1D (?), 2D (?) or 3D (?) modeling grids. In these

examples, the source is often identified along with other characteristics such as the release history (?), or the source geometry

(Ayvaz, 2016). To the best of our knowledge, most existing studies consider the hydrogeological property field as homogeneous20

::::::
existing

::::::
studies

:::::
using

:::::::
forward

:::::
solver

:::::
based

:::::::::
approaches

::::
were

:::::::
limited

:
to
::::::::::::
homogeneous

::::::::::::::::::::::::::::::::::::::::
(Datta et al., 2011; Hansen and Vesselinov, 2016) or

multi-Gaussian like heterogeneous random field, which might not be the best representation of subsurface heterogeneity in flow

and transport applications (??). One exception lies in the study conducted by Milnes and Perrochet (2007), reversing the flow,

where the 2D synthetic aquifer is represented by channels and islands with a strong hydraulic conductivity contrast. So far, to

the best of our knowledge, no geological medium featuring realistic property contrasts and connected features has been used in25

an inverse problem formulation of contaminant source characteristics identification
::::::::::::::::::::::::::::::::::::::
(Aral et al., 2001; Ayvaz, 2016) heterogeneous

:::::::
property

::::
field.

Optimization approaches to contaminant source characterization usually consist of minimizing an objective function that

relies on a misfit between simulated measurements and reference observations. The use of least square regression combined

with linear programming (?) assumes a linear system, which is not adapted for the contaminant source localization problem
:::::
Within30

:::
this

:::
last

:::
set

::
of

::::::::
methods,

:::::::
different

:::::::::::
optimization

:::::::::
techniques

::::
can

::
be

::::::::
employed. Classical non-linear optimization techniques fol-

lowing a gradient based approach (Mahar and Datta, 2000; Datta et al., 2011),
:::::
such

::
as

:::
the

::::::::::::::::::
Levenberg-Marquardt

:::::::::
algorithm

:::::::::::::::::::::::::
(Hansen and Vesselinov, 2016),

:
present the risk of being stuck in local minima. Employing a tabu search algorithm (Yeh et al.,

2007) presents the same inconvenience as it explores
:::::::::
iteratively neighbor solutions. Combining a gradient descent algorithm

4



with a genetic algorithm (Aral et al., 2001; Ayvaz, 2016) decreases the risk of becoming stuck in local minima, but the genetic

algorithm may require longer parameter exploration if the mutations are not guided by a smart rule. A Levenberg-Marquardt

iterative algorithm, that interpolates between the second order Gauss-Newton algorithm and the first order of a steepest descent5

algorithm (Hansen and Vesselinov, 2016), might offer strategies to prevent being trapped in a local minimum. Simulated an-

nealing (Amirabdollahian and Datta, 2014) allows for a broader exploration but at a very high computational cost. Bayesian op-

timizationis a powerful 1
:
is
::
a

:::::
global approach that limits

::::::::::
considerably the risk of being trapped in local minima and intelligently

explores
::::
does

:::
not

::::::
require

:::
the

:::::::::::
computation

::
of

:::::::::
derivatives

::
of

:::
the

::::::::
objective

::::::::
function.

::
It

:::::::
explores

:::::::
smartly the parameter space by

looking at figures of merit trading off exploitation of available results and space exploration such as the Expected Improvement10

(EI) criterion (Mockus, 1989; Jones et al., 1998a; Vazquez and Bect, 2010)
:
,
::::::
trading

:::
off

::::::::::
exploitation

:::
of

:::::::
available

::::::
results

::::
and

::::
space

::::::::::
exploration. To the best of our knowledge, the latter method has not yet been tried on contaminant source characterization

problems .
:::::::
potential

::
of

:::
this

:::::
class

::
of

:::::::
methods

:::
for

:::::::::
addressing

:::::::::::
contaminant

:::::
source

::::::::::
localization

::::::::
problems

::
is

:::
still

::::::::::
unexplored.

:

The objective of this paper is threefold. First,15

:::
The

::::
first

::::::::
objective

::
is to assess the performance of an inverse problem formulation in order to identify contaminant source

characteristics on a synthetic case based on realistic
::::::::
displaying

::::::
strong hydrogeological property contrasts and

:::::::
complex con-

nected structures. This is important because in spite of its advantages, inverse problem formulation to identify contaminant

source characteristics has been employed only on multi-Gaussian type heterogeneities and the type of heterogeneities strongly

influences mass transport. Second, to verify the efficiency20

:::
The

::::::
second

::::::::
objective

::
is

::
to

:::
test

:::
the

::::::::
efficiency

::::
and

:::::::::
advantages

:
of a Bayesian optimization algorithm which relies on expected

improvement criteria in the formulated contaminant source identification problem. While Bayesian optimization has been

applied to a variety of optimization problems, we believe that this is the first time the algorithm has been applied to the

contaminant source identification problem. Third,

:::
And

::::
last

:::
but

:::
not

:::::
least,

::
the

:::::
third

::::::::
objective

:
is
:
to provide an open source black-box optimization benchmark that allows one to25

compare
:::::::::::
optimization

:::::::::
benchmark

::::
case

:::
that

::::::
allows

:::::::::
comparing

:
different optimization strategies on application driven objective

functions
:::::::
objective

::::::::
functions

::::::
defined

::::
over

::
a

::::::
discrete

:::::::
domain

:::
and

:::::::
inspired

::
by

::::
real

::::::::::
applications, which are not currently available

in the optimization community.

With these objectives, we propose an original application of an EI algorithm to infer, in a deterministic inverse problem

formulation, the contaminant source location in a 2D heterogeneous aquifer that presents realistic
:::::
strong property contrasts and30

connectivity
:::::::
complex

:::::::::
connected

:
structures. To allow for a comparison between the optimizer exploration and an exhaustive

search of the discrete parameter space, the model grid is limited to 2D to keep computational cost reasonable for flow and

transport simulations. The 2D synthetic model
:::::::
hydraulic

:::::::::::
conductivity

::::
field

:
is generated with a

::
the

:
multiple-point statistics

1
::::
While

:::::::
Bayesian

::::::
methods

:::::
have

::::
been

:::::::
massively

:::::
used

::::::::
throughout

:::::::::
groundwater

:::::::
sciences

:::
and

::::::
notably

:::
for

:::::::::
contaminant

::::::
source

:::::::::
localization,

::
let

::
us

::::::::
emphasize

:::
that

:::
the

::::
term

::
‘
::::::
Bayesian

:::::::::
optimization

:
’

:::
does

:::
not

::::
refer

::
to
::::

any
::::::
arbitrary

::::::
method

:::
that

::::::::
combines

:
‘
::::::::
optimization

:
’

::
and

::
‘
::::::
Bayesian

::::::
statistics’.

::::::
Instead,

:::
the

::::
term

:::::
refers

::
to
::

a
::::::

specific
:::::
family

::
of
:::::::::

optimization
::::::::

algorithms
:::::

where
::

a
::::
prior

::::::::
distribution

::
is
:::

put
:::

on
:::
the

::::::
objective

:::::::
function

::::::::::::::::::::::::::::::::::::::::::::::
(See e.g. Shahriari et al., 2016, and references therein for an overview).
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(?) algorithm called DeeSse (?)
:::::::::::::::::::
(Straubhaar et al., 2016), from a training image representing the heterogeneous hydrogeological

properties of a braided-river aquifer, which was generated by a pseudo-genetic algorithm (see Appendix A; Pirot et al., 2015).35

The hydrogeological properties and flow boundary conditions are assumed to be perfectly known. The flow and transport

equations are solved numerically using the Groundwater software (Cornaton, 2007). For practical applications, measurement

errors might influence notably the objective function which might affect the performance of optimization algorithms. From a

hydrogeological perspective, it is also interesting to understand how the choice of monitoring wells can affect the localization of

the contaminant source. For these two reasons, the presented optimization algorithm is tested both in absence and in presence5

of measurement errors at different levels
:::::::
Because

:::::::::::
measurement

::::
error

::::
and

::::::::::
monitoring

:::::::
network

:::::
affect

:::
the

::::::::
objective

::::::::
function,

::
the

:::::::::
algorithm

:::::::::::
performances

:::
are

:::::
tested

:::
for

::::::::
different

:::::
levels

::
of

:::::::::::
measurement

::::
error

:
and for different configurations of monitoring

wells. The optimization is performed using the DiceKriging and DiceOptim R packages (Roustant et al., 2012). In addition, we

provide a benchmark for optimization algorithms, which relies on an objective function generator that can be customized by

choosing between 2 geological scenarios, 2 possible locations for the contaminant source and by the selection of observations10

among 25
:::::::::
monitoring wells. The performance of the EI algorithm is assessed by 100 replications

:::
runs

:
from different initial

designs.

The paper is organized as follows: .
:
Section 2 describes the synthetic test case and the experimental setup. Section 3 explains

the objective function generator. Section 4 details the steps of the EI algorithm. The results are presented in Section 5 and

are discussed in Section 6. Conclusions are summed up in Section 7. The supplementary material provided online is listed in15

AppendixB.
:
.

2 Synthetic test cases

As different geological settings can lead to very different objective functions, and in order to test the robustness of the op-

timization method, we consider two synthetic cases corresponding to 5 m thick × 600 m long × 300 m wide braided river

aquifers. Each aquifer is represented by a unique, supposedly known, 2D facies model (Figure 1) of 1 m by 1 m resolution20

to simplify the problem and to decrease the computing costs related to transport simulations. These 2D facies models (Figure

1), which present strong contrasts and realistic spatial structures, are obtained by MPS
::::::::
generated

::
by

::::::::::::
multiple-point

::::::::
statistics

:::::
(MPS)

:
simulation, using the training image described in appendix

::::::::
Appendix (Figure A1). The hydrogeological properties as-

sociated to the facies are given in Table 1 and are inspired from analogs described in the literature (Jussel et al., 1994; Bayer

et al., 2011). Note that the contaminant spreading is mainly modeled by the explicit description of geological heterogeneityand

hydraulic storage molecular longitudinal transversal

facies conductivity porosity coefficient diffusion dispersivity dispersivity

K(m/s) Ss(m
−1) Dm(m2/s) αL(m) αTh(m)

coarse sediments 10−1 0.2 10−5 10−9 1 0.1

mixed sediments 10−3 0.2 10−5 10−9 1 0.1

fine sediments 10−5 0.2 10−5 10−9 1 0.1

Table 1. Hydrogeological parameters
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Figure 1. Experimental setup: 600m×300m 2D facies model of the aquifer; A) geology 1 and B) geology 2. The black square delimits the

possible locations for the search of the contaminant source. The two reference source locations are identified by black crosses.

therefore, the longitudinal dispersivity is taken as
::
at

:::
the

::::
scale

::
of

:::
this

::::::
model

::
is

:::::::
assumed

::
to

::
be

::::::
mainly

:::::::::
controlled

::
by

:::
the

:::::::::
geological25

:::::::::::
heterogeneity.

:::::
Since

:::::
there

::
is

::::::
always

:
a
:::::
some

::::::::
numerical

:::::::::
dispersion

:::::
when

::::::
solving

:::
the

::::::::
advection

:::::::::
dispersion

:::::::
equation

:::::::::::
numerically,

::
we

:::::
used the smallest possible value with our mesh size

::
for

::::
the

::::::::::
longitudinal

:::
and

:::::::::
transverse

:::::::::::
dispersivities

::::
that

:::::
would

::::::::
stabilize

::
the

:::::::::
numerical

:::::::
problem. Another method to obtain 2D horizontal models of braided river aquifers from 3D models would have

been to integrate vertically the hydraulic conductivity field, but since this smoothes out the hydraulic conductivity, the resulting

2D models present less contrasts and less realistic connected structures.5

As boundary conditions for the flow and transport model, we impose a differential head of 2 m on the length of the model

(between X=−20m and X= 580m) and no flow on the sides (Y=−150m and Y= 150m) parallel to the main flow direction.

7



We assume steady-state flow conditions (Figure 2) to run transport simulations by solving the ADE
::::::::
Advection

::::::::::
Dispersion

:::::::
Equation

:
with the finite element code Groundwater (Cornaton, 2007).
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Figure 2. Steady state flow for A) geology 1 and B) geology 2. The black square delimits the possible locations for the search of the

contaminant source. The two reference source locations are identified by black crosses.

The source of the contaminant is supposed to be unique, parameterized by the coordinates of its initial center of mass, and

located within a search zone delimited by a 150 m × 150 m square-domain whose coordinates belong to [20,170]× [−75,75].
To test the influence of the source location versus the geology, first on the misfit objective function and second on the ability

of the proposed approach to deal with more or less complex objective functions, two reference locations (A and B) were5

chosen. Source A is located at (xAs = 89,yAs =−36). Source B is located at (xBs = 100,yBs = 10). Since surface spills usually

present some diffusion characteristics in their shape and can cover different geological features, the initial contaminant mass

distribution at time 0 is chosen as a multi-Gaussian distribution centered on the source location with a standard deviation (σx =

8



2.5 m, σy = 1.0 m) for a total mass m= 100 kg. The reference concentration curves cobs(i, t) are obtained for i= 1, · · · ,25
groundwater monitoring wells (Figure 3) and for times t= 1, · · · ,T days. Three concentration breakthrough curves recorded

at the well number 2, 16, and 22 are given as examples at the bottom of the figure
:::::
Figure

::
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Figure 3. Misfit objective function settings; A) Location of the search zone (grey area), of the two reference contaminant sources and of the

25 groundwater monitoring wells (denoted by a circle or a triangle) within the hydrogeological model boundaries; the blue dot denotes the

trial location of the contaminant; B), C) and D) misfit components at wells 2, 16, and 22 respectively, resulting from the comparison of the

concentration breakthrough curves simulated at the trial location with the recorded ones for reference source A.

Real applications are always characterized by measurement errors. In our practical application of concentration measure-

ments, as for chemical analysis, the errors are mainly due to data acquisition, sampling in the field, dilution procedure, etc.5

These errors can be assumed either with homogeneous variance or with a standard deviation proportional to the noiseless mea-

surements, e.g. with a proportionality factor supposed to be below 10% (Ramsey and Argyraki, 1997). We denote by creal(i, t)

the actual concentration at well i and time t (1≤ i≤ 25 and 1≤ t≤ T ), i.e. the one that corresponds with the observed con-

centration cobs(i, t) in the noiseless case. Now, for cobs, let us assume in the present noisy case that measurements are corrupted

with a proportional Gaussian noise, so that observed concentrations become random with

cobs(i, t) = creal(i, t)× (1+κ ε(i, t)), (1)

9



where ε(i, t) are independent and identically distributed from N (0,1) and κ is a constant such that the level of errors does not

exceed a certain proportion.5

The unknown location of the contaminant source is denoted
::
as x= (xs,ys). We define csim(x, i, t) as the simulated concen-

tration level obtained at (i, t) when the contaminant source is located at x. The aim is to find x that minimizes the following

misfit objective function:

f(x) =

(
25∑
i=1

T∑
t=1

|cobs(i, t)− csim(x, i, t)|p
) 1

p

, (2)

which corresponds to an
::
the `p norm

::::::
distance

:::::::
between

:::
the

:::::::
matrices

:::::::::::::::::::::::::
(cobs(i, t))i∈{1,...,25},t∈{1,...,T}::::

and
::::::::::::::::::::::::::::
(csim(x, i, t))i∈{1,...,25},t∈{1,...,T},10

:::::
where

:::::
p≥ 1

::
is

::
a
::::::::
parameter

::::
that

::::
can

::
be

:::::::::
arbitrarily

::::::
chosen

:::
by

:::
the

::::::::
modeller

:::
(in

:::
our

:::::::::::
experiments

::::
both

:::::
p= 1

::::
and

:::::
p= 2

:::::
were

:::::::::
considered,

::
as
::::::::::

mentioned
::::
later). At the location of the reference source, the function reaches its minimum: 0.

:
. In this syn-

thetic study, we neglect conceptual or numerical errors in csim that may result from an incomplete knowledge of the hydraulic

conductivity field or boundary conditions, which would be important to consider in a real field application.

The search zone is restricted to a discrete domain Z, using a regular grid of 3 m resolution for three reasons. First, in15

practical applications, the location of the source is often restricted to an area thanks to historical information about industrial

activities or accidents. Here, we apply the same principle but assume a simple geometry. Second, this procedure and geometry

allows us to provide an exhaustive computation of the objective function for the research community. Third, it is an interesting

problem because most available optimization programs work either on continuous domains or are dedicated to specific classes

of optimization problems (Integer programming, mixed linear integer programming), and few seem to be available for non-20

linear optimization over finite sets beyond metaheuristics used in combinatorial optimization (Rios and Sahinidis, 2013). In the

case of our contaminant
:::::
source

:
localization problem, by the nature of the problem, we have a continuous structure (objective

function) where the domain is restricted to grid points. As an exhaustive evaluation of the objective function over Z is compu-

tationally expensive (depending on the mesh resolution), the aim of the optimization is to minimize the objective function f in

the search zone within a limited number of iterations and for that purpose, we propose using an EI algorithm.25

3 Benchmark
::::
case

:
generator

An ensemble of time varying concentrations at 25 observation wells is provided at a full factorial design of candidate points in

the search zone Z, plus at contaminant source location B (source location A belongs to the factorial design), for 2 geological

geometries. Allowing any combination of observation wells among the 25, or any source location among the full factorial

design, leads to 22× 2602× (225− 1) possible test functions (i.e. more than 349× 109 test cases). Moreover, any customized30

source of error can be added in the generation of the objective function. As these functions are known through their respective

512 values at the discretized source space Z, they can be re-interpolated (e.g. using splines) for continuous optimization

purposes. Here we instead consider the discrete problem of selecting the optimal location among 512 candidates and for that

goal, we will apply a straightforward discretized version of an EI algorithm as presented in the next section. The data and some

10



R functions to generate benchmarks for any input parameters are provided on GitHub at https://github.com/gpirot/BGICLP. A

brief description of the repository is given in Appendix B of this paper.5

4 Optimization methodology

The optimization algorithm used hereafter to minimize f(x) over the domain relies on machine learning
:
a
::::::::
machine

:::::::
learning

:::::::
approach

:::::::
relying

::
on

::::::::
Gaussian

:::::::
Process

::::
(GP)

:::::::
models

:::::::::::::::::::::::::::
Rasmussen and Williams (2006) to improve iteratively the knowledge of

f(x) over the domain. It relies on the iterative estimation
::::::::
evaluation

:
of f(x) at locations whose potential to improve the

minimum among the evaluated objective function at previously explored locations is the greatest. The following steps give10

an overview of the proposed algorithm. In what follows, more details are given about the required assumptions, the way to

estimate f(x) and the definition of the Expected Improvement criterion.

Algorithm 1 Optimization algorithm overview;
:::
n0::

is
:::
the

:::::::
number

::
of

:::::
initial

::::::::
locations

::::
used

:::
to

:::::
define

:::
the

:::::
initial

::::::::::
knowledge;

:::
N

:
is
:::
the

:::::::
budget,

::
or

:::
the

:::::::
number

::
of

::::
time

:::
the

::::::::
objective

:::::::
function

::::
can

::
be

:::::::::
evaluated;

::
n

:::::
counts

:::
the

:::::::
number

::
of

:::::
times

::::
that

:::
the

::::::::
objective

:::::::
function

:::
has

::::
been

:::::::::
evaluated.

Knowledge initialization: evaluate f(x) at n0:::::
initial locations defined by an initial design

Set n= n0

while n≤N do

Based on the current knowledge, compute the Expected Improvement criterion EIn(x) over the domain

Evaluate f(x) where EIn(x) is maximum

Increment the knowledge and n

end while

Return the location where f(x) is minimum over the evaluated locations

The algorithm belongs to a class of Bayesian optimization algorithms (Mockus, 1989; Shahriari et al., 2016). The Bayesian

aspect refers to placing a random process prior Y on the unknown function f (possibly computationally expensive) and updat-

ing its probability distribution thanks to available evaluation results. The optimization part relies on using conditional distri-15

butions of Y to iteratively choose points with the identification of f ’s global optimum/optimizer(s) in view. The crux is to fit

adequate probabilistic models and also to design adapted acquisition functions (a.k.a infill sampling criteria in surrogate-based

optimization) in order to drive algorithms to an efficient optimization.

A
:::
GPs

:::::::::
constitute

:
a
:
very popular class of probabilistic models used in such context rely on Gaussian Processes (GP), that

are fully specified by a mean function m(x) and a covariance function k (x,x′)
::::::::::::::::::::::::::
Rasmussen and Williams (2006). In this work,20

we use ordinary kriging with a Matérn (ν = 3/2) covariance function (See Roustant et al. (2012) for details) and the kernel

parameters are estimated by maximum likelihood using the DiceKriging R package. While it is also possible to use a transfor-

mation of the response in GP-based optimization (e.g. Jones et al., 1998a), on the considered data it did not lead to substantial

differences in optimization performance despite the non-negativity of the misfit.

11
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Denoting training inputs and outputs as Xn = {x1,x2, . . . ,xn} and fn = {f (x1) ,f (x2) , . . . ,f (xn)}::::::::::::::::::
Xn = (x1,x2, . . . ,xn)

:::
and

:::::::::::::::::::::::::::
fn = (f (x1) ,f (x2) , . . . ,f (xn)), assuming a GP prior with a constant unkown mean (endowed with an improper uniform5

prior) leads to a Gaussian conditional distribution with the following marginal predictive mean and variance:

mn
:
(x) = µ̂+k(x)

T
KK

:

−1(fn− µ̂1) (3)

sn
:

2(x) = k(x,x)−k(x)
T
KK

:

−1k(x)+
(1−k(x)

T
K−11)2

1TK−11

(1−k(x)
T
K−11)2

1TK−11
::::::::::::::::

, (4)

where K
:::::::::::::::::::::
K= (k(xi,xj))i,j=1,...,n is the n×n prior covariance matrix (assumed invertible here) of responses at training10

inputs, with Ki,j = k(xi,xj), k(x) = (k(x,x1), ...,k(x,xn))
T is an n× 1 covariance vector and µ̂= 1TK−1fn

1TK−11 :::::::::::
µ̂= 1TK−1fn

1TK−11

is the best linear unbiased estimate of µ.

The optimization algorithm typically starts with constructing a space-filling design Xn0 = {x1,x2, . . . ,xn0} :::::::::::::::::::
Xn0 = (x1,x2, . . . ,xn0)

(See, e.g., (Dupuy et al., 2015)) and evaluating f (Xn0) to initialize the knowledge of the algorithm (e.g., n0 = 9 blue dots in

the left panel of Figure 4A). Here the initial Xn0
is generated based on latin hypercube sampling (McKay et al., 1979). Then,15

the algorithm begins its iterations. In each iteration, the ensemble of n available evaluations fn = {f (x1) ,f (x2) , . . . ,f (xn)}

::::::::::::::::::::::::::
fn = (f (x1) ,f (x2) , . . . ,f (xn)):is used to train the GP model and make predictions at yet unexplored decision space locations.

The predictive distribution is then used to compute the so called Expected Improvement criterion (Mockus, 1989), which indi-

cates at every point in the decision space how much the objective function value may be decreased relative to fmin =min fn,

in expectation:20

EIn(x) = En [max(0,fmin−Y (x))] . (5)

The EI criterion offers a good balance between exploitation of regions with low predictive mean values and exploration of

regions with high predictive means, which provides an efficient optimization search scheme (e.g., red dot in the right panel of

Figure 4A). It turns out that EI can be calculated analytically (Mockus, 1989; Jones et al., 1998b). In our discrete settings with

moderate number of search points, the EI can be computed at all unevaluated locations of f (e.g. right panels of Figure 4). The25

decision space location with the largest EI value is considered as the next point xn+1 (e.g. red dot on right panels of Figure 4)

to evaluate f . The optimization is run using the DiceKriging and DiceOptim R packages developed by Roustant et al. (2012).

The number of iterations is fixed in advance (91 in what follows) so that it stops when the maximum number of iterations

allowed is reached. Covariance parameters are updated after each iteration by Maximum Likelihood Estimation.

5 Results30

The results for both the noiseless and noisy cases are presented in this section. First, the main results that use
::::
The

::::
main

::::::
results

::
are

:::::::::
presented

::
in

:::::::
Section

:::
5.1.

:::::
They

::::
rely

::
on

:::::
using

:
information from all wells,

:::
and

:::
on noiseless concentration observations for

the 4 configurations engendered by 2 geological scenarios and 2 possible sources of contaminantare presented in Section

12
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Figure 4. Illustration of the first four EI algorithm iterations for scenario 1; the sub-figures in the left column illustrate the prediction mean

of f over the two-dimensional decision space at each iteration; the blue dots indicate the decision space locations where f was previously

evaluated; the sub-figures in the center column illustrate the prediction variance of f over the two-dimensional decision space at each iteration;

the sub-figures in the right column illustrate the expected improvement map over the two-dimensional decision space at each iteration; the

red dot denotes the decision space location with the maximum EI value.
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5.1. For completeness, the algorithm sensitivity analysis with the noise added to the objective function and with various well

configurations are presented in Section 5.2.

Note that with an initial space-filling design of n0 = 9 elements, and a number of iterations of 91, we define here a total5

budget of 100
:::::::
N = 100 evaluations of the objective function.

5.1 Main results for noiseless cases

Using information from the 25 observation wells, the optimization algorithm is applied over 4 configurations that depend on

the retained geology and on the contaminant source location as described in Table 2, with the `2 norm and κ= 0 taken for the

computation
:::::
where

:::
the

:::::
noise

::::
level

::
κ

:::
(of

:::
Eq.

::
1)

::
is

::
set

::
to
::
0
:::
and

:::
the

:::::::::
parameter

:
p
:
of the objective function f(x)

:
is
:::
set

::
to

:
2. Starting

case type of geology source coordinate

1 geology 1 (89,−36)
2 geology 1 (100,10)

3 geology 2 (89,−36)
4 geology 2 (100,10)

Table 2. Description of the 4 configurations.

10

from a specific initial design, the exploration
::::::::::
explorations of the objective function

:::::::
functions

:
by the EI algorithm (aiming at

the contaminant source localization), are displayed in Figure 5 for each scenario. These objective functions display multiple

local minima, narrow valleys and sometimes very flat bottoms. These characteristics make the search for the global minimum

challenging especially for gradient based techniques. The locations explored by the EI algorithm are plotted over the 3 m× 3 m

discretization of the objective function f . The white and blue dots represent respectively the initial and then explored locations15

where the objective function is evaluated by the algorithm. In most cases, the minimum of the discretized objective function

is reached in less than 50 evaluations. The geology seems to be the dominating factor for the global patterns of the objective

function. Note that for scenarios 2 &
:::
and 4, the contaminant source is located at (100,10), which is not within the discretized

grid of the objective function; the closest point on the discretized grid is (101,9). For scenarios 4, the fact that the contaminant

source is not located on a grid node implies that the contaminant
::::::
scenario

::
2,
:::
the

:::::::::
minimum

::
of

:::
the

:::::::
objective

::::::::
function

:
is
::::
less

::::
than20

:
3
::
m

:::::
apart

::::
from

:::
the

::::::::
reference

:::::
source

:::::::
located

::
at

::::::::
(100,10).

::::::::
However,

:::
for

:::::::
scenario

::
4,

:::
the reference source located at (100,10) and

the minimum of the objective function located at (80,18) are 25 m apart.

The performance of the optimization algorithm is assessed on 100 replications. Each replication
:::
runs

:::
of

:::
the

::::::::::
algorithms.

::::
Each

:::
run

:
is characterized by a specific and uniformly drawn 9-point initial design. Each run is allowed a total budget of 100

evaluations of the objective function. The performance depends on the number of iterations required to locate the minimum of25

the objective function min
x
f(x). The performance can be assessed directly by looking at the optimality gap, i.e., the distance

between the location of the best estimated minimum fmin of the objective function and the location of its true minimum

min
x
f(x) as a function of the number of evaluations of f (Figure 6A to D

::::
A-D). Another possibility is to look at the normalized

best found minimum misfit between the true minimum min
x
f(x) and the best estimated minimum of the objective function fmin

as a function of number of evaluations of f (Figure 6E to H
::::
E-H). Both indicators behave similarly. Finally, the performance of
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Figure 5. Solution exploration results for the 4 scenarios over the cost functions; A & B for geology 1; C & D for geology 2; A & C for

initial contaminant location at (89,−36); B & D for contaminant initial location at (100,10).
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Figure 6. Performances of the EI optimization algorithm as a function of number of evaluations of the objective function for 100 different

initial design; A), B), C) & D) distance of the best solution to the location of the objective function minimum; E), F), G) & H) normalized

misfit; A) & E) scenario 1; B) & F) scenario 2 ; C) & G) scenario 3 ; D) & H) scenario 4.

the localization algorithms can be assessed by analyzing the distribution of the distance of the explored location that is closest

to the true contaminant source over the 100 replications
:::
runs

:
for a given number of iterations (Figure 7). Independently from

the considered scenario, the bin counts for lowest values significantly increase when the number of iterations increase, and the

bin counts for distances over 20 m rapidly come down to 0.
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Figure 7. Distance to the contaminant source distribution for 100 replications
:::
runs for the best solution given by the EI algorithm ; row A)

to D) for scenarios 1 to 4.

5.2 Sensitivity of the algorithm performances to errors and to well configuration5

In what follows, we show the results of a joint sensitivity analysis of the algorithm performance to proportional measurement

errors and to the number of well retained in the computation of the objective function. Four levels of proportional measurement

errors are tested: 0%, 10%, 20% and 40%. Seven well configurations with 1, 3, 5, 10, 15, 20 or 25 wells are tested. The

identification of the wells for each configuration is given in Table 3. The cross-joint sensitivity analysis is then composed of 28

scenarios. The resulting objective functions are illustrated in Figure D1. One can note that, the precision becomes finer around10

the true minimum of the objective function, when increasing the number of wells. However, the improvement is limited once

a line of 5 wells, orthogonal to the main flow direction, is used. The concentration measurement errors, even if proportional

to 40%, have a negligible impact on the objective function. For each scenario, the algorithm is replicated
::
run

:
100 times. Each
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number of wells well id

1 13

3 11,13,15

5 11,12,13,14,15

10 11,12,13,14,15,1,2,3,4,5

15 11,12,13,14,15,1,2,3,4,5,21,22,23,24,25

20 11,12,13,14,15,1,2,3,4,5,21,22,23,24,25,6,7,8,9,10

25 1 to 25

Table 3. Description of the 7 well configurations.

replication
:::
run is characterized by a specific and uniformly drawn 9-point initial design. Each run is allowed a total budget of

100 evaluations of the objective function. The optimality gaps, showing the performance of the algorithm for the 28 scenarios,15

are displayed in Figure D2. The optimality gap is improved with an increasing number of wells (until a full column of wells is

used) and not affected by concentration measurement errors.

6 Discussion

Through successive kriging of the misfit between simulated and observed concentrations, guided by the expected improvement

criterion, the proposed optimization algorithm localizes efficiently the source of a contaminant in a 2D geological environment20

representing realistic patterns and property contrasts. The algorithm requires approximatively 50 evaluations of the objective

function in comparison to more than 2600 for an exhaustive evaluation of the discretized search zone (∼ 1.9%). The total

number of candidate points would increase exponentially in the number of dimensions of the parameter space, eliminating

exhaustive search as an option, from even moderate dimensions, when assuming a high resolution.

Comparison of the different scenarios reveals that the geology controls the main features of the objective functions, which25

reinforce the importance of realistic geological structures in contaminant source localization problems. Of course, the shape and

location of lower values
::::
value

:::::
zones of the objective functions are controlled by the true

:::::::
reference

:
location of the contaminant

source. The results presented here are based on an objective function f computed with p= 2, which corresponds to an `2

norm
:::::::
distance

:::::::
between

::::::::
reference

:::
and

::::::::
candidate

::::::::::::
concentration

:::::
values

::::
(See

:::
Eq.

:::
2). As the choice of the norm strongly influences

:
p
::::
may

:::::::::::
substantially

::::::::
influence

:
the flat or deep aspect of valleys (low value zones) of the objective function, we additionally30

tested the EI algorithm on the 4 scenarios for `1 norm objective functions
:::::::
objective

::::::::
functions

::::
with

::::::
p= 1. We found that

squared
::::::
building

::
f
::::
onto

:::
the

:̀

2 norm lead
:::::::
distance

::::
leads

:
to flatter wide valleys of low values for the objective functions, which

might not favor the efficiency of the EI optimizer. However, the results and performances of the EI algorithm are very similar

between the two norms tested.
::::
This

:
is
::::
why

:::
we

:::::::
decided

:::
not

::
to

:::::
show

:::
the

::::::
results

::
of

:::
the

::::::::
algorithm

::::::::
objective

::::::::
functions

::::
built

:::::
upon

::
the

:::
`1

:::::::
distance.

:

When proportional measurement errors do not exceed 10, 20, 30 or 40%, the objective function is quasi identical and the

algorithm performance is not affected. It is not surprising as the objective function is a mean of the misfit over several moni-

toring locations and time, which contributes to filter out the error, except for a positive bias. However, for other applications,5
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the resulting noise in the objective function might require a more specific treatment, e.g. appealing to strategies adapted to deal

with noisy function evaluations (See for instance ??
:::::::::::::::::::::::::::::::::::::::::::::
Picheny et al. (2013); Picheny and Ginsbourger (2014a) for an overview

and tutorials based on R code). Here we consider measurement errors that are proportional to the actual concentrations. How-

ever, it might take a different form. In Appendix C, we propose a more general definition of possible Gaussian measurement

errors and derive the resulting objective function covariance matrix.10

An interesting result is that the number and configuration of wells has a strong impact on the objective function until a

“full” line of wells, orthogonal to the main flow direction, is used. Increasing the number of wells on an axis orthogonal to

the main flow direction improves greatly the characterization of the objective function, notably around the true contaminant

source. It confirms what is often done in practice to catch contaminant plumes. Adding another line of observation wells

seems less promising than densifying a column of wells. Of course, densification might be limited in practice by minimum15

distances between wells to avoid connecting artificially separated flowpaths for instance, but depending on the level of site

characterization, a similar algorithm could then be used to optimize well configurations.

By making the source code of the
:::::::
objective

:
function generator available for public use, we provide a benchmark of objective

functions
::::::
several

:::::::::
benchmark

::::::::
objective

:::::::::
functions.

:::::
These

::::
latter

:::
are

:
driven by real hydrogeological applications ,

:::
and

:::
can

:::
be

::::
used

for testing and comparing optimization techniques. This benchmark will fill a gap for the community of applied mathematicians20

and statisticians who develop optimization algorithms and who want to test their tools on realistic objective functions. In

addition, hydrogeologists will benefit from the code provided in the GitHub repository so that they can implement the proposed

optimization algorithm in their own applications. For the test case documented here and given the structure of the objective

functions that are defined on a discrete domain, it does not seem relevant to apply off-the-shelf combinatorial algorithms.

However it would be certainly of interest to compare the proposed approach to genetic/evolutionary algorithms compatible with25

such settings. A pragmatic approach here, to enable comparisons with a broader class of derivative-free and also derivative-

based algorithms, would be to re-interpolate the data (with a careful inspection of the optima of the interpolator, i.e. a check

that it is not perturbing the problem by too many potential artifacts) and conduct a benchmark involving Bayesian optimization

(with EI and potentially also other infill sampling criteria) against a selection of state-of-the-art algorithms.

Strong assumptions have been made to localize the contaminant source in the presented application. The hydrogeolological30

properties and the flow boundary conditions are assumed to be perfectly known and the hydrogeological model is spatially

limited to two dimensions.
::::
This

:::::::
allowed

::
to

::::::::
compare

:::
the

:::::::
outcome

::::
and

::::::::
efficiency

:::
of

:::
the

::::::::
algorithm

::::
with

:::::::
respect

::
to

:
a
::::

full
::::
grid

:::::
search

::
of

:::
the

::::::::
objective

::::::::
function.

:
Because of their expensive computing costs

:
to
::::::

assess
:::
the

::::::::
objective

:::::::
function

::
at

::::
one

:::::::
location

::
of

:::
the

:::::::::
parameter

:::::
space, three-dimensional applications will not allow for an exhaustive search of the solution; this is why

they may require, in the near future, optimization algorithms such as the one proposed in this paper. Further research should

also consider the uncertainty related to hydrogeological property characterization and flow and transport boundary conditions.

Some steps have already been made in that direction (Koch and Nowak, 2016), but were limited to multi-Gaussian conductivity

fields. In addition, a regular grid discretization might compromise the ability to accurately locate the contaminant source in the5

presence of a strong flow path. For example, in a real-world application, the contaminant source has a very low probability of

19
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being located on a grid node. This problem could be avoided by using adaptive meshing, which would require more computing

resources.

7 Conclusions

The use of 2D hydraulic conductivity fields that present sharp contrasts and specific connectivity patterns produces complex10

objective functions with multiple local minima. The proposed benchmark tool produced from these complex functions offers

challenging real-world test for developers of optimization algorithms. The EI algorithm used in this 2D study localized effi-

ciently the contaminant source that is located on a grid node. More generally, the proposed algorithm is an interesting approach

for combinatorial optimization algorithm. The objective functions and the performance of the algorithms are not affected by

proportional measurement errors lower than 10% (even 40%). The objective function is strongly determined by the geology15

and by the monitoring well configuration (number and location). In particular, the characterization of the objective function,

on which the performance of the algorithm rely, is greatly improved when a line of monitoring wells orthogonal to the main

flow direction is densified. To improve the limitation imposed by a source centered on the nodes of a fixed mesh, which is

independent of the optimization algorithm, future research could be conducted on optimization embedding adaptive meshing

in flow and transport simulations; another possibility would be to relax the constraint on mass distribution of the initial plume20

as a way to deal with its related uncertainty. The effective performance of the algorithm on this 2D case is encouraging to

continue toward 3D applications and toward integration of geological uncertainty in contaminant source localization problems.

Code and data availability. The data and some R functions to generate benchmarks for any input parameters are provided on GitHub at

https://github.com/gpirot/BGICLP. A brief description of the repository is given in the Appendix of this paper.

Appendix A: Training Image25

Appendix B: Supplementary material

The electronic supplementary material provided on the GitHub repository at https://github.com/gpirot/BGICLP with this paper

contains 3 folders and 2 R-scripts.

The ’data‘ folder contains 1) the simulated concentration csim(i, t) and the actual concentrations creal(i, t) over Z and the

contaminant source locations A and B at i= 1, · · · ,25 observation wells for the 2 geologies , 2) the x coordinates of the search

zone Z and of the contaminant source locations A and B.

The ’figures‘ folder contains illustrations of f(x) over Z for each of the 4 configurations when considering the 25 wells with

the `2 norm.

The ’src‘ folder contains 4 R scripts. The ’image.scale.R‘ script, created by Pretty R at inside-R.org is used for graphic5

illustration purposes. The ’generate_lhs_on_grid.R‘ script allows generating initial point designs by latin hypercube sampling.

20
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Figure A1. 600m ×300m ×5m training image with vertical scale exaggerated by 10; A) 3D representation; B) vertical section transversal

to the main flow direction; C) vertical section longitudinal to the main flow direction. This three-dimensional model was generated by a

pseudo-genetic algorithm proposed by Pirot et al. (2015). It is obtained by imitation of successive erosion and deposition events. Successive

conditional simulations of topographies (Pirot et al., 2014) stacked together produce successive layers that are filled by heterogeneous

geological facies according to a rule mimicking flow and sedimentation processes.

The ’functionAddNoise.R‘ script defines the measurement error to apply. The ’functionGenerator.R‘ script takes as arguments

a selection of observation wells W , a type of geology, the source coordinates and the type of norm used. It produces the

evaluation of the objective function f(x), as defined in Eq. 2.

The ’plotGeneratedFunction.R‘ script illustrates the use of the function generator and saves the plot in the ’figures‘ folder.10

The ’runEGO.R‘ script gives an example of how to use the proposed optimization algorithm.

Appendix C: General form of error integration in the objective function

More generally, for cobs, one might assume that measurements are corrupted with a Gaussian noise with variance σ(i, t) that

may depend on both the well i and the time t, so that observed concentrations become random with

cobs(i, t) = creal(i, t)+σ(i, t)ε(i, t), (C1)5

where ε(i, t)∼N (0,1). Here for the sake of brevity we assume that the ε(i, t) are independent for different (i, t) pairs, but

the following can be extended without major difficulty to the case of correlated normals with prescribed correlation matrix.
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Note that from the additive formulation above, a multiplicative noise setting can be obtained by taking σ(i, t) proportional to

creal(i, t). Imposing for instance σ(i, t) = creal(i, t), one gets indeed cobs(i, t) = creal(i, t)(1+ ε(i, t)). Let us now focus on

the effect of noise on the objective function, and consider for simplicity the squared misfit in the case p= 2, which becomes10

a random function denoted henceforth by f2ε while f2 stands for the deterministic squared misfit from the noiseless case. We

then have

f2ε (x) =

25∑
i=1

T∑
t=1

(cobs(i, t)− csim(x, i, t))
2

=

25∑
i=1

T∑
t=1

(creal(i, t)+σ(i, t)ε(i, t)− csim(x, i, t))
2

= f2(x)+

25∑
i=1

T∑
t=1

σ(i, t)2ε(i, t)2 +2

25∑
i=1

T∑
t=1

σ(i, t)(creal(i, t)− csim(x, i, t))ε(i, t). (C2)

A first important note following the expansion above is that the second term, i.e.
∑25
i=1

∑T
t=1σ(i, t)

2ε(i, t)2, does not depend

on x so that ignoring it would not affect the behavior of optimization algorithms unless they are sensitive to a global shift (15

e.g. because of tuning parameters or stopping rules that would depend on the actual values and not solely on relative ones). In

our case such a shift is not detrimental, and can even mitigate the potential issue of predicting negative misfits when using GP

models without response transformation. For information, up to rescaling, the statistical distribution of this shift belongs to the

generalized chi-square family (and to the usual chi-square family in the case of homogeneous σ). On the other hand, the last

term of Eq. C2 does depend both on x and on the noise ε. Denoting ηx = 2
∑25
i=1

∑T
t=1σ(i, t)(creal(i, t)− csim(x, i, t))ε(i, t),

it is then easy to show that η defines a centered Gaussian random field indexed by x in the search domain Z, and that the

covariance kernel of η boils down to the following:

Cov(ηx,ηx′) = 4

25∑
i=1

T∑
t=1

σ(i, t)2 (creal(i, t)− csim(x, i, t))(creal(i, t)− csim(x′, i, t)) . (C3)

In other words, in cases like here when creal is actually known and experiments are ran for benchmarking purpose, it is possible5

to propagate the effect of noise corruption on the objective function without needing to appeal to the whole set of csim values

at all times and wells, but rather to a pre-calculable covariance matrix from which the error affecting f over the grid search

can be simulated. Denoting by Ax the 25×T matrix of generic entry (2σ(i, t)(creal(i, t)− csim(x, i, t))) and by 1j a vector

of ones in dimension j ≥ 1, the covariance kernel of η can be written in compact form as Cov(ηx,ηx′) = 1
′
25(Ax ◦Ax′)1T ,

where ◦ stands for the Hadamard (element-wise) product between matrices of identical dimensions.5

Appendix D: Sensitivity to concentration measurement errors and to the number of monitoring wells
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Figure D1. Objective function sensitivity analysis; column 1: no noise, column 2: 10% noise, column 3: 20% noise, column 4: 40% noise;

row 1: 1 well, row 2: 3 wells, row 3: 5 wells, row 4: 15 wells, row 5: 25 wells.
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Figure D2. Optimality gap sensitivity analysis; column 1: no noise, column 2: 10% noise, column 3: 20% noise, column 4: 40% noise; row 1: 1 well, row 2: 3

wells, row 3: 5 wells, row 4: 15 wells, row 5: 25 wells.

24



Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors would like to thank Fabien Cornaton for his support in the parameterization and use of Groundwater, Emily

Voytek and Andrew Greenwood for their support in improving the reading of the manuscript, the anonymous reviewers and the editor Bill

Hu for their comments and support. The second author would like to acknowledge support from the Oeschger Center for Climate Change10

Research (University of Bern), the Swiss Government Excellence Scholarship, as well as the Thailand Research Fund (MRG6080208).

25



References

Ababou, R., Bagtzoglou, A. C., and Mallet, A.: Anti-diffusion and source identification with the ’RAW’ scheme: a particle-based censored

random walk, Environmental Fluid Mechanics, 10, 41–76, 2010.

Ala, N. K. and Domenico, P. A.: Inverse analytical techniques applied to coincident contaminant distributions at Otis Air Force Base,15

Massachusetts, Groundwater, 30, 212–218, 1992.

Alapati, S. and Kabala, Z.: Recovering the release history of a groundwater contaminant using a non-linear least-squares method, Hydrolog-

ical Processes, 14, 1003–1016, 2000.

Amirabdollahian, M. and Datta, B.: Identification of contaminant source characteristics and monitoring network design in groundwater

aquifers: an overview, Journal of Environmental Protection, 4, 23–41, 2013.20

Amirabdollahian, M. and Datta, B.: Identification of pollutant source characteristics under uncertainty in contaminated water resources

systems using adaptive simulated anealing and fuzzy logic, International Journal of GEOMATE, 6, 757–763, 2014.

Aral, M. M., Guan, J., and Maslia, M. L.: Identification of contaminant source location and release history in aquifers, Journal of Hydrologic

Engineering, 6, 225–234, 2001.

Atmadja, J. and Bagtzoglou, A. C.: State of the art report on mathematical methods for groundwater pollution source identification, Environ-25

mental Forensics, 2, 205–214, 2001.

Ayvaz, M. T.: A hybrid simulation–optimization approach for solving the areal groundwater pollution source identification problems, Journal

of Hydrology, 538, 161–176, 2016.

Bayer, P., Huggenberger, P., Renard, P., and Comunian, A.: Three-dimensional high resolution fluvio-glacial aquifer analog–Part 1: Field

study, Journal of Hydrology, 405, 1–9, 2011.30

Bect, J., Bachoc, F., and Ginsbourger, D.: A supermartingale approach to Gaussian process based sequential design of experiments, Bernoulli,

Accepted.

Cornaton, F. J.: Ground water: a 3-D ground water and surface water flow, mass transport and heat transfer finite element simulator, reference

manual, University of Neuchâtel, Neuchâtel, Switzerland, 2007.

Datta, B., Chakrabarty, D., and Dhar, A.: Identification of unknown groundwater pollution sources using classical optimization with linked35

simulation, Journal of Hydro-Environment Research, 5, 25–36, 2011.

De Marsily, G.: Quantitative hydrogeology, 1986.

Dupuy, D., Helbert, C., and Franco, J.: DiceDesign and DiceEval: Two R Packages for Design and Analysis of Computer Experiments,

Journal of Statistical Software, 65(11), 2015.

European Union: Good-quality water in Europe (EU Water Directive), https://www.epa.gov/laws-regulations/summary-clean-water-act,

2000.

Ginsbourger, D.: Sequential Design of Computer Experiments, Wiley StatsRef: Statistics Reference Online, To appear.5

Hansen, S. K. and Vesselinov, V. V.: Contaminant point source localization error estimates as functions of data quantity and model quality,

Journal of Contaminant Hydrology, 193, 74–85, 2016.

Jones, D., Schonlau, M., and Welch, W.: Efficient Global optimization of Expensive Black-Box Functions, Journal of Global optimization,

13, 455–492, 1998a.

Jones, D. R., Schonlau, M., and Welch, W. J.: Efficient global optimization of expensive black-box functions, Journal of Global optimization,10

13, 455–492, 1998b.

26

https://www.epa.gov/laws-regulations/summary-clean-water-act


Jussel, P., Stauffer, F., and Dracos, T.: Transport modeling in heterogeneous aquifers: 1. Statistical description and numerical generation of

gravel deposits, Water Resources Research, 30, 1803–1817, 1994.

Koch, J. and Nowak, W.: Identification of contaminant source architectures-A statistical inversion that emulates multiphase physics in a

computationally practicable manner, Water Resources Research, 52, 1009–1025, 2016.15

Mahar, P. S. and Datta, B.: Identification of pollution sources in transient groundwater systems, Water Resources Management, 14, 209–227,

2000.

Mansuy, L., Philp, R. P., and Allen, J.: Source identification of oil spills based on the isotopic composition of individual components in

weathered oil samples, Environmental Science and Technology, 31, 3417–3425, 1997.

Marmin, S., Chevalier, C., and Ginsbourger, D.: Differentiating the multipoint Expected Improvement for optimal batch design, in: Machine20

Learning, optimization, and Big Data, edited by Pardalos, P., Pavone, M., Farinella, G., and Cutello, V., no. 9432 in Lecture Notes in

Computer Science, pp. 37–48, Springer International Publishing, 2015.

McKay, M. D., Beckman, R. J., and Conover, W. J.: A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis

of Output from a Computer Code, Technometrics, 21, 239–245, 1979.

Milnes, E. and Perrochet, P.: Simultaneous identification of a single pollution point-source location and contamination time under known25

flow field conditions, Advances in Water Resources, 30, 2439–2446, 2007.

Mirghani, B. Y., Zechman, E. M., Ranjithan, R. S., and Mahinthakumar, G.: Enhanced simulation-optimization approach using surrogate

modeling for solving inverse problems, Environmental Forensics, 13, 348–363, 2012.

Mockus, J.: Bayesian Approach to Gobal optimization, vol. 37, Kluwer Academic Pub, Springer, The Netherlands, 1989.

OECD: Guiding Principles Concerning International Economic Aspects of Environmental Policies, Recommendation, http://acts.oecd.org/30

Instruments/ShowInstrumentView.aspx?InstrumentID=4&InstrumentPID=255&Lang=en&Book=, c(72)128, reprinted in 11 I.L.M. 1172,

1972.

Picheny, V. and Ginsbourger, D.: Noisy kriging-based optimization methods: a unified implementation within the DiceOptim package,

Computational Statistics and Data Analysis, 71, 1035–1053, 2014a.

Picheny, V., Wagner, T., and Ginsbourger, D.: A benchmark of kriging-based infill criteria for noisy optimization, Structural and Multidisci-35

plinary optimization, 48, 607–626, 2013.

Pirot, G., Straubhaar, J., and Renard, P.: Simulation of braided river elevation model time series with multiple-point statistics, Geomorphol-

ogy, 214, 148–156, 2014.

Pirot, G., Straubhaar, J., and Renard, P.: A pseudo genetic model of coarse braided-river deposits, Water Resources Research, 51, 9595–9611,

2015.

Rachdawong, P. and Christensen, E. R.: Determination of PCB sources by a principal component method with nonnegative constraints,

Environmental Science and Technology, 31, 2686–2691, 1997.5

Ramsey, M. H. and Argyraki, A.: Estimation of measurement uncertainty from field sampling: implications for the classification of contam-

inated land, Science of The Total Environment, 198, 243–257, 1997.

Rasmussen, C. E. and Williams, C.K.I: Gaussian Processes for Machine Learning, MIT Press, 2006.

Rios, L. M. and Sahinidis, N. V.: Derivative-free optimization: a review of algorithms and comparison of software implementations, Journal

of Global optimization, 56, 1247–1293, 2013.10

Roustant, O., Ginsbourger, D., and Deville, Y.: Dicekriging, Diceoptim: Two R packages for the analysis of computer experiments by

kriging-based metamodelling and optimization, Journal of Statistical Software, 51, 54p, 2012.

27

http://acts.oecd.org/Instruments/ShowInstrumentView.aspx?InstrumentID=4&InstrumentPID=255&Lang=en&Book=
http://acts.oecd.org/Instruments/ShowInstrumentView.aspx?InstrumentID=4&InstrumentPID=255&Lang=en&Book=
http://acts.oecd.org/Instruments/ShowInstrumentView.aspx?InstrumentID=4&InstrumentPID=255&Lang=en&Book=


Shahriari, B., Swersky, K., Wang, Z., Adams, R., and de Freitas, N.: Taking the human out of the loop: A review of bayesian optimization,

Proceedings of the IEEE, 104(1), 148–175, 2016.

Skaggs, T. H. and Kabala, Z.: Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility, Water Resources15

Research, 31, 2669–2673, 1995.

Snoek, J., Swersky, K., Zemel, R., and Adams, R.: Input Warping for Bayesian optimization of Non-stationary Functions, in: International

Conference on Machine Learning, 2014.

Straubhaar, J., Renard, P., and Mariethoz, G.: Conditioning multiple-point statistics simulations to block data, Spatial Statistics, 16, 53–71,

2016.20

Swiss Confederation: Federal Act on the Protection of the Environment, https://www.admin.ch/opc/en/classified-compilation/19830267/

index.html, 1983.

USA: Clean Water Act, https://www.epa.gov/laws-regulations/summary-clean-water-act, 1972.

Vazquez, E. and Bect, J.: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions, Journal

of Statistical Planning and Inference, 140:11, 3088–3095, 2010.25

Venkatramanan, S., Chung, S. Y., Kim, T. H., Kim, B.-W., and Selvam, S.: Geostatistical techniques to evaluate groundwater contamination

and its sources in Miryang City, Korea, Environmental Earth Sciences, 75, 1–14, 2016.

Wang, Z., Gehring, C., Kohli, P., and Jegelka, S.: Batched Large-scale Bayesian optimization in High-dimensional Spaces, in: International

Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

Wu, J., Poloczek, M., Wilson, A., and Frazier, P.: Bayesian optimization with Gradients, in: Neural Information Processing Systems (NIPS),30

2017.

Yeh, H.-D., Chang, T.-H., and Lin, Y.-C.: Groundwater contaminant source identification by a hybrid heuristic approach, Water Resources

Research, 43, w09420, 2007.

Zhang, J., Li, W., Zeng, L., and Wu, L.: An adaptive Gaussian process-based method for efficient Bayesian experimental design in ground-

water contaminant source identification problems, Water Resources Research, 52, 5971–5984, 2016.35

28

https://www.admin.ch/opc/en/classified-compilation/19830267/index.html
https://www.admin.ch/opc/en/classified-compilation/19830267/index.html
https://www.admin.ch/opc/en/classified-compilation/19830267/index.html
https://www.epa.gov/laws-regulations/summary-clean-water-act

	hess-2017-377-author_response-version3.pdf (p.1-4)
	contaminant-localization-paper-rev2dto3i.pdf (p.5-32)

