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Abstract. In river basins with water storage facilities, the
availability of regularly updated information on reservoir
level and capacity is of paramount importance for the effec-
tive management of those systems. Yet, for the vast majority
of reservoirs around the world, storage levels are either not5

measured or not readily available due to financial, political or
legal considerations. This paper proposes a novel approach
using Landsat imagery and Digital Elevation Models (DEM)
to retrieve information on storage variations in any inaccessi-
ble region. Unlike existing approaches, the method does not10

require any in situ measurement and is appropriate to mon-
itor small, and often undocumented, irrigation reservoirs. It
consists of three recovery steps: (i) a 2D dynamic classifi-
cation of Landsat spectral bands information to quantify the
surface area of water, (ii) a statistical correction of DEM data15

to characterise the topography of each reservoir and (iii) a 3D
reconstruction algorithm to correct for clouds and Landsat 7
Scan Line Corrector failure. The method is applied to quan-
tify reservoir storage in the Yarmouk basin in southern Syria,
where ground monitoring is impeded by the ongoing civil20

war. It is validated against available in situ measurements
in neighbouring Jordanian reservoirs. Coefficients of deter-
mination range from 0.69 to 0.84, and the normalised root-
mean-square error from 10 % to 16 % for storage estimations
on six Jordanian reservoirs with maximal water surface areas25

ranging from 0.59 km2 to 3.79 km2.

1 Introduction

Reservoirs are essential for the development and manage-
ment of a river basin’s water resources, no matter their size

(Liebe et al., 2005; Leemhuis et al., 2009). By increasing the 30

availability of water during low-flow periods (International
Commission On Large Dams, 2016), dams often play a key
role in water supply, irrigated agriculture, hydropower gen-
eration, navigation, cattle breeding, fisheries, etc.

Despite these valuable applications, there is a scarcity of 35

monitoring data as many countries cannot financially afford
to build gauging stations (Solander et al., 2016). And even
when monitoring systems do exist, there may not be insti-
tutions to collect the data, or legal means to disseminate it
as it is often considered sensitive data (Alsdorf et al., 2007; 40

Dombrowsky, 2007; Duan and Bastiaanssen, 2013). Yet this
information is essential to conduct hydrological studies in
committed basins, from defining reservoir operation rules in
simulation models (Yoon and Beighley, 2015), to assessing
the impact of multi-reservoir systems on downstream river 45

discharge (Vörösmarty et al., 1997; Hanasaki et al., 2006;
Döll et al., 2009).

In that context, remote sensing is a promising tool to over-
come the difficulty to access reliable information on a reser-
voir. This technique has also been applied to characterise a 50

range of continental water bodies such as large lakes (Birkett,
1995; Ponchaut and Cazenave, 1998; Mercier et al., 2002),
paddy rice fields (Islam et al., 2010) or tidal floods (Yan et al.,
2010). The general procedure to monitor storage consists in
associating water surface elevation and area after evaluating 55

them independently (e.g., Frappart et al., 2006).
Satellite radar and laser altimetry are the predominant ap-

proaches to estimate the elevation of open water bodies (e.g.,
Morris and Gill, 1994; Crétaux and Birkett, 2006; Calmant
et al., 2008; Gao et al., 2012; Wang et al., 2013), or their 60

bathymetry (Arsen et al., 2014). Orbit repeat periods of radar
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altimeters such as Topex/Poseidon (T/P), GFO, Jason-1 and
2 or Envisat, range from 10 to 35 days. They have a high ver-
tical accuracy with root-mean-square errors on the order of
centimetres to tens of centimetres depending on the altimeter
and the size of the water body (Calmant et al., 2008; Cré-5

taux et al., 2016). Yet, the above mentioned sensors are af-
fected by important drawbacks, including nadir viewing, nar-
row swath, coarse cross-track spacing (a few hundred kilo-
metres), long along-track path length (about 1 km), large ele-
vation differences around some water areas, that impede their10

application to more than a few hundred large lakes and reser-
voirs on the planet (i.e. area > 100 km2 and width > 500 m)
(Crétaux and Birkett, 2006; Alsdorf et al., 2007; Gao et al.,
2012). More recent satellites such as Cryostat-2 or Sentinel-
3 present significant improvements in terms of along-track15

resolution (∼300 m). However, their respective inter-track of
7 km and 52 km (Donlon et al., 2012; Crétaux et al., 2016)
still place many reservoirs out of the trajectory of their nadir-
viewing sensors onboard. The small inter-track of Cryosat is
also realised at the expense of a long revisit cycle (369 days)20

that impedes any monitoring of small reservoirs on a monthly
basis. Alternatively, the Geoscience Laser Altimeter Sys-
tem onboard the Ice, Cloud, and Elevation Satellite (ICE-
Sat/GLAS) measured land surface elevations between 2003
and 2009 with a much finer spatial resolution (footprints’ size25

between 50 and 105 m every 170 m along track), a vertical
accuracy close to 10 cm (Zhang et al., 2011; Duan and Bas-
tiaanssen, 2013), and a finer cross-track resolution (15 km
maximum at equator (Zwally et al., 2002)). There was how-
ever no continuous elevation retrieving: ICESat/GLAS gath-30

ered data only during designated campaigns, with a long
ground-track repeat cycle for almost all of it (183 days). Fur-
thermore, unlike radar altimeters that can be used under all
weather conditions (Birkett and Beckley, 2010), laser mea-
surements are affected by the presence of thin clouds (Duan35

and Bastiaanssen, 2013). Many existing studies consequently
used ICESat/GLAS data to get a trend on pre-determined
large lakes variations over several years (e.g., Zhang et al.,
2011; Duan and Bastiaanssen, 2013; Song et al., 2013), or to
calibrate area–elevation relationships for a limited number of40

water bodies large enough for the satellite to take sufficient
elevation measurements per track (Zhang et al., 2014).

Water surface areas are commonly determined from op-
tical satellite imagery such as MODerate Resolution Imag-
ing Spectroradiometer (MODIS) and Landsat products (Xiao45

et al., 2006; Gao et al., 2012), or Synthetic Aperture Radar
(SAR) sensors (e.g., RADARSAT, JERS-1, ERS or Sentinel-
1) (Annor et al., 2009; Duan and Bastiaanssen, 2013; Ami-
trano et al., 2014). The latter has however been less used due
to the difficulty to get consistent results, as the required con-50

dition of a significantly lower phase coherence of water areas
than of the surrounding land surface is not always met with
orbital repeat cycles of more than a few days, or with wind
or rain (Alsdorf et al., 2007; Eilander et al., 2014). There-
fore, existing approaches have used either MODIS or Land-55

sat depending on their emphasis on spatial or temporal res-
olution (Solander et al., 2016; Zhang et al., 2016). Images
acquired during the various Landsat missions have a much
finer spatial resolution (30 m) than MODIS’s (250 m for the
red band, 500 m for infrared), but they are taken on a repeat 60

cycle of 16 days compared to the daily MODIS products. The
higher revisit frequency of MODIS satellites allows MODIS-
based approaches to better address clouds and smoke arti-
facts on optical images. However MODIS missions cover
a much shorter period (July 2000 to present) than Landsat 65

missions (July 1982 to present). The potential of the recent
two Sentinel-2 satellites can also be mentioned for post-2015
studies. Launched in June 2015 (Sentinel-2A) and March
2017 (Sentinel-2B), they provide spectral bands at a resolu-
tion of 10 m for visible and NIR bands, and at 20 m for SWIR 70

bands. They also have a repeat cycle of 5 days by combining
the two (European Space Agency, 2013; Yang et al., 2017).

The common protocol to separate water areas from other
land use categories is to apply a threshold to indices such as
the Normalised Difference Vegetation Index (NDVI) (e.g., 75

Frappart et al., 2006; Gao et al., 2012), or the Modified Nor-
malised Difference Water Index (MNDWI) proposed by Xu
(2006) (e.g., Crétaux et al., 2015; Müller et al., 2016). But
determining an adequate value for a multi-temporal analy-
sis can be challenging because such a threshold is known 80

to be case-dependent (Liu et al., 2012; Coltin et al., 2016).
Furthermore, separating water from land or vegetation may
be difficult due to subpixel land-cover components (Ji et al.,
2009), or water quality that can vary throughout a water body
(Gao et al., 2012). To address these issues, decision tree de- 85

fined thresholds have successfully been applied with various
vegetation indices (e.g., Xiao et al., 2006; Islam et al., 2010;
Yan et al., 2010), but remain case-dependent. Coltin et al.
(2016) have then advocated the implementation of automatic
thresholds as they developed a supervised learning approach 90

to improve flood mapping. Other methods like unsupervised
classification (Wang et al., 2008), or direct elevation–area re-
lationship from Digital Elevation Model (DEM, Wang et al.,
2005) have also been tested but did not prove to be more
precise. Gao et al. (2012) recently developed a method to 95

combine both an index analysis and an unsupervised classi-
fication to improve the accuracy of the delineation of water
areas. The approach was refined by Zhang et al. (2014) who
enhanced the storage assessment with a novel surface area
retrieval algorithm. 100

While promising, these approaches generally fail to sys-
tematically combine remote sensing surface area and ele-
vation due to the different timing in orbital repeat cycles
of different satellites. Elevation–area relationships are then
deduced from remote sensing data that is available at the 105

same time (e.g., through linear or polynomial regressions,
Gao et al., 2012; Duan and Bastiaanssen, 2013; Song et al.,
2013), so that reservoir storage can be computed with either
remote sensing elevation or area only. Even then, existing
methods estimate storage in relative terms, either from the 110
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already known elevation, area and storage at capacity (Zhang
et al., 2014), or from the lowest water level detected (Duan
and Bastiaanssen, 2013).

Furthermore, these approaches have only been applied to
reservoirs larger than 100 km2, which are estimated to rep-5

resent only 0.54 % of reservoirs larger than 0.1 km2 in the
world (Lehner et al., 2011). Studies that analysed small reser-
voirs delineated water surface with Landsat optical sensors
(e.g., Liebe et al., 2005; Sawunyama et al., 2006; Rodrigues
et al., 2012) or radar images to address the cloud cover is-10

sue (Annor et al., 2009; Liebe et al., 2009), and could only
get an estimation of storage capacities by conducting bathy-
metrical surveys. Due to their reliance on in situ observa-
tions, these methods are inapplicable to remote, ungauged or
conflict-torn areas.15

This paper introduces a new method to monitor reser-
voir storage based on remote sensing data exclusively. The
method is applied to small reservoirs – capacities and water
surface areas starting from 1 hm3 (million cubic metre) and
0.5 km2 respectively – in the Yarmouk River Basin (YRB, see20

Fig. 1) in southern Syria during the ongoing civil war and the
decade before it started. Its prediction performance is tested
against available in situ observations of reservoir storage and
elevation in neighbouring Jordan.

The document is organised as follows: Sect. 2 presents25

the method and algorithms developed for the monitoring of
reservoir storage, Sect. 3 reviews results, error measurements
and sensitivity analysis, and Sect. 4 concludes the study.

2 Methodology

The procedure is based on two types of data: Landsat im-30

ages for water areas estimation, and DEM for topography. It
works in three stages that are presented in the flowchart on
Fig. 2. The idea behind the process is (i) to use Landsat bands
to enhance the detection of water pixels, then (ii) to exploit
this information to statistically correct the DEM vertical er-35

rors and characterise reservoir bathymetry, and (iii) to use the
updated topography to reconstruct missing parts of Landsat
images (e.g., pixels covered by clouds or not captured by the
Landsat sensor).

2.1 2D dynamic classification and water bodies area40

retrieval

Landsat images are chosen because they are freely avail-
able with a spatial resolution fine enough (30 m) to detect
variations in the area of small reservoirs. The spatial res-
olution of MODIS images is indeed too coarse to assign45

to any small reservoir a proper range of area and eleva-
tion (1 km2 is covered by 16 MODIS image 250 m pixels
only). Thus, about 300 Landsat 4, 5, 7 and 8 images for each
scene – index 173/37 above a part of the YRB, 174/38 above
reservoirs in Jordan, and 174/37 above parts of both in the50
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Figure 1. Reservoirs identified in Jordan and the Yarmouk River
Basin using the method developed in this paper. Because in situ
measurements are accessible for those managed by Jordan, they
are used to validate the method. Coordinates are expressed in the
Coordinate Reference System (CRS) WGS 84 / UTM zone 36N
(EPSG:32636), in which 1 unit equals 1 m.

Worldwide Reference System (WRS, see the scene frames in
Fig. 1) – are downloaded from the United States Geological
Survey (USGS) EarthExplorer website (https://earthexplorer.
usgs.gov/).

2.1.1 Fmask 55

We use the Fmask (Function of mask) algorithm (Zhu and
Woodcock, 2012; Zhu et al., 2015) to discriminate cloud
coverage from open water. The algorithm was originally de-
signed to separate potential cloud pixels from clear sky pixels
on Landsat images using empirical thresholds on NDVI and 60

the near-infrared band, with an overall accuracy of 96.41 %
(Zhu and Woodcock, 2012). Fmask distinguishes land and
water areas and produces a probability mask for clouds,
which we use to manually remove images that are almost en-
tirely covered by clouds or with obvious large errors in water 65

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Landsat satellite
images

(i). 2D dynamic
classification & water
bodies area retrieval

(ii). Statistical
correction of elevation

(iii). 3D reconstruction
through hidden areas

Digital Elevation
Models

Final water surface
area estimate

Reservoir elevation &
storage estimates

Figure 2. Flowchart of the whole procedure.

bodies detection. After quality control, about 245 images re-
main per location.

Most pixels classified as water by Fmask can reasonably
be considered as water due to the relatively selective thresh-
olds used in the algorithm. Hence, at this stage, the uncer-5

tainty remains with regard to pixels hidden by clouds or
cloud shadows, misclassified by Fmask as land or snow,
or not captured by the Landsat sensor (e.g., “N/A” stripes
caused by the Landsat 7 Scan Line Corrector (SLC) failure,
see Fig. 4 (a) and (b)). Our analysis reveals that, on average,10

24.1 % of reservoirs’ pixels are misclassified as land, 8.1 %
are covered with clouds or cloud shadows, and 8.6 % are in
“N/A” areas (see Sect. 3.1).

2.1.2 Occurrence mask

We use the frequency with which pixels are classified as wa-15

ter to distinguish actual reservoirs from small pools or mis-
classified land, and to delimit them. For each Landsat scene,
the∼245 satellite images are superimposed to form an image
where each pixel represents the number of times it has been
covered by water (see Fig. 3). This occurrence mask (Mocc)20

is useful to filter occasional Fmask’s classification errors, and
to create a water mask (Mwat): pixels with values greater than
5 in Mocc are classified as water and kept in Mwat, while those
with lower values are considered as misclassified land and
removed from water bodies (i.e. hidden by Mwat). In prac-25

tice, the threshold of 5 was empirically chosen after compar-
ing detected water bodies with Google Earth high resolution
(∼1 m) imagery. The same threshold is applied to reservoirs
located in the overlapping area of two Landsat images as it
does not change their contours. Its small value is justified by30

the fact that most images with obvious mistakes have already
been manually discarded at the previous step.

Aside from sporadic large wadis (intermittent rivers) that
are manually removed from the mask, final water bodies in

2
Avnei Eitan Golan

4
Abidin

El Wahda

9
Jisr al Raqqad

11
Al-Ghar

12
Saham al-Jawlan

15
Tasil

17
Adwan

18
Muzeirib lake

19
Tafas

7.6 7.65 7.7 7.75 7.8 7.85
longitude 105

3.622

3.624

3.626

3.628

3.63

3.632

3.634

3.636

3.638

3.64

3.642

la
tit

ud
e

106

0

50

100

150

200

250

In
un

da
tio

n 
fr

eq
ue

nc
y

Figure 3. Image of the number of times each pixel has been covered
by water (Mocc). Text in black indicates the identification number
(for Syrian reservoirs) and name of known reservoirs. Coordinates
are expressed in CRS WGS 84 / UTM zone 36N, in which 1 unit
equals 1 m.

Mwat are deemed to be reservoirs. They are the ones depicted 35

in blue and green dots on the map in Fig. 1.

2.1.3 Classification enhancement for each Landsat
image

The detection of water bodies is enhanced using NDVI and
MNDWI rasters computed from Landsat imagery. A low 40

NDVI can be attributed to both water and bare land, and a
low MNDWI value can denote either water or clouds. We
combine these indices and leverage their complementary na-
ture to detect open water.

To ensure more reliable and repeatable values for identi- 45

cal land use categories in different images, the two indices
are computed from surface reflectance, which is estimated
by applying the image-based atmospheric correction Dark
Object Subtraction 1 (DOS1, Chavez, 1996) to Top of At-
mosphere (TOA) reflectance. However the DOS1 adjustment 50

is not optimal because not based on actual atmospheric or
cloud cover measurements. Moreover, the slight band varia-
tions between the various Landsat missions may affect NDVI
and MNDWI, and may require different thresholds to detect
water. Consequently, two supplementary water detection ad- 55

justments are performed through the method presented in the
flowchart on Fig. 5 to define a MNDWI threshold adapted
to each date and climatic conditions (i.e. each time t over a
given scene). A NDVI mask (MNDVI(t)) is first created to cal-
ibrate the MNDWI threshold, which is then used to build a 60

MNDWI mask representing water areas (MMNDWI(t)):

1. The goal of MNDVI(t) is to find with NDVI all pixels
where there could potentially be water. Depending on
the results of the Fmask classification in Mwat, three sit-
uations can arise: 65
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Figure 4. 2D dynamic water classification over a part of a Landsat 7 image (174/37) obtained on March 30th, 2010. Coordinates are expressed
in CRS WGS 84 / UTM zone 36N, in which 1 unit equals 1 m. (a) SWIR-R-G image. Two reservoirs can be seen by eye – even if their
appearance is very similar to cloud shadow areas –, but the hedges are not easy to detect due to the cloud cover. (b) Results of the Fmask
classification. Water areas detection is not precise enough to directly use the results for the estimation of reservoirs surface area. (c) NDVI
image. Water pixels’ low NDVI here contrasts with the surrounding irrigated crops’ high NDVI, as the two reservoirs are located close to
cultivation areas. (d) MNDWI image. Red dots indicate water areas obtained after the 2D enhancement (Sect. 2.1). The 3D reconstruction is
operated later (Sect. 2.3) on the Unknown part.

(i) If water is already detected by Fmask in Mwat reser-
voirs, MNDVI(t) is formed from those ones (see green
dots in the Fig. 4 (c) example).

(ii) Where water is not detected by Fmask, we impose a
threshold on the NDVI. Pixels with a NDVI lesser than5

–0.1 in Mwat are used to form MNDVI(t). The lowest val-
ues are indeed generally typical of water. This condition
has been added to take into account images where thin
clouds cover reservoirs.

(iii) In ∼1 % of all images, no pixel meets the previ-10

ous conditions, even if water can be seen by eye on

the original spectral bands. We have indeed noticed that
for these few cases, Fmask associates water bodies to
clouds. MNDVI(t) is thus built on pixels classified as
cloud in Mwat. 15

2. The detection of water bodies is further enhanced by im-
posing a threshold on MNDWI images. The threshold is
defined automatically so as to optimally distinguish wa-
ter bodies from clouds. For the two first situations, the
threshold is set to the XMNDWI

th percentile (PXMNDWI ) of 20

MNDWI values in MNDVI(t). XMNDWI is set to the max-
imum, 100, in order to avoid over-constraining the clas-



6 Avisse et al.: Monitoring small reservoirs storage

 

Water detected by 
Fmask in Mwat?

NDVI ≤ -0.1 for at least 
one pixel in Mwat?

MNDVI = 
(Fmask = water) ∩ Mwat

MNDVI = 
(NDVI ≤ -0.1) ∩ Mwat

MNDVI = 
(Fmask = cloud) ∩ Mwat

Test

MNDVI

MMNDWI = 
{MNDWI ≤ P70[MNDWI(MNDVI)]} ∩ Mwat

No

YesYes

Landsat satellite imageData

MMNDWI = 
{MNDWI ≤ PXMNDWI[MNDWI(MNDVI)]} ∩ Mwat

No

(i) (ii)

MMNDWI

(iii)

Figure 5. 2D dynamic classification procedure.

sification. The sensitivity of the method to the choice of
this parameter is presented in Sect. 3.2 further below.
For the third case, the threshold is set to the 70th per-
centile (P70) of MNDWI values in MNDVI(t).

Finally, the water mask – or MNDWI mask –5

MMNDWI(t) is formed by including only areas with a
MNDWI lesser than the MNDWI threshold in Mwat.
This last step allows to incorporate most water pixels
left out by Fmask and undetectable with NDVI (see red
dots in Fig. 4 (d)).10

After removing water areas smaller than 20 pixels
(20×900 m2), considered noise, the classified images have
three categories: (i) Water as identified by the protocol de-
veloped above, (ii) Land according to Fmask, and if not in
the category Water, and (iii) Unknown that include all other15

pixels (see Fig. 4 (d)).

2.2 Statistical correction of elevation

2.2.1 Digital elevation models

Unlike most studies, the proposed method does not rely on
satellite altimetry to assess water bodies’ elevation, but on20

DEMs to get the topography. It is then required that reser-
voirs were almost empty or not yet built when the DEM satel-
lites passed over them, for at least one of the two sources con-
sidered: ASTER GDEM v2 and SRTM-C/X. ASTER GDEM
v2 data was acquired between 2001 and 2008, and SRTM-25

C/X data on February 11–22, 2000. All have a spatial resolu-
tion of 1” (approximately 30 m at the equator), which we re-
sample to match Landsat images. The large coverage of these
datasets is chosen over the very low precision of the mea-
sures. They indeed cover almost all Earth’s land surface (ex-30

cept for SRTM-X): from 83◦ N to 83◦ S for ASTER GDEM
v2, and from 60◦ N to 56◦ S for SRTM-C; but the vertical
relative precision is very low compared to satellite altimetry:
objectives of 15 m and 6 m for 90 % of SRTM-C and SRTM-
X data respectively (German Aerospace Center (DLR), 2017;35

Rodriguez et al., 2005), and standard deviations estimated to
3.95 m and 8.68 m for SRTM-C and ASTER data respec-
tively (ASTER GDEM Validation Team, 2011).

2.2.2 Elevation–area relationship

To improve elevation assessment, DEMs are statistically cor- 40

rected by using the information on water surface areas ob-
tained from Landsat images. The protocol presented in Fig. 6
is implemented for each reservoir:

Statistical analysis

Corrected elevation
& filling curve

2D classes in all images

Probability to be immersed,
rp for each pixel pElevation

Figure 6. Procedure for the statistical correction of topography.

1. A water coverage quantile is computed at each pixel to
determine the probability for it to be immersed. To each 45

pixel p is associated the ratio rp defined as:

rp =
Np

water

Np
water +Np

land

(1)

where Np
water is the number of times the given pixel p

is counted as Water, and Np
land the number of times it is

counted as Land. We ignore the images where the pixel 50

p is classified as Unknown.

2. To illustrate the interest of this section, Figure 7 shows
both rp and the relative elevation in the Kudnah reser-
voir. We can see that the two do not always match as
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Figure 7. (a) Relative non-immersion frequency (1− rp, from the 2D classes) and (b) elevation (from the DEMs, in terms of decile) in the
Kudnah reservoir. Coordinates are expressed in CRS WGS 84 / UTM zone 36N, in which 1 unit equals 1 m.

we would expect – i.e. lowest pixels are not always the
most frequently immersed, nor are the highest pixels the
most rarely immersed. The immersion frequency (rp)
can actually be used to correct the elevation. The for-
mer, which is estimated from the results of the 2D clas-5

sification enhancement, is indeed assumed more reliable
than the original DEM. Hence, each pixel’s elevation
Hp is put in relation with the area Ap, defined as the
cumulated area of all pixels q in the reservoir for which
rq ≥ rp. The examples of Fig. 8 confirm the obser-10

vations made on Fig. 7: pixels’ elevations are not al-
ways correlated with the number of times they are clas-
sified as water. To a certain extent the difference was ex-
pected from the DEM’s low vertical precision, but some
“anomalies” concerning the most often immersed pix-15

els (i.e. lowest Ap) can be recurrent from one reservoir
to another due to either a strong dispersion in elevation
(see SRTM-X data in Fig. 8 (b)), or a flat elevation (see
SRTM-C data in Fig. 8 (c)). We interpret this irregular-
ity as arising from the presence of water where the satel-20

lite tried to evaluate elevation: in the case of SRTM-X,
the measure over water is hampered for reasons inherent
to the use of a SAR sensor; and in the case of SRTM-
C, DEM pixels covered with water may have been filled
during a post-treatment analysis. Either way, elevation25

cannot be retrieved from the given DEM for these reser-
voirs’ most often immersed pixels.

3. To address the issue, a polynomial regression on ob-
served land pixels (A>Ai, with Ai the area assumed
as immersed during the satellite elevation retrieval) is30

used to build a “corrected elevation”–area relationship
(A → Hc(A)) that best fits the data (on a least-squares
sense). Values of H greater than the 80th or lower than
the 20th percentile are ignored to filter potential errors
and smooth the data. This step is executed three times – 35

one for each DEM – and the better quality dataset (i.e.,
the one with less dispersion and fewer “anomalies” as
defined above) is kept. Examples are shown in Fig. 8.

4. A filling curve – volume–area relationship – is finally
constructed using the outcomes of the previous step. 40

The regression relies on the assumption that elevation esti-
mates are correct on average by considering many pixels. In-
deed, the relative error on elevation approaches zero when
the number of images taken into account grows. This prop-
erty has already been used by LeFavour and Alsdorf (2005) 45

for instance, in order to estimate the slope of the Amazon
River.

Parameters and results of the regression for reservoirs that
fulfil the criteria mentioned at the beginning of this article –
maximum storage and area larger than 1 hm3 and 0.5 km2

50

respectively – are summarised in Table 1.

2.3 3D reconstruction through hidden areas

Retrieving missing parts of water bodies in the Unknown ar-
eas means dealing with Landsat drawbacks: (i) the 16 days
repeat cycle making images regularly covered by clouds, and 55

(ii) the failure of the Landsat 7 SLC that led to large data
losses for the Enhanced Thematic Mapper Plus (ETM+) sen-
sor after May 2003 (see grey stripes in Fig. 4 (b)).
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Figure 8. Elevation–area relationship and regression for a few reservoirs in the Yarmouk River Basin: (a) Kudnah, (b) Roum, (c) Al Ghar
and (d) Qunaitera. Each symbol (circle, square or triangle depending on the DEM) represents the information associated to one pixel in a
reservoir. PR and LPR stand for Polynomial Regression and Local Polynomial Regression respectively.

Zhang et al. (2014) developed an approach to improve
quite significantly the estimation of reservoir’s water area.
However, their method requires that only a small part of the
reservoir is misclassified or hidden. This is not a problem
if one works with MODIS images over very large reservoirs,5

but in our situation – Landsat images over small water bodies
– the condition is rarely met.

We developed an alternate algorithm to use the informa-
tion from each individual pixel:

1. As the area Ap has been associated to each pixel p, and10

Hc has been expressed in terms of A, a corrected eleva-
tion is associated to each pixel in a reservoir.

2. Each pixel in an Unknown area adjacent to water areas
is set to Water if: (i) the pixel is in Mwat, and (ii) its cor-
rected elevation Hc

p is lesser than the XHc
th percentile15

of corrected elevation in all adjacent water bodies. This
threshold is set to 98 to ignore highest values of Hc,
in case they were associated to pixels misclassified as
water. A sensitivity analysis has been conducted with
regard to this threshold, and the results are available in20

Sect. 3.2 further below.

This water body reconstruction technique relies on the fact
that a pixel that is often immersed likely has an elevation
lower than a pixel that is rarely immersed. This is a reason-

able assumption due to the large number of images analysed. 25

Blue dots in Fig. 9 show how the 3D reconstruction comple-
ments the previous 2D information retrieval. Finally, storage
variations are obtained by combining final reconstructed ar-
eas with the previously determined filling curves.

3 Results 30

3.1 Storage variations: validation and discussion

Storage variations estimated by remote sensing for all reser-
voirs that cannot be gauged in the YRB are displayed in
Fig. 10. These reservoirs are located in Syria and in the
Israel-controlled Golan Heights. By qualitatively comparing 35

our results to those obtained by Müller et al. (2016) (moni-
toring of Syrian reservoirs using Landsat 7 datasets but be-
fore the 2D and 3D corrections), we can see more coherent
storage variations through the presence of annual drawdown–
refill cycles – particularly for Roum and Sahwat al-Khadr. It 40

means that the 2D enhancement and 3D reconstruction steps
have improved the detection of water and helped to overcome
the low Landsat repeat cycle of 16 days.

Reservoirs managed by Jordan are used to validate the
method by comparing our remote sensing estimates of ele- 45

vation and storage with monthly in situ measurements con-
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Location Reservoir DEM Visible area Regression R2 Amax ∆Hcmax Vmax

1− Ai
Amax

[%] [km2] [m] [hm3]

Israel-controlled Al Manzarah ASTER 100 PR (deg. 2) 0.34 0.53 9.14 2.64
Golan Heights Avnei Eitan Golan ASTER 70 PR (deg. 2) 0.31 0.93 4.88 2.34

Syria

Abidin ASTER 65 PR (deg. 1) 0.37 1.16 8.74 5.07
Qunaitera SRTM-C 100 LPR (span 0.3) 0.98 3.40 22.81 33.94
Jisr al Raqqad ASTER 30 PR (deg. 1) 0.52 1.16 16.23 9.43
Kudnah ASTER 100 PR (deg. 3) 0.46 2.81 30.92 29.45
Al Ghar SRTM-C 50 PR (deg. 1) 0.56 1.14 8.17 4.66
Saham al-Jawlan SRTM-C 55 PR (deg. 1) 0.84 2.48 12.93 15.99
Ghadir al-Bustan ASTER 50 PR (deg. 1) 0.56 1.19 15.02 8.93
Tasil ASTER 60 PR (deg. 1) 0.28 1.28 9.59 6.15
Adwan ASTER 100 PR (deg. 1) 0.33 1.31 7.92 5.17
Ebtaa kabeer SRTM-C 80 PR (deg. 1) 0.71 0.73 6.56 2.39
Sheikh Miskin SRTM-C 45 PR (deg. 1) 0.71 2.85 7.51 10.71
Roum SRTM-X 60 PR (deg. 1) 0.81 0.57 20.77 5.94
Sahwat al-Khadr SRTM-C 80 PR (deg. 3) 0.78 1.27 10.07 6.49

Border Jordan-Syria El Wahda SRTM-C 100 LPR (span 0.3) 0.97 2.69 53.31 66.72

Jordan

Karama SRTM-C 85 LPR (span 0.1) 0.90 3.79 17.00 35.91
Kafrein SRTM-C 30 PR (deg. 1) 0.56 0.66 17.80 5.85
Tanour SRTM-C 85 PR (deg. 1) 0.94 0.59 36.00 10.56
King Talal SRTM-C 20 PR (deg. 1) 0.29 2.17 31.66 33.69
Wala SRTM-C 100 LPR (span 0.5) 0.85 0.61 25.86 6.37
Mujib SRTM-C 50 LPR (span 0.3) 0.79 1.30 44.33 30.49

Table 1. Parameters and results of the elevation–area regression. PR and LPR stand for Polynomial Regression and Local Polynomial
Regression respectively. R2 is the coefficient of determination between the corrected elevation Hc and the elevation H for pixels taken into
account by the regression (red dots in Fig. 8).
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Figure 9. SWIR-R-G image. Final water bodies as obtained after
the 2D enhancement and the 3D reconstruction applied to the Land-
sat 7 image (174/37) taken on March 30th, 2010 (same as Fig. 4).
Coordinates are expressed in CRS WGS 84 / UTM zone 36N, in
which 1 unit equals 1 m.

ducted by the Jordan Valley Authority (JVA). With the ex-
ception of the King Talal dam, our results seem to follow

quite accurately the historical records (see Fig. 11). For some
reservoirs (i.e., Karama and Tanour), the method seems to
have difficulties to predict highest storages. Indeed, if the 5

number of high elevation pixels is small, the uncertainty on
their corrected elevation (and thus the filling curve) can po-
tentially affect the estimate of the maximum storage. This
may be a limitation of the method. In addition, we can note
that elevation H and volume V may vary a lot from month 10

to month: up to 10 m or 15 hm3 – i.e. 50 % of the max-
imal storage – for instance for the Mujib reservoir. Because
no information is available regarding the data collection date,
some of the differences between our estimates and measured
data might then come from this lack of metadata. 15

With regard to the King Talal reservoir, we can see large
errors in storage estimates (see Fig. 11). But they could have
been expected at the end of the elevation–area relationship
establishment step: the assumptions that were made to define
Hc were maybe not justified in this case. Indeed, 80 % of 20

the reservoir maximal area was covered with water when the
SRTM satellite passed over the dam, and the R2 is only 0.29
for the regression applied to the remaining visible pixels (see
Table 1). A small visible surface area does not necessarily
lead to a low quality elevation–area relationship – see the 25

good estimates for the Kafrein reservoir, while 70 % of its
maximal area was hidden when the SRTM satellite passed
over it –, but it certainly is a sign that results might be biased.
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Figure 10. Storage variations. Red crosses indicate estimates from the method developed in this paper. Red lines are local polynomial
regressions, that are plotted only with the purpose of showing storage variation trends.

Errors on the estimation of elevation and storage are eval-
uated in terms of the coefficient of determination (R2, Eq. 2)
and the normalised root-mean-square error (NRMSE, Eq. 3):

R2 =
Cov(RS,Hist)2

σ2
RS ·σ2

Hist

(2)5

NRMSE =
1

Histmax−Histmin

√√√√ N∑
i=1

(RSi−Histi)2

N

(3)

where Cov(RS,Hist) is the covariance between remote
sensing (RS) estimates and JVA historical measurements, σ2

the variance, and N the number of RS estimates during the10

period in which JVA measured storage or elevation. Results
are presented in Table 2.

The coefficient of determination for storage ranges from
0.69 to 0.84. These high values confirm an important correla-
tion and the similar variation trends that can be seen between15

the method’s estimates and JVA records (see Fig. 11). A few
high NRMSE values for both V and Hc though indicate that
there is still some uncertainty with regard to the estimation
of their absolute value at a given month. Indeed, by ignoring

Reservoir N R2 NRMSE
Hc V Hc V Hc V

El Wahda 25 107 0.54 0.76 0.30 0.15
Karama 29 123 0.98 0.79 0.05 0.10
Kafrein 35 136 0.91 0.81 0.11 0.10
Tanour 16 117 0.83 0.84 0.12 0.15
King Talal 40 159 0.50 0.76 0.36 0.19
Wala 15 37 0.36 0.69 0.21 0.16
Mujib 15 104 0.73 0.75 0.15 0.15

Table 2. Errors in terms of R2 and NRMSE for Jordanian reservoirs’
Hc and V assessments.

the King Talal dam, NRMSE ranges from 10 % to 16 % for 20

storage, and reaches up to 30 % for elevation. These error
estimates for elevation though need to be taken into account
with caution due to the small number of JVA measurements
available for comparison (15 ≤ N ≤ 35).

In order to better evaluate the proposed method compared 25

to a basic fixed NDVI and near-infrared thresholds water area
detection, we consider the results presented in Table 3: on av-
erage, only 30.0 % to 59.4 % of final reservoir areas are de-
tected by Fmask. The average additional part of final water
bodies that is detected with the employment of a NDVI-based 30

dynamic threshold for MNDWI is larger than 30 % for all
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Figure 11. Storage variations for Jordan managed reservoirs. Red
crosses indicate estimates from the method developed in this paper.
The blue lines indicate in situ data records that were made by the
Jordan Valley Authority (JVA).

Jordan reservoirs, and can reach more than 50 % for Tanour
and Wala reservoirs. Similarly, the average additional part
obtained through the 3D reconstruction is larger than 3.9 %
(Karama reservoir), and goes beyond 16 % for the more re-
cent reservoirs Tanour, Wala and Mujib, whose construction5

ended after 2002 – proportionally, more Landsat 7 images
affected by “N/A” stripes were then used for them than for
older dams. In light of these large shares of hidden or un-
detected water areas, corrections were obviously essential to
consistently monitor reservoirs elevation and storage.10

Reservoir Fmask classification [%] Changes [%]
Water Land Other N/A 2D 3D

El Wahda 58.6 20.8 13.1 7.5 32.2 9.2
Karama 64.1 13.3 20.9 1.7 32.0 3.9
Kafrein 58.5 15.9 17.2 8.4 31.9 9.7
Tanour 31.3 15.4 39.0 14.3 52.5 16.1
King Talal 59.4 22.1 9.7 8.8 30.8 9.8
Wala 30.0 24.4 30.0 15.7 52.6 17.5
Mujib 36.1 9.6 37.2 17.2 45.2 18.6

Table 3. Initial Fmask classification inside the final water areas
(“Other” refer to clouds, cloud shadows and snow), and stages’
percentage changes that led to the classification as water (“2D” for
the 2D classification enhancement, and “3D” for the 3D reconstruc-
tion).

3.2 Sensitivity analysis

The two algorithms used to improve the estimation of reser-
voirs area rely on one empirical threshold each: the classifi-
cation enhancement is performed through the definition of
a MNDWI percentile threshold (XMNDWI) to build a mask 15

dynamically adapted to each Landsat image, and the recon-
struction is achieved with the choice of a percentile for Hc

values (XHc
), which is set to avoid water areas overestima-

tion.
The sensitivity of the whole method to these two param- 20

eters is tested in terms of the above defined indices: R2

and NRMSE, that are averaged for all reservoirs in Jordan
(King Talal excluded). The sensitivity analysis is conducted
by making the percentile thresholds vary between 90 and 100
with a step of 1. Results are presented for both storage and 25

elevation in Fig. 12.
The coefficient of determination reaches its maximum

with XMNDWI values around 98 for storage and 93 or 95 for
elevation. However, R2 does not quantitatively assess the ac-
curacy of the method, and as it remains fairly high (above 30

0.78 for storage, or 0.74 for elevation) in the whole 90–100
range for both parameters, it is not considered to select the
threshold percentiles.

NRMSE decreases as XMNDWI and XHc increase. The
method does not detect an excessive number of water pix- 35

els – see the retrieval over the large missing parts detailed
in Table 3 –, but rather obtains estimates for elevation and
storage closer to the measurements conducted by JVA. Two
conclusions can be drawn from these observations. First, the
success in the 2D enhancement means that there is enough 40

information in Landsat bands to better detect water areas.
And second, the precision of the 3D reconstruction implies
that enough Landsat images are available for most reservoirs
to statistically improve the detection of water bodies when
clouds or “N/A” stripes hide land. 45

However, the Hc upper limit for the reconstruction has
a decreasing impact on NRMSE as the MNDWI threshold
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Figure 12. Sensitivity analysis of the two thresholds used to im-
prove water bodies surface area estimates. Indices are averaged for
all Jordanian reservoirs (except King Talal). Arrows point towards
larger R2, or lower NRMSE, and lengths are proportional to the gra-
dient.

increases: fewer missing water pixels leads to fewer pixels
available to “fill with water” during the subsequent recon-
struction. For lower XMNDWI values, the decrease in NRMSE
for high XHc values is clearer. It shows that the reconstruc-
tion algorithm addresses well the Fmask and dynamic thresh-5

old method limitations, even if it cannot entirely balance the
errors. The fact that NRMSE is on average lower for maximal
XHc values than for maximal XMNDWI values could however
be expected as the reconstruction relies on the reservoir’s
elevation–area relationship, which is established from the el-10

evation of the pixels that are detected in the first stage.
In the end, the percentiles that we chose in this study – re-

spectively 100 and 98 for XMNDWI and XHc
– enable a trade-

off between the options of lowering NRMSE for both storage
and elevation. Also, with these percentiles, R2 is still signifi-15

cantly high to ensure a strong correlation. It should be noted
that the thresholds do not depend on the location, nor the
date the Landsat images were taken. Therefore, the sensitiv-
ity analysis reveals that highest values for both XMNDWI and
XHc could be used to apply the method to any other region20

in the world.

4 Conclusions

Although information on small reservoirs storage is crucial
for water management in a river basin, it is most of the time
not freely available in remote, ungauged or conflict-torn ar-25

eas. A remote sensing method is proposed in this paper to

monitor small water bodies (capacities and water surface
areas starting from 1 hm3 and 0.5 km2 respectively). The
method is based only on DEMs for elevation, and Landsat
satellite images for water surface area, to quantitatively esti- 30

mate storage variations.
The method is applied to reservoirs in Syria and the Israel-

controlled Golan Heights in the Yarmouk River Basin, and an
uncertainty analysis is conducted with neighbouring Jordan
reservoirs for which in situ measurements are available. The 35

NRMSE is relatively low compared to the size of the studied
reservoirs and the precision of the datasets that are used.

The main limitation of the approach is its inapplicability to
reservoirs that were significantly “covered” with water when
the DEM satellites passed over them. Fortunately, this infor- 40

mation can be readily obtained from remote sensing data and
used to determine the applicability of the method a priori.

For all “uncovered” small or large reservoirs, the uses of
datasets available over the whole continental surface make
this method a valuable complement to satellite altimetry to 45

increase the number of reservoirs observable anywhere in
the world. The thresholds dynamically defined for both the
2D enhancement and the 3D reconstruction also make the
method potentially suitable to monitor reservoirs in truly in-
accessible areas. Moreover, the precision of the filling curve 50

and the 3D reconstruction algorithm increases with the num-
ber of pixels taken into account. Applying the method to
large “uncovered” reservoirs could then potentially lead to
better results. The sensitivity analysis also shows that choos-
ing maximum thresholds in both water area retrieval stages 55

gives the best reservoir storage estimates.
The recent two Sentinel-2 satellites also promise a great

improvement of the method for post-2015 studies, as they
produce images with spatial and temporal resolutions finer
than Landsat (up to 10 m and 5 days). Combining Landsat 60

and Sentinel-2 satellites would then reduce the already short
revisit cycle of water bodies and would provide near real-
time updates on water bodies storage.

Furthermore, the algorithms used in the method automat-
ically detect water bodies, define the water areas retrieval 65

parameters, build filling curves and assess reservoir storage.
Such algorithmic tools can then be dynamically updated with
each new image from Sentinel-2 and Landsat satellites, giv-
ing the model the potential to learn by itself and correct pre-
vious storage estimates while generating new ones. This ap- 70

proach is somehow comparable to the continuous change de-
tection proposed by Zhu and Woodcock (2014).

Code and data availability. The source code of the algo-
rithm is available at https://drive.google.com/open?id=
0B54cRCK06X-9RUdqaTZmWkdsOXc. Underlying research 75

data are not publicly accessible. Remote sensing data access for
this study is explained in Sect. 2. JVA data records are not publicly
available.

https://drive.google.com/open?id=0B54cRCK06X-9RUdqaTZmWkdsOXc
https://drive.google.com/open?id=0B54cRCK06X-9RUdqaTZmWkdsOXc
https://drive.google.com/open?id=0B54cRCK06X-9RUdqaTZmWkdsOXc
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