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Abstract. Model output statistics (MOS) methods can be used to empirically relate an environmental variable of interest

to predictions from earth system models (ESMs). This variable often belongs to a spatial scale not resolved by the ESM.

Here, using the linear model fitted by least squares, we regress monthly mean streamflow of the Rhine River at Lobith and

Basel against seasonal predictions of precipitation, surface air temperature, and runoff from the European Centre for Medium-

Range Weather Forecasts. To address potential effects of a scale mismatch between the ESM’s horizontal grid resolution5

and the hydrological application, the MOS method is further tested with an experiment conducted at the subcatchment scale.

This experiment applies the MOS method to 133 additional gauging stations located within the Rhine basin and combines

the forecasts from the subcatchments to predict streamflow at Lobith and Basel. In so doing, the MOS method is tested for

catchments areas covering four orders of magnitude. Using data from the period 1981-2011, the results show that skill, with

respect to climatology, is restricted on average to the first month ahead. This result holds for both the predictor combination that10

mimics the initial conditions and the predictor combinations that additionally include the dynamical seasonal predictions. The

latter, however, reduces the mean absolute error of the former in the range of 5 to 12 percent, which is consistently reproduced

at the subcatchment scale. An additional experiment conducted for five day mean streamflow indicates that the dynamical

predictions help to reduce uncertainties up to about 20 days ahead, but also reveals some shortcomings of the present MOS

method.15

1 Introduction

Environmental forecasting at the subseasonal to seasonal time scale promises a basis for planning in e.g. energy production,

agriculture, shipping, or water resources management. While the uncertainties of these forecasts are inherently large, they can

be reduced when the quantity of interest is controlled by slowly-varying and predictable phenomena. For example, the El Niño-

Southern Oscillation plays an important role in predicting the atmosphere, and snow accumulation and melting often forms the20

backbone in predicting hydrological variables of the land surface (National Academies, 2016).

In case of streamflow forecasting the ESP-revESP experiment proposed by Wood and Lettenmaier (2008) provides a method-

ological framework to disentangle forecast uncertainty with respect to the initial conditions and the meteorological forcings.

Being a retrospective simulation, the experiment consists of model runs where the initial conditions are assumed to be known
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and the meteorological forcing series are randomly drawn (ESP, Ensemble Streamflow Prediction) and vice versa (revESP,

reverse Ensemble Streamflow Prediction). In this context the initial conditions refer to the spatial distribution, volume, and

phase of water in the catchment at the date of prediction.

The framework allows for the estimation of the time range at which the initial conditions control the generation of stream-

flow: When the prediction error of the ESP simulation exceeds that of the revESP simulation, the meteorological forcings start5

to dominate the streamflow generation. Similarly, when the prediction error of the ESP simulation approaches the prediction

error of the climatology (i.e. average streamflow used as naive prediction strategy), the initial conditions no longer control the

streamflow generation.

In both cases this time range depends on the interplay between climatological features (e.g. transitions between wet and

dry or cold and warm seasons) and catchment specific hydrological storages (e.g. surface water bodies, soils, aquifers, and10

snow) and can vary from zero up to several months (van Dijk et al., 2013; Shukla et al., 2013; Yossef et al., 2013). Indeed, this

source of predictability is the rationale behind the application of the ESP approach in operational forecast settings, and it can

be further exploited by conditioning on climate precursors (e.g. Beckers et al., 2016).

An emerging option for streamflow forecasting is the integration of seasonal predictions from earth system models (ESMs),

i.e. coupled atmosphere-ocean-land general circulation models (Yuan et al., 2015b). Predictions from an ESM can be used15

threefold to the aim of streamflow forecasting by

1. forcing a hydrological model with the predicted evolution of the atmosphere;

2. employing runoff simulated by the land surface model;

3. using the predicted states of the atmosphere, ocean, or land surface in a perfect prognosis or model output statistics

context with the streamflow as the predictand.20

The first approach requires a calibrated hydrological model for the region of interest. In order to correct a potential bias and

to match the spatial and temporal resolution of the hydrological model, it further involves a postprocessing of the atmospheric

fields. A postprocessing might also be applied to the streamflow forecasts to account for deficiencies of the hydrological model.

See e.g. Yuan et al. (2015a) or Bennett et al. (2016) for recent implementations of such a model chain.

In the second approach the land surface model takes the hydrological model’s place with the difference that the atmosphere25

and land surface are fully coupled. Since the land surface component of ESMs often represents groundwater dynamics and

the river routing in a simplified way (Clark et al., 2015), the simulated runoff might be fed to a routing model as e.g. in

Pappenberger et al. (2010). To the best of our knowledge, this approach has not yet been tested with a specific focus on

subseasonal or seasonal streamflow forecasting.

The third approach deals with developing an empirical prediction rule for streamflow. If the model building procedure is30

based on observations only, the approach is commonly referred to as perfect prognosis (PP). On the other hand, the model

might be built using the hindcast archive of a particular ESM (model output statistics, MOS). In both cases the final prediction

rule is applied to the actual ESM outcome to forecast the quantity of interest. Therefore, MOS methods require the presence of

a hindcast archive of the involved ESM, but can take systematic errors of the ESM into account (Brunet et al., 1988).
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Studies that map ESM output to streamflow with PP or MOS methods include multiple linear regression (Marcos et al.,

2017), principal components regression and canonical correlation analysis (Foster and Uvo, 2010; Sahu et al., 2016), general-

ized linear models (Slater et al., 2017), or artificial neural networks (Humphrey et al., 2016). Whatever the selected predictors,

PP and MOS methods generally conduct the mapping across spatial scales. For example, if the catchment of interest falls below

the grid scale of the ESM, PP and MOS methods implicitly perform a downscaling step. If the catchment covers several grid5

points, the method implicitly performs an upscaling.

The present study aims to take up this scale bridging and to test a MOS-based approach for monthly mean streamflow fore-

casting and a range of catchment areas. To analyse the limits of predictability and to aid interpretation, we first define predictor

combinations motivated by the ESP-revESP framework. Next, seasonal predictions of precipitation, surface air temperature,

and runoff from the European Centre for Medium-Range Weather Forecasts (ECMWF) enter the regression equation and the10

resulting forecast skill is estimated with respect to the ESP-inspired regression model.

The variation of the catchment area borrows from the concept of the ‘working scale’ (Blöschl and Sivapalan, 1995): Given

a particular target catchment, the regression models are applied at the catchment scale as well as at two levels of subcatchment

scales. In case of the latter, the resulting forecasts are combined in order to get a forecast at the outlet of the target catchment.

By validating the combined forecasts of the subcatchments at the main outlet, any differences in the forecast quality can be15

attributed to the working scales.

This experiment is conducted for the Rhine River at Lobith and Basel in Western Europe. Studies using subseasonal or

seasonal climate predictions indicate for several parts of the Rhine basin moderate skill beyond the lead time of traditional

weather forecasts. These studies apply the model chain as outlined above in approach number one: Concerning catchments

of the Alpine and High Rhine, Orth and Seneviratne (2013) estimate the skillful lead time for daily mean streamflow to lie20

between one and two weeks, which increases to about one month when focusing on low flows (Fundel et al., 2013; Jörg-Hess

et al., 2015). Also for daily low flow Demirel et al. (2015) report for the Moselle River a sharp decrease in skill after 30 days.

For a set of French catchments Crochemore et al. (2016) show that weekly streamflow forecasts are improved for lead times up

to about one month when using postprocessed precipitation predictions. Singla et al. (2012) advance spring mean streamflow

forecasts for the French part of the Rhine basin with seasonal predictions of precipitation and surface air temperature.25

As a compromise between skillful lead time and temporal resolution, we decide to focus on monthly mean streamflow at

lead times of zero, one, and two months. In order to resolve the monthly time scale and to test the MOS method at shorter time

intervals, an experiment is further conducted for five day mean streamflow. Here, zero lead time refers to forecasting one time

interval ahead, while e.g. a one month lead time denotes a temporal gap of one month between the release of a forecast and its

time of validity.30

Strictly speaking, the present study deals with hindcasts or retrospective forecasts. However, for the sake of readability we

use the terms forecast, hindcast, and prediction interchangeably. Below, Sect. 2 introduces the study region, Sect. 3 describes

the data set, Sect. 4 exposes the methodology in more detail, and in Sect. 5 and 6 the results are presented and discussed,

respectively.
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Table 1. Geography of the Rhine River at Basel and Lobith according to CORINE (2016), EU-DEM (2016), and GRDC (2016).

Lobith Basel

area (km2) 159700 36000

gauging station (ma. s.) 20 250

elevation min (ma. s.) -230 250

elevation max (ma. s.) 4060 4060

elevation mean (ma. s.) 490 1050

farmed area (%) 47.7 36.8

forest (%) 35.8 31.6

grass land (%) 3.4 11.4

urban area (%) 9.6 7.0

wasteland (%) 1.8 8.2

surface water (%) 1.4 4.0

glacier (%) 0.3 1.0

2 Study region

The Rhine River is situated in Western Europe and discharges into the North Sea; in the south its basin is defined by the Alps.

About 58 million people use the Rhine water for the purpose of navigation, hydro power, industry, agriculture, drinking water

supply, and leisure (ICPR, 2009). The present study focuses on two gauging stations: The first is located in Lobith near the

Dutch-German border, the second in Basel in the tri-border region of France, Germany, and Switzerland.5

Table 1 lists some geographical attributes. The Rhine at Basel covers an area of approximately one fifth of the Rhine at

Lobith whereas the mean elevation halves when going from Basel to Lobith. The negative minimum elevation of the Rhine at

Lobith is due to a coal mine. Dominant land use classes are farmed areas and forests, but the Rhine at Basel proportionately

includes more grass land, wasteland, surface water, and glacier.

Concerning the climatology of the period 1981-2011 (Fig. 1), we observe that streamflow peaks at Lobith in winter and at10

Basel in early summer. Streamflow at Basel is dominated by snow accumulation in winter, subsequent snow melting in spring,

and high precipitation in summer. At Lobith precipitation exhibits less variability and higher surface air temperature intensifies

evaporation. Based on recent climate projections, it is expected that streamflow in the Rhine basin increases in winter, decreases

in summer, and slightly decreases in its annual mean in the last third of the 21th century (Bosshard et al., 2014).
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Figure 1. Monthly area averages of streamflow, precipitation, and surface air temperature for the Rhine at Lobith and Basel with respect to

the period 1981-2011 (GRDC, 2016; E-OBS, 2017).

3 Data

Observations of river streamflow and gridded precipitation, surface air temperature, and runoff of the period 1981-2011 in daily

resolution constitute the data set. Throughout the study gridded quantities get aggregated to (sub)catchment area averages.

3.1 Observations

The streamflow observations consist of a set of 135 time series in m3 s−1. These series as well as the corresponding catchment5

boundaries are provided by several public authorities and the Global Runoff Data Centre (GRDC (2016); see also Sect. 9), and

belong to catchments with nearly natural to heavily regulated streamflow.

The ENSEMBLES gridded observational data set in Europe (E-OBS, version 16.0) provides precipitation and surface air

temperature on a 0.25◦ regular grid (Haylock et al., 2008; E-OBS, 2017). These fields base upon the interpolation of station

data and are subject to inhomogeneities and biases. However, a comparison against meteorological fields derived from denser10

station networks attests a high correlation (Hofstra et al., 2009). In case of the Rhine basin an E-OBS tile approximately covers

an area of 500 km2.

3.2 Dynamical seasonal predictions

Precipitation, surface air temperature, and runoff from ECMWF’s seasonal forecast system 4 (S4) archive are on a 0.75◦ regular

grid, amounting in case of the Rhine basin to a tile area of about 4500 km2. The hindcast set consists of 15 members of which15

we take the ensemble mean. Runs of the coupled atmosphere-ocean-land model are initialised on the first day of each month

and simulate the subsequent seven months. Up to 2010, initial conditions are out of ERA Interim, and the year 2011 is based

on the operational analysis.

The atmospheric model (IFS cycle 36r4) consists of 91 vertical levels with the top level at 0.01 hPa in the mesosphere. The

horizontal resolution is truncated at TL255 and the temporal discretisation equals 45 min. The NEMO ocean model has 4220

levels with a horizontal resolution of about 1◦. Sea ice is considered by using its actual extent from the analysis and relaxing it

towards the climatology of the past five years (Molteni et al., 2011).
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The H-TESSEL land surface model implements four soil layers with an additional snow layer on the top. Interception,

infiltration, surface runoff, and evapotranspiration are dealt with by dynamically separating a grid cell into fractions of bare

ground, low and high vegetation, intercepted water, and shaded and exposed snow. In contrast, the soil properties of a particular

layer are uniformly distributed within one grid cell. Vertical water movement in the soil follows Richards’s equation with an

additional sink term to allow for water uptake by plants. Runoff per grid cell equals the sum of surface runoff and open drainage5

at the soil bottom (Balsamo et al., 2009; ECMWF, 2017).

4 Method

The following subsections outline the experiment, which is individually conducted for both the Rhine at Lobith and Basel.

Section 4.1 details the predictor combinations and the regression strategy, Sect. 4.2 introduces the variation of the catchment

area, and Sect. 4.3 illustrates the validation of the resulting hindcasts.10

4.1 Model building

The predictand yi,j denotes observations of mean streamflow at a specific gauging site in m3 s−1 for j = 5,10, . . . ,180 d,

starting the first day of each calendar month i= 1, . . . ,12 in the period 1981-2011.

4.1.1 Predictor combinations

The set of predictors consists of variables that either precede or succeed the date of prediction i (Tab. 2). The first model15

refRun (reference run) is aimed to estimate how well the regression works given the best available input data. The combinations

named preMet (preceding meteorology) and subMet (subsequent meteorology) are constrained to precipitation and surface air

temperature preceding and subsequent to the date of forecast, respectively.

The S4* combinations constitute the MOS method and consider the seasonal predictions out of the S4 hindcast archive,

where we use the asterisk as wildcard to refer to any of the S4P, S4T, S4PT, and S4Q models. The S4P and S4T models are20

used to separate the forecast quality with respect to precipitation and temperature. The S4Q model is tested as H-TESSEL does

not implement groundwater dynamics and preceding precipitation and temperature might tap this source of predictability.

4.1.2 Regression

For a particular yi,j we first apply a correlation screening to select the optimal aggregation time ai,j for each predictor according

to25

ai,j = argmaxk | cor(yi,j ,xi,k) | (1)

where xi,k is one of the predictors from Tab. 2 and k =−10,−20, . . . ,−720 d in case of ppreand tpre (backward in time relative

to the date of prediction) and k = 5,10, . . . , j d in case of psub, tsub, and qsub (forward in time relative to the date of prediction).

The limit of 720 d is chosen since larger values rarely get selected.

6



Table 2. Predictor combinations consisting of (with respect to the date of prediction) preceding and subsequent precipitation (p), surface air

temperature (t), and runoff (q); the numerical values are either out of the E-OBS gridded data set or ECMWF‘s S4 hindcast archive.

preceding subsequent

model ppre tpre psub tsub qsub

refRun E-OBS E-OBS E-OBS E-OBS -

preMet E-OBS E-OBS - - -

subMet - - E-OBS E-OBS -

S4P E-OBS E-OBS S4 - -

S4T E-OBS E-OBS - S4 -

S4PT E-OBS E-OBS S4 S4 -

S4Q E-OBS E-OBS - - S4

The ordinary least squares hyperplane is then used for prediction without any transformation, basis expansion, or interaction.

However, model variance can be an issue: Specifically for the preMet model from Tab. 2 we expect the signal-to-noise ratio

to be low for most of the predictands. In combination with the moderate sample size n= 26 for model fitting (with respect to

the cross-validation, see Sect. 4.1.3), perturbations in the training set can lead to large changes in the predictor’s time lengths

ai,j and regression coefficients. In order to stabilise model variance, we draw 100 non-parametric bootstrap replicates of the5

training set, fit the model to these replicates, and combine the predictions by unweighted averaging (Breiman, 1996; Schick

et al., 2016).

4.1.3 Cross-validation

Each year with a buffer of two years (i.e. the two preceding and subsequent years) is left out and the regression outlined in

Sect. 4.1.2 is applied to the remaining years. The fitted models then predict the central left-out years. Buffering is used to avoid10

artificial forecast quality due to hydrometeorological persistence (Michaelsen, 1987).

4.1.4 Lead time

Lead time is introduced by integrating the predicted ŷi,j in time and taking differences with respect to j. For example monthly

mean streamflow zi in July (i= 7) is predicted with a lead time of one month according to

ẑ7 = (ŷ6,60 · (30 + 31) · b− ŷ6,30 · 30 · b)/(31 · b) (2)15

where b= 24 ·60 ·60 s equals the number of seconds of one day and both ŷ and ẑ have unit m3 s−1. For zero lead time, we set

ẑi = ŷi,30. Please note that the year 1981 needs to be dropped from the validation (Sect. 4.3) since the length of the streamflow

series prevents to forecast e.g. January 1981 with a lead time of one month.
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Table 3. Subcatchment division of the Rhine at Lobith and Basel. The median area covers four orders of magnitude.

number of area km2

subcatchments min median max

Lobith level 1 1 - 159700 -

Lobith level 2 5 19690 33220 43550

Lobith level 3 12 8284 13040 17610

Basel level 1 1 - 36000 -

Basel level 2 10 1871 2946 6346

Basel level 3 124 6 187 2654

4.2 Spatial levels

Contrasting the forecast quality of a given model for catchments separated in space inevitably implies a large number of

factors, e.g. the geographic location (and thus the involved ESM grid points), the orography, or the degree to which streamflow

is regulated. In order to hold these factors while screening through a range of catchment areas, we propose to vary the working

scale within a particular target catchment.5

Following this line of argumentation we apply the model building procedure from Sect. 4.1 to three distinct sets of subcatch-

ments, which we term ‘spatial levels’ (Tab. 3). Spatial level 1 simply consists of the target catchment itself, i.e. the Rhine at

Lobith and Basel. At spatial levels 2 and 3 we take additional gauging stations from within the Rhine basin, which naturally

divide the basin into subcatchments.

For these subcatchments we have streamflow observations belonging to the entire upstream area, but not the actual subcatch-10

ment area itself. To arrive at an estimate of the water volume generated by the subcatchment, we equate the predictand yi,j to

the difference of outflow and inflow of that subcatchment. For a particular date of prediction and spatial level, the sum of the

resulting subcatchment forecasts ẑi then constitutes the final forecast for the Rhine at Lobith and Basel, respectively.

This procedure implies that we ignore the water travel time: First when taking the differences of outflows and inflows and

second when summing up the subcatchment forecasts. While the former increases the observational noise, the latter does not15

affect the regression itself, but adds a noise term to the final forecast at Lobith and Basel. As the statistical properties of the

noise introduced by the water travel time is unknown, we only can argue that the results provide a lower bound of the forecast

quality due to this methodological constraint.

4.3 Validation

The forecast quality of the regression models is analysed with the pairs of cross-validated monthly mean streamflow forecasts20

and observations (ẑ, z). These series cover the period 1982-2011 and have a sample size of n= 360. In general the validation

is based on the mean absolute error (MAE) and Pearson’s correlation coefficient (ρ).
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The first validation steps focus on the forecasts at Lobith and Basel and thus consider the sum of the subcatchment forecasts

ẑ per spatial level. The forecasts in the subcatchments itself are addressed in Sect. 4.3.5. Finally, the validation of the five day

mean streamflow forecasts (Sect. 4.3.6) complements the monthly analysis.

4.3.1 Benchmarks

Climatology and runoff simulated by H-TESSEL serve as benchmarks. The climatology is estimated with the arithmetic mean5

from the daily streamflow observations. After averaging in time, runoff from H-TESSEL gets post-calibrated via linear regres-

sion against the streamflow observations per spatial level. For both benchmarks the cross-validation scheme from Sect. 4.1.3 is

applied.

4.3.2 Taylor diagram

Taylor diagrams (Taylor, 2001) provide an instrument to contrast model performances. The plotting position of a particular10

model has a distance from the origin equal to the standard deviation of its forecasts ẑ and is located on the line having an

angle of incline φ= arccos(ρ). The plotting position of the observations z has a distance from the origin equal to the standard

deviation of z and is located on the abscissa. The distance between these two plotting positions equals the root mean squared

error with the unconditional bias E(Ẑ −Z) removed.

4.3.3 Statistical significance15

In case of the monthly analysis it turns out that the paired differences of absolute errors for a given lead time, spatial level, and

reference model r

d=| ẑr− z | − | ẑS4*− z | (3)

no longer exhibit serial correlation and approximately follow a Gaussian distribution. Using the mean difference d̄, we then

report the p-values of the two-sided t-test with null hypothesis d̄= 0 and alternative hypothesis d̄ 6= 0. The sample autocorre-20

lation functions and quantile plots against the Gaussian distribution of d for zero lead time and r being the preMet model are

included in the additional materials (Sect. 10).

4.3.4 Skill

To evaluate whether a particular model m has skill with respect to a reference model r the MAE ratio

s= 1− MAEm

MAEr
(4)25

is employed. For example, m could be a S4* model and r the preMet model. s= 0.1 means that the model m lowers the MAE

of model r by 10 %.
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4.3.5 Subcatchments

To help in the interpretation of the forecast quality of the MOS method regarding the spatial levels at Lobith and Basel, we plot

in a qualitative manner the MAE skill score (Eq. 4) of the S4* and preMet models in space as well as against the subcatchment

area, the median of the terrain roughness, the MAE skill score of the subMet with the preMet model as reference, and the MAE

skill score of the refRun model with the climatology as reference.5

The terrain roughness is included since the atmospheric flow in complex terrain is challenging to simulate and atmospheric

general circulation models need to filter the topography according to their spatial resolution (Maraun and Widmann, 2015;

Torma et al., 2015). The terrain roughness is defined as the difference of the maximum and minimum elevation value within a

3 times 3 pixel window (Wilson et al., 2007). It is derived here from the digital elevation model EU-DEM (2016), which has a

horizontal resolution of 25 m.10

4.3.6 Five day mean streamflow

In order to predict five day mean streamflow, Eq. 2 is used with a step size of five days. However, the monthly date of predictions

impose some restrictions to the validation: First, it is not possible to derive regular time series at different lead times as in the

monthly analysis. Furthermore, the distributional assumptions required for the statistical test from Sect. 4.3.3 are not valid. The

results of the five day mean streamflow experiment thus are restricted to a qualitative interpretation.15

5 Results

The experiment spans several dimensions (i.e. Lobith versus Basel, date of prediction, lead times, predictor combinations,

spatial levels), so we frequently need to collapse one or several dimensions. The additional materials as listed in Sect. 10 try to

complete the results as presented bellow.

5.1 Taylor diagram20

Figure 2 shows the Taylor diagrams for Lobith and Basel to get a global overview regarding the lead times, predictor combi-

nations, and spatial levels. Accurate forecasts reproduce the standard deviation of the observations (thus lie on the circle with

radius equal to the standard deviation of the observations), and also exhibit high correlation (so travel on this circle towards

the observations on the abscissa). At a first glimpse the spatial levels do not introduce clear differences and most of the models

mass at the same spots.25

The benchmark climatology is outperformed at zero lead time by all models. At longer lead times the subMet model pops

up besides the refRun model and the remaining models approach climatology. For the refRun model we note a correlation of

about 0.9 independently of the lead time while the observation’s variability generally is underestimated.
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Figure 2. Taylor diagrams for the benchmarks climatology and H-TESSEL and the predictor combinations from Tab. 2 at Lobith (top row)

and Basel (bottom row); n= 360.

For Lobith and zero lead time we observe an elongated cluster, which comprises all models but the climatology and the

refRun model. Some models score a higher correlation – zooming in would reveal that these are the S4P, S4PT, and S4Q

models with H-TESSEL standing at the forefront.

5.2 Date of prediction versus lead time

Figure 3 takes a closer look at the clusters in Fig. 2 at hand of the S4PT model and in addition breaks down the prediction5

skill into the different calendar months. Please note that the ordinate lists the calendar month and not the date of prediction

– e.g. the top rows show the skill in predicting January’s mean streamflow for lead times of zero up to two months. Crosses

indicate p-values smaller than 0.05 when Eq. 3 is applied to the individual calendar months.

In general, the patterns repeat more or less along the spatial levels and the S4PT model beats the reference models in the

denominator of Eq. 4 only at zero lead time. An exception can be observed at Lobith for the month of June, for which the S4PT10

model most likely outperforms the climatology at one month lead time.

While significant differences between the S4PT and the preMet models are rare, the subMet model starts to outperform the

S4PT model already at a lead time of one month. The comparison against the bias corrected H-TESSEL runoff shows that the

S4PT model might provide more accurate predictions for early summer, but not otherwise.

5.3 Mean absolute error15

In order to conclude the analysis of the monthly predictions at Lobith and Basel, Tab. 4 reports the MAE at zero lead time.

Reading Tab. 4 along the rows reveals a more or less consistent pattern: The refRun model approximately halves the MAE

of the climatology; differences between the preMet, subMet, and S4T models are small; compared to the preMet model, the

S4P, S4PT, and S4Q models lower the MAE by about 40 to 50 m3 s−1 for Lobith and by about 10 to 20 m3 s−1 for Basel; and
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Figure 3. MAE skill score of the S4PT model with respect to the climatology, the preMet and subMet models, and bias corrected H-TESSEL

runoff. The ordinate depicts the calendar month and the abscissa the monthly lead time. Crosses indicate p-values smaller than 0.05 for the

null hypothesis ‘the reference model in the denominator and the S4PT model score an equal mean absolute error’; n= 30.

H-TESSEL outperforms the S4* models in case of Lobith, but not Basel. When reading Tab. 4 along the columns, we generally

note at Lobith a decreasing MAE when going from spatial level 1 to spatial level 3. In case of Basel, the MAE remains more

or less constant except for the refRun model.

Focusing on the MOS method, Tab. 5 lists the corresponding MAE skill score (Eq. 4) of the S4* models using the preMet

model as the reference. The p-values for the null hypothesis ’the preMet and S4* models score an equal mean absolute error’5

are listed in brackets. We see that the S4P, S4PT, and S4Q models score an error reduction ranging from 5 to 12 %. In case of

the S4T model an error reduction is either not existent (Lobith) or small (Basel), which comes along with high p-values.
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Table 4. Mean absolute error at zero lead time of the benchmarks climatology and H-TESSEL and the predictor combinations from Tab. 2,

rounded to integers. All values have unit m3 s−1; n= 360.

climatology H-TESSEL refRun preMet subMet S4P S4T S4PT S4Q

Lobith level 1 633 421 336 501 502 455 500 453 451

Lobith level 2 633 415 299 484 498 429 482 435 443

Lobith level 3 633 415 285 480 498 424 476 428 444

Basel level 1 239 190 131 197 195 183 195 183 191

Basel level 2 239 185 115 197 193 179 192 178 187

Basel level 3 239 182 110 198 193 179 194 178 188

Table 5. MAE skill score of the S4* models relative to the preMet model (Eq. 4, expressed in percent) at zero month lead time. p-values for

the null hypothesis ‘the preMet and S4* models score an equal mean absolute error’ are enclosed in brackets; n= 360.

S4P S4T S4PT S4Q

Lobith level 1 9 (<0.01) 0 (0.85) 10 (<0.01) 10 (<0.01)

Lobith level 2 11 (<0.01) 0 (0.78) 10 (<0.01) 8 (<0.01)

Lobith level 3 12 (<0.01) 1 (0.55) 11 (<0.01) 8 (<0.01)

Basel level 1 7 (0.01) 1 (0.36) 7 (0.01) 3 (0.07)

Basel level 2 9 (<0.01) 3 (0.02) 10 (<0.01) 5 (<0.01)

Basel level 3 10 (<0.01) 2 (0.08) 10 (<0.01) 5 (<0.01)

5.4 Subcatchments

Figure 4 depicts the MAE skill score (Eq. 4) for the S4PT model relative to the preMet model for each subcatchment at zero

lead time. If the MAE difference does not exhibit a p-value smaller than 0.05 (Eq. 3), the subcatchment is coloured in white.

We observe that the MAE skill score takes values in the range of about -0.05 to 0.11 and both the lowest and highest scores

occur at Basel and spatial level 3. Negative scores can only be found at Basel and spatial level 3, and positive skill tends to5

cluster in space.

The same skill scores from Fig. 4 are contrasted in Fig. 5 with the subcatchment area, the median of the terrain roughness,

the MAE skill score of the subMet model relative to the preMet model, and the MAE skill score of the refRun model relative

to the climatology. If the MAE difference of the S4PT and the preMet models does not exhibit a p-value smaller than 0.05, the

symbol is drawn with a reduced size. The horizontal lines depict the MAE skill scores from Tab. 5.10

While the first two attributes concern the geography of the subcatchment, the third attribute indicates the relevance of the

initial conditions for the subsequent generation of streamflow. The fourth attribute shows how well the S4PT model performs

relative to the climatology as benchmark, when it has access to the best available input data.
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Figure 4. MAE skill score of the S4PT model with respect to the preMet model for each subcatchment and zero lead time. Subcatchments

are coloured only when the p-value for the null hypothesis ‘the preMet and S4PT models score an equal mean absolute error’ is smaller than

0.05. In the bottom maps the main outlets at Lobith and Basel are marked with a white cross and open water surfaces are coloured in blue

(CORINE, 2016; EU-DEM, 2016); n= 360.

The resulting patterns suggest that positive skill does not depend on the subcatchment area. On the other hand, a low

terrain roughness and a weak relevance of the initial conditions seem to favour positive skill. The last row finally indicates

that positive skill is restricted to subcatchments where the refRun model outperforms climatology. Roughly, a hypothetical

relationship appears to strengthen from the top to the bottom plots.

5.5 Five day mean streamflow5

Figure 6 shows the correlation coefficient of the five day mean streamflow observations and corresponding predictions for

all models and benchmarks up to a lead time of 45 days. We observe that the refRun model scores a correlation of about

0.8 with a slowly decreasing tendency towards longer lead times. Furthermore, the subMet model crosses the preMet model

approximately in the second week; the preMet model approaches climatology within about three weeks; and the subMet model

comes close to the refRun model in about three weeks.10
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Figure 5. MAE skill score of the S4PT model with respect to the preMet model for each subcatchment and zero lead time, plotted against

subcatchment attributes (see Sect. 4.3.5 for details). Large symbols note a p-value smaller than 0.05 for the null hypothesis ‘the preMet and

S4PT models score an equal mean absolute error’. The horizontal lines indicate the corresponding skill per spatial level at Lobith and Basel;

n= 360.
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Figure 6. Correlation coefficient of five day mean streamflow observations and predictions for lead times up to 45 days; n= 360.

In addition, we see that the bias corrected H-TESSEL runoff starts rather cautious, but seems to slightly outperform the S4*

models at longer lead times. While the S4T model is hardly distinguishable from the preMet model, the S4P, S4PT, and S4Q

models appear to outperform the preMet model within the first 20 days (Lobith) and 15 days (Basel).

For the full range of lead times, the spatial levels introduce some clear differences (Fig. 7): The refRun and subMet models

get improved at longer lead times along the spatial levels. For lead times longer than about 50 days, the bias corrected H-5

TESSEL runoff stays in close harmony to the climatology, while the S4* and preMet models instead start to score a smaller

correlation. This effect seems to be mitigated at spatial levels 2 and 3.

6 Discussion

6.1 Model building

In case of the monthly streamflow, the refRun model ends up with a correlation of about 0.9 for all lead times, spatial levels,10

and both Lobith and Basel (Fig. 2). Part of this correlation is also the annual cycle (Fig. 1), which already leads to a correlation

of about 0.5 when using the climatology as prediction rule. The forecasts from the refRun model do not fully reproduce the

observations’ variance, what might be improved with a transformation of the predictand (Wang et al., 2012). This option – along

with predictors that more explicitly represent the initial conditions, e.g. lake levels, soil moisture content, or snow courses –

preferably should be tested in a future study with a small number of catchments and longer time series.15

For the five day mean streamflow the refRun model gets degraded. At short lead times the correlation amounts to about

0.8, while for longer lead times the correlation exhibits a decreasing trend. Either the present model formulation is less valid

(especially for small values of j, say 5 or 10 days, the assumption of linearity might fail) or the scheme to introduce the lead
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Figure 7. Correlation coefficient of five day mean streamflow observations and predictions for lead times up to 175 days; n= 360.

time (Eq. 2) is not appropriate for mean values of small time windows (e.g. the subtraction of streamflow volumes of 155 and

150 days only allows for small prediction errors). Since the final forecast values are not part of the regression equation, it is

even possible to perform worse than climatology (Fig. 7).

6.2 Spatial levels

The spatial levels can affect the forecast quality either5

– via the ignorance of the water travel time (Sect. 4.2)

– or the aggregation of the E-OBS and S4 fields at the catchment scale is not the appropriate spatial resolution (e.g. large

scale grid averages cancel any spatial variability, and for catchment areas below the grid scale a grid point does not

necessarily contain information valid at the local scale).

However, clear differences between the spatial levels can only be observed for the five day streamflow predictions, where at10

spatial levels 2 and 3 the forecast quality gets improved. Using local information of precipitation, surface air temperature, or

runoff appears to compensate for the ignorance of the water travel time.

6.3 preMet-subMet

In Yossef et al. (2013) the ESP-revESP framework is applied to the world’s largest river basins using the global hydrological

model PCRaster Global Water Balance (PCR-GLOBWB). Considering all calendar months and the Rhine at Lobith, the ESP15

simulation outperforms the climatology only at zero lead time; the revESP simulation is outperformed at zero lead time by
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both the ESP simulation and climatology; and at longer lead times the revESP simulation clearly outperforms both the ESP

simulation and climatology. Therefore, the results of Yossef et al. (2013) and those of the present study are mostly in line.

The analysis of the five day mean streamflow forecasts (Sect. 5.5) further reveals that the crossover of the preMet and subMet

models occurs approximately in the second week. However, this estimate ignores variations within the calendar year and should

be considered as a rough guess, since the regression method is far from being perfect in case of the five day mean streamflow.5

6.4 MOS method

In case of the monthly mean streamflow forecasts at zero lead time, the MOS method based on precipitation or runoff provides

a smaller mean absolute error than the preMet model (Tab. 5). Figure 6 suggests that this error reduction at the monthly time

scale arises from the predictions of the first 15 to 20 days. Here, it must be stressed that for the present regression strategy

temperature subsequent to the date of prediction often is a weak predictor (regression coefficients of the refRun model at10

spatial level 1 are included in the additional materials, see Sect. 10). Thus, a rejection of the S4T model does not allow any

inference about the forecast quality of surface air temperature itself.

Figure 5 indicates that the subcatchment area most likely is not relevant to score positive skill. Rather the S4PT model

outperforms the preMet model in subcatchments where the terrain roughness and the relevance of the initial conditions are low.

However, the terrain roughness and the relevance of the initial conditions are not independent attributes: Fig. 4 shows that for15

small subcatchments in the alpine region positive skill is sparely present (spatial levels 2 and 3 at Basel). These subcatchments

generally exhibit a high terrain roughness as well as a high relevance of the initial conditions due to snow accumulation

in winter and subsequent melting in spring and summer. A possible explanation could be that errors in the initial condition

estimates outweigh the moderate skill contained in the seasonal climate predictions.

6.5 H-TESSEL20

Within ECMWF’s seasonal forecasting system S4, H-TESSEL is aimed to provide a lower boundary condition for the simula-

tion of the atmosphere and consequently does neither implement streamflow routing nor groundwater storage (Balsamo et al.,

2009; ECMWF, 2017). However, H-TESSEL in combination with a linear bias correction often performs best (Tab. 4).

The S4Q model, which has access to the same input data and in addition conditions on preceding precipitation and temper-

ature, scores a lower forecast accuracy than H-TESSEL in case of Lobith (Tab. 4). This most likely is related to overfitting,25

which is not sufficiently smoothed by the model averaging (Sect. 4.1.2).

7 Conclusions

The present study tests a model output statistics (MOS) method for monthly and five day mean streamflow forecasts in the

Rhine basin. The method relies on the linear regression model fitted by least squares and uses predictions of precipitation and

surface air temperature from the seasonal forecast system S4 of the European Centre for Medium-Range Weather Forecasts.30

Observations of precipitation and surface air temperature prior to the date of prediction are employed as a surrogate for the
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initial conditions. In addition, runoff simulated by the S4 land surface component, the H-TESSEL land surface model, is

evaluated for its predictive power.

MOS methods often bridge the grid resolution of the dynamical model and the spatial scale of the actual predictand. In

order to estimate how the forecast quality depends on the catchment area, a hindcast experiment for the period 1981-2011 is

conducted that varies the working scale within the Rhine basin at Lobith and Basel. This variation is implemented by applying5

the MOS method to subcatchments and combining the resulting forecasts to predict streamflow at the main outlets at Lobith

and Basel.

On average, the monthly mean streamflow forecasts based on the initial conditions are skillful with respect to the climatology

at zero lead time for both the Rhine at Lobith and Basel. The MOS method, which in addition has access to the dynamical

seasonal predictions, further reduces the mean absolute error by about 5 to 12 % compared to the model that is constrained to10

the initial conditions. For lead times of one and two months the forecasts virtually reduce to climatology. These results hold for

the entire range of tested subcatchment scales, meaning that effects of a scale mismatch between the horizontal grid resolution

and the catchment area do not emerge. Applying the MOS method finally for five day mean streamflow results in a rather

moderate forecast quality.

We conclude that the present model formulation – in particular the assumption of linearity – is valid for the monthly time15

scale, catchments with areas up to 160000 km2, and water travel times similar to the Rhine river. However, the results also

show that a simple linear bias correction of the runoff predicted by the H-TESSEL land surface model is hard to beat. Given

the simplicity of a linear bias correction, we think that it could be worth to further investigate runoff simulations from land

surface components of earth system models for subseasonal to seasonal streamflow forecasting.

8 Code availability20

The regression approach from Sect. 4.1.2 is implemented in an R package maintained on github.com/schiggo.

9 Data availability

E-OBS (2017), CORINE (2016), and EU-DEM (2016) are public data sets. Access to the ECMWF and GRDC archive must

be requested. Data from the various public authorities as listed in the Acknowledgements are partly public.

10 Additional materials25

The additional materials include Fig. 3, Fig. 4, and Fig. 5 for the S4* models. Figure 7 shows per spatial level for each S4*

model at zero months lead time: The sample autocorrelation function and a quantile plot against the Gaussian distribution

(paired differences of absolute residuals with respect to the preMet model, Eq. 3) as well as a scatterplot of predictions and

observations. Figure 8 shows for the yi,30 predictand the regression coefficients (for predictors standardised to mean zero and
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standard deviation one) and the aggregation periods ai,j (Eq. 1) of the refRun model at spatial level one (n= 100 due to the

bootstrap resampling).
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