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1 Response

1.1 Review by Joost Beckers

The MOS method is presented as an option for streamflow forecasting at the
seasonal time scale (Page 1-Line 16, Page 2-Line 18, Page 3-Line 9). How-10

ever, the results show only forecast skill relative to climatology for the first
month ahead. This is usually not what is called seasonal forecasting (rather
medium- or extended-range forecasting). So the conclusion must be drawn
that no skill was found at the seasonal time scale for any of the models (in-
cluding ESP and H-TESSEL). This is indeed concluded for the MOS models15

(Page 17-Line 15), but the suggestion that the performance may be better for
particular calendar months (Page 17-Line 15,16) is unfounded and should be
removed. Also, the conclusion that H-TESSEL is an interesting option for
seasonal (i.e. beyond 1 month lead time) streamflow forecasting (Page 1-Line
13, Page 17-Line 26) is not supported by the results shown in Figure 2 (at20

least not clear to me).

Wherever possible we removed the term ’season’. Its usage is now restricted
to the ’seasonal climate predictions’ of ECMWF and to paragraphs dealing
with seasonal forecasting in general. In addition, we added a short subsection
to the results that looks at the variation of forecast skill within the calendar25

year (this was also proposed by Kean Foster).

Moreover, if the MOS method is to be considered for operational streamflow
forecasting, it would need to be tested against the more traditional approach,
which uses ESP- or GCM-driven hydrologic models.

We removed the therm ’operational’ from the article; it remains in the in-30

troduction (ESP approach as the de facto standard in operational seasonal
streamflow forecasting) and in the ’operational analysis’ of numerical weather
forecasting.
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I am not sure which version of H-TESSEL you are using, but since you men-
tion it does not include routing (Page 16-Line 26), this must be a relatively
limited model. When comparing the MOS method to this H-TESSEL for zero
lead time, the results are not very convincing: according to Table 4 the MAE
of the S4* models is worse than for H-TESSEL at Lobith and only marginally5

better at Basel. Given these results, would the conclusion not be that the MOS
methods are not a viable option for operational streamflow forecasting? This
conclusion is missing on Page 17.

We agree, it seems that the simplest approach (linear bias correction of H-
TESSEL runoff) often performs best. This point is now more stressed in the10

conclusion.

My final concern with this paper is that it is not clear how the skill of the
various models at zero lead time is composed. Probably, the forecast skill for
the first 5 days is higher than for the last 5 days of the 1-month lead time.
By averaging over the entire first month this information is lost. It could15

very well be that the average positive skill for lead times 1-30 days is entirely
due to the positive skill for the first few days. Moreover, this positive skill
for the first few days may be a result of the persistence of weather patterns
in the GCM, similar to that for a normal short range weather forecast.

Related to this is the ESP-revESP analysis. The paper states that there20

is no clear difference in skill between the ESP and revESP at zero lead time
(Page 16-Line 2). But the zero lead time is actually an average for lead
times of 1 to 30 days. A separate analysis for lead times of 5, 10, 15, etc
days would probably reveal a cross-over from dominance of initial conditions
(higher skill of ESP) for short lead times to dominance of meteorological25

forcing (higher skill of revESP) for longer lead times. But this cannot be
seen in the monthly average. Therefore I encourage the authors to do an skill
assessment at higher temporal resolution.

We did an experiment similar to the monthly analysis for five day mean
streamflow and lead times of 0, 5, . . . , 175 days.30

Page 3-Line 23: What approaches do these earlier studies use? Are these
(bias-corrected) hydrologic model forecasting studies or do they use MOS/PP?

We tried to clarify the paragraph – these are all studies using hydrological
models forced by subseasonal or seasonal climate predictions.

Page 6-Line 2: I believe the reference for H-TESSEL should be Balsamo et35

al., 2008 or 2009.
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We added Balsamo et al., 2009 to the references.

Page 7-Line 6: Sample size is 31? 1981-2011 is 31 years, but you leave out
the year of forecast and (according to Section 4.1.3) also the two preceding
and subsequent years, so n must be 26.

We equated n to 26.5

Page 16-Line 14: It is found that the S4PT model outperforms the ESP
model for subcatchments with smooth terrain and weak influence of initial
conditions. Can you explain why? I would expect the opposite: the S4PT
model (which includes forecast temperature) should do well for catchments
that are dominated by snowmelt (rough terrain and strong influence of initial10

conditions).

We only can speculate: GCM skill for the Rhine basin is on a low level, and
thus hard to detect. When the initial conditions are strongly relevant like in
the case of a snow dominated catchment, any error in estimating these initial
conditions produces larger errors than the GCM skill can reduce. Thus, we15

suggest that GCM skill is better detectable in catchments where the relevance
of the initial conditions is small. For example, we would argue that it is hard
to successfully force a hydrological model with seasonal climate predictions
in a catchment situated in the Alps – if we get the snow pack wrong, the
small skill contained in the precipitation and temperature forecasts vanishes.20

This point is now included in the discussion.

1.2 Review by Kean Foster

Is there a reason why the initial hydrological conditions are not included as
predictors (page 3-lines 10-12 and table 2)? Predictors related to storages
such as soil moisture content, snow, and reservoir/lake levels all impact fu-25

ture streamflow yet only meteorological predictors are used. I agree that many
of these initial storages are affected by the antecedent meteorological condi-
tions, but these connections are not necessarily linear or significant depend-
ing on the time frame used. For example, if only predictors for the preceding
month are used then there is little connection to snow pack size or reservoir30

levels and therefore little added value. Thus I miss a description of the time
period, and to a lesser extent the domain, for the predictors.

We agree, there exist many other potential predictors. We restricted the
set of predictors to precipitation and surface air temperature for practical
reasons: These variables are available as gridded products, cover the entire35
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study region (and thus are present in all subcatchments), and are available
for a long time period; the assumption of independence is more or less valid;
and the regression strategy stays simple. As long as it is reasonable to include
precipitation and temperature of the target season in the model, then it does
so for the ’initial conditions’ too. In fact, using this restricted set of predictors5

guarantees a fair comparison of the predictor combinations and spatial levels
as they all rely on the same source of data.

In case of the ’preceding’ predictors (the predictors that act as a proxy to
catch the initial conditions via the antecedent meteorological conditions), the
time aggregation is allowed to vary between 10 and 720 days. The predictors10

are defined as catchment area averages. Two example plots showing the
regression coefficients and aggregation periods of the refRun model at Lobith
and Basel are now included in the additional materials.

Similarly, I question whether the use of the terms ESP and revESP are tech-
nically correct in this paper as it stands. Without any information regarding15

the initial conditions at the forecast initialisation one can argue that this is
not similar to what Wood and Lettenmeier (2008) meant. If it were possible I
would suggest the authors include predictors that represented the initial con-
ditions (soil moisture, snow depth, or even streamflow) otherwise they should
add a paragraph explaining why the current approach is still an adaption of20

the VESPA methodology. I believe that the latter may be difficult to justify
especially with respect to revESP.

We renamed the ESP to preMet and revESP to subMet.

I echo Joost’s point where he suggests that the suggestion that the performance
may be better for particular months (page 17-lines15, 16) is unfounded as the25

article stands now. However, I do expect this to be the case and therefore I
disagree with him in that this should be removed. Rather I think it would be
of interest to include some results or a section that addresses this variability.
This can be done in part in the form of a figure along the lines of the one
below (figure 1). Related to this, why are the authors concentrating only30

on the general performance throughout the year? The usefulness of these
forecasts may be much higher, even only, during specific times during the
year e.x. during the snow melt period or low flow period.

We added a subsection to the results that looks at the variation of forecast
skill within the calendar year.35

With regards to H-TESSEL, Table 4 shows that it has some skill, at least at
the spatial level 1. Have the authors tested using these data as predictors in
the MOS approach at levels 2 and 3?
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We completed Tab. 4 with the corresponding values.

I am unclear as to whether the S4* data is bias corrected. It is now almost
common practice for some sort pre-processing or bias correction of the S4*
forecast data before use in hydrological forecasting studies and work. The
authors note that the quality of seasonal climate predictions for the study area5

are low (page 3-lines 20,21) but it is not clear to me whether any attempt to
bias correct the data, and if I did miss it by what method.

We did not apply any bias correction, since we think it is not useful in case
of statistical methods (at least we do not know any study that uses bias
corrected predictors for a regression model). The present formulation of10

the MOS approaches catches any systematic linear error via the regression
coefficients. Obviously, this does not hold for nonlinear systematic errors,
but we question that e.g. quantile mapping improves the prediction accuracy,
since we work with mean values corresponding to at least 5 days.

Lastly, the authors mention how the uncertainties in forecasts can be reduced15

when the quantity of interest is controlled by teleconnection phenomena (page
1-line 17-19). I don’t contest that this is true but rather question how it is
relevant to the paper because there does not seem to be any more references
to such modulation activity or its importance in the rest of the paper.

We agree, this statement is not strictly necessary for the article. Rather we20

tried to sketch the basis for environmental seasonal forecasting in order to
start somewhere with the article. Please note that the cited ’slowly-varying
and predictable phenomena’ are not restricted to the thermal coupling of
the oceans and the atmosphere (and potential subsequent teleconnections) –
a strong cycle of snow accumulation and subsequent melting or persistence25

in soil moisture are other examples. We tried to clarify the corresponding
paragraph.

On page 9-line 12 the authors give a secondary citation where I feel that the
original citation, or at least inclusion of the original would be strongly ad-
vised. Taylor’s original article is: Taylor, K. E. (2001). Summarizing multi-30

ple aspects of model performance in a single diagram. Journal of Geophysical
Research: Atmospheres, 106(D7), 7183-7192. The authors are encouraged to
check their other sources.

We added Taylor, 2001 to the references. Otherwise, there are only mi-
nor changes in the list of references. The book published by the National35

Academies (‘Next Generation Earth System Prediction’) obviously is grey
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literature – however, we retained it in the article since we think it is a good
book: It summarises the state-of-the art in research and industry, it looks
at seasonal forecasting from a broader perspective (though heavily biased
towards climate predictions), and it is written and reviewed by well-known
experts in the field.5

Lastly, there are some minor grammatical errors in the paper; however these
do not detract from the readability or arguments made therein. All the same
I do suggest that the authors spend a little time to minimise them if time
allows.

We tried our best (obviously, we are not native English speakers). However,10

we also trust the copy-editing skills of the Copernicus team to remove the
remaining errors, if the manuscript gets considered for publication.

1.3 Comments by Fredrik Wetterhall

Regarding the analysis of the time aggregation, I would suggest that you add
that to the paper since it is worth testing it. If the article gets too lengthy15

you can remove the skill vs geographical attributes to supplementary material.
However, I do not feel that the paper is too long.

We added the experiment for the five day mean streamflow to the results and
retained the skill vs. geographical attributes results.

I am not sure that adding MAE or MSE results from the literature would add20

anything to this particular study, so I would not recommend that.

We followed your recommendation.

Please also do a language check. I would in particular suggest to not use
GCM, especially in the terminology of weather forecasting. The term I would
suggest here is NWP (Numerical Weather Prediction) or even ESM (Earth25

System Model). The term GCM is too broad, for example it does not explicitly
include the analysis, which is an essential part of weather forecasting.

We tried to consistently use the term earth system model. ’GCM’ remains in
the text for a few exceptions, i.e. ’atmospheric GCM’ or ’coupled atmosphere-
ocean-land GCMs’.30
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2 Output of LATEXdiff

Below you find the output of LATEXdiff. Since we had to rewrite the code
to gain some speed and we also rerun the complete experiment, there are
some minor changes in the results (e.g. MAE values) – these changes are
introduced by the way the sequence of random integers is drawn in order to5

generate the bootstrap replicates. However, these changes neither affect the
discussion of the results nor the conclusions.

Please excuse the layout of Table 5 – we have no clue why LATEXdiff fails.
Eventually the table contains improper tex code, however, we could not solve
this issue.10
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Monthly streamflow forecasting at varying spatial scales in the
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Simon Schick1,2, Ole Rössler1,2, and Rolf Weingartner1,2
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Abstract. Model output statistics (MOS) methods
:::
can

:::
be

::::
used

::
to

:
empirically relate an environmental variable of interest to

predictions from general circulation models (GCMs
::::
earth

::::::
system

:::::::
models

::::::
(ESMs). This variable often belongs to a spatial scale

not resolved by the GCM
::::
ESM. Here, using the linear model fitted by least squares, we regress monthly mean streamflow of

the Rhine River at Lobith and Basel against seasonal predictions of precipitation, surface air temperature, and runoff from

the European Centre for Medium-Range Weather Forecasts. To address potential effects of a scale mismatch between the5

GCM
::::
ESM’s horizontal grid resolution and the hydrological application, the MOS method is further tested with an experiment

conducted at the subcatchment scale. This experiment applies the MOS method to 133 additional gauging stations located

within the Rhine basin and combines the forecasts from the subcatchments to predict streamflow at Lobith and Basel. In so

doing, the MOS method is tested for catchments areas covering four orders of magnitude. Using data from the period 1981-

2011, the results show that skill, with respect to climatology, is restricted
::
on

::::::
average

:
to the first month ahead. This result holds10

for both the predictor combination that mimics the initial conditions and the predictor combinations that additionally include

the dynamical seasonal predictions. The latter, however, reduces the mean absolute error of the former in the range of 5 to

11 percent, which is consistently reproduced at the subcatchment scale. The results further indicate that bias corrected runoff

from the H-TESSEL land surface model is an interesting option when it comes to seasonal streamflow forecasting in large

river basins
:::
An

::::::::
additional

::::::::::
experiment

::::::::
conducted

:::
for

::::
five

:::
day

:::::
mean

:::::::::
streamflow

::::::::
indicates

:::
that

:::
the

:::::::::
dynamical

::::::::::
predictions

::::
help

::
to15

:::::
reduce

:::::::::::
uncertainties

:::
up

::
to

:::::
about

::
20

::::
days

::::::
ahead,

:::
but

::::
also

::::::
reveals

::::
some

::::::::::::
shortcomings

::
of

:::
the

::::::
present

:::::
MOS

::::::
method.

1 Introduction

Environmental forecasting at the subseasonal to seasonal time scale promises a basis for planning in e.g. energy production,

agriculture, shipping, or water resources management. While the uncertainties of these forecasts are inherently large, they can

be reduced when the quantity of interest is controlled by slowly-varying and predictable phenomena, of which
:
.
:::
For

::::::::
example,20

the El Niño-Southern Oscillation might be the most prominent one
::::
plays

::
an

:::::::::
important

:::
role

::
in

:::::::::
predicting

:::
the

::::::::::
atmosphere,

::::
and

::::
snow

::::::::::::
accumulation

:::
and

:::::::
melting

:::::
often

:::::
forms

:::
the

::::::::
backbone

::
in
:::::::::

predicting
:::::::::::
hydrological

::::::::
variables

::
of

:::
the

::::
land

:::::::
surface (National

Academies, 2016).
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In case of streamflow forecasting the ESP-revESP experiment proposed by Wood and Lettenmaier (2008) provides a method-

ological framework to disentangle forecast uncertainty with respect to the initial conditions and the meteorological forcings.

Being a retrospective simulation, the experiment consists of model runs where the initial conditions are assumed to be known

and the meteorological forcing series are randomly drawn (ESP, Ensemble Streamflow Prediction) and vice versa (revESP,

reverse Ensemble Streamflow Prediction). In this context the initial conditions refer to the spatial distribution, volume, and5

phase of water in the catchment at the date of prediction.

The framework allows for the estimation of the time range at which the initial conditions control the generation of stream-

flow: When the prediction error of the ESP simulation exceeds that of the revESP simulation, the meteorological forcings start

to dominate the streamflow generation. Similarly, when the prediction error of the ESP simulation approaches the prediction

error of the climatology (i.e. average streamflow used as naive prediction strategy), the initial conditions no longer control the10

streamflow generation.

In both cases this time range depends on the interplay between climatological features (e.g. transitions between wet and

dry or cold and warm seasons) and catchment specific hydrological storages (e.g. surface water bodies, soils, aquifers, and

snow) and can vary from zero up to several months (van Dijk et al., 2013; Shukla et al., 2013; Yossef et al., 2013). Indeed, this

source of predictability is the rationale behind the application of the ESP approach in operational forecast settings, and it can15

be further exploited by conditioning on climate precursors (e.g. Beckers et al., 2016).

An emerging option for seasonal streamflow forecasting is the integration of seasonal predictions from
::::
earth

::::::
system

:::::::
models

:::::::
(ESMs),

:::
i.e.

:
coupled atmosphere-ocean-land general circulation models (Yuan et al., 2015b). Predictions from a general

circulation model (GCM)
::
an

::::
ESM

:
can be used threefold to the aim of streamflow forecasting by

1. forcing a hydrological model with the predicted evolution of the atmosphere;20

2. employing runoff simulated by the land surface model, eventually in combination with a routing model;

3. using the predicted states of the atmosphere, ocean, or land surface in a perfect prognosis or model output statistics

context with the streamflow as the predictand.

The first approach requires a calibrated hydrological model for the region of interest. In order to correct a potential bias

and to match the spatial and temporal resolution of the hydrological model, it further involves a postprocessing of the atmo-25

spheric fields. A postprocessing also might
:::::
might

:::
also

:
be applied to the streamflow forecasts to account for deficiencies of the

hydrological model. See e.g. Yuan et al. (2015a) or Bennett et al. (2016) for recent implementations of such a model chain.

In the second approach the land surface model takes the hydrological model’s place with the difference that the atmosphere

and land surface are fully coupled. Since land surface components of coupled GCMs often represent
::
the

::::
land

::::::
surface

::::::::::
component

::
of

:::::
ESMs

:::::
often

:::::::::
represents groundwater dynamics and the river routing in a simplified way (Clark et al., 2015), the simulated30

runoff might be fed to a routing model as e.g. in Pappenberger et al. (2010). To the best of our knowledge, this approach has

not yet been tested with a specific focus on the seasonal time scale
::::::::::
subseasonal

::
or

:::::::
seasonal

:::::::::
streamflow

::::::::::
forecasting.

The third approach deals with developing an empirical prediction rule for streamflow. If the model building procedure is

based on observations only, the approach is commonly referred to as perfect prognosis (PP). On the other hand, the model
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might be built using the hindcast archive of a particular GCM
::::
ESM (model output statistics, MOS). In both cases the final

prediction rule is applied to the actual GCM
::::
ESM

:
outcome to forecast the quantity of interest. Therefore, MOS methods

require the presence of a hindcast archive of the involved GCM
::::
ESM, but can take systematic errors of the GCM

::::
ESM

:
into

account (Brunet et al., 1988).

Only a few studies map GCM
::::::
Studies

::::
that

::::
map

:::::
ESM output to streamflow with PP or MOS methods , including

::::::
include5

multiple linear regression (Marcos et al., 2017), principal components regression and canonical correlation analysis (Foster

and Uvo, 2010; Sahu et al., 2016), artificial neural networks (Humphrey et al., 2016), and an ensemble of generalized linear

models , locally weighted polynomial regression, and k-nearest-neighbour prediction rules (Chowdhury and Sharma, 2009). By

far the most selected predictor is catchment area precipitation, but depending on the study region also surface air temperature,

sea surface temperature, or wind velocity are used
::::::::::::::::
(Slater et al., 2017),

::
or

::::::::
artificial

:::::
neural

::::::::
networks

::::::::::::::::::::
(Humphrey et al., 2016).10

Whatever the selected predictors, PP and MOS methods often
:::::::
generally

:
conduct the mapping across spatial scales. For example,

if the catchment of interest falls below the grid scale of the GCM
::::
ESM, PP and MOS methods implicitly perform a downscaling

step. If the catchment covers several grid points, the method implicitly performs an upscaling.

The present study aims to take up this scale bridging and to test a MOS-based approach for seasonal
::::::
monthly

:::::
mean

:
stream-

flow forecasting and a range of catchment areas. To analyse the limits of predictability and to aid interpretation, we first adapt15

the
:::::
define

::::::::
predictor

:::::::::::
combinations

::::::::
motivated

:::
by

:::
the

:
ESP-revESP framework to the context of regression by defining predictor

combinations that conceptually correspond to the ESP and revESP simulations
:::::::::
framework. Next, seasonal predictions of precip-

itation, surface air temperature, and runoff from the European Centre for Medium-Range Weather Forecasts (ECMWF) enter

the regression model
:::::::
equation and the resulting forecast skill is estimated with respect to the ESP-like

::::::::::
ESP-inspired

:
regression

model.20

The variation of the catchment area borrows from the concept of the ’‘working scale’ (Blöschl and Sivapalan, 1995): Given

a particular target catchment, the regression models are applied at the catchment scale as well as
::
at two levels of subcatchment

scales. In case of the subcatchments
:::::
latter, the resulting forecasts are combined in order to get a forecast at the outlet of the

target catchment. By validating the combined forecasts of the subcatchments at the main outlet, any differences in the forecast

quality can be attributed to the working scales.25

This experiment is conducted for the Rhine River at Lobith and Basel in Western Europe. In general the current quality of

seasonal climate predictions is classified to be low for this region (Kim et al., 2012; Doblas-Reyes et al., 2013). Streamflow

hindcast experiments with dynamical
::::::
Studies

:::::
using

::::::::::
subseasonal

::
or

:
seasonal climate predictions , however, indicate

:::::::
indicate

::
for

:::::::
several

::::
parts

::
of

:::
the

::::::
Rhine

::::
basin

::::::::
moderate

:
skill beyond the lead time of traditional weather forecasts.

::::::
These

::::::
studies

:::::
apply

::
the

::::::
model

:::::
chain

:::
as

:::::::
outlined

::::::
above

::
in

::::::::
approach

:::::::
number

::::
one: Concerning catchments of the Alpine and High Rhine, Orth30

and Seneviratne (2013) estimate the skillful lead time for daily mean streamflow to lie between one and two weeks, which

increases to about one month when focusing on low flows (Fundel et al., 2013; Jörg-Hess et al., 2015). Also for daily low

flow Demirel et al. (2015) report for the Moselle River a sharp decrease in skill after 30 days. For a set of French catchments

Crochemore et al. (2016) show that weekly streamflow forecasts are improved for lead times up to about one month when

3



using postprocessed seasonal precipitation predictions. Singla et al. (2012) advance spring mean streamflow forecasts for the

French part of the Rhine basin with seasonal predictions of precipitation and surface air temperature.

The above studies show that in case of the Rhine basin current model chains skillfully forecast daily mean streamflows

approximately two weeks ahead. When considering low flows only, these two weeks extend to about one month, and by

reducing the forecasts temporal resolution even longer forecast ranges seem to be feasible. As a compromise between skillful5

lead time and temporal resolution, we decide to focus on monthly mean streamflow at lead times of zero, one, and two months.

::
In

:::::
order

::
to

::::::
resolve

::::
the

:::::::
monthly

::::
time

:::::
scale

::::
and

::
to

:::
test

::::
the

:::::
MOS

::::::
method

:::
at

::::::
shorter

::::
time

::::::::
intervals,

:::
an

:::::::::
experiment

:::
is

::::::
further

::::::::
conducted

:::
for

::::
five

:::
day

:::::
mean

::::::::::
streamflow.

:
Here, zero lead time refers to forecasting the next month

:::
one

::::
time

:::::::
interval

:::::
ahead,

while e.g. the
:
a one month lead time denotes a temporal gap of one month between the release of a forecast and its time of

validity.10

Strictly speaking, the present study deals with hindcasts or retrospective forecasts. However, for the sake of readability we

use the terms forecast, hindcast, and prediction interchangeably.

Below, Sect. 2 introduces the study region, Sect. 3 describes the data set, Sect. 4 exposes the methodology in more detail,

and in Sect. 5 and 6 the results are presented and discussed, respectively.

2 Study region15

The Rhine River is situated in Western Europe and discharges into the North Sea; in the south its basin is defined by the Alps.

About 58 million people use the Rhine water for the purpose of navigation, hydro power, industry, agriculture, drinking water

supply, and leisure (ICPR, 2009). The present study focuses on two gauging stations: The first is located in Lobith near the

Dutch-German border, the second in Basel in the tri-border region of France, Germany, and Switzerland.

Table 1 lists some geographical attributes. The Rhine at Basel covers an area of approximately one fifth of the Rhine at20

Lobith whereas the mean elevation halves when going from Basel to Lobith. The negative minimum elevation of the Rhine at

Lobith is due to a coal mine. Dominant land use classes are farmed areas and forests, but the Rhine at Basel proportionately

includes more grass land, wasteland, surface water, and glacier.

Concerning the climatology of the period 1981-2011 (Fig. 1), we observe that streamflow peaks at Lobith in winter and at

Basel in early summer. Streamflow at Basel is dominated by snow accumulation in winter, subsequent snow melting in spring,25

and high precipitation in summer. At Lobith precipitation exhibits less variability and higher surface air temperature intensifies

evaporation. Based on recent climate projections, it is expected that streamflow in the Rhine basin is going to increase
::::::::
increases

in winter, to decrease
::::::::
decreases

:
in summer, and to slightly decrease

::::::
slightly

::::::::
decreases

:
in its annual mean in the last third of the

21th century (Bosshard et al., 2014).
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Table 1. Geography of the Rhine River at Basel and Lobith according to CORINE (2013), EU-DEM (2013), and GRDC (2016).

Lobith Basel

area (km2) 159700 36000

gauging station (ma. s.) 20 250

elevation min (ma. s.) -230 250

elevation max (ma. s.) 4060 4060

elevation mean (ma. s.) 490 1050

farmed area (%) 47.7 36.8

forest (%) 35.8 31.6

grass land (%) 3.4 11.4

urban area (%) 9.6 7.0

wasteland (%) 1.8 8.2

surface water (%) 1.4 4.0

glacier (%) 0.3 1.0

Figure 1. Monthly area averages of streamflow, precipitation, and surface air temperature for the Rhine at Lobith and Basel with respect to

the period 1981-2011 (GRDC, 2016; E-OBS, 2016).

3 Data

Observations of river streamflow and gridded runoff, precipitation, and
::::::::::
precipitation,

:
surface air temperature,

::::
and

:::::
runoff

:
of

the period 1981-2011 in daily resolution constitute the data set. Throughout the study gridded quantities get aggregated to

(sub)catchment area averages.
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3.1
:::::::::::

Observations

The streamflow observations consist of a set of 135 time series in m3 s−1. These series as well as the corresponding catchment

boundaries are provided by several public authorities and the Global Runoff Data Centre (GRDC (2016); see also Sect. 9), and

belong to catchments with nearly natural to heavily regulated streamflow.

The ENSEMBLES gridded observational data set in Europe (E-OBS, version 14.0) provides precipitation and surface air5

temperature on the
:
a
:
0.25◦ regular grid (Haylock et al., 2008; E-OBS, 2016). These fields base upon the interpolation of station

data and are subject to inhomogeneities and biases. However, a comparison against meteorological fields derived from denser

station networks attests a high correlation (Hofstra et al., 2009).
::
In

::::
case

::
of

:::
the

:::::
Rhine

:::::
basin

::
an

::::::
E-OBS

:::
tile

::::::::::::
approximately

::::::
covers

::
an

::::
area

::
of

:::
500

:
km2.

:

3.2
:::::::::

Dynamical
:::::::
seasonal

::::::::::
predictions10

Precipitation, surface air temperature, and runoff from ECMWF’s seasonal forecast system 4 (S4) archive are on a 0.75◦ regular

grid. This
:
,
:::::::::
amounting

::
in

::::
case

::
of

:::
the

:::::
Rhine

:::::
basin

::
to

:
a
::::
tile

:::
area

:::
of

:::::
about

::::
4500

:
km2

:
.
:::
The

:
hindcast set consists of 15 members of

which we take the ensemble mean. Runs of the coupled atmosphere-ocean-land model are initialised on the first day of each

month with a lead time of
::
and

::::::::
simulate

:::
the

:::::::::
subsequent

:
seven months. Up to 2010, initial conditions are out of ERA Interim,

and the year 2011 is based on the operational analysis.15

The atmospheric model (IFS cycle 36r4) consists of 91 vertical levels with the top level at 0.01 hPa in the mesosphere. The

horizontal resolution is truncated at TL255 and the temporal discretisation equals 45 min. The NEMO ocean model has 42

levels with a horizontal resolution of about 1◦. Sea ice is considered by using its actual extent from the analysis and relaxing it

towards the climatology of the past five years (Molteni et al., 2011).

The H-TESSEL land surface model implements four soil layers with an additional snow layer on the top. Interception,20

infiltration, surface runoff, and evapotranspiration are dealt with by dynamically separating a grid cell in to
:::
into fractions of

bare ground, low and high vegetation, intercepted water, and shaded and exposed snow. In contrast, the soil properties of a

particular layer are uniformly distributed within one grid cell. Vertical water movement in the soil follows Richards’s equation

with an additional sink term to allow for water uptake by plants. Runoff per grid cell then finally equals the sum of surface

runoff and open drainage at the soil bottom (ECMWF, 2016).25

In case of the Rhine basin an E-OBS tile in the above configuration approximately covers an area of 500 , and an S4 tile an

area of about 4500
::::::::::::::::::::::::::::::::
(Balsamo et al., 2009; ECMWF, 2016).

4 Method

The following subsections outline the experiment, which is individually conducted for both the Rhine at Lobith and Basel.

Section 4.1 first details the predictor combinations and the regression strategy. Section ,
:::::
Sect. 4.2 introduces the variation of30

the catchment area,
:
and Sect. 4.3 illustrates the validation of the resulting hindcasts.
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Table 2. Predictor combinations consisting of (with respect to the date of prediction) preceding and subsequent precipitation (p), surface air

temperature (t), and runoff (q); the numerical values are either out of
::
the

:
E-OBS

::::::
gridded

:::
data

:::
set or the

::::::::
ECMWF‘s S4 hindcast archive.

preceding subsequent

model ppre tpre psub tsub qsub

refRun E-OBS E-OBS E-OBS E-OBS -

ESP
:::::
preMet

:
E-OBS E-OBS - - -

revESP
:::::
subMet

:
- - E-OBS E-OBS -

S4P E-OBS E-OBS S4 - -

S4T E-OBS E-OBS - S4 -

S4PT E-OBS E-OBS S4 S4 -

S4Q E-OBS E-OBS - - S4

4.1 Model building

Let
:::
The

:::::::::
predictand

:
yi,j denote

::::::
denotes

:
observations of mean streamflow at a specific gauging site in m3 s−1 for j = 30,60,90

::::::::::::::
j = 5,10, . . . ,180 d, starting the first day of each calendar month i= 1, ...,12

::::::::::
i= 1, . . . ,12

:
in the period 1981-2011. Henceforth

yi,j is the predictand.

4.1.1 Predictor combinations5

The set of predictors consists of variables that either precede or succeed the date of prediction , i.e the first day of month i

(Tab. 2). The first model refRun (reference run) is aimed to estimate how well the regression works given the best available

input data. The second and third combinations imitate the ESP and revESP simulations. The ESP-revESP framework thus

is mimicked by constraining the model to observed precipitation and temperature either prior to or following
:::::::::::
combinations

:::::
named

:::::::
preMet

:::::::::
(preceding

:::::::::::
meteorology)

:::
and

:::::::
subMet

::::::::::
(subsequent

:::::::::::
meteorology)

:::
are

::::::::::
constrained

::
to

::::::::::
precipitation

::::
and

::::::
surface

:::
air10

::::::::::
temperature

::::::::
preceding

:::
and

::::::::::
subsequent

::
to the date of prediction

:::::::
forecast,

::::::::::
respectively.

The S4* combinations actually constitute the MOS method and consider the seasonal predictions out of the S4 hindcast

archive, where we use the asterisk as wildcard to refer to any of the S4P, S4T, S4PT, and S4Q models. The S4P and S4T models

are used to separate the forecast quality with respect to precipitation and temperature. The S4Q model is tested as H-TESSEL

does not implement any groundwater dynamics and preceding precipitation and temperature might tap this source of pre-15

dictability. Let aside the S4Q model, the preceding and subsequent predictors conceptually approximate the initial conditions

and the meteorological forcings, respectively.
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4.1.2 Regression

For a particular predictor combination and yi,j we first apply a correlation screening to select the optimal aggregation time ai,j

for each predictor :
::::::::
according

::
to

ai,j = argmaxk | cor(yi,j ,xi,k) | (1)

where xi,k is one of the predictors from Tab. 2 and k =−10,−20, ...,−720
::::::::::::::::::::
k =−10,−20, . . . ,−720

:
d in case of ppreand tpre5

(backward in time relative to the date of prediction) and k = 5,10, ..., j
::::::::::::
k = 5,10, . . . , j d in case of psub, tsub, and qsub (forward

in time relative to the date of prediction). The limit of 720 d is chosen since larger values rarely get selected.

The ordinary least squares hyperplane is then used for prediction without any transformation, basis expansion, or interaction.

However, model variance can be an issue: Specifically for the ESP
::::::
preMet model from Tab. 2 we expect the signal-to-noise

ratio to be low in
:::
for most of the seasons

:::::::::
predictands. In combination with the moderate sample size n= 31

:::::
n= 26

:
for model10

fitting
::::
(with

::::::
respect

:::
to

:::
the

::::::::::::::
cross-validation,

:::
see

:::::
Sect.

:::::
4.1.3), perturbations in the training set can lead to large changes in

the predictors
::::::::
predictor’s

:
time lengths ai,j and regression coefficients. In order to reduce

:::::::
stabilise model variance, we draw

100 non-parametric bootstrap replicates of the training set, fit the model to these replicates, and combine the predictions by

unweighted averaging (Breiman, 1996; Schick et al., 2016).

4.1.3 Cross-validation15

Each year with a buffer of two years (i.e. the two preceding and subsequent years) is left out and the regression outlined in

Sect. 4.1.2 is applied to the remaining years. The fitted models then predict the central left-out years. Buffering is used to avoid

artificial forecast quality due to hydrometeorological persistence (Michaelsen, 1987).

4.1.4 Lead time

Lead time is introduced by integrating the predicted ŷi,j in time and taking differences with respect to j. For example monthly20

mean streamflow zi in July (i= 7) is predicted with a lead time of one month according to

ẑ7 = (ŷ6,60 · (30 + 31) · sb− ŷ6,30 · 30 · sb)/(31 · sb) (2)

where s= 24 · 60 · 60
::::::::::::
b= 24 · 60 · 60 s equals the number of seconds of one day and both ŷ and ẑ have unit m3 s−1. For zero

lead time, we set ẑi = ŷi,30. Please note that the year 1981 needs to be dropped from the validation (Sect. 4.3) since the length

of the streamflow series prevents to forecast e.g. January 1981 with a lead time of one month.25

4.2 Spatial levels

Contrasting the forecast quality of a given model for individual catchments separated in space inevitably implies a large number

of factors, e.g. the geographic location (and thus the involved GCM
::::
ESM

:
grid points), the orography, or the degree to which

streamflow is regulated. In order to hold these factors whilst
::::
while

:
screening through a range of catchment areas, we propose

to vary the working scale within a particular target catchment.30
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Table 3. Subcatchment division of the Rhine at Lobith and Basel. The median area covers four orders of magnitude.

number of area km2

subcatchments min median max

Lobith level 1 1 - 159700 -

Lobith level 2 5 19690 33220 43550

Lobith level 3 12 8284 13040 17610

Basel level 1 1 - 36000 -

Basel level 2 10 1871 2946 6346

Basel level 3 124 6 187 2654

Following this line of argumentation we apply the model building procedure from Sect. 4.1 to three distinct sets of subcatch-

ments, which we term ’
:
‘spatial levels’ (Tab. 3). Spatial level 1 simply consists of the target catchment itself, i.e. the Rhine at

Lobith and Basel. At spatial levels 2 and 3 we take additional gauging stations from within the Rhine basin, which naturally

divide the basin into subcatchments.

For these subcatchments we have streamflow observations belonging to the entire upstream area, but not the actual subcatch-5

ment area itself. To arrive at an estimate of the water volume generated by the subcatchment, we equate the predictand yi,j to

the difference of outflow and inflow of that subcatchment. For a particular date of prediction and spatial level, the sum of the

resulting subcatchment forecasts ẑi then constitutes the final forecast for the Rhine at Lobith and Basel, respectively.

A drawback of this procedure is
::::
This

::::::::
procedure

:::::::
implies that we ignore the water travel time: First when taking the differences

of outflows and inflows and second when summing up the subcatchment forecasts. While the former increases the observational10

noise, the latter does not affect the regression itself, but adds a noise term to the final forecast at Lobith and Basel. As the

statistical properties of the noise introduced by the water travel time is unknown, we only can argue that the results below

provide a lower bound of the forecast quality due to this methodological constraint.

4.3 Validation

The forecast quality of the regression models is analysed with the pairs of cross-validated monthly mean streamflow forecasts15

and observations (ẑ, z). These series cover the period 1982-2011 and have a sample size of n= 360.
::
In

::::::
general

:::
the

:::::::::
validation

:
is
:::::
based

:::
on

:::
the

:::::
mean

:::::::
absolute

::::
error

::::::
(MAE)

::::
and

::::::::
Pearson’s

:::::::::
correlation

:::::::::
coefficient

:::
(ρ).

:

The first validation steps focus on the forecasts at Lobith and Basel and thus consider the sum of the subcatchments

:::::::::::
subcatchment

:
forecasts ẑ per spatial level. The forecasts in the subcatchments itself are addressed in Sect. 4.3.5.

::::::
Finally,

::
the

:::::::::
validation

::
of

:::
the

:::
five

::::
day

:::::
mean

:::::::::
streamflow

::::::::
forecasts

:::::
(Sect.

:::::
4.3.6)

:::::::::::
complements

:::
the

:::::::
monthly

::::::::
analysis.20
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4.3.1 Benchmarks

Climatology and runoff simulated by H-TESSEL serve as benchmarks. The monthly climatology is estimated with the arith-

metic mean from the daily streamflow observations. The monthly basin averages of
:::::
After

::::::::
averaging

:::
in

::::
time,

::::::
runoff

:::::
from

H-TESSEL get
:::
gets

:
post-calibrated via linear regression against the monthly mean streamflow observations at Lobith and

Basel, respectively
:::::::::
streamflow

::::::::::
observations

:::
per

::::::
spatial

::::
level. For both benchmarks the cross-validation scheme from Sect. 4.1.35

is applied.

4.3.2 Taylor diagram

Taylor diagrams (Jolliffe and Stephenson, 2012) are employed to get a global overview. For a particular model , let ρ be the

Pearson correlation coefficient of the forecasts ẑ and the corresponding observations z
::::::::::::::::::
(Taylor, 2001) provide

::
an

::::::::::
instrument

::
to

:::::::
contrast

:::::
model

::::::::::::
performances. The plotting position of the

:
a
::::::::
particular

:
model has a distance from the origin equal to the10

standard deviation of
::
its

::::::::
forecasts ẑ and is located on the line having an angle of incline φ= arccos(ρ). The plotting position

of the observations z has a distance from the origin equal to the standard deviation of z and is located on the abscissa. The

distance between the
::::
these two plotting positions equals the root mean squared error with the unconditional bias E(Ẑ −Z)

removed.

4.3.3 Mean absolute error
::::::::
Statistical

::::::::::
significance15

The statistical significance of the difference in forecast accuracy between the ESP and a S4* model is tested in terms of the

mean absolute error (MAE). As
:
In

::::
case

::
of

:::
the

::::::::
monthly

:::::::
analysis it turns out ,

:::
that

:
the paired differences of absolute errors for

a given lead timeand spatial level,
::::::
spatial

:::::
level,

:::
and

::::::::
reference

:::::
model

::
r

d=| ẑESPr− z | − | ẑS4*− z | (3)

no longer exhibit serial correlation and approximately follow a Gaussian distribution. Using the mean difference d̄, we then20

report the p-values of the two-sided t-test with null hypothesis d̄= 0 and alternative hypothesis d̄ 6= 0. The sample autocorre-

lation functions and quantile plots against the Gaussian distribution of d for zero lead time
:::
and

::
r
:::::
being

:::
the

::::::
preMet

::::::
model are

included in the additional materials (Sect. 10).

4.3.4
::::
Skill

To evaluate whether a particular model m has skill with respect to a reference model r the MAE ratio25

s= 1− MAEm

MAEr
(4)

is employed. For example, m could be a S4* model and r the ESP
::::::
preMet model. s= 0.1 means that the model m lowers the

MAE of model r by 10 %.
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4.3.5 Subcatchments

To help in the interpretation of the forecast quality of the MOS method regarding the spatial levels at Lobith and Basel, we

finally have a look at the subcatchments itself, which are up to now only implicitly addressed. In
:::
plot

::
in a qualitative manner

we plot the MAE skill score (Eq. 4) of the S4* and ESP
::::::
preMet

:
models in space as well as against the subcatchment area, the

median of the terrain roughness, the MAE skill score of the revESP with the ESP
::::::
subMet

::::
with

:::
the

:::::::
preMet model as reference,5

and the MAE skill score of the refRun model with the climatology as reference.

The terrain roughness is included since the atmospheric flow in complex terrain is challenging to simulate and atmospheric

GCMs
::::::
general

:::::::::
circulation

::::::
models

:
need to filter the topography according to their spatial resolution (Maraun and Widmann,

2015; Torma et al., 2015). The terrain roughness is defined as the difference of the maximum and minimum elevation value

within a 3 times 3 pixel window (Wilson et al., 2007). It is derived here from the digital elevation model EU-DEM (2013),10

which has a horizontal resolution of 25 m.

4.3.6
::::
Five

:::
day

:::::
mean

::::::::::
streamflow

::
In

::::
order

::
to

::::::
predict

::::
five

:::
day

:::::
mean

:::::::::
streamflow,

:::
Eq.

::
2

:
is
::::
used

::::
with

::
a

:::
step

::::
size

::
of

:::
five

:::::
days.

::::::::
However,

:::
the

:::::::
monthly

:::
date

::
of

::::::::::
predictions

::::::
impose

:::::
some

:::::::::
restrictions

::
to

:::
the

:::::::::
validation:

:::::
First,

:
it
::
is
:::
not

:::::::
possible

:::
to

:::::
derive

::::::
regular

::::
time

:::::
series

::
at
::::::::
different

::::
lead

::::
times

:::
as

::
in

:::
the

:::::::
monthly

:::::::
analysis.

:::::::::::
Furthermore,

:::
the

:::::::::::
distributional

::::::::::
assumptions

:::::::
required

:::
for

:::
the

::::::::
statistical

:::
test

:::::
from

::::
Sect.

::::
4.3.3

:::
are

:::
not

:::::
valid.

::::
The15

:::::
results

::
of

:::
the

::::
five

:::
day

:::::
mean

:::::::::
streamflow

::::::::::
experiment

::::
thus

:::
are

:::::::
restricted

:::
to

:
a
:::::::::
qualitative

::::::::::::
interpretation.

5 Results

:::
The

::::::::::
experiment

:::::
spans

::::::
several

::::::::::
dimensions

::::
(i.e.

::::::
Lobith

::::::
versus

:::::
Basel,

::::
date

:::
of

:::::::::
prediction,

::::
lead

::::::
times,

::::::::
predictor

::::::::::::
combinations,

:::::
spatial

::::::
levels),

:::
so

:::
we

::::::::
frequently

::::
need

:::
to

:::::::
collapse

:::
one

::
or

::::::
several

::::::::::
dimensions.

::::
The

::::::::
additional

::::::::
materials

::
as

:::::
listed

::
in

:::::
Sect.

::
10

:::
try

::
to

:::::::
complete

:::
the

::::::
results

::
as

::::::::
presented

:::::::
bellow.20

5.1 Taylor diagram

Figure 2 shows the Taylor diagrams for Lobith and Basel to get a global overview regarding the lead times, predictor combi-

nations, and spatial levels. Accurate forecasts reproduce the standard deviation of the observations (thus lie on the circle with

radius equal to the the standard deviation of the observations), and also exhibit high correlation (so travel on this circle towards

the observations on the abscissa). At a first glimpse the spatial levels do not introduce clear differences and most of the models25

mass at the same spots.

The benchmark climatology is outperformed at zero lead time by all models. At longer lead times the revESP
::::::
subMet

:
model

pops up besides the refRun model and the remaining models approach climatology. H-TESSEL stays close to the regression

models and tends to score a higher correlation in case of Lobith, but not Basel. For the refRun model we note a correlation of

about 0.9 independently of the lead time while the observations
:::::::::::
observation’s variability generally is underestimated.30
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Figure 2.
:::::
Taylor

:::::::
diagrams

:::
for

::
the

::::::::::
benchmarks

:::::::::
climatology

:::
and

:::::::::
H-TESSEL

:::
and

::
the

:::::::
predictor

:::::::::::
combinations

::::
from

:::
Tab.

:
2
::

at
:::::
Lobith

::::
(top

::::
row)

:::
and

::::
Basel

::::::
(bottom

:::::
row);

:::::::
n= 360.

For Lobith and zero lead time we observe an elongated cluster, which comprises all models but the climatology and the

refRun model. Some models score a higher correlation – zooming in would reveal that these are the S4P, S4PT, and S4Q

models with H-TESSEL standing at the forefront. In the following we focus on the forecasts with

5.2
:::

Date
:::
of

:::::::::
prediction

::::::
versus

::::
lead

::::
time

:::::
Figure

::
3
:::::
takes

:
a
::::::
closer

::::
look

::
at

:::
the

:::::::
clusters

::
in

::::
Fig.

:
2
::
at
:::::

hand
::
of

:::
the

:::::
S4PT

::::::
model

::::
and

::
in

:::::::
addition

::::::
breaks

:::::
down

:::
the

:::::::::
prediction5

:::
skill

::::
into

:::
the

::::::::
different

:::::::
calendar

:::::::
months.

::::::
Please

::::
note

::::
that

:::
the

:::::::
ordinate

::::
lists

:::
the

:::::::
calendar

::::::
month

:::
and

::::
not

:::
the

::::
date

::
of

:::::::::
prediction

:
–
:::
e.g.

::::
the

:::
top

::::
rows

:::::
show

:::
the

::::
skill

::
in

:::::::::
predicting

::::::::
January’s

:::::
mean

:::::::::
streamflow

:::
for

::::
lead

:::::
times

:::
of

::::
zero

::
up

::
to

::::
two

:::::::
months.

:::::::
Crosses

::::::
indicate

::::::::
p-values

::::::
smaller

::::
than

::::
0.05

:::::
when

:::
Eq.

:
3
::
is
:::::::
applied

::
to

:::
the

::::::::
individual

::::::::
calendar

::::::
months.

:

::
In

:::::::
general,

:::
the

:::::::
patterns

:::::
repeat

:::::
more

::
or

::::
less

:::::
along

:::
the

::::::
spatial

:::::
levels

:::
and

::::
the

:::::
S4PT

:::::
model

:::::
beats

:::
the

::::::::
reference

::::::
models

:::
in

:::
the

::::::::::
denominator

::
of

::::
Eq.

:
4
::::
only

::
at
:

zero lead timesince at longer lead times we virtually do not have any improvements relative to10

the climatology
:
.
:::
An

::::::::
exception

:::
can

:::
be

:::::::
observed

:::
for

:::::
June,

:::
for

:::::
which

:::
the

:::::
S4PT

:::::
model

:::::
most

:::::
likely

::::::::::
outperforms

:::
the

::::::::::
climatology

::
at

:::
one

::::::
month

::::
lead

:::::
time.

:::
For

::::
May,

:::
the

:::::
S4PT

::::::
model

::::::::
outscores

::::
both

::
the

:::::::
preMet

:::
and

:::
the

::::::
subMet

::::::
model.

::::::
While

::::::::
significant

::::::::::
differences

:::::::
between

:::
the

:::::
S4PT

:::
and

:::
the

::::::
preMet

::::::
models

:::
are

::::
rare,

:::
the

::::::
subMet

::::::
model

::::
starts

::
to

::::::::::
outperform

::
the

:::::
S4PT

::::::
model

::::::
already

::
at

:
a
::::
lead

::::
time

::
of

:::
one

::::::
month.

::::
The

:::::::::
comparison

:::::::
against

::
the

::::
bias

::::::::
corrected

::::::::::
H-TESSEL

:::::
runoff

::::::
shows

:::
that

:::
the

:::::
S4PT

::::::
model

:::::
might

:::::::
provide

::::
more

:::::::
accurate

::::::::::
predictions15

::
for

::::
late

:::::
spring

::::
and

::::
early

:::::::
summer,

:::
but

::::
not

::::::::
otherwise.

5.3 Mean absolute error
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Figure 3. Taylor diagrams for
::::
MAE

::::
skill

::::
score

::
of

:::
the

::::
S4PT

::::::
model

:::
with

::::::
respect

::
to

:
the benchmarks climatology

:
,
:::
the

::::::
preMet

:::
and

::::::
subMet

::::::
models, and

:::
bias

::::::::
corrected H-TESSEL

:::::
runoff.

:::
The

:::::::
ordinate

::::::
depicts

::
the

:::::::
calendar

:::::
month

:
and the predictor combinations from Tab

::::::
abscissa

::
the

:::::::
monthly

:::
lead

::::
time. 2 at Lobith (top row)

:::::
Crosses

:::::::
indicate

::::::
p-values

::::::
smaller

:::
than

::::
0.05

:::
for

::
the

::::
null

::::::::
hypothesis

:::
‘the

:::::::
reference

:::::
model

::
in

:::
the

:::::::::
denominator

:
and Basel (bottom row)

::
the

::::
S4PT

:::::
model

::::
score

:::
an

::::
equal

::::
mean

:::::::
absolute

:::::
error’;

:::::
n= 30.

Table
::
In

::::
order

::
to
::::::::
conclude

:::
the

:::::::
analysis

::
of

:::
the

::::::::
monthly

:::::::::
predictions

::
at

::::::
Lobith

:::
and

::::::
Basel,

::::
Tab. 4 reports the mean absolute error

(MAE )
::::
MAE

:
at zero lead time. Reading Tab. 4 along the rows reveals a more or less consistent pattern: The refRun model

approximately halves the MAE of the climatology; differences between the ESP, revESP
::::::
preMet,

:::::::
subMet, and S4T models are

small; compared to the ESP
::::::
preMet

:
model, the S4P, S4PT, and S4Q models lower the MAE by about 40 m3 s−1 for Lobith

and by about 15 m3 s−1 for Basel; and H-TESSEL outperforms the S4* models in case of Lobith, but not Basel. When reading5

Tab. 4 along the columns, we generally note at Lobith a decreasing MAE when going from spatial level 1 to spatial level 3. In

case of Basel, the MAE remains more or less constant except for the refRun model.

Focusing on the MOS method, Tab. 4.3.3 contains the
:
5
::::
lists

:::
the

::::::::::::
corresponding

:::::
MAE

::::
skill

::::
score

::::
(Eq.

:::
4)

::
of

:::
the

:::
S4*

:::::::
models

::::
using

:::
the

:::::::
preMet

:::::
model

::
as

:::
the

:::::::::
reference.

:::
The

:
p-values for the null hypothesis ’the ESP

::::::
preMet and S4* models score an equal

13



Table 4. Mean absolute error at zero lead time of the benchmarks climatology and H-TESSEL and the predictor combinations from Tab. 2,

rounded to integers. All values have unit m3 s−1; n= 360.

climatology H-TESSEL refRun ESP
:::::
preMet revESP

:::::
subMet

:
S4P S4T S4PT S4Q

Lobith level 1 633 419 334 499
::
500

:
499

:::
498 460

:::
459

:
506

:::
503

:
464

:::
467

:
446

:::
445

:

Lobith level 2
:::
633

: :::
417 299

:::
295

:
484 497

:::
494 440 484 445 442

Lobith level 3
:::
633

: :::
417 288

:::
287

:
480

::
482

:
495 437

:::
436

:
479

:::
481

:
442

:::
441

:
439

Basel level 1 239 191 130
:::
131

:
201

::
199

:
194

:::
195 188

:::
189

:
195

:::
196

:
187

:::
188

:
190

:::
189

:

Basel level 2
:::
239

: :::
186 118

:::
117

:
199 192 185

:::
184

:
194 184 187

:::
186

:

Basel level 3
:::
239

: :::
184 113

:::
112

:
199 193 184 195 183 187

Table 5.
::::
MAE

::::
skill

::::
score

::
of

:::
the

:::
S4*

::::::
models

::::::
relative

:
to
:::

the
::::::
preMet

:::::
model

:::
(Eq.

::
4,

::::::::
expressed

:
in
:::::::
percent)

:
at
::::

zero
:::::
month

::::
lead

::::
time. p-values for

the null hypothesis ’
:
‘the ESP

:::::
preMet

:
and S4* models score an equal mean absolute error’ at zero lead time

::
are

:::::::
enclosed

::
in

::::::
brackets; n= 360.

S4P S4P S4T S4T S4PT S4PT S4Q S4Q

Lobith level 1
:
8
: :

(<0.01
:
) 0.32

:
-1
: ::::

(0.64)
:
7 (<0.01

:
)
: :

11
:

(<0.01
:
)

Lobith level 2
:
9
: :

(<0.01
:
) 0.95

:
0
: ::::

(0.93)
:
8 (<0.01

:
)
:

9
:

(<0.01
:
)

Lobith level 3
:

10
: :

(<0.01
:
) 0.89

:
0
: ::::

(0.88)
:
9 (<0.01

:
)
:

9
:

(<0.01
:
)

Basel level 1 <0.01 0.03
:
5
:

<
:
(0.01

:
) 0.01 Basel level 2

:
1
:

<0.01
::::
(0.25) 0.05

:
6 <(0.01

:
)
:

<5
:

(0.01
:
)

Basel level 3 <0.01 0.08
:
2 <0.01

:
7
: :

(<0.01MAE skill score of the S4* models relative to the ESP model (Eq. 4), expressed in percent; n= 360. S4P S4T S4PT S4Q Lobith level 1 8 -1 7
:
) 11 Lobith level 2 9 0

::::
(0.04) 8 9 Lobith level 3 9 0

:::::
(<0.01)

:
8 6

:
9

:::::
(<0.01)

Basel level 1 6 3 7 5 Basel level 2 7
::::::
(<0.01) 2 7 6 Basel level 3

::::
(0.11) 8 2 8

:::::
(<0.01)

:
6

:::::
(<0.01)

mean absolute error’ . Apart from the S4T model the results among the spatial levels agree. While at Lobith the null hypothesis

for the S4T model should not be rejected, at Basel one might do so.

Table 5 shows the corresponding MAE skill score (Eq. 4) using the ESP model as reference. The
:::
are

:::::
listed

::
in

::::::::
brackets.

:::
We

:::
see

:::
that

:::
the

:
S4P, S4PT, and S4Q models score an error reduction ranging from 5 to 11 %. In case of the S4T model an error

reduction is
::::
either

:
not existent (Lobith) or small (Basel), supporting the

:::::
which

::::::
comes

:::::
along

::::
with high p-valuesfrom Tab. 4.3.3.5

The MAE reduction generally tends to increase along the spatial levels, however, on a rather low level.

In order to reduce the number of models, we drop the S4P, S4T, and S4Q models and focus in the next section on the S4PT

model. Temperature is retained as predictor because the S4T model might not be rejected at Basel (Tab. 4.3.3). Among the

similar performing S4P, S4PT, and S4Q models, the S4PT model is selected for ease of interpretation as the refRun, ESP,

revESP, and S4PT models share the same predictors. For the sake of completeness Fig. 4 and 5 below are included in the10

additional materials for the dropped S4* models (Sect. 10).
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Figure 4. MAE skill score of the S4PT model with respect to the ESP
::::::
preMet model for each subcatchment and zero lead time. Subcatchments

are coloured only when the p-value for the null hypothesis ’‘the ESP
::::::
preMet and S4PT models score an equal mean absolute error’ is smaller

than 0.05. In the bottom maps the main outlets at Lobith and Basel are marked with a black circle
::::
white

::::
cross

:
and open water surfaces are

coloured in blue (CORINE, 2013; EU-DEM, 2013);
:::::::
n= 360.

5.4 Subcatchments

Figure 4 depicts the MAE skill score (Eq. 4) for the S4PT model relative to the ESP
::::::
preMet

:
model for each subcatchment

at zero lead time. If the MAE difference does not exhibit a p-value smaller than 0.05 (Eq. 3), the subcatchment is coloured

in white. We observe that the MAE skill score takes values in the range of
:::::
about -0.06 to 0.12

::::
0.11 and both the lowest and

highest scores occur at Basel and spatial level 3. Negative scores can only be found at Basel and spatial level 3, and positive5

skill tends to cluster in space.

The same skill scores from Fig. 4 are contrasted in Fig. 5 with the subcatchment area, the median of the terrain roughness,

the MAE skill score of the revESP
::::::
subMet model relative to the ESP

::::::
preMet model, and the MAE skill score of the refRun

model relative to the climatology.
:
If
:::
the

:::::
MAE

:::::::::
difference

::
of

:::
the

:::::
S4PT

:::
and

:::
the

::::::
preMet

::::::
models

:::::
does

:::
not

::::::
exhibit

:
a
::::::
p-value

:::::::
smaller

:::
than

:::::
0.05,

:::
the

::::::
symbol

::
is

::::::
drawn

::::
with

:
a
:::::::
reduced

::::
size.

::::
The

::::::::
horizontal

::::
lines

::::::
depict

:::
the

:::::
MAE

::::
skill

:::::
scores

:::::
from

:::
Tab.

::
5.
:

10
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While the first two attributes concern the geography of the subcatchment, the third attribute indicates the relevance of the

initial conditions for the subsequent generation of streamflow. The fourth attribute shows how well the S4PT model performs

relative to the climatology as benchmark, when it has access to the best available input data.

In addition to the MAE skill scores of the subcatchments, the horizontal lines in Fig. 5 depict the MAE skill scores for each

spatial level at Lobith and Basel (i.e. the values from Tab. 5). If the MAE difference does not exhibit a p-value smaller than5

0.05 (Eq. 3), the symbol is drawn with a reduced size.

The resulting patterns suggest that positive skill does not depend on the subcatchment area. On the other hand, a low terrain

roughness and a weak relevance of the initial conditions seem to favour positive skill. The last row finally indicates that

positive skill is restricted to subcatchments where the refRun model outperforms climatology. Roughly, a hypothetical linear

relationship seems
::::::::::
relationship

::::::
appears

:
to strengthen from the top to the bottom plots.10

6 Discussion

The following discussion is valid only for predicting monthly mean streamflow throughout the complete calendar year. An

evaluation of

5.1
:::

Five
::::
day

:::::
mean

::::::::::
streamflow

:::::
Figure

::
6
::::::
shows

:::
the

:::::::::
correlation

:::::::::
coefficient

:::
of

:::
the

:::
five

::::
day

:::::
mean

::::::::::
streamflow

::::::::::
observations

::::
and

::::::::::::
corresponding

::::::::::
predictions

:::
for15

::
all

::::::
models

::::
and

::::::::::
benchmarks

:::
up

::
to
::

a
::::
lead

::::
time

:::
of

::
45

:::::
days.

::::
We

:::::::
observe

:::
that

:::
the

:::::::
refRun

:::::
model

::::::
scores

::
a
:::::::::
correlation

:::
of

:::::
about

:::
0.8

::::
with

:
a
::::::
slowly

:::::::::
decreasing

::::::::
tendency

:::::::
towards

::::::
longer

::::
lead

:::::
times.

:::::::::::
Furthermore,

:::
the

:::::::
subMet

:::::
model

:::::::
crosses

:::
the

::::::
preMet

::::::
model

::::::::::::
approximately

::
in

::
the

::::::
second

::::::
week;

:::
the

::::::
preMet

:::::
model

::::::::::
approaches

::::::::::
climatology

:::::
within

:::::
about

:::::
three

::::::
weeks;

:::
and

:::
the

::::::
subMet

::::::
model

:::::
comes

:::::
close

::
to the forecast quality with respect to particular calendar months goes beyond the scope of the study

:::::
refRun

::::::
model

::
in

:::::
about

:::::
three

::::::
weeks.20

::
In

:::::::
addition,

:::
we

:::
see

::::
that

::
the

::::
bias

::::::::
corrected

::::::::::
H-TESSEL

:::::
runoff

:::::
starts

:::::
rather

::::::::
cautious,

:::
but

:::::
seems

::
to

:::::::
slightly

:::::::::
outperform

:::
the

::::
S4*

::::::
models

::
at

:::::
longer

::::
lead

::::::
times.

:::::
While

:::
the

::::
S4T

::::::
model

::
is

:::::
hardly

:::::::::::::
distinguishable

::::
from

:::
the

:::::::
preMet

::::::
model,

:::
the

::::
S4P,

:::::
S4PT,

::::
and

::::
S4Q

::::::
models

::::::
appear

::
to

:::::::::
outperform

:::
the

::::::
preMet

::::::
model

:::::
within

:::
the

::::
first

:::
20

::::
days

:::::::
(Lobith)

:::
and

:::
15

::::
days

::::::
(Basel).

:::
For

:::
the

:::
full

:::::
range

::
of

::::
lead

:::::
times,

:::
the

::::::
spatial

:::::
levels

::::::::
introduce

:::::
some

::::
clear

::::::::::
differences

::::
(Fig.

:::
7):

:::
The

:::::::
refRun

:::
and

::::::
subMet

:::::::
models

::
get

:::::::::
improved

::
at

::::::
longer

::::
lead

:::::
times

::::::
along

:::
the

::::::
spatial

::::::
levels.

::::
For

::::
lead

:::::
times

::::::
longer

::::
than

:::::
about

:::
50

:::::
days,

:::
the

::::
bias

:::::::::
corrected25

:::::::::
H-TESSEL

::::::
runoff

::::
stays

::
in

:::::
close

:::::::
harmony

::
to
:::
the

:::::::::::
climatology,

:::::
while

:::
the

:::
S4*

::::
and

::::::
preMet

::::::
models

::::::
instead

::::
start

::
to

:::::
score

:
a
:::::::
smaller

:::::::::
correlation.

::::
This

:::::
effect

::::::
seems

::
to

::
be

::::::::
mitigated

::
at

::::::
spatial

:::::
levels

:
2
::::
and

::
3.

6
:::::::::
Discussion

6.1 Model building
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Figure 5. MAE skill score of the S4PT model with respect to the ESP
:::::
preMet

:
model for each subcatchment and zero lead time, plotted

against subcatchment attributes (see Sect. 4.3.5 for details). Lines indicate the corresponding skill per spatial level at Lobith and Basel. Large

symbols note a p-value smaller than 0.05 for the null hypothesis ’
:
‘the ESP

:::::
preMet

:
and S4PT models score an equal mean absolute error’.

:::
The

::::::::
horizontal

:::
lines

:::::::
indicate

::
the

:::::::::::
corresponding

:::
skill

:::
per

:::::
spatial

::::
level

::
at

:::::
Lobith

:::
and

:::::
Basel;

:::::::
n= 360.
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Figure 6.
:::::::::
Correlation

::::::::
coefficient

:
of
::::

five
:::
day

::::
mean

::::::::
streamflow

::::::::::
observations

:::
and

::::::::
predictions

:::
for

:::
lead

:::::
times

::
up

::
to

::
45

::::
days;

:::::::
n= 360.

Figure 7.
:::::::::
Correlation

::::::::
coefficient

:
of
::::

five
:::
day

::::
mean

::::::::
streamflow

::::::::::
observations

:::
and

::::::::
predictions

:::
for

:::
lead

:::::
times

::
up

::
to

:::
175

::::
days;

:::::::
n= 360.

The refRun model, which has access to the best available input data,
:
In

::::
case

::
of

:::
the

::::::::
monthly

:::::::::
streamflow,

:::
the

::::::
refRun

::::::
model ends

up with a correlation of about 0.9 for all lead times, spatial levels, and both Lobith and Basel (Fig. 2). Part of this correlation

is also the annual cycle (Fig. 1), which already leads to a correlation of about 0.5 when using the climatology as prediction

rule. The forecasts from the refRun model do not fully reproduce the observations
:
’
:
variance, what might be improved with

a transformation of the predictand (Wang et al., 2012). This option
:
–

:::::
along

::::
with

::::::::
predictors

::::
that

:::::
more

::::::::
explicitly

::::::::
represent

:::
the5
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:::::
initial

:::::::::
conditions,

:::
e.g.

::::
lake

::::::
levels,

:::
soil

::::::::
moisture

:::::::
content,

::
or

::::
snow

:::::::
courses

::
– preferably should be tested in a future study with a

small number of catchments and longer time series.

:::
For

:::
the

:::
five

::::
day

:::::
mean

::::::::::
streamflow

:::
the

::::::
refRun

::::::
model

::::
gets

::::::::
degraded.

:::
At

::::
short

::::
lead

:::::
times

::::
the

:::::::::
correlation

:::::::
amounts

:::
to

:::::
about

:::
0.8,

:::::
while

:::
for

::::::
longer

::::
lead

::::
times

:::
the

::::::::::
correlation

:::::::
exhibits

:
a
:::::::::
decreasing

:::::
trend.

::::::
Either

:::
the

::::::
present

::::::
model

::::::::::
formulation

::
is

:::
less

:::::
valid

:::::::::
(especially

:::
for

::::
small

::::::
values

::
of

::
j,
::::
say

:
5
::
or

:::
10

:::::
days,

:::
the

:::::::::
assumption

::
of
::::::::

linearity
:::::
might

::::
fail)

::
or

:::
the

:::::::
scheme

::
to

::::::::
introduce

:::
the

::::
lead5

::::
time

:::
(Eq.

:::
2)

::
is

:::
not

:::::::::
appropriate

:::
for

:::::
mean

::::::
values

::
of

:::::
small

::::
time

:::::::
windows

::::
(e.g.

:::
the

::::::::::
subtraction

::
of

:::::::::
streamflow

::::::::
volumes

::
of

:::
155

::::
and

:::
150

::::
days

::::
only

::::::
allows

:::
for

:::::
small

:::::::::
prediction

::::::
errors).

:::::
Since

:::
the

::::
final

:::::::
forecast

::::::
values

:::
are

:::
not

::::
part

::
of

:::
the

:::::::::
regression

::::::::
equation,

::
it

::
is

::::
even

:::::::
possible

::
to

:::::::
perform

:::::
worse

::::
than

::::::::::
climatology

::::
(Fig.

:::
7).

:

6.2 Spatial levels

Besides the ignorance of the water travel time (Sect. 4.2) , the spatial levels basically can degrade
::::
The

:::::
spatial

:::::
levels

::::
can

:::::
affect10

the forecast quality in three ways. For a particular subcatchment,
:::::
either

–
::
via

:::
the

:::::::::
ignorance

::
of the assumption of a linear relationship between the predictors and the predictand might not be valid;

– the present variables precipitation, surface air temperature, and runoff simply do not contain any relevant information

(for example due to heavily regulated streamflow) ;
::::
water

:::::
travel

::::
time

:::::
(Sect.

::::
4.2)15

–
::
or the aggregation of the E-OBS and S4 fields at the catchment scale is not the appropriate spatial resolution (e.g.

:
large

scale grid averages cancel any spatial variability, and for catchment areas below the grid scale a grid point does not

necessarily contain information valid at the local scale).

Despite these three sources of uncertainty and the ignorance of the water travel time, we only observe a small gradual

improvement of the forecast accuracy along20

::::::::
However,

::::
clear

:::::::::
differences

::::::::
between the spatial levels (Tab. 4). While this result does not allow to relate the forecast accuracy

to these uncertainties, it supports at least the robustness of the estimated MAE skill score for the forecasts at Lobith and Basel

(Tab. 4): Applying the regression models
:::
can

::::
only

:::
be

:::::::
observed

:::
for

:::
the

::::
five

:::
day

::::::::::
streamflow

:::::::::
predictions,

::::::
where at spatial levels

2 and 3 virtually does not include streamflow information at Lobith and Basel (with the exception of the subcatchments that

include these gauges), so artificial skill can hardly be an issue
:::
the

:::::::
forecast

::::::
quality

::::
gets

::::::::
improved.

::::::
Using

::::
local

::::::::::
information

:::
of25

:::::::::::
precipitation,

::::::
surface

::
air

:::::::::::
temperature,

::
or

::::::
runoff

::::::
appears

::
to

::::::::::
compensate

:::
for

:::
the

::::::::
ignorance

:::
of

:::
the

::::
water

:::::
travel

::::
time.

6.3 ESP-revESP
::::::::::::::
preMet-subMet

In Yossef et al. (2013) the ESP-revESP framework is applied to the worlds
::::::
world’s

:
largest river basins using the global hydro-

logical model PCRaster Global Water Balance (PCR-GLOBWB). Considering all calendar months and the Rhine at Lobith,

the ESP simulation outperforms the climatology only at zero lead time; the revESP simulation is outperformed at zero lead30

time by both the ESP simulation and climatology; and at longer lead times the revESP simulation clearly outperforms both the
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ESP simulation and climatology. Therefore, the results of Yossef et al. (2013) and those of the present study are partly in line–

initial conditions are skillful at zero lead time, but for unknown reasons a clear difference between the ESP and revESP model

at zero lead time does not exist in our results
:::::
mostly

::
in

::::
line.

:

:::
The

:::::::
analysis

::
of

:::
the

:::
five

::::
day

::::
mean

::::::::::
streamflow

:::::::
forecasts

:::::
(Sect.

::::
5.1)

::::::
further

::::::
reveals

:::
that

:::
the

::::::::
crossover

::
of

:::
the

::::::
preMet

:::
and

:::::::
subMet

::::::
models

:::::
occurs

::::::::::::
approximately

::
in

:::
the

::::::
second

:::::
week.

::::::::
However,

::::
this

:::::::
estimate

::::::
ignores

::::::::
variations

::::::
within

:::
the

:::::::
calendar

::::
year

:::
and

::::::
should5

::
be

:::::::::
considered

::
as

::
a

:::::
rough

:::::
guess,

:::::
since

:::
the

::::::::
regression

:::::::
method

::
is

::
far

:::::
from

:::::
being

::::::
perfect

::
in

::::
case

::
of

:::
the

:::
five

::::
day

:::::
mean

:::::::::
streamflow.

6.4 MOS method

In case of the monthly mean streamflow forecasts at zero lead time, the MOS method based on precipitation or runoff provides

a smaller mean absolute error than the ESP
:::::
preMet

:
model (Tab. 5).

:::::
Figure

::
6

:::::::
suggests

:::
that

::::
this

::::
error

::::::::
reduction

::
at
:::

the
::::::::

monthly

::::
time

::::
scale

:::::
arises

:::::
from

:::
the

:::::::::
predictions

::
of

:::
the

::::
first

:::
15

::
to

::
20

:::::
days.

:
Here, it must be stressed that for the present regression strat-10

egy subsequent temperature
::::::::::
temperature

:::::::::
subsequent

::
to

:::
the

::::
date

::
of
:::::::::

prediction
:
often is a weak predictor (not shown

::::::::
regression

:::::::::
coefficients

:::
of

:::
the

::::::
refRun

::::::
model

::
at

::::::
spatial

::::
level

::
1
:::
are

::::::::
included

::
in

:::
the

:::::::::
additional

:::::::::
materials,

:::
see

:::::
Sect.

::
10). Thus, a possible

rejection of the S4T model does not allow any inference about the forecast quality of surface air temperature itself.

While the variation of the MAE skill score along the spatial levels is small (Tab. 5), the skill in the subcatchments itself varies

considerably (Fig. 4 and 5). The integration of the seasonal predictions from S4 frequently leads to negative MAE skill scores.15

Negative scores arise when the model catches spurious relationships, which subsequently get penalised during cross-validation.

These negative scores need to be compensated in order to outperform the ESP model at Lobith and Basel.

Figure 5 indicates that the subcatchment area most likely is not relevant to score positive skill. Rather the S4PT model

outperforms the ESP
::::::
preMet

:
model in subcatchments where the terrain roughness and the relevance of the initial conditions

is
::
are

:
low. However, the terrain roughness and the relevance of the initial conditions are not independent attributes: Fig. 420

shows that for small subcatchments in the alpine region positive skill is sparely present (spatial levels 2 and 3 at Basel). These

subcatchments generally exhibit a high terrain roughness as well as a high relevance of the initial conditions due to snow

accumulation in winter and subsequent melting in spring and summer.

Somewhat trivial, Fig. 5 also shows that skill of the S4PT model is restricted to subcatchments where the refRun model

outperforms climatology. If the refRun model downgrades to the climatology, precipitation and temperature do not contain25

any relevant information to predict streamflow. Consequently also the dynamical seasonal predictions are, however accurate,

useless
:
A

:::::::
possible

::::::::::
explanation

:::::
could

:::
be

:::
that

:::::
errors

:::
in

:::
the

:::::
initial

::::::::
condition

::::::::
estimates

::::::::
outweigh

:::
the

::::::::
moderate

::::
skill

:::::::::
contained

::
in

::
the

::::::::
seasonal

::::::
climate

:::::::::
predictions.

6.5 H-TESSEL

An interesting result finally is the performance of H-TESSEL. Within ECMWF’s seasonal forecasting system S4, H-TESSEL30

is aimed to provide a lower boundary condition for the simulation of the atmosphere and consequently does neither implement

streamflow routing nor ground water storage (ECMWF, 2016). According to Tab. 4
::::::::::
groundwater

::::::
storage

::::::::::::::::::::::::::::::::
(Balsamo et al., 2009; ECMWF, 2016).
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::::::::
However, H-TESSEL in combination with a linear bias correction best translates the seasonal predictions in case of Lobith

among the models that could be used in an operational forecast setting
::::
often

::::::::
performs

::::
best

::::
(Tab.

:::
4).

The S4Q model, which has access to the same input data and in addition conditions on preceding precipitation and tem-

perature, scores a lower forecast accuracy than H-TESSEL in case of Lobith (Tab. 4). This most likely is related to overfit-

ting, which is not sufficiently smoothed by the model averaging (Sect. 4.1.2). The question remains whether a more advanced5

postprocessing instead of the simple linear bias correction leads to further improvements, e.g. by conditioning on other variables

or by using a river routing model.

7 Conclusions

The present study tests a model output statistics (MOS) method for monthly
:::
and

::::
five

:::
day

:
mean streamflow forecasts in the

Rhine basin. The method relies on the linear regression model fitted by least squares and uses predictions of precipitation and10

surface air temperature from the seasonal forecast system S4 of the European Centre for Medium-Range Weather Forecasts.

Observations of precipitation and surface air temperature prior to the date of prediction are employed to estimate
:
as
::
a
::::::::
surrogate

::
for

:
the initial conditions. In addition, runoff simulated by the

:::
S4

::::
land

::::::
surface

::::::::::
component,

:::
the H-TESSEL land surface model

:
,

is evaluated for its predictive power.

MOS methods often bridge the grid resolution of the general circulation model (GCM)
::::::::
dynamical

::::::
model and the spatial scale15

of the actual predictand. In order to estimate how the forecast quality depends on the catchment area, a hindcast experiment for

the period 1981-2011 is conducted where
:::
that

::::::
varies the working scale is varied within the Rhine basin at Lobith and Basel.

This variation is implemented by applying the MOS method to subcatchments and combining the resulting forecasts to predict

streamflow at
:::
the

::::
main

::::::
outlets

::
at

:
Lobith and Basel.

The
::
On

::::::::
average,

:::
the

:
monthly mean streamflow forecasts based on the initial conditions are skillful with respect to the20

climatology at zero lead time for both the Rhine at Lobith and Basel. The MOS method, which additionally
:
in

:::::::
addition

:
has

access to the dynamical seasonal predictions, further reduces the mean absolute error by about 5 to 11 % compared to the

model that is constrained to the initial conditions. When the lead time is increased
:::
For

::::
lead

:::::
times

::
of

:::
one

::::
and

:::
two

:::::::
months the

forecasts virtually reduce to climatology. However, for a particular calendar month these findings can substantially deviate.

The above
:::::
These results hold for the entire range of tested subcatchment scales. Neither do

:
,
:::::::
meaning

::::
that effects of a scale25

mismatch between the GCM’s horizontal grid resolution and the catchment area emerge, nor can a subcatchment scale be

detected at which
::
do

:::
not

:::::::
emerge.

::::::::
Applying the MOS method clearly works best. Moreover, the results indicate that a skillful

integration of the dynamical seasonal predictions requires catchments where the initial conditions are less relevant than the

meteorological forcings
:::::
finally

:::
for

:::
five

::::
day

:::::
mean

:::::::::
streamflow

::::::
results

::
in

:
a
:::::
rather

::::::::
moderate

:::::::
forecast

::::::
quality.

The adaptation of the ESP-revESP framework proposed by Wood and Lettenmaier (2008) to the context of regression pays30

off in that it provides a reference model against which the MOS method can be tested. Clearly, when using regression the

ESP-revESP framework does not provide the same insights as when using a hydrological simulation model , but nevertheless

it can help in the interpretation of
:::
We

::::::::
conclude

:::
that

:
the results.
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Given the present forecast quality of H-TESSEL in combination with
:::::
present

::::::
model

::::::::::
formulation

:
–
::
in

::::::::
particular

:::
the

:::::::::
assumption

::
of

:::::::
linearity

::
–

:
is
:::::

valid
:::
for

:::
the

:::::::
monthly

::::
time

:::::
scale,

::::::::::
catchments

::::
with

:::::
areas

::
up

:::
to

::::::
160000

:
km2

:
,
:::
and

:::::
water

::::::
travel

::::
times

:::::::
similar

::
to

::
the

::::::
Rhine

::::
river.

::::::::
However,

:::
the

::::::
results

::::
also

:::::
show

:::
that

:
a simple linear bias correction , we also conclude that runoff simulated by

the land surface component of coupled GCMs is an interesting option when it comes to operational forecasting in large river

basins. In addition
:
of

:::
the

::::::
runoff

::::::::
predicted

::
by

:::
the

::::::::::
H-TESSEL

::::
land

::::::
surface

:::::
model

::
is
::::
hard

::
to

:::::
beat.

:::::
Given

:::
the

::::::::
simplicity

::
of

::
a
:::::
linear5

:::
bias

:::::::::
correction, we think

:::
that it could be interesting to establish such runoff simulations as a common benchmark in studies

that use seasonal predictions from GCMs to forecast streamflow. Doing so could reveal where and why model chains, routing

algorithms, MOS, and postprocessing techniques reduce uncertainties, and which hydrological processes can be implemented

in a simplified manner to forecast at the seasonal time scale
::::
worth

::
to

::::::
further

:::::::::
investigate

::::::
runoff

::::::::::
simulations

::::
from

::::
land

:::::::
surface

::::::::::
components

::
of

::::
earth

::::::
system

:::::::
models

::
for

:::::::::::
subseasonal

::
to

:::::::
seasonal

:::::::::
streamflow

::::::::::
forecasting.10

8 Code availability

The regression approach from Sect. 4.1.2 is compiled
:::::::::::
implemented in an R package , which is included in the additional

materials
:::::::::
maintained

:::
on

::::::::::::::::
github.com/schiggo.

9 Data availability

E-OBS (2016), CORINE (2013), and EU-DEM (2013) are public data sets. Access to the ECMWF and GRDC archive must15

be requested. Data from the various public authorities as listed in the Acknowledgements is
::
are

:
partly public.

10 Additional materials

Besides the R package and its vignette, the
:::
The

:
additional materials include Fig. 4

:
3,
::::
Fig.

::
4,

:
and Fig. 5 for the S4P, S4Q, and

S4T
:::
S4* models. Figure 5

:
7
:
shows per spatial level at Lobith and Basel and for each S4* model at zero months lead time: The

sample autocorrelation function and quantile plots
:
a
:::::::
quantile

::::
plot against the Gaussian distribution of the (paired differences of20

absolute residuals with respect to the ESP model(
:::::
preMet

::::::
model,

:
Eq. 3) , and scatterplots

::
as

::::
well

::
as

:
a
:::::::::
scatterplot

:
of predictions

and observations.
:::::
Figure

:
8
::::::
shows

:::
for

:::
the

::::
yi,30:::::::::

predictand
:::
the

:::::::::
regression

:::::::::
coefficients

::::
(for

::::::::
predictors

:::::::::::
standardised

::
to

:::::
mean

::::
zero

:::
and

:::::::
standard

::::::::
deviation

::::
one)

::::
and

:::
the

::::::::::
aggregation

::::::
periods

::::
ai,j ::::

(Eq.
::
1)

::
of

:::
the

::::::
refRun

::::::
model

::
at

:::::
spatial

:::::
level

:::
one

::::::::
(n= 100

::::
due

::
to

::
the

::::::::
bootstrap

:::::::::::
resampling).
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