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Abstract. This study analyzes the quality of the raw and postprocessed seasonal forecasts of the European Center of 

Medium Weather Forecasts (ECMWF) System 4. The focus is given to Denmark located in a region where seasonal 

forecasting is of special difficulty. The extent to which there are improvements after postprocessing is investigated. We 10 

make use of two techniques, namely, linear scaling/delta change (LS) and quantile mapping (QM) to daily bias correct 

seasonal ensemble predictions of hydrological relevant variables such as precipitation, temperatureand reference 

evapotranspiration (ET0). Qualities of importance in this study are the reduction of bias and the improvement in accuracy and 

sharpness over ensemble climatology. Statistical consistency and its improvement is also examined. Raw forecasts exhibit 

biases in the mean that have a spatio-temporal variability more pronounced for precipitation and temperature. This 15 

variability is more stable for ET0 with a consistent positive bias. Accuracy is higher than ensemble climatology for some 

months at the first month lead time only and, in general, ECMWF System 4 forecasts tend to be sharper. ET0 also exhibits an 

underdispersion issue, i.e., forecasts are narrower than their true uncertainty level. After correction, reductions in the mean 

are seen. This however, is not enough to ensure an overall higher level of skill in terms of accuracy although modest 

improvements are seen for temperature and ET0, mainly at the first month lead time. QM is better suited to improve statistical 20 

consistency of forecasts that exhibit dispersion issues, i.e., when forecasts are consistently overconfident. Furthermore, it 

also enhances the accuracy of the monthly number of dry days to a higher extent than LS. Caution is advised when applying 

a multiplicative factor to bias correct variables such as precipitation. It may overestimate the ability that LS has in improving 

sharpness when a positive bias in the mean exists. 

1 Introduction 25 

Seasonal forecasting has gained increasing attention during the last three decades due to high societal impacts of extreme 

meteorological events that affect a plethora of weather-related sectors such as agriculture, environment, health, transport and 

energy, and tourism (Dessai and Soares, 2013). Information of weather-related hazards months ahead are important for 

protection against extremes for these sectors.   

General Circulation Models (GCM) have become the state-of-the-art technology for issuing meteorological forecasts at 30 

different time scales. GCM-based seasonal forecasting is possible due to signals, whichcan be extracted from slowly 

changing systems such as the ocean, and to a lesser extent, land, which then translate into a signal in the atmospheric patterns 

(Weisheimer and Palmer, 2014; Doblas-Reyes et al., 2013). El Nino Southern Oscillation, ENSO, is the strongest of these 

signals, and its influence on seasonal forecasting is higher near the tropics (Weisheimer and Palmer, 2014). 

Seasonal ensemble forecasts have been operational in Europe since the late 1990s provided by the European Center for 35 

Medium Range Forecast (ECMWF) (Molteni et al., 2011) and in the U.S. since August 2004 provided by the National 

Center of Environmental Prediction (Saha et al., 2013). Other examples of operational seasonal forecasts include the ones 
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generated by the Met Office in UK (Maclachlan et al., 2015), the Australian Bureau of Meteorology (Hudson et al., 2013), 

the Beijing Climate Center (Liu et al., 2015) and the Hydrometeorological Center of Russia (Tolstykh et al., 2014). 

ECMWF is a leading center for weather and climate predictions and its seasonal forecasting system is often regarded as the 

best (Weisheimer and Palmer, 2014). Research on the quality of the seasonal GCM forecasts has been done for different 

system versions (Molteni et al., 2011; Weisheimer et al., 2011). The system has also been compared to other GCM (Kim et 5 

al., 2012a, 2012b; Doblas-Reyes et al., 2013) or statistical (van Oldenborgh et al., 2005) seasonal forecasting systems.  

Despite the efforts mentioned above and the documented improvements on forecasting skill of meteorological parameters, 

specially over the tropics (Molteni et al., 2011), several issues remain. The main one, and specific to forecasting in Europe 

and North America is that the signal of the main driver of seasonal predictability, the ENSO, has been found to be weak or 

non-existent (Molteni et al., 2011; Saha et al., 2013) in these regions leading to poor skill of atmospheric variables such as 10 

precipitation. For example, Weisheimer and Palmer, (2014) studied the reliability (consistency between the forecasted 

probabilities and their observed frequencies) and ranked forecasts using five categories from ‘dangerous’ (1) to ‘perfect’ (5) 

for two regimes of precipitation (wet/dry) and temperature (cold/warm). For the North European region, they found dry 

(wet) forecasts during summer, started in May to be 'dangerous' ('marginally useful') and dry (wet) forecasts during winter 

(started in November) to be 'not useful' ('marginally useful'). For temperature, results were less variable among the different 15 

categories with winter cold/warm and summer warm forecasts found to be 'marginally useful', and summer cold temperatures 

forecasts in the category (5) for 'perfect'. Moreover, Molteni et al., (2011) found weak anomaly correlations of precipitation 

and temperature during the summer for most of the regions located in North Europe.  

Due to the issues stated above, the need for postprocessing the raw forecasts in the hope of improvements has gained 

importance in the scientific literature. A plethora of methods for statistical postprocessing exist for a range of temporal 20 

scales. These methods consist on transfer functions, computed on the basis of reforecasts, or past records of forecast-

observation pairs (Hamill et al., 2004) whose goal is to match forecast values with observed ones. The choice of a 

postprocessing method is determined by the availability of reforecast data and the application at hand. Although in principle 

any method could be used for seasonal forecasts, this temporal scale represents a special difficulty due to the fact that initial 

condition skill is mostly gone and there is little detectable signal behind a large amount of chaotic error.  25 

In particular, for the postprocessing of ECMWF System 4 seasonal forecasts, a number of studies have been carried out: 

Crochemore et al., (2016); Peng et al., (2014); Trambauer et al., (2015) and Wetterhall et al., (2015). The most used methods 

are linear scaling and quantile mapping, although Peng et al. (2014) used a Bayesian Merging technique. In general, 

thestudies are successful in improving the values of the forecast qualities the authors considered important. For example, 

Wetterhall et al., (2015) reported higher skill of forecasts of the frequency and duration of dry spells once an empirical 30 

quantile mapping has been applied to daily values of precipitation. Crochemore et al., (2016) analyzed the effect different 

implementations of the linear scaling and quantile mapping methods had on streamflow forecasting, concluding that the 

empirical quantile mapping improves the statistical consistency of the precipitation forecasts for different catchments 

throughout France.  

The aforementioned studies have been made only for precipitation and/or mainly large areas. For hydrological applications 35 

seasonal forecasting skill of instantaneous values of precipitation, temperature and reference evapotranspiration (ET0) at the 

catchment scale (100 - 1,000  km2)  are, however, more important. Therefore, we analyze the bias, skill and statistical 

consistency of the ECMWF System 4 for Denmark focusing on precipitation, temperature and ET0 of relevance for seasonal 

streamflow forecasting at catchment scale. We make use of the two most used methods for postprocessing, namely linear 

scaling and quantile mapping (Zhao, et al. 2017), applied to daily values. We focus on the skill of monthly aggregated values 40 

of gridded data throughout Denmark for both the raw and the corrected forecasts. We investigate the following questions: 
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(1) what is the longest lead time for which an ‘acceptable’ forecast is achieved?  

(2) is it possible to extend the acceptable forecast lead time with different postprocessing techniques?  

In this study we argue that an acceptable forecast needs to have consistency between the observed probability distribution 

and the predictive one. This is what we call statistical consistency throughout the paper. A statistical consistent forecast 

system has low (or non-existent) bias in both mean and variance. Secondly, we argue that the forecast to be used must be 5 

better than climatology, having a higher skill both in terms of accuracy and sharpness, giving priority to the former. These 

characteristics for an 'acceptable forecast' follow the principle that the purpose of postprocessing is to maximize sharpness 

subject to statistical consistency as discussed by Gneiting, et al., (2007). 

 2 Data and Methods 

2.1 Ensemble Prediction System and Observational Grid 10 

Seasonal reforecast of the ECMWF System 4 for the years 1990-2013 are used in the present study. The system is comprised 

by 15 members (for January, March, April, June, July, September, October, December) and 51 members (for February, May, 

August, November) with a spatial resolution of 0.7 degrees and are run for seven months with daily output. The increase on 

ensemble size for February, May, August and November attempts to aid in improving forecasts for the seasons with a higher 

predictability. Precipitation, temperature and ET0 are the variables under study. For the computation of ET0, we make use of 15 

the Makkink equation (Hendriks, 2010), which takes as inputs temperature and incoming short-wave solar radiation from 

ECMWF System 4.  

Observed daily values for precipitation, temperature and ET0 from the Danish Meteorological Institute (DMI) are used 

(Scharling and Kern-Hansen, 2012). The spatial scale for precipitation and temperature, ET0 is 10 km and 20 km, 

respectively. However, we assume temperature and ET0 to be equally distributed within the 20 km and set the same values of 20 

the 20 km to the 10 km grid. Then, in total there are 662 (for precipitation) and 724 (for temperature and ET0) grid points, 

which cover the 43,000 km2 area of Denmark. Moreover, precipitation is corrected for under catch errors as explained in 

Stisen, et. al., (2011) and (2012). The time and spatial variations of the variables can be seen in Fig. 1. Values are monthly 

accumulations for precipitation and ET0 and monthly averages for temperature, averaged over the observed record (1990-

2013). Danish weather is mainly driven by its proximity to the sea. There is a modest spatial precipitation gradient from west 25 

to east, which is more pronounced during autumn and winter. The driest month in terms of precipitation is April and the 

wettest is October. ET0 also shows a modest spatial variability during spring and summer, with larger values in eastern 

Denmark.  

2.2 Postprocessing strategy 

Given the fact that the spatial resolution of the ensemble data differs from the resolution of the and observed data, first the 30 

ensemble forecasts were interpolated to match the 10 km grid of observed values using an Inverse Distance Weighting 

(Shepard, 1968), where the values at a given point of the higher resolution grid (10 km) are computed using a weighted 

average of the four surrounding nodes of the lower resolution forecast grid (70 km). The weights are computed as the inverse 

of the Euclidean distances between the observed grid node and the forecast nodes. Forecasts are then postprocessed for each 

grid point, time of forecast (month) and lead time (month) for each variable separately. Moreover, the computation is done in 35 

a leave-one-out cross-validation mode (Wilks, 2011 and Mason and Baddour, 2008) such that the year being corrected is 

withdrawn from the sample. This to ensure independence between training and validation data. Then, for example, for 

precipitation, 662x12x7x24 (# of grid points, # of months, # of lead times, # of years in the sample, respectively) correction 

models are computed. 

2.3 Postprocessing methods 40 
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2.3.1 Delta method - Linear Scaling (LS) 

The linear scaling approach operates under the assumption that forecast values and observations will agree in their monthly 

mean once a scale or shift factor has been applied (Teutschbein and Seibert, 2012). LS is the simplest possible 

postprocessing method as it only corrects for biases in the mean. The factor is commonly computed differently for 

precipitation, ET0 and temperature due to the different nature of the variables, as precipitation and ET0cannot be negative.  5 

For precipitation and ET0: 
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where ikf , denotes ensemble member k for Mk ,,1 of forecast-observation pair Ni ,,1 , M denotes the number 

of members (15 or 51) and N is the number of forecast-observation pairs,
jf denotes the ensemble mean, 

jy denotes the 

verifying observation. Note that, as stated in Sect. 2.3., both the means of 
jf and 

jy are computed with the sample that 

withdraws forecast and observation pair i. Finally, 
*

,ikf represents the corrected ensemble member. Note that for 

precipitation, before applying the correction factor, we set all values of daily precipitation below a specific threshold to zero 15 

to remove the 'drizzle effect' (Wetterhall, et al., 2015). The threshold was chosen so that the number of dry days on a given 

forecast month matches the number of observed dry days. This threshold varies according to the month and the year and 

spatially, with an average value of 1.5 mm/day over Denmark. 

2.3.2 Quantile mapping (QM) 

QM relies on the idea of Panofsky and Brier (1968). This method matches the quantiles of the predictive and observed 20 

distribution functions in the following way:  

  ikiiik fFGf ,

1*

,

                                                                                                                                                    (3) 

where iF  represents the predictive cumulative distribution function (CDF) for forecast-observation pair i, iG  represents the 

observed CDF. Again, note that, as stated in Sect. 2.3., both iF  and iG  are computed with a sample that withdraws forecast 

and observation pair i. 25 

iF  is calculated as an empirical distribution function fitted with all ensemble members of daily values of a given month for 

a given lead time and grid point. For example, for a forecast of target month June initialized in May, iF  is fitted using a 

sample comprising 30 (days) times 23 (number of years in the reforecast minus the year to be corrected) times 51 (number of 

ensemble members). The same is done for iG , except that the fitting sample is comprised by 30 x 23 values only. F and G 

are computed as an empirical CDF. Linear interpolation is needed to approximate the values between the bins of F and G. 30 
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Extrapolation is then needed to map ensemble values and percentiles that are outside the fitting range. Note that other 

approaches to deal with values outside the sample range exist that are more suitable when the focus of the study is the 

extreme values. For example, Wood, et al. (2002) fitted an extreme value distribution to extend the empirical distributions of 

the variables of interest. However, analyzing the effects of different fitting strategies is out of the scope of the present paper. 

2.4 Verification metrics 5 

In order to evaluate the raw forecasts and their improvement after postprocessing, we analyzed four attributes of forecast 

quality: bias, skill in regards to accuracy and sharpness, and statistical consistency. 

2.4.1 Bias 

Bias is a measure of under- or over-estimation of the mean of the ensemble in comparison with with the observed mean:  
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for precipitation and ET0 and: 
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for temperature. fi and yi are the same as in Eq. (1). 

If the bias is negative, the forecasting system exhibits a systematic underprediction. Conversely, if the amount is positive the 

system shows an average overprediction. Values closer to 0 are desirable. 15 

2.4.2 Skill 

The skill of a forecasting system is the improvement, on average, the system has with respect to a reference system, whic 

could be used instead. For example, climatology for seasonal forecasts or persistence for short-range forecasts. The skill 

score is computed in the following manner 

refper

refsys

ScoreScore

ScoreScore
Skill




                                                                                                    (6) 20 

where sysScore , 
refScore  and 

perScore  are the score value of the system to be evaluated, the reference system and the 

value of a perfect system, respectively. The range of the skill is from  to 1 and values closer to 1 are preferred. In this 

paper we calculate the skill with respect to accuracy and sharpness. We compute the continuous rank probability score 

(CRPS) (Hersbach, 2000), as a general measure of the accuracy of the forecast as it contains information of both forecast 

biases in the mean and spread. The computation of the score is as follows: 25 
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where )(xPi is the CDF of the ensemble forecast for pair i and  iyxH  the Heaviside function that takes the value 1 

when iyx   and 0 otherwise, iy  and N are, as in Eq. (1), the verifying observation for forecast-observation pair i, and the 

number of forecast-observation pairs, respectively. We made use of the EnsCrps function of the R package SpecsVerification 
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(Siegert, 2015) developed in R version 0.4-1. For the skill with respect to sharpness we use the average along Ni ,,1  

of the differences between the 25% and the 75% percentiles of each of the ensemble CDFs, Pi. 

In Eq. (6), our reference is ensemble climatology (1990-2013), where the year to be evaluated is withdrawn from the sample. 

Both the accuracy and sharpness score for a perfect system cf. Eq. (6), 
perScore is equal to zero so the skill score can be 

then simplified as: 5 

ref

sys

Score

Score
Skill 1                                                                                                           (8) 

which, once multiplied by 100, is the percentage of improvement (if positive) or worsening (if negative) over the reference 

forecast. Throughout the paper, the skill related to accuracy will be denoted as CRPSS whereas the skill due to sharpness 

will be denoted as SS. 

Furthermore, to define the statistical significance of the differences between the skill of ensemble climatology and ECMWF 10 

System 4 forecasts, as well as the postprocessed predictions, a Wilcoxon-Mann-Whitney test (WMW-test; see Hollander et 

al, 2014) was carried out. The WMW test, unlike the most common t-test, makes no assumptions about the underlying 

distributions of the samples. We applied the test for each grid point, target month and lead time. 

2.4.3 Statistical consistency 

We use the Probability Integral Transform (PIT) diagram for a depiction of the statistical consistency of the system. The PIT 15 

diagram is the CDF of the zi's defined as )( iii yXPz  . Therefore, zi is the value that the verifying observation yi attains 

within the ensemble CDF, Pi. The diagram represents an easy check of the biases in the mean and dispersion of the 

forecasting system. For a forecasting system to be consistent, meaning that the observations can be seen as a draw of the 

forecast CDF, the CDF of zi should be close to the CDF of a uniform distribution on the [0,1] range. Deviations from the 1:1 

diagonal represent bias issues in the ensemble mean and spread. The reader is referred to Laio and Tamea (2007) and Thyer, 20 

et al., (2009) for an interpretation of the diagram. Similar to Laio and Tamea, (2007), we make use of the Kolmogorov bands 

to have a proper graphical statistical test for uniformity. Finally, we make use of the Anderson-Darling test (Anderson and 

Darling, 1952) for a numerical test of the uniformity of the PIT diagrams. We carry out the test using the ADGofTest (Gil, 

2011) R package (R Core 2017). Here, the null hypothesis is that the PIT diagram follows a uniform distribution on the [0-1] 

range. 25 

2.5 Accuracy of maximum monthly daily precipitation and number of dry days 

For applications such as flooding and forecasting of low flows and droughts, water managers might be interested not only in 

the skill of monthly accumulated precipitation but also in the skill of other precipitation quantities. We will use a rather 

simple approach to check for deficiencies of the raw forecasts and whether the postprocessing methods improve these 

deficiencies. We will analyze the improvement in the prediction of monthly maximum daily precipitation and number of dry 30 

days in each month. For this study, a dry day is defined as the day with observed zero-precipitation, and the comparison with 

the ensembles is made daily. 

3 Results 

3.1 Analysis of raw forecasts  

The first row in Fig. 2 depicts the ECMWF System 4 forecast and the ensemble climatological forecast for August 35 

accumulated precipitation and ET0 and averaged temperature for one grid located in west-central Denmark for the first month 

lead time. The values for different forecast qualities for that grid point are also included. For a forecasting system to be 
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useful, it has to be at least, better than a climatological forecast. For the given example here, the reference forecast is wider 

than the ECMWF System 4 forecast. This is an example of a month where we have a slightly better skill than the ensemble 

climatological forecast for the three variables in question. For example, raw temperature predictions from ECMWF System 4 

improve, on average, on the reference forecast by 22% in terms of accuracy. This level of skill is attained due to the sharper 

forecasts that exhibit a low bias (-0.23 deg C). On the other hand, sharpness is only a desirable property when biases are low. 5 

This is illustrated for precipitation forecasts attaining a high skill due to sharpness (0.43) but at the expense of a low skill due 

to accuracy (0.01). This is caused by the high negative bias (-14.12%) where, for example for 1992 and 2010, the verifying 

observation lies outside the ensemble range contributing negatively to the CRPS in Eq. (7). 

3.1.1 Bias 

In an effort to summarize the results, a spatial average of the bias throughout Denmark was computed. Figure 3 shows the 10 

spatial average bias of precipitation, temperature and ET0 of the raw forecasts. Y-axis represents the target month, for 

example April, and X-axis represents the forecast lead time, lead time 5 is the forecast for April initiated in December. As 

we can see from Fig. 3, bias depends on the target month and, to a lesser degree, on lead time. For precipitation, the lowest 

bias can be found throughout autumn to beginning of winter, followed by a general underestimation of precipitation that is at 

its highest for June. April shows an overestimation which might be due to the ‘drizzle effect’ in a month where dry days are 15 

slightly more common, in comparison to March and May (the percentage of dry days within the month is 50%, 57% and 

56% in March, April and May, respectively). The drizzle effect issue is a very well-known problem of GCM, and is related 

to the generation of small precipitation amounts, usually around 1.0-1.5 mm/day, where observed precipitation is not present 

(Wetterhall et al., 2015).  

Temperature bias averaged over Denmark has a range that lies within [-2,2] degrees Celsius. The bias switches from positive 20 

to negative when temperatures start to increase in March and from negative to positive bias when temperatures start 

decreasing in August. This indicates that the forecast of temperature has a smaller annual amplitude than observed. Lowest 

biases are encountered during January and February with a bias of 0.5 deg Celsius, and it is higher during late spring and 

summer, with a negative bias of almost 2 deg Celsius. Finally, the bias range for ET0 is smaller than precipitation, taking 

values within [0-25%] on average over Denmark. In general, there is a positive bias, which is at its highest during February. 25 

However, averaging does not tell the whole story. We are also interested in the spatial variation of biases over Denmark. 

Figure 4 shows the spatial distribution of bias for the first month lead time and its evolution during summer (JJA). In 

general, there is an underestimation of precipitation throughout Denmark, much more pronounced during June. Nevertheless, 

there also exists a positive bias in central Jutland (mid-west Denmark) and on the urban area of Copenhagen (mid-east 

Denmark) reaching a value around 10-20%. The positive bias area grows in July occupying most of Jutland and North 30 

Zealand (mid-east Denmark).  

Other seasons were also mapped and shown in the supplements as Fig. S1 to Fig. S3. During autumn and winter there is also 

a general negative bias, which is more pronounced in central Jutland, reaching values of -30%. Nevertheless, an 

overestimation exists in eastern Denmark for those seasons. For winter, this overestimation is present in the sea grid points. 

Finally, during spring the spatial variability changes. For example, most grid points exhibit a positive bias during April, 35 

except for the southeast region of Denmark that has a small negative bias between 0.0 to 5.0%. During May, a tendency of 

overforecasting is present in central Jutland. 

The spatial distribution of temperature bias during autumn and winter (Fig. S2 and Fig. S3, respectively) follow a similar 

pattern with a general positive bias reaching its highest values in the southeast region (from 1.5 to 2.0 deg C). A negative 

bias is seen during spring (Fig. S1) and late summer across Denmark (Fig. 4). In June, a positive bias [0-2 deg C] is present 40 

in a large area of the Jutland peninsula (Fig. 4). Finally, the spatial variation of bias of ET0 is less pronounced and, in general, 
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positive. Nonetheless, exceptions exist. There is a negative bias in small regions located in the coastal areas or sea grid 

points, which ranges from -10 to 0%. 

The results presented above are specifically for lead time 1, i.e., forecasts of accumulated precipitation and ET0 and average 

temperature for August initialized on August 1st. The spatial variation of bias for other lead times was also mapped (not 

shown) and analyzed. In general, similar spatial patterns were found for all three variables, being the same along the target 5 

months and regardless of lead time. 

3.1.2 Skill 

Figure 5 summarizes the results for skill in the following manner. First, the values presented are, like in Fig. 3, the spatial 

average of skill for entire Denmark. Secondly, we evaluate the skill in terms of accuracy (CRPSS, first row) and sharpness 

(SS, second row). As seen in the evaluation of bias, skill appears to be dependent on the target month and, to a lesser degree, 10 

on lead time.  

For precipitation, and looking at the first month lead time, ECMWF System 4 skill in accuracy is mildly better than that of 

climatology for February, March, April, July, August, November and December, with a CRPSS of 0.15 at most. In general, 

skill in accuracy decreases for lead time 2 onwards. April stands out for having a slightly positive skill in accuracy for almost 

all lead times, but comes at the expense of having a wider spread than ensemble climatology. For temperature, for the first 15 

month lead time, a positive skill exists in terms of accuracy for almost all months, except for late spring. Skill in terms of 

accuracy also decreases with lead time, but February stands out to have a mild skill for almost all lead times. Forecasts are 

also in general sharper than ensemble climatology, except for January and March at longer lead times. ET0 appears to have 

skill only for late summer and beginning of autumn in terms of accuracy. This may be explained by the fact that forecasts are 

sharper than climatology, indicating that there could be an underdispersion issue. 20 

Note that the computation of the skill score for accuracy was done using a CRPSsys of 15 or 51 ensemble members, while the 

CRPSref is comprised by 23 members. The disparity in the number of ensemble members can cause forecasts to be in 

disadvantage (advantage) compared to a reference forecast with larger (smaller) ensemble size. Ferro, et al., (2008) provided 

estimates of unbiased skill scores that consider the differences in ensemble size. To remove this effect, we calculated the 

CRPSS using the unbiased estimator for CRPSref in Eq. (22) in Ferro, et al., (2008). In general, there was a mild increase in 25 

the CRPSS value for the months with 15 members, as expected (not shown). The opposite holds for the months with 51 

members (February, May, August and November), where a mild decrease of the CRPSS values (not shown) was obtained. 

Because the changes in CRPSS are moderate, in the rest of the document we will report the results of the CRPSS using the 

original ensemble sizes, (CRPSsys with 15 or 51 ensemble members, CRPSref with 23 members). 

Figure 6 shows the skill in accuracy (CRPSS) for monthly values and for lead time of one month mapped across Denmark 30 

and its monthly evolution during the summer (JJA). The other seasons are also mapped and analyzed and are included in the 

supplement (Fig. S4 to Fig. S6). Higher skill is observed for temperature, for which ECMWF System 4 improves the 

ensemble climatological forecast with up to 50%. Precipitation and ET0 have lower skill in comparison to temperature, 

reaching a value of 0.3 for specific months and regions in Denmark. The spatial variation of skill for precipitation seems 

scattered across Denmark and through the year. Some notable exceptions are the higher skill in accuracy that ECMWF 35 

System 4 has in western Jutland during November and December and the low skill attained in October across Denmark (Fig. 

S5 and Fig. S6). The spatial variation of skill in accuracy of monthly averaged temperature seems more pronounced during 

autumn and spring, with northern Denmark attaining the highest values of skill for these seasons. For the remaining seasons, 

skill over climatology is present across the country, except for late spring where eastern Denmark has the largest negative 

skill. Finally, the spatial variation of skill of ET0 is more pronounced for the months April to November with both positive 40 
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and negative skill. In general, in this period, eastern Denmark attains positive, although mild for some months, values of 

skill, except for November.  

In general, the areas with highest biases shown in Fig. 4 are associated with the lowest skill scores. For instance, for 

precipitation in October in southern central Jutland, the negative bias reaches values around 30-40 % (Fig. S2). This  leads to 

values of CRPS almost 60% smaller than that of ensemble climatology (Fig. S5). The opposite also holds, areas where biases 5 

are lower tend to have the highest benefits over ensemble climatology, i.e., precipitation in March  across Denmark or in 

November in western Jutland. 

Skill related to accuracy was also mapped for lead times 2-7 months (not shown). In general, the geographical regions 

having a statistically significant positive skill score for lead time 1 month disappear, except for some smaller regions where a 

slight positive skill, between 0.0 and 0.1 is found, i.e. precipitation in April forecast initiated in February (lead time 3 10 

months), which contributes to the mild positive skill at longer lead times as seen in Fig 5.  

The skill related to sharpness was also mapped for all target months and lead times (not shown). In general, forecasts are 

sharper than ensemble climatology as seen in Fig. 5 across Denmark for all three variables under study. This situation 

persists, in general, along all lead times, except for precipitation in April and October, in addition to temperature in January, 

March and November (Fig. 5). For these months, the lack of sharpness is present through Denmark. Nevertheless, for 15 

precipitation in April, the region with the lack of sharpness is in southern Denmark, along all lead times.  

3.1.3 Statistical consistency of monthly aggregated P, T and ET0 

The first row in Fig. 7 shows the PIT diagram for raw ECMWF System 4 summer forecasts for lead time 1 month. The 

observations and forecast of the diagram come from a grid point located in western Denmark (squared shape in Fig. 8). The 

remaining seasons can be seen in Fig. S7 to Fig. S9 in the supplementary material. Raw precipitation forecasts, for this grid 20 

point, exhibit an underprediction of the mean for winter and autumn andmixed results for the remaining seasons. For 

example, the underprediction bias is reduced for spring, except for April, where the system exhibits a positive bias. Raw 

temperature predictions of winter, October and November, in addition to June, exhibit an overprediction, which is lowest for 

January and February. Spring and summer temperature exhibit an underprediction, which is highest for July (Fig. S7 and Fig. 

7). Finally, raw forecasts of ET0 during all seasons, exhibit an overprediction of the mean, in accordance with the results in 25 

Sect. (3.1.1). The statistical consistency at longer lead times for all variables (2-7 months, not shown), depends, similarly to 

bias, on the target month and to a much lesser degree, on lead time Temperature in March and, to a lesser degree, 

precipitation in July  exhibit underdispersion issues, i.e. too often the observations lie outside the ensemble range.  

3.2 Analysis of postprocessed forecasts 

The second and third rows in Fig. 2 show the corrected forecasts and the bias and skill scores after postprocessing using the 30 

LS and the QM method, respectively. The results represent a particular grid point and forecast of August initialized August 

1. After postprocessing, the reduction of bias is evident for the three variables under study. Nevertheless, and contrary to 

what one should expect, this reduction of bias does not necessarily translate into an increase of skill in accuracy, at least for 

precipitation and temperature and for this month and grid point. The quantification of the reduction/increase of accuracy 

after postprocessing for the whole Denmark, through the year and for different lead times is discussed in the Sect. 3.2.2 35 

below.  

3.2.1 Bias 

Any postprocessing technique used should be able to at least remove biases in the mean. This is accomplished using both 

techniques. Figure 8 shows the bias of precipitation, temperaure and ET0 and its evolution through the year for lead time 1 

month. Bias is shown for four locations scattered around Denmark. Figure 8 shows that the yearly variability of the bias is 40 
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collapsed to almost 0%, although for precipitation and winter ET0, the LS method seems to be doingslightly better at 

removing the bias in comparison to QM. This comes as no surprise, the LS method forces this bias to be zero. 

3.2.2 Skill 

In order to quantify the improvement over the raw forecast, we compared the number of grid points for which the skill score 

was positive and negative. Furthermore, the scores are only considered positive or negative if the differences in the 5 

distribution of the skill between ensemble climatology and ECMWF System 4 forecasts are statistically significant at the 

0.05 level using the WMW test. Consequently, we introduced a third category for which there is no statistically significant 

difference in skill between climatology and ECMWF System 4 forecasts.  

Figure 9 shows the percentage of grid cells with a statistically significant positive skill due to accuracy, Eq. (8), for the raw 

forecasts (first raw) and the postprocessed forecasts (LS, second row; QM third row). All target months and lead times are 10 

included. If a postprocessing method is successful in increasing the regions with positive skill scores, then the box for that 

target month/lead time is bluer in comparison to the raw forecasts. For precipitation, there is no obvious increase in skill due 

to accuracy, except, perhaps, February and July forecasts for the first month lead time. There are, however, instances for 

which the percentage of positive skill grid points decreases. The most obvious cases are March and November (1st month 

lead time) with a reduction of almost half, i.e., from 13.6% (raw) to 5.7% (LS) for March. On the contrary, temperature and 15 

ET0 exhibit a greater improvement, at least on the first month lead time. For instance, the percentage of grid points with 

positive skill increases from 4.5% to 50% for April temperature (LS) and from 30% to 100% (LS) for temperature in July. 

The biggest improvement for ET0 appears in June (first month lead time), reaching 90% of positive grid cells after 

postprocessing (LS). 

In addition, the negative and equal categories were also plotted and included in the supplement as Fig. S10 and Fig. S11. 20 

After postprocessing, there are instances where a considerable amount of grid cells change from a statistically significant 

negative skill score to the third category (no significant differences between ensemble climatology and ECMWF System 4 

score distributions, Fig. S11). This is true for temperature and ET0 at longer lead times. One of the obvious examples is 

February ET0 at lead time 6 (forecast initiated in September), the percentage of grid points with negative skill scores decrease 

from 80.5% to 4.3% after postprocessing (Fig. S10). On the other hand, the percentage of grid points with no significant 25 

differences in skill increase from 20% to 95.7% after postprocessing (Fig. S11) for this example.  

To further illustrate the above situation, Fig. 10 shows the variability of the CRPSS when considering all grid points 

(662/724 grid points across Denmark). Figure 10 shows the CRPSS for the target month of February at all lead times and the 

raw and postprocessed skill. The figure shows a reduction of the spatial variability of skill in accuracy and for this month, 

this reduction is more pronounced for ET0. However, and as mentioned above, the reduction of spatial variability of accuracy 30 

is not enough to ensure statistically significant positive differences in skill. 

Results for sharpness (Fig. S12 to Fig. S14) similar to Fig. 9, show that a loss of sharpness occurs after postprocessing in 

comparison to raw forecasts for LS and QM applied to precipitation, and QM applied to temperature and ET0. Sharpness 

seems to be maintained for temperature and ET0 when we use the LS method. This can be explained by the fact that the 

correction factor applied to temperature forecasts is additive, which in turn changes the level of the ensemble members and 35 

has no effect in the spread of the forecasts, leaving the sharpness score equal to that of the raw forecasts. On the other hand, 

when the correction factor is multiplicative, as in Eq. (1) for precipitation and ET0, not only the level but the spread is 

affected. It will increase the spread when the correction factor is above 1 (which indicates an underprediction issue), and 

conversely, reduce the spread when the correction factor is below 1 (indicating an overprediction issue). The larger the 

correction factor is, the larger effect it will have in the ensemble spread. For ET0, where biases are in general lower than 40 
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biases in precipitation, sharpness seems not to be affected. This effect is somewhat artificial and may lead to misleading 

evaluations of the power LS has in correcting for biases in spread. 

3.2.3  Statistical consistency of postprocessed monthly aggregated forecasts 

Second and third row in Fig. 7 and Fig. S7 to S9 show the PIT diagrams of corrected forecasts for one grid point located in 

western Denmark. In general, the statistical consistency seems to be improved (points closer to the 1:1 diagonal in Figure 7) 5 

to the same degree for both postprocessing methods. Although, for ET0, this consistency is better enhanced by QM. This fact 

may be explained by the more evident sharpness loss after correcting forecasts with the QM method (Fig. S11 to S13).  

Fig. 11. depicts the results of the AD test in the following manner. First, the first, second and third rows represent the results 

of the raw, and postprocessed forecasts with LS and QM methods, respectively. Secondly, as for Fig. 9, the x-axis represents 

the lead time and the y-axis the target month. Finally, the percentage shows the proportion of grid points for which the null 10 

of uniformity at the 5% significance level is accepted. A variety of results are found by the inspection of Fig. 11. First, the 

percentage of grid points for which the uniformity hypothesis is accepted is very low for raw forecasts. This conclusion 

holds except for temperature in January and February with forecasts initialized in months with 51 ensemble members. 

Secondly, the percentage increases after postprocessing for selected months and lead times, usually involving target months 

with 51 ensemble members. This increase is more visible in postprocessed forecasts using the QM method. Finally, the 15 

statistical consistency of ET0 appears to remain low even after postprocessing. 

3.2.4 Accuracy of extreme precipitation and number of dry days 

Figure 12 shows the skill in terms of accuracy for both monthly maximum precipitation and the monthly number of dry days. 

Box-plots represent the range of the skill score of all 662 grid cells. Skill scores are for January forecasts for all seven lead 

times. Two features are highlighted. First, spatial variability of skill gets reduced after postprocessing. Secondly, for the skill 20 

of the number of dry days, results show that QM performs significantly better than LS. This is not surprising as QM adjusts 

for biases in the whole range of percentiles of the distributions, whereas LS only focuses on the mean. Note that the apparent 

increase in skill after LS postprocessing is a consequence of the drizzle effect removal before bias correction. Despite the 

reduction of the spatial variability and an increase, on average, of the skill of postprocessed monthly maximum precipitation 

and number of dry days, results still fail to show an improvement over climatology, as the CRPSS is still negative, even after 25 

bias corrections are implemented. 

4 Summary and Conclusions 

The present study had two objectives. The first was to analyze the bias and skill of the ECMWF System 4 in comparison to a 

climatological ensemble forecast, i.e. a forecast based on observed climatology over a period of 24 years. Secondly, 

comparing the statistical consistency between the predictive distribution and the distribution of its verifying observations. 30 

This analysis was done for hydrological relevant variables: precipitation, temperature and ET0. The conclusions of the first 

objective of the study and which answer the first question posed in section 1 can be summarized as follows: 

• Raw seasonal forecasts of precipitation, temperature and ET0 from ECMWF System 4 exhibit biases which depend 

on the target month and to a lesser extent, on lead time. This result is also in accordance to what was found in 

Crochemore et al., (2016). There is a persistent overforecasting issue for ET0, which can be result of a combination 35 

of biases originating in of both temperature and incoming shortwave solar radiation.  

• In general, skill in terms of accuracy is only present during the first month lead time, which is basically the skill of 

the medium-range forecast. Crochemore et al., (2016) found a similar degree of skill of the raw ECMWF System 4 

forecasts for mean areal precipitation in France. 
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• One seeming advantage ECMWF System 4 has over ensemble climatology is that forecasts are sharper. However, 

this overconfidence, combined with the biases in the mean lead to lower levels of accuracy in comparison to the 

accuracy of the ensemble climatological forecasts. Using the PIT diagrams, we could confirm the results for the bias 

on the mean of precipitation, temperature and ET0.  

The second objective was to improve the forecasts using two relatively simple methods of postprocessing: LS and QM. This 5 

was done having in mind the biases GCMs have in the mean and dispersion. Modest improvements were found and can be 

summarized as follows: 

• Both methods perform equally well in removing biases in the mean. 

• In terms of accuracy, mild improvements are seen on the first month lead time, especially for temperature and ET0, 

where a higher portion of grid points over Denmark can reach a positive skill. Precipitation and longer lead times 10 

are still difficult to improve. This may be explained by the same situation as discussed in Zhao, et al., (2017). QM 

performs better when there exists a linear relationship between ensemble mean and observations. This linear 

relationship may be absent at longer lead times reducing the effectiveness of these methods.  

• Looking at the spatial distribution of skill in sharpness we see that for precipitation, both methods tend to decrease 

it, with a slight increase of QM over LS. For temperature and ET0, LS seems to be able to keep the sharpness of the 15 

raw forecasts. This is not the case for QM, for which for some months it manages to disappear the areas where a 

slight positive skill is present. Note, however, that sharpness using the LS method is improved when the correction 

factor is multiplicative and less than one (positive bias; i.e., ET0). The opposite holds: sharpness is inflated when the 

multiplicative correction factor is larger than one (negative bias; i.e., precipitation). This has implications for the 

computation of the CRPS, as it also penalizes (rewards) for wide (narrow) ensemble forecasts, on top of the 20 

penalization for biased predictions. This situation may also explain why in Crochemore, et. al., (2016), LS has a 

better improvement in terms of sharpness than QM, at least for precipitation in spring. 

• Statistical consistency is improved using QM. Moreover, QM also performs better in correcting biases of low 

values of precipitation. This is not a surprising result, as QM corrects for biases for the entire percentile range. 

We are aware that our research has limitations. The first is that methods applied here were implemented on a grid-to-grid 25 

basis. This may fail to maintain spatio-temporal and intervariable dependencies. Spatial correction methods have been 

suggested such as the ones used by Feddersen and Andersen, (2005) and Di Giuseppe et al., (2013). Another suggestion has 

been to recover these dependencies by adding a final postprocessing step such as the methods proposed in Clark et al., 

(2004) or Schefzik et al., (2013). The second limitation is the exclusion of postprocessing methods tailored to ensemble 

forecasts, which consider the joint distribution of forecasts and observations (Raftery, et. al., 2005; Zhao et al., 2017). Their 30 

inclusion would gain a deeper insight to the comparison presented here by increasing the complexity of the correction 

methods and the evaluation of their added value in comparison to simpler approaches. 

Postprocessing for seasonal forecasting is still a subject at its infancy and although one could argue that advances in seasonal 

forecasting will make postprocessing unnecessary in the future, there are still opportunities for enhancement. GCMs suffer 

from several issues as discussed here, however, we still encourage its use. They are physically-based, sharper than 35 

climatological forecasts. We believe that once biases issues are fixed by means of a more realistic representation of coupled 

and subgrid processes and/or a better integration of observational data using data assimilation (Weisheimer and Palmer, 

2014; Doblas-Reyes et al., 2013), GCMs will be able to provide valuable information at longer lead times for sector 

applications such as water management.  
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Figure 1: Spatio-temporal variability of precipitation (mm/month), temperature (deg C) and reference evapotranspiration 

(mm/m) of monthly aggregated values (P, ET0) and monthly averages (T) of the observation period (1990-2013). 5 
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Figure 2: Example of a monthly forecast, valid for August and lead time 1 month for a grid point located in west-central 

Denmark. Blue box-plots are the ensemble climatological forecasts. Black box-plots are ECMWF System 4 raw or 
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postprocessed forecasts. Red dots represent observed values. Bias as in Eq. (4) and Eq. (5) and skill scores for accuracy and 

sharpness (CRPSS and SS) as in Eq. (8). First column corresponds to the raw forecast, second and third columns correspond 

to the corrected forecasts with the Linear Scaling/Delta Change (LS) and Quantile Mapping (QM) methods, respectively. 

 5 

Figure 3: Percentage bias and absolute of monthly values of raw forecasts. Y-axis represents the target month and the X-axis 

represents the different lead times at which target months are forecasted. Values in blue range represent a positive bias and 

values in red represent a negative bias. 
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Figure 4: Percentage bias and absolute bias of monthly values of raw forecasts for the summer (JJA). Forecast lead time of 1 

month. 
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Figure 5: Skill in terms of accuracy (a) and sharpness (b) of monthly values of raw forecasts. Y-axis represents the target 

month and X-axis represents the different lead times at which target month is forecasted.  
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Figure 6: Spatial variability of skill in accuracy for summer (JJA) raw forecasts for lead time 1 month. The grids marked 

with '*' are points where the distribution of the accuracy for ensemble climatology differs from the accuracy distribution of 

the ECMWF System 4 forecasts at a 5% significance using the WMW-test. 

 5 

 

Figure 7: PIT diagrams of summer P, T and ET0 for the raw and postprocessed forecasts for lead time 1 month for one grid 

point located in western Denmark.  
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Figure 8: Biases of raw and postprocessed precipitation, temperature and ET0 at four locations in Denmark. Biases are for the 

different target months and for lead time 1 month. Different locations are represented with different symbol shape according 

to the map on the left, whereas the raw and the different postprocessing techniques are represented with different colors. 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 



27 
 

 

Figure 9: Percentage of grid points with statistically significant positive CRPSS cf. Eq. (8).  
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Figure 10: Spatial variability of skill in terms of accuracy for P, T and ET0 for the raw and postprocessed forecasts of 

February as a target month at different lead times. Box-plots represent the values of CRPSS cf. Eq. (8) with climatology as 

reference, of all the 662/724 grid points covering Denmark. 5 
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Figure 11: Percentage of grid points for which we fail to reject the null hypothesis of uniformity using the Anderson-Darling 

test at the 5% significance level.  
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Figure 12: Skill of daily monthly maximum P and number of dry days for target month January for all 7-month lead times 15 

for the raw and post-processed forecasts. Box-plots represent the values of CRPSS, of Eq. (8) with climatology as reference, 

of all the 662/724 grid points covering Denmark. 
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