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Abstract. In hydrology, two somewhat competing philosophies form the basis of most process-based models. At one 

endpoint of this continuum are detailed, high-resolution descriptions of small-scale processes that are numerically integrated 

to larger scales (e.g. catchments). At the other endpoint of the continuum are spatially lumped representations of the system 

that express the hydrological response via, in the extreme case, a single linear transfer function. Many other models, 10 

developed starting from these two contrasting endpoints, plot along this continuum with different degrees of spatial 

resolutions and process complexities. A better understanding of the respective basis as well as the respective shortcomings of 

different modelling philosophies has potential to improve our models. In this manuscript we analyse several frequently 

communicated beliefs and assumptions to identify, discuss and emphasize the functional similarity of the seemingly 

competing modelling philosophies. We argue that deficiencies in model applications largely do not depend on the modelling 15 

philosophy, although some models may be more suitable for specific applications than others and vice versa, but rather on 

the way a model is implemented. Based on the premises that any model can be implemented at any desired degree of detail 

and that any type of model remains to some degree conceptual we argue that a convergence of modelling strategies may hold 

some value for advancing the development of hydrological models.   

1 What is the issue? 20 

Hydrological models are used to predict floods, droughts, groundwater recharge and land-atmosphere exchange, and are of 

critical importance as tools to develop strategies for water resources planning and management. This is particularly true in 

the light of the increasing effects of climate and land-use change on the terrestrial water cycle. Yet, in spite of their central 

importance, these models are frequently plagued by considerable uncertainties and unreliable predictions.    

Models aim to encapsulate our understanding of the system. Yet, their weakness for predictions suggests that, besides the 25 

impact of observational uncertainties, at least some of the processes that control how water and energy are stored in, 

transferred through and released from different parts of a flow system are not sufficiently well represented in state-of-the-art 

models. 
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The hydrologic modelling community sets out to design system descriptions that are explicitly based on our understanding 

of the actual mechanisms involved. This is done with a wide range of strategies along a two-dimensional continuum of 

different spatial resolutions and process complexities (Figure 1). Note that hereafter we refer to process complexity as the 

number of processes that are represented explicitly. At one endpoint of this continuum are detailed, high resolution 

descriptions of small-scale processes that are numerically integrated to larger scales (e.g. catchments). At the other endpoint 5 

of the continuum are spatially lumped representations of the system that express the hydrological response via, in the 

extreme case, a single linear transfer function. Many other models, developed starting from these two contrasting endpoints, 

plot along this continuum with different degrees of spatial resolutions and process complexities. Models are then often 

loosely and informally categorized into these two model classes whose origin roughly reflect the endpoints of the resolution-

complexity continuum.  10 
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Figure 1: Conceptual sketch of approximate positions of a selection of typical applications of frequently used catchment-

scale models on the spatial resolution – process complexity continuum, compared to a selection of observation variables and 

their availability to force and constrain models. The Spatial resolution axis shows approximate ranges of numbers and 

associated scales of individual spatial units (e.g. grid cells) within the model domain (e.g. catchment) for typical 

applications of the individual models. The Process complexity axis indicates the number of individual processes/processes 30 

within one spatial unit. The increasingly grey shaded area indicates the transition from bucket-based (white) to continuum-

based models. The red dots indicate the two endpoints along the resolution-complexity continuum. Models: 1 – Unit 

hydrograph (Sherman, 1932), 2 – HBV (Bergström, 1992), 3 – SUPERFLEX (Fenicia et al., 2011), 4 – FLEX-Topo (Gharari 

et al., 2014a), 5 – mhM (Samaniego et al., 2010), 6 – mhM-topo (Nijzink et al., 2016a), 7 – SWAT (Arnold et al., 1998), 8 – 
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NWS-Sacramento (Burnash, 1995), 9 – GR4J (Perrin et al., 2003), 10 – HYPE (Lindström et al., 2010), 11 – VIC (Liang et 

al., 1994), 12 – TOPMODEL (Beven and Kirkby, 1979), 13 – CRHM, 14 – TAC
D
 (Uhlenbrook et al., 2004), 15 – WASIM-

ETH (Schulla and Kasper, 1998), 16 – DHSVM (Wigmosta et al., 1994), 17 – MIKE-SHE (Refsgaard and Storm, 1996), 18 – 

PARFLOW (Kollet and Maxwell, 2008), 19 – CATFLOW (Zehe et al., 2001), 20 – HYDRUS-3D (Šimůnek et al., 2008), 21 – 

CATHY (Camporese et al., 2010), 22 – HydroGeoSphere (Jones et al., 2006), 23 – PIHM (Qu and Duffy, 2007).  5 

 

Over the past four decades innumerable studies illustrated the value but also the limitations of models at different positions 

in the resolution-complexity continuum (Clark et al., 2017). Irrespective of their resolutions and complexities, models can 

exhibit considerable skill to reproduce the system response dynamics they have been trained for. In spite of that, these 

models can frequently not simultaneously reproduce aspects of the observed system response other than the calibration 10 

objectives, and which may include descriptors of emergent patterns, i.e. catchment signatures, such as flow duration curves 

(e.g. Jothityangkoon et al. 2001; Eder et al., 2003; Yadav et al., 2007; Martinez and Gupta, 2011; Sawicz et al., 2011; Euser 

et al., 2013; Willems et al., 2014; Shafii and Tolson, 2015; Westerberg and McMillan, 2015) but also temporal dynamics 

and/or spatial pattern in state and flux variables the model may not have been calibrated to, such as snow cover (e.g. Parajka 

and Blöschl, 2008), ground- (e.g. Fenicia et al., 2008) or soil water fluctuations (e.g. Sutanudjaja et al., 2014). This failure to 15 

mimic system internal dynamics and patterns in a meaningful way indicates that, while doing a good curve-fitting job, many 

models may not represent the dominant processes of the system in a meaningful way, thereby providing the right answers for 

the wrong reasons (cf. Kirchner, 2006). Together with the largely inevitable errors introduced by data uncertainty (e.g. 

Beven and Westerberg, 2011; Beven et al., 2011; Renard et al., 2011; Beven, 2013; McMillan et al., 2012; Kauffeldt et al., 

2013; McMillan and Westerberg, 2015; Coxon et al., 2015) and insufficient model evaluation and testing (cf. Klemes, 1986; 20 

Wagener 2003; Clark et al., 2008; Gupta et al., 2008, 2012; Andreassian et al., 2009), models then often experience 

substantial performance decreases when used to predict the hydrological response for time periods they were not calibrated 

for (e.g. Seibert, 2003; Refsgaard and Henriksen, 2004; Kirchner, 2006; Coron et al., 2012; Gharari et al., 2013). 

Notwithstanding similar skills and limitations of many models along the resolution-complexity continuum, as illustrated by 

a range of model inter-comparison studies (e.g. Reed et al. 2004; Breuer et al., 2009; Smith et al., 2012; Lobligeois et al., 25 

2013, Maxwell et al., 2014; Vansteeenkiste et al., 2014), there is surprisingly little fruitful exchange between the different 

modelling communities who start their model development from the two contrasting endpoints in the resolution-complexity 

continuum. Models at the low resolution and low complexity end of the continuum are criticized for lacking a robust 

physical or theoretical basis and for their inability to meaningfully represent spatial patterns (e.g. Paniconi and Putti, 2015; 

Fatichi et al., 2016), whereas models at the high resolution and high complexity end are often viewed as having inferior 30 

representations of sub-grid variability (e.g. Beven and Cloke, 2012) and as being not sufficiently agile to represent the 

dominant processes in different environments (e.g. Mendoza et al., 2015). Even more, instead of appreciating the potential 

value of a convergence between the approaches and joining forces to integrate the respective efforts, communication 
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between the communities is often limited to mutually highlighting the deficiencies of and dismissing the respective 

modelling strategies.  

Building on early landmark papers that outline most of the problems involved (e.g. Dooge, 1986; Beven, 1995; Blöschl and 

Sivapalan, 1995; Beven, 2001; Blöschl, 2001), we think that to achieve progress in the discipline of scientific hydrology and 

to develop models for more reliable predictions, it is necessary for the different hydrologic modelling communities to take a 5 

step back. Reflecting on failures and successes can not only help to design better models but also to better appreciate the 

complementary nature and value of detailed, microscale process understanding on the one hand and the quest for general 

laws at the macroscale on the other hand (Klemes, 1983; Dooge, 1986; Sivapalan, 2005).  

This commentary is based on detailed and, at times, refreshingly heated discussions during and after the 1st Workshop on 

Improving the Theoretical Underpinnings of Hydrologic Models (Bertinoro, April 2016). Our aim is to identify, discuss and 10 

clarify common misunderstandings and misinterpretations of competing modelling approaches, with the main points being 

that (1) all models are, to varying degrees, spatially lumped, (2) all models contain, to varying degrees, conceptual elements, 

(3) all models do have, if well implemented, a sound physical basis, albeit on different scales and (4) the choice of a suitable 

modelling strategy depends on the purpose of the application. More generally, we intend to resolve the perceived dichotomy 

between the two modelling communities and their modelling strategies. As many individual points addressed hereafter may 15 

have already been discussed elsewhere in more detail we do not make a particular claim for originality. Rather, we want to 

provide a synthesis of these points with a subsequent perspective of how to take advantage of different modelling 

philosophies and how convergence between them may be key towards improving both, our understanding of the 

hydrological system and our hydrological predictions. 

2 Model taxonomy  20 

Hydrology models are generally classified following a quite loose and informal framework. Models at the low-resolution, 

low-complexity end of the continuum (Figure 1) are usually referred to as lumped, conceptual, bucket or top-down models. 

In contrast, high-resolution, high-complexity models are referred to as distributed, physically-based, process or bottom-up 

models. In spite of having specific meanings and only partial overlap, these individual terms for each modelling strategy are 

commonly used interchangeably. This lack of a clear and unambiguous terminology may be one of the reasons for many 25 

misunderstandings between the different model communities. We therefore think that a somewhat more rigorous model 

taxonomy needs to be the first step to clarify these misunderstandings and to pave the way for increased convergence of the 

individual modelling strategies.  

The most common model classifications are based on (1) spatial simplification: spatially distributed and spatially lumped; 

(2) system simplification: physically based and conceptual, (3) model architecture: continuum based and bucket based; and 30 

(4) model refinement/scaling strategies: top-down and bottom-up. The following sections describe each of these distinctions 

in detail.  
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2.1 Spatial simplification: Spatially distributed vs. spatially lumped 

2.1.1 Spatially distributed models 

Spatially distributed models provide, to varying degrees, spatially explicit representations of natural heterogeneity within 

the model domain. This can be achieved in three ways (e.g. Ajami et al., 2004; Das et al., 2008; Euser et al., 2015): (1) 

spatially distributed moisture accounting, i.e. each parallel model unit is represented by the same model parameter values but 5 

forced with spatially varying model input (e.g. precipitation, temperature, etc.), (2) spatially distributed  model parameters 

that account for heterogeneity in the natural boundary conditions and (3) a combination thereof.  

These models can then be further distinguished into two broad functional classes, as suggested by Todini (1988). The first 

class being a suite of one-dimensional column elements, with no representation of direct lateral exchange between the 

individual elements (“distributed integral models”). Rather, the elements are merely connected by the channel network. The 10 

second class explicitly accounts for lateral exchange of water, solutes and energy between the individual columns 

(“distributed differential models”). 

In general, the term “spatially distributed” has limited discriminatory power, as it always needs to be seen with respect to 

the scale of a specific model application. In addition, the term only describes the spatial axis in the resolution-complexity 

continuum (Figure 1). However, it is possible to have many different types of spatially distributed models with different 15 

degrees of process complexity, model architecture, and model refinement/scaling strategies. In contrast to what the terms 

imply, different applications of fully distributed models span several magnitudes of grid sizes from centimetres to kilometres 

(e.g. Butts et al., 2004; Kollet and Maxwell, 2006; Zehe et al., 2006; Samaniego et al., 2010; Kumar et al., 2013) and do thus 

not necessarily describe the system at a higher spatial resolution than so-called semi-distributed models, as the applied grid 

cells can often be larger than sub-catchments and/or hydrological response units (e.g. Nijzink et al., 2016a). 20 

It is in any case important to realize that any distributed model application, irrespective of the spatial resolution and scale 

of its individual model units, is an assemblage of lumped representations of the system at the scale of the individual model 

units (Grayson and Blöschl, 2001; Wagener and Gupta, 2005).  

2.1.2 Spatially lumped models 

Lumped models represent the model domain as one single entity without further spatial discretization. They describe the 25 

large-scale manifestation of small-scale natural heterogeneities of the system by making use of parsimonious flux 

parameterizations that emerge as functional relationships at the scale of the model domain. Lumped models can be used for 

systems over a wide range of scales, from soil sample to river basin scale, as long as the emergent relationships meaningfully 

capture the effects of intra-domain heterogeneity.  

 30 
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2.2 System simplification: physically based and conceptual 

2.2.1 Physically based models 

Physically based models provide a mechanistic description of the flow system in the porous and heterogeneous soil column 

and at the land-vegetation-atmosphere interface, consistent with our understanding of the forces acting on and controlling the 

release of water, energy and solutes from the control volumes under consideration. They attempt to do so by explicitly 5 

representing as many processes as possible (Figure 1). An ideal situation is where there is comprehensive knowledge of 

boundary conditions (e.g. effective soil hydraulic conductivity, precipitation), system states (e.g. volumetric water content) 

and fluxes (e.g. canopy throughfall, infiltration, subsurface lateral flow), and it is possible to define functional relationships 

between states and fluxes (i.e. flux parameterizations), such as storage-discharge relationships in the form of Q=f(S). Such 

flux parameterizations, or closure relations, then directly emerge at the scale of the observation, fully satisfying the 10 

conservation laws of mass, energy and momentum and, in theory, without the need for further assumptions or calibration. As 

most direct observations of system boundary conditions and states are only available at the point or plot scale, models that 

are traditionally referred to as physically based may also be considered as describing the system from microscale 

perspective. 

There is an important distinction here. Individual observations provide lumped characterizations of a flow system, 15 

integrating spatial heterogeneities and diversity in processes at scales smaller than the scale of the observation (Grayson and 

Blöschl, 2001). To be meaningful, so-called physically based models are actually lumped at the scale of the observation, as 

any further discretization below the scale of the observation needs to involve additional assumptions on the sub-grid 

heterogeneity (“conceptualizations”). Likewise, meaningful physically based models also need to explicitly represent details 

of the landscape, and therefore need to be spatially distributed at larger scales, transferring knowledge inferred from 20 

observations across space. 

It is worth noting that the term “physically-based” benefits from a misleading semantic-psychological bias. The term 

“physically based” wrongly implies that these models are inherently “correct” descriptions of real world-systems, which 

further implies the highly questionable notion that all other models are not “physical” and thus less “correct”.  

2.2.2 Conceptual models 25 

Conceptual models provide a macroscale description of the hydrological system with a parsimonious and more abstract 

representations of the processes involved. Here the term macroscale is used to describe any scale larger than the scale of 

individual microscale observations used in physically based models. Zooming out to the macroscale therefore integrates 

natural microscale heterogeneities and feedback between them over the entire model domain, in spite of largely disregarding 

system-internal process complexity. 30 

The basis of conceptual models are then relatively simple flux parameterizations to describe the large-scale manifestation 

of small-scale heterogeneities that emerge at the scale of the model application (e.g. catchment), as characterized by the 
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available integrated observations at that scale, such as stream flow. For that reason, conceptual models explicitly represent 

fewer individual hydrologic and, in particular, thermodynamic processes than physically based models (Figure 1). For 

example, evaporative processes are described by the empirical concept of potential evaporation in place of the detailed 

representations of the surface energy balance.  

As many system boundary conditions and states cannot be directly observed at the macroscale, the flux parameterizations 5 

in conceptual models, e.g. in the form of Q=f(S), describe underdetermined systems and therefore require assumptions about  

their functional shapes and/or calibration of their parameters.  

Conceptual models can be implemented as lumped or (semi-)distributed formulations (e.g. Kumar et al., 2010; Gao et al., 

2014a; Fenicia et al., 2016). In spite of that they are sometimes collectively and inaccurately referred to as “lumped” models. 

The terminology “conceptual model” itself to describe an abstract, macroscale representation of nature is really rather 10 

unfortunate as it is also used both by field scientists (e.g. McGlynn et al., 2004) and modellers (e.g. Gupta et al., 2012) to 

describe the understanding of the system. When viewed as abstract conceptual understanding, the “conceptual” model refers 

to all models, regardless of complexity, since all models are necessarily an abstract depiction of nature. 

2.3 Model architecture: continuum based and bucket based 

2.3.1 Continuum based models 15 

Continuum based models equations are developed at the microscale and are applied directly on individual model elements.  

For the sub-surface a common continuum-based model is a 3-D implementation of the Richard’s equation (e.g. Zehe and 

Blöschl, 2004; Kollet and Maxwell, 2006; Zehe et al., 2006; Sudicky et al., 2008). A distinguishing feature of continuum-

based models is that model fluxes are computed based on spatial gradients in model state variables, e.g., flows are explicitly 

computed based on the spatial gradient in matric head. Continuum-based models are hence inherently spatially distributed. 20 

2.3.2 Bucket based models 

Bucket or tank based models rely on “conceptual” storage elements (‘buckets”) to describe the storage and transmission of 

water through the flow domain. The buckets typically represent the storage of water at larger spatial scales, for example a 

hillslope or a catchment. The vertical and horizontal exchange of water between the buckets is then typically not expressed 

by actual gradients, but rather, in a simplified way, exclusively as a function of the water storage in the conceptually-25 

hierarchically “higher” bucket. For example the flux describing the infiltration from a bucket representing the unsaturated 

zone to a bucket representing the groundwater is often formulated exclusively as a function of the water storage in the 

unsaturated zone. 

Lumped implementations of conceptual models are in general bucket-based. Yet, (semi-)distributed conceptual models can 

involve simple, gradient-like controls on model internal exchange fluxes between buckets of individual model units (e.g. 30 
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hydrological response units), resembling simplified continuum-formulations (e.g. Weiler and McDonnell, 2004; Nijzink et 

al., 2016a).   

2.4 Model refinement/scaling strategies: bottom-up and top-down 

The distinction between bottom-up and top-down strategies describes rather broad modelling philosophies than specific 

approaches to formulate models. 5 

2.4.1 Bottom-up models 

The bottom-up scaling strategy often entails estimating large-scale fluxes by aggregating the output from individual, small-

scale control volumes, i.e. the boundary fluxes (Beven, 2006a), along their respective surface and subsurface flow directions 

to the channel and eventually to the outlet of the system. As such, bottom-up approaches are rooted in inductive scientific 

reasoning: a set of (microscale) observations provides facts of the functioning of the system at that scale. Formulating 10 

theories that allow a meaningful integration of the small-scale observations (i.e. facts), pattern and general principles then 

emerge at larger scales (e.g. Andersen and Hepburn, 2016). In the absence of suitable observations, this aspect is commonly 

the bottleneck in hydrology, as many models rely on merely spatially aggregating fluxes to estimate fluxes at larger scales 

instead of actually integrating processes according to meaningful scaling relationships that account for the effect of 

heterogeneity, organization and feedback Thus, in spite of considerable success, the inductive approach to science in general 15 

and in hydrology in particular has in the past raised considerable criticism as it bases its conclusions on incomplete facts, 

therefore making them problematic to prove, i.e. the  “black swan fallacy” (e.g. Popper, 1959). 

Bottom-up approaches are typically accomplished using distributed, physically- and continuum based models (e.g. Kollet 

and Maxwell, 2008; Kumar et al., 2009; Camporese et al., 2010; Kollet et al., 2010; Maxwell et al., 2014; Piras et al., 2014), 

but strictly spoken, any kind of prediction or virtual experiment is necessarily a bottom-up approach.  20 

2.4.2 Top-down models 

The top-down approach to modelling is a hierarchal model refinement strategy that progressively tests and refines the model 

based on learning from data (Sivapalan et al., 2003). Crucially, the top-down approach is based on understanding and testing 

different models as competing alternative hypotheses of system functioning (e.g. Clark et al., 2011). With the aim to 

understand observed (macroscale) pattern by iteratively narrowing the range of possible system descriptions that can 25 

generate these observations and which are typically assemblages of various individual mechanisms, the top-down approach 

is therefore a reflection of deductive scientific method (e.g. Popper, 1959; Salmon, 1967).   

Based on observations of system integrated variables, such as stream flow, top-down modelling applications attempt to 

describe the system directly at the scale of the system, which in hydrology frequently is the catchment-scale (Klemes, 1983; 

Dooge, 1986). However, the approach can in principle be applied at any desired scale. For example, to understand which 30 

individual mechanisms, including for example the effects of pore size distributions, particle charge density or viscosity 
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distributions, are necessary to describe what emerges as Darcy’s law at the soil sample scale. The top-down approach is 

criticized for lacking generally valid criteria for rejection of hypotheses and for its dependence on rigorous testing 

procedures, which are unavailable in reality due to the absence of sufficiently detailed observations.  

Being an iterative process, top-down approaches typically start with simple spatially lumped, conceptual, bucket based 

models, but can, in principle, subsequently involve model formulations at any point along the resolution-complexity 5 

continuum. Some examples of studies applying the top-down approach include Young (1998, 2003), Jothityangkoon et al. 

(2001), Kon and Sivapalan (2007), Fenicia et al. (2008, 2016), Kavetski and Fenicia (2011), Gharari et al. (2014a), 

Hrachowitz et al. (2014), Willems (2014) or more recently Garavaglia et al. (2017). 

3 Modelling myths – or not? 

There is a wide range of frequently communicated beliefs and assumptions on alternative approaches to modelling. They 10 

reflect different perceptions of modelling limitations. In the following sections we will contrast and scrutinize modelling 

critiques commonly communicated by the two respective modelling communities, discuss the extent to which we believe 

they are justified, describe how different strengths of different approaches are complementary and how combining them may 

benefit model convergence and eventually improved predictions. 

3.1 Critique: Physical basis 15 

3.1.1 “Bucket models have a poor physical and theoretical basis.”  

Since bucket models originate from empirical approaches to mimic the hydrological response based on observations at the 

macroscale, such as stream flow, without further assumptions on the system internal processes, this statement does certainly 

have an element of truth. However, evaluating this statement requires considering the effects of scale, organization and 

emergent properties of a system.  20 

Models based on macroscale observations seek to describe the system integrated observed response without loss of 

essential information. There is no loss of information, in theory, because the effects of sub-element information (e.g. 

heterogeneity) remains implicitly encapsulated in the large-scale functional relationships between model states and model 

fluxes. In general, water flows follow the observable, physical phenomenon of spatio-temporal dispersion of discrete input 

signals, controlled by water and energy input, gravity, flow trajectories and flow resistances (e.g. Rinaldo et al., 1991; Snell 25 

and Sivapalan, 1994;  Robinson et al., 1995; Botter and Rinaldo, 2003). A hydrological system, e.g. a catchment, therefore 

constitutes a low-pass filter. It disperses a random input signal (i.e. precipitation) by buffering its high-frequency 

components in storage components and by eventually releasing it with a suite of system specific time lags as stream flow or 

evaporation. Being in the realm of organized complexity (Dooge, 1986), the hydrological response at the catchment-scale 

can in most cases not be fully described by exclusively statistical methods and thus by the simplest bucket models, such as 30 

single linear reservoirs, or related concepts such as the Instantaneous Unit Hydrograph (Sherman, 1932). Typically adopting 



10 

 

a top-down approach, the development of bucket models is then the process of meaningfully representing the large-scale 

manifestation of organized complexity, introduced by spatial heterogeneity, by identifying a range of different dominant 

functional relationships between system input and the integrated output emerging through organization at the macroscale, i.e. 

the testing of competing hypotheses (e.g. Clark et al., 2011; Fenicia et al., 2011), without the need of resorting to small scale 

physics.  5 

In spite of being mostly conceptual in their design and the associated high level of abstraction, bucket models satisfy 

conservation of mass and typically provide a conceptual, parsimonious representation of the energy balance based on the 

concept of potential evaporation. The energy balance can be approximately closed if the model is carefully constrained not 

only with respect to the hydrograph but also with respect to the actual evaporation. In the common absence of more detailed 

observations, such energy balance constraints can be imposed using observed runoff coefficients on a range of scales (e.g. 10 

annual, seasonal and event-based), which define the partitioning between streamflow and evaporative fluxes (e.g. Budyko, 

1974; Donohue et al., 2007; Sivapalan et al., 2011) plus potential deep infiltration losses (e.g. Andreassian and Perrin, 2012). 

Notwithstanding its value, this strategy also illustrates one of the main weaknesses of many conceptual, bucket models: the 

lack of a more detailed representation of the energy balance only allows to approximate longer-term conservation of energy 

but does not continuously guarantee it over shorter time scales. In addition, the concept of potential evaporation effectively 15 

partitions net radiation into sensible and latent heat fluxes but does not explicitly track the residual energy that is not used for 

evapotranspiration such as the feedback between the potential and the capillary binding energy of water or the export of 

kinetic energy in water fluxes leaving the system.      

The purported physical basis of macroscale laws permits that a physical meaning can (and actually should eventually) be 

assigned to all processes in (conceptual) bucket models. Purely data-driven developments of bucket models, resembling 20 

signal processing approaches and thus understanding the hydrological system merely as a mathematical low-pass filter 

whose properties need to be identified, mostly forgo this process (e.g. Young, 2003). In contrast, for models that were 

developed with a mind-set directed more towards actual process understanding, the hydrological function of individual 

model components has in the past often been casually and loosely “interpreted”. However, without detailed testing, such 

interpretations of their physical basis remain somewhat ambiguous and subjective.   25 

To strengthen the physical basis, it will eventually be necessary to explore methods to more objectively and rigorously test 

individual model sub-components against observations (Clark et al., 2011) and/or to assign physical meaning to them a 

priori (cf. Bahremand, 2016). A potentially effective starting point for the latter is to use observations at the modelling scale 

to infer information about the functional shapes and to quantify the actual parameters of individual processes at that scale. 

Examples include the concept of Master Recession Curves (Lamb and Beven, 1997) or the water holding capacity in the 30 

unsaturated root zone (SU,max), which is the core of many hydrological systems as it controls the partitioning of drainage and 

evaporative fluxes (Gao et al., 2014b; deBoer-Euser et al., 2016; Nijzink et al., 2016b). These system components integrate 

heterogeneities and quantify actual physical properties present and physical processes active at the observation and 

modelling scale. Providing clear physical meaning to different parts of a model will then necessarily constrain the feasible 
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model space and consequently increase a model’s hydrological consistency while reducing its predictive uncertainty (cf. 

Kirchner, 2006).  

We therefore argue that bucket models developed based on deductive scientific reasoning, do have, if well implemented 

and tested, a robust physical and theoretical basis at the macroscale, and that it is possible to relate their individual 

components to stores and fluxes in nature (e.g. Clark et al., 2008; Fenicia et al., 2016; Gao et al., 2016), albeit at a different 5 

spatial scale and process resolution than continuum-based models. These types of models emphasize the value of zooming 

out and understanding the system from the point of holistic empiricism. Potential ways forward to better exploit the potential 

of these models may involve explicit treatment of the energy balance as well as detailed observation-based process 

identification.  

3.1.2 “Continuum-based models are applied at scales for which their equations were not developed” 10 

Continuum-based models are typically distributed, physically based models, frequently developed with a bottom-up 

approach. The general theory behind the fundamental equations of such models is based on forces acting on and fluxes 

passing through infinitesimal control volumes. This implies homogeneity over the entire control volume and allows the 

assumption of a local equilibrium (i.e. well mixed conditions), which is necessary for a meaningful definition of potential 

gradients. However, it was shown that the assumption of local equilibrium does not hold at scales above one meter (e.g. Or 15 

et al., 2015), which is exacerbated by the absence of suitable observations to formulate up-scaling relationships that allow a 

meaningful representation of emergent processes at larger scales. The Darcy-Richards formulation further poses that water 

movement in porous media is (1) controlled by equal flow resistances for both, gravity and capillarity driven fluxes and (2) 

exclusively characterized by diffusive fluxes and thus by the absence of kinetic energy. These assumptions may not be 

suitable to describe fluxes during wet conditions, which in many systems are characterized by an increased importance of 20 

advective, and thus velocity- rather than celerity-driven processes (e.g. McDonnell and Beven, 2014).  As a consequence, the 

small-scale equations do not necessarily represent the large-scale impact of sub-grid-scale heterogeneities (Beven, 1989), 

and the spatial gradients in model state variables do not have much meaning at the spatial resolution of the model (e.g. 1-km 

grids). 

On the other hand, continuum-based models are also criticized because there is insufficient data to reliably describe the 25 

spatial heterogeneity of the storage and transmission properties of the sub-surface. Being a non-linear system, for example 

averaging observed point-scale van Genuchten parameters, does not result in a meaningful representation of the average 

water retention characterization for larger-scale model elements.     

These two issues are linked and exacerbated by the problem that the higher the spatial resolution of the model domain, the 

higher the number of exchange fluxes (i.e. boundary fluxes; Beven, 2006) between individual adjacent modelling units in the 30 

model. Increasing the degrees of freedom in a model, this leads to the situation in which a specific choice of model 

parameters, no matter if observed or calibrated,  remains problematic to test against observations.  
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A potentially valuable way forward to somewhat circumvent the above points may be to relax the assumptions required by 

the Darcy-Richards equation and to replace the rigorous formulation with some degree of scale-independent 

conceptualization (e.g. Craig et al., 2010). For example, instead of averaging van Genuchten parameters, the ensemble of 

actual observed water retention curves at different locations in the system could be used to estimate upper and lower bounds 

of effective pedotransfer functions. As recently illustrated by Loritz et al. (2017), integrating some of the heterogeneity in 5 

such a way, these functions may be more representative for larger areas. This in turn allows to reduce the spatial resolution 

of the model domain and the associated problems.    

3.2 Critique: Natural heterogeneity and model complexity 

3.2.1 “Conceptual models are too simplistic and cannot adequately represent natural heterogeneity.” 

Simple lumped conceptual models, such as HBV, have a long track record of, at first glance, successful applications in a 10 

wide range of catchments world-wide. However, this success is in many cases deceptive as these models are often used in a 

quasi-inductive way with an implicit a priori assumption that they are a meaningful representation of the system, thereby not 

treating the model as a hypothesis and not testing alternative formulations.  

The importance of adequate representations natural heterogeneity is largely undisputed (e.g. Clark et al., 2011; Gupta et al., 

2012). However, frequently model calibration is (unnecessarily) limited to time series of streamflow observations which 15 

provides merely insight into a very small number of parameters (Jakeman and Hornberger, 1993). Thus, although any 

additional model process has the potential to improve the representation of heterogeneity, the required additional calibration 

parameters increase the feasible model (or parameter) space and the resulting potential for equifinality (Beven, 1993), 

thereby turning models into the oft-cited “mathematical marionettes” (Kirchner, 2006). In spite of its skill to reproduce the 

calibration objective, such a model will in many situations struggle to simultaneously reproduce different additional system 20 

internal dynamics (e.g. groundwater fluctuations) and emerging patterns (e.g. flow duration curves), indicating its failure to 

meaningfully represent dominant processes and their heterogeneity in a catchment, which in turn often results in a poor 

predictive power of these models. This was in the past demonstrated by many studies (e.g. Jothityangkoon et al., 2001; 

Atkinson et al., 2002; Fenicia et al., 2008; Euser et al., 2013; Coxon et al., 2014; Fenicia et al., 2014; Hrachowitz et al., 

2014; Willems, 2014).  25 

The lack of an adequate model calibration, testing and evaluation culture partly arises both from insufficient exploitation of 

the information content of the available data, but also from the real lack of suitable data (Gupta et al., 2008; Clark et al., 

2011). Under these conditions, many models remain ill-posed inverse problems. To limit the associated equifinality, 

Occam’s razor is commonly invoked to make models “as simple as possible but not simpler” (e.g. Clark et al., 2011). But 

how simple is “as simple as possible”? In other words, how large a model space (i.e. possible parameterizations and prior 30 

parameter space) can be constrained with available information to identify reasonably narrow posterior distributions while 
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ensuring a high as possible multi-objective and multi-variate model performance? To analyse this, the two axes of the spatial 

resolution-process complexity continuum (Figure1) need to be considered separately. 

The required spatial resolution for a model to represent the major effects of heterogeneity on the hydrological response 

does not only depend on the degree of surface and sub-surface heterogeneity, but also on the hydro-meteorological 

conditions in the region of interest, as shown in an illustrative example in Supplementary Material S1. Briefly, in cool, 5 

humid and thus energy-limited regions the level of water storage can remain elevated throughout the year, thus providing 

only limited storage capacities. In such a situation, many of the processes that introduce non-linearity, e.g. through spatially 

heterogeneous thresholds, and thereby control the emergence of hydrologic connectivity are not dominant or even negligible. 

This is in contrast to warm, arid and thus water-limited regions, where heterogeneous storage deficits over the model domain 

will exert much stronger and often spatially heterogeneous controls on the hydrological response. In summary, lumped 10 

conceptual can be suitable macroscale representations of hydrological systems in some regions, while in other regions more 

spatial discretization is required. The relevant questions are: How do different heterogeneities affect water storage and 

release in different environments? Which types of heterogeneity can be captured by a single emergent functional relationship 

and for which types several functional relationships at the macroscale are necessary to meaningfully describe observations? 

Process complexity, i.e. the detail to which models explicitly represent specific processes in terrestrial hydrological 15 

systems is, at its fundamental level, characterized by two major partitioning points that control how water is stored in and 

released from systems through upward, downward or lateral fluxes (e.g. Rockström et al. 2009; Clark et al., 2015; Savenije 

and Hrachowitz, 2017). Near the land surface, precipitation is split into (a) evaporation and sublimation from vegetation and 

ground surface interception (including snow) as well as from open water bodies, (b) overland flow and (c) infiltration into 

the root zone. Water entering into the root zone, is further partitioned into (d) soil evaporation, (e) plant transpiration, (f) 20 

shallow, lateral subsurface flow through features such as shallow high permeability soil layers, soil pipe networks or a 

combination thereof and (g) percolation to the unsaturated zone and the groundwater below the root zone.   

As emphasized by Linsley (1982), all fluxes (a-g) are present in essentially any catchment, albeit with different relative 

importance in different environments, and therefore need to be represented in a model. This can be illustrated with the 

occurrence of weather events that are uncommon for a specific region. In the Atacama Desert, one of the driest places on 25 

earth with little or no vegetation under average conditions, uncommonly high spring precipitation, such as in 2015, can cause 

episodic appearance of abundant vegetation. This temporally changes the partitioning pattern and thus the hydrological 

functioning of the region as plant transpiration that is otherwise absent is “activated”. Similarly, rare occurrences of snow 

fall can cause temporal anomalies in the hydrological functioning of otherwise warm regions, such as 2013 in the Middle 

East. In spite of them being “de-activated” most of the time, such processes are in principle present and need therefore also 30 

be conceptually reflected in any hydrological model structure. However, if considered negligible in a specific environment 

during a modelling period of interest, the modeller can decide to deactivate individual processes by using informed prior 

parameter distributions. In other words, the respective parameters will be set to suitable fixed values that effectively switch 

off the process using Dirac delta functions as prior distributions.   
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The key decision for the modeller is then to decide to which level of detail the individual processes at the two partitioning 

points will be resolved and how they can be parametrized (cf. Gupta et al., 2012). The questions to be answered are: How 

much detail is necessary to reproduce observed dynamics and pattern? How much detail is warranted by the available data 

to meaningfully parameterize and test the chosen process representation? An example to illustrate the thought process 

involved is provided in the Supplementary Material (S2). 5 

Conceptualizing the hydrological system by zooming out and explicitly representing only dominant processes by 

exploiting simple functional relationships (or pattern) emerging as a result of organization at the macroscale (e.g. Ehret et al., 

2014) has the advantage of significantly reducing the number of required effective model parameters. Importantly, this 

lumping process does not, as long as it is well tested to encapsulate the relevant dynamics of the system, necessarily involve 

a loss of information. It should therefore not be understood as “simplification” of the system. Rather, it has the potential to 10 

integrate the interaction of heterogeneous processes at the microscale over the entire domain of interest and thereby to 

provide a system description that is consistent with real world observations at the scale of interest without the need for 

further assumptions and the related uncertainties. 

It is true that untested and poorly evaluated applications of standard lumped conceptual models are often 

oversimplifications that do not adequately reflect natural heterogeneity and its effects on the hydrological response. 15 

However, conceptual models can be formulated at any level of process and spatial complexity, limited only by the available 

information. The actual problem is therefore not the conceptual model per se but rather the way it is implemented and 

applied. The decision, which degree of zooming out, i.e. which level of detailed process representation is feasible and which 

level is necessary, eventually needs to be made by the modeller on basis of the available observations, acknowledging that 

all hydrological models at the catchment scale are to a certain extent conceptualizations. When carefully implemented, 20 

spatially distributed formulations, e.g. based on hydrological response units or related concepts (Beven and Kirkby, 1979; 

Knudsen et al., 1986; Flügel, 1995; Winter, 2001; Seibert et al., 2003; Uhlenbrook et al., 2004, 2010; Schmocker-Fackel et 

al., 2007; Gharari et al., 2011; Zehe et al., 2014; Haghnegahdar et al., 2015), with an equilibrated balance between process 

heterogeneity and information/data availability and tested and evaluated against multivariate observed response dynamics, 

conceptual models have been shown to be versatile enough to identify and represent the dominant hydrological processes 25 

and their heterogeneity in a catchment (e.g. Boyle et al., 2001; Fenicia et al., 2008a,b; Winsemius et al., 2008; Samaniego et 

al., 2010; Kumar et al., 2013; Hrachowitz et al., 2014; Nijzink et al., 2016a) within limited uncertainty. 

3.2.2 “Physically based models are too complex and give a deceptive sense of accuracy” 

Mirroring the statement that conceptual models are too simplistic and do not represent heterogeneity, it may in a similar 

way be valuable to discuss the question if, in the absence of appropriate observations at the scale and resolution of interest, 30 

distributed, physically based models with high process and spatial complexity are not too complex and somewhat deceptive 

about the accuracy that is implied by their formulation. 
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Physically based models are frequently developed and applied under the implicit up-scaling and bottom-up premise that the 

heterogeneous system boundary conditions and thus the model parameters are known from observations and representative 

for the scale of the modelling units of a given model. However, three, partly related points make this assumption problematic 

for many model applications: (1) the spatial resolution of observations, (2) the spatial scale of observations and (3) the 

accuracy of the observations. 5 

There is often insufficient geophysical information to represent the heterogeneity of the subsurface over large domains 

relevant for water resources planning and management. For example, the low spatial resolution of many available soil maps 

may incorrectly indicate that the storage and transmission properties of soil are spatially homogenous, i.e. a single soil type 

over an individual modelling unit or even over an entire catchment. Similarly, data on the root-systems of vegetation, used to 

estimate an important source of system non-linearity and thus one of the core parameters in a model, the storage capacity in 10 

the unsaturated root zone, is, at best, available for a few individual plants. As such it does not sufficiently account for distinct 

effects caused by different ecosystem compositions in different parts of the system (e.g. different mixtures of species), age 

distribution of the plants in the system, the density of plants (i.e. individual plants per unit area) or, being mostly snapshots 

in time, temporally evolving root-systems (deBoer-Euser et al., 2016; Nijzink et al., 2016b; Savenije and Hrachowitz, 2017). 

In addition, the available meteorological forcing data may be overly smooth and/or unrepresentative due the methods used to 15 

interpolate station data from sparse observing networks. 

Related to the spatial resolution is the spatial scale of the available observations. Many model parameters are directly 

inferred from observations at small-scales, e.g. core sample or plot-scale, assuming they are representative for the, often 

much larger, respective modelling unit. This is critical e.g. for the determination of soil hydraulic conductivities or the water 

retention curve, as the small scale of the observations may often fail to meaningfully characterize larger features in the soil 20 

matrix, such as macropores, together with their spatial distribution.  

   Finally, with increasing complexity, non-linear systems become increasingly problematic to predict with detailed, small-

scale descriptions, due to uncertainties in the necessary observations of boundary conditions, forcing and system states (e.g. 

Zehe et al., 2007) caused by the combined effects of limited observation accuracy and representativeness.  

Spanning several orders of magnitude in scale, from the microscale (e.g. soil particles) to the continental scale (e.g. 25 

mountain ranges), it is unlikely that observation technology will ever enable a comprehensive and non-invasive description 

of the heterogeneity in hydrologic systems, especially for large model domains (Refsgaard et al., 2010).   

From that perspective, it is not unreasonable to argue that many implementations of distributed, physically based models 

are somewhat over-ambitious and overly optimistic given our actual knowledge of the system as their degree of spatial 

resolution and/or process complexity is, strictly spoken, not warranted by the available data. This is in particular true for 30 

applications that make direct use of scarce small-scale observations and, in spite of the associated limitations, fail to provide 

a meaningful uncertainty analysis. As shown in the illustrative example in the Supplementary Material S2, each process 

represented in a model, no matter at which scale, is a larger scale manifestation of the integration of the interactions of 

individual heterogeneous processes at yet smaller scales, down to molecular levels (or perhaps even beyond). This implies 
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that there is no “natural” cut-off point at which all processes in the system are completely represented. All process 

descriptions in a model thus involve at least some degree of conceptualization, making use of functional relationships 

emerging at larger scales.  

The relevant question therefore is, up to which level we can zoom out and integrate individual processes into conceptual 

functional relationships at larger scales, without losing information and thereby benefitting from a reduced dimensionality of 5 

the parameter space. This question is tightly linked to the question which spatial resolution and process complexity is 

required to answer questions relevant for water management purposes in specific cases. In other words, apart from being 

theoretically satisfying, do we actually need to discretize a catchment e.g. into 1-cm grids for a model to be a useful tool?  

The above points do however not contest the immense value of physically based models as recently discussed in detail by 

Fatichi et al. (2016). Rather, detailed implementations of these models, in spite of the associated limitations, have in the past 10 

been shown to be powerful tools to reproduce and understand spatially heterogeneous system-internal flux and state 

dynamics as well as patterns that emerge from the interaction of small-scale processes (e.g. Kollet and Maxwell, 2008; 

Maxwell and Kollet, 2008; Vivoni et al., 2010; Bearup et al., 2014; Sutanudjaja et al., 2014). As such they are very well 

suited for virtual experiments at a range of scales (e.g. Ivanov et al., 2010; Fatichi et al., 2014; Bierkens et al., 2015; 

Maxwell et al., 2015;2016). This is in particular true to understand and assess the impact of disturbances such as climate 15 

and/or land use change in scenario analyses, as systemic change or even tipping points can emerge from changes in one or 

more individual small-scale model components and the associated feedback (e.g. Maxwell and Kollet, 2008; Bearup et al., 

2016) .   

3.3 Critique: Hypothesis testing and calibration 

3.3.1 “The top-down modelling approach successively evaluates ad-hoc formulations of untestable hypotheses” 20 

It is important to realize that the top-down approach is a modelling strategy and not a specific model formulation. In spite 

of that, many applications of conceptual bucket models, are falsely referred to as “top-down models”, while being mere and 

unquestioned applications of off-the-shelf models, such as HBV or FLEX. Such insufficient model testing and ad-hoc model 

applications implicitly assume that these models can adequately represent observed hydrological response dynamics in 

different catchments, thereby violating the fundamental requirement of top-down approaches: the testing of alternative 25 

hypotheses. It largely ignores that any model is an assemblage of hypotheses consisting of individual building blocks and 

their parametrizations, encapsulating the modeler’s understanding how a specific environment shapes the hydrological 

system. The point is that different environmental conditions dictate the need to test if the prior information on the parameters 

needs to be changed and/or relaxed so as to activate a process that was deactivated in a model previously used in other 

environments (or vice-versa) to adjust the model to the prevailing environmental conditions.  30 

A meaningful decision on the use of given prior parameter distributions and their information content for a model 

application in a specific environment can only be made if the model hypothesis is carefully tested. However, it is sometimes 
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argued that entire models are untestable hypotheses, as they represent an ensemble of different processes or parts of the 

system. Models, therefore, need to be seen as sets of distinct hypotheses that need to be tested independently to avoid the 

adverse effects of equifinality (Clark et al., 2011). Recalling the above argument (see section 3.2.2) that when disaggregating 

a system, the pattern emerging at each subsequent level of detail result from interacting heterogeneous processes at yet 

smaller scales. Thus, down to that level, every hypothesis consists of several other, smaller scale hypotheses. The relevant 5 

question arising here is, to which level do model components then have to be disaggregated to constitute testable 

hypotheses? Thus, of course, treating a model as a single hypothesis does not make the hypothesis untestable. Rather, given 

the system-integrated nature of many observations and the frequently limited number of performance indicators considered 

to test the model against, it may in many cases remain a relatively weak test. In contrast, individually testing sub-components 

of the system will provide the modeler with more information because its sub-components are necessarily less complex than 10 

the overall model. This, in turn, provides less possibilities for compensating misrepresentations of one process by wrongly 

adjusting other processes. In other words, it will have higher potential to avoid Type I errors (i.e. false positives), therefore 

resulting in a stricter test. The obvious problem arising here is less of theoretical than of practical nature: besides epistemic 

uncertainties, observations of system sub-components, including the often cited boundary fluxes (Beven, 2006a), to test the 

model components against are typically not available at the scale and/or resolution of interest or not available at all, although 15 

with the ever improving spatio-temporal resolution and quality of remote sensing products the problem will potentially be 

somewhat alleviated in the near future. Clearly, from that perspective, weak model tests are in the frequent absence of other 

options preferable to no tests at all. Given these practical constraints for model falsification, systematic and exhaustive multi-

objective and multivariate calibration strategies and post-calibration evaluation procedures need to be part of any top-down 

modelling approach to ensure that the overall modelled system response, including emerging patterns (e.g. flow duration 20 

curves), reproduces the observed response dynamics in a meaningful way. The above point is very closely related to the 

necessity of calibration. If the system could be observed as a fully controlled system at the scale and resolution of interest 

(e.g. catchment scale for lumped models, grid scale for distributed models), there would be little additional need for testing 

as the system would be well constrained and its functioning well understood. Thus, much of the problems discussed above is 

a direct consequence of the absence of such observations. Whenever no adequate observations are available, a model that 25 

aims to represent a specific real world system requires calibration. Any model.  

We therefore argue that top-down modelling approaches do not evaluate “ad-hoc formulations of untestable hypotheses” 

but rather that many hypotheses often remain untested. The actual problem therefore not being the model strategy (“top-

down”) or type (“conceptual bucket”), but the way these models are frequently applied in a careless way. This is exacerbated 

by the fact that in the past only a few studies attempted to develop a general framework for objective and science-based 30 

model selection (e.g. Young, 2003) and thus a general and systematic approach to learning from data (Sivapalan et al., 

2003).    
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3.3.2 “Physically based models have too many degrees of freedom and cannot be meaningfully constrained” 

As argued above, detailed distributed implementations of physically based models to represent specific real world systems 

may provide a deceptive sense of accuracy if applied as a bottom-up approach and thus operated with highly informed prior 

parameters distributions (e.g. fixed parameter values or regularized estimates), based on anecdotal, point or plot scale 

observations that do not match the scale and resolution of the individual modelling units (e.g. grid cell). In such a case, to 5 

avoid misrepresentations of the system, parameter values effective at the scale of the model grid cells need to be selected 

otherwise, typically by calibration. The high degree of freedom in the model, however, will result in considerable 

equifinality.  

Even if there was an adequate correspondence of the respective scales of field observations and modelling units two further 

problems remain: observations of both, system boundary conditions as well as system states (e.g. groundwater levels) or 10 

fluxes (e.g. evaporation) are typically, if at all, available at low spatial resolution. This implies (1) that the boundary 

conditions in the remainder of the system are unknown and that its heterogeneity is very likely to be misrepresented in a 

model and (2) that modelled system states (e.g. groundwater levels) or fluxes (e.g. evaporation) can only be tested against 

observations for a small number of modelling units, thereby only providing a weak test for the model. 

Although the above limitations are in principle valid, it has previously been shown that uncalibrated, physically based 15 

models, operated with parameters from direct observations, can meaningfully and simultaneously reproduce different aspects 

of the hydrological response (e.g. Maxwell et al., 2015). Fatichi et al. (2016) argue that this suggests that uncertainties in 

observed system input and output data and the resulting biased parameters in calibrated models (e.g. Renard et al., 2010) 

outweigh uncertainties introduced by insufficient heterogeneity and/or unsuitable scale.  

The inherent strength of physically-based models (see section 3.2.2) is their spatially explicit and detailed formulation of 20 

processes which allows the analysis of emergent pattern to the system, in particular after disturbance scenarios within virtual 

experiments, leading to a better understanding of the system overall behaviour. However, we think that, as every model is a 

simplification of reality (Gupta et al., 2012), even physically based models should, if used for actual hydrological predictions 

in specific systems, be treated as hypotheses and thus subject to testing and evaluation procedures. For example, relaxing, to 

some degree, the information on the prior parameter distributions, i.e. replacing fixed parameter values with reasonably 25 

narrow prior distributions, will allow more flexibility and may therefore, in a testing procedure allow the identification of 

parameters that provide a more suitable representation of the system (Mendoza et al., 2015). Given the high dimensionality 

of the parameter space, this clearly also entails the need for additional model constraints beyond traditional calibration. Apart 

from the use of similar multiple objective functions and multiple flux and state variables for the evaluating the model against 

observations as used for conceptual models, the use of regularization (e.g. Pokhrel et al., 2008; Samaniego et al., 2010), data 30 

assimilation (e.g. Shi et al., 2014) and similar techniques (e.g. Refsgaard et al., 2006) has proven helpful to identify feasible 

model parameters. Detailed physically based models, furthermore, offer the opportunity to fully exploit the value of 

additional and simultaneous evaluation against remotely sensed spatio-temporal pattern, such as snow pack dynamics using 
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MODIS snow cover data (e.g. Kuchment et al., 2010), estimates of water storage anomalies using GRACE (e.g. Syed et al., 

2008) and many others.   

4 Implications 

From the above discussion, a few relatively clear and unambiguous points define the basis, functioning and limitations of 

competing approaches for process-based hydrologic modeling. Condensing these points, it emerges that: 5 

(1) All hydrological models are to some extent “conceptual” and to some extent “physical”, they largely only differ in 

the degree of detail they resolve the system, which in turn is dictated by the available data. Conceptual bucket  

models approach the problem from a macroscale physical understanding, while physically based continuum models 

emphasize the microscale perspective. An ideal model would, almost needless to say, provide good representations 

of both aspects.  10 

(2) Modelling strategies starting at opposite ends and follow a gradual transition along the resolution-complexity 

continuum (Figure 1). While conceptual bucket based models constitute a physically based approach to 

hydrological modeling that is rooted in holistic empiricism, similar to statistical physics, physically based 

continuum models are based on mechanistic descriptions of small-scale physics. 

(3) Different modelling strategies are complementary rather than mutually exclusive as they have different strengths 15 

and are thus suitable for different purposes. While conceptual bucket based models have advantages for operational 

predictions of specific real world systems, physically based continuum models may in many cases be preferable for 

more generally explaining multi-causal relations in terrestrial systems, in particular the spatio-temporal impacts of 

disturbances. 

(4) All models can, in principle, be implemented with any desired detail. The key question is whether additional 20 

process complexity can be tested against and is justified by the available data. This is true for both process and 

spatial complexity, which also highlights that we are really crossing a continuum of complexity, where conceptual 

bucket models converge towards physically based continuum formulations. 

(5) All models must reflect our conceptual understanding of the system in regards to how water fluxes are partitioned at 

the near-surface and the unsaturated root zone. Since all relevant fluxes can be present in any environment, albeit 25 

with different relative importance, all models therefore need to have the same fundamental model structure (but not 

necessarily the same parameterization) to reflect these processes. 

(6) In the absence of sufficient observations at the modelling scale and resolution, all hydrological models remain 

hypotheses and require rigorous testing and post-calibration evaluation if used to represent specific real world 

systems. 30 

(7) All hydrological models applied at scales beyond the plot scale and if used to represent specific real world systems 

require some degree of calibration, as direct observations of effective parameters at these modelling scales and 
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resolutions are typically not available. Improper application of parameters from observations that do not match the 

modelling scale and/or resolution may not provide a sufficient representation of the natural heterogeneity of this 

parameter can lead to misrepresentations of the system and give a deceptive impression of accuracy.   

(8) The fundamental problems in catchment modelling do not lie in the type of model used, but rather in the way a 

model is applied.  5 

5 Steps towards convergence of modelling strategies 

Taken together, the above arguments suggest that the perceived and somewhat arbitrary dichotomy between different 

modelling strategies leads to some degree of confusion. Acknowledging that all models are to some degree conceptual, and 

that often not the actual models are the problem but the inadequate way they are applied, may open up the view towards the 

real fundamental questions in catchment-scale modelling: how much detail do we need in our models and how much detail is 10 

warranted by data for different applications? To find a balance that allows us to best describe the system based on 

scientifically robust grounds and thus a way towards a convergence of different modelling strategies will benefit from 

exploiting the features of macroscale organization and pattern formation as well as from adopting a general culture of 

rigorous hypotheses testing.  

5.1 Organized complexity and catchment similarity 15 

Progress in catchment-scale understanding of hydrological functioning and the related development of models for more 

reliable predictions hinge on a better understanding of how natural heterogeneities at all scales aggregate to larger scales and 

how this influences the hydrological response. As already emphasized previously by many authors (e.g. Beven, 

1989,2001,2006a; Kirchner, 2006; Zehe et al., 2014), these efforts to approach the closure problem in hydrology need to 

involve both, ways to reliably determine effective model parameters, i.e. the system boundary conditions, that integrate and 20 

reflect the natural heterogeneity within the model domain, as well as the development of equations that are physically 

consistent at the scale of application. These scale and heterogeneity issues were acknowledged already in the early 1980s to 

be at the core of many problems for our understanding and modelling of hydrological systems (e.g. Dooge, 1986; Wood et 

al., 1988; Wood et al., 1990; Blöschl and Sivapalan, 1995; Blöschl, 2001). It was, for two decades or so, indeed a very active 

and fruitful field of research but it has somewhat lost momentum. Ten years after the landmark papers of Beven (2006a) and 25 

Kirchner (2006), remarkably little progress was made and many ideas and concepts did not find their way into mainstream 

hydrology. Nevertheless, it is imperative to understand how processes scale, heterogeneity aggregates and how this controls 

the emergence of patterns at the large scale. This then has the potential to enhance our understanding of what controls 

catchment functioning and our ability to develop models (e.g. Vinogradov et al., 2011). A potential way forward towards 

achieving this, may be the much advocated large sample, comparative hydrology and similarity analysis to identify pattern 30 

and generally applicable, functional relationships (e.g. Sivapalan et al., 2003; McDonnell et al., 2007; Blöschl et al., 2013; 
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Sivakumar et al., 2013; Gupta et al., 2014). Recently receiving increased attention (e.g. Lyon and Troch, 2007; Carillo et al., 

2011; Sawicz et al., 2011; Coopersmith et al., 2012; Berghuijs et al., 2014,2016; Fenicia et al., 2014; Li et al., 2014; 

McMillan et al., 2014), using similarity analysis to improve our understanding of the link between catchment structure and 

hydrological functioning at the macroscale will be instrumental to guide the development of meaningful model hypotheses 

and to constrain the feasible parameter space in a way that forces the model to reproduce these characteristics emerging at 5 

the macroscale. A recent example includes Ye et al. (2012) who identified dominant process controls underlying regional 

differences in regime- and flow duration curves. Similarly, Gao et al. (2014b) demonstrated how the model parameter 

representing the water storage capacity in the unsaturated root zone at the macroscale can be considerably constrained 

exclusively based on water balance data.  

5.2 Spatial patterns 10 

 Being one of the  main advantages of most physically based continuum models, the value of representing spatial differences 

in model fluxes and states as manifestations of heterogeneities in the system, is considerably under-exploited in conceptual 

bucket models. It is well established that hydrological connectivity exhibits not only temporal but also spatial dynamics and 

that therefore source areas of flow generation vary over time (e.g. Lehmann et al., 2007; Spence et al., 2010; Jencso and 

McGlynn, 2011; Ogden et al., 2013). Adapting the spatial resolution of models to the spatial resolution of available 15 

observations offers considerable potential to improve the representation of process dynamics across the model domain. This 

is in particular true as observations of spatial pattern in one or more variables, such as snow cover or evaporation, can then 

be used as additional model constraints to offset the adverse effects of increased degrees of freedom (e.g. Immerzeel and 

Droogers, 2008; Xu et al., 2014; Lopez et al., 2017).  

5.3 Models as hypotheses 20 

There is a clear need to establish a mainstream culture of robust model calibration and rigorous post-calibration 

testing/evaluation of alternative model formulations (i.e. hypotheses) for any type of model. Such work is necessary to 

achieve progress in catchment-scale modelling and advance the use of models as scientific tools. 

Stronger and more meaningful model tests with respect to multiple variables, model states and hydrological signatures 

need to become a standard procedure (e.g. Willems et al., 2014; Clark et al., 2015) as it was previously shown that, although 25 

models frequently exhibit considerable skill to reproduce the hydrograph during both, calibration and “validation”, many of 

these models struggle to reproduce other system relevant features. This includes, for example groundwater table fluctuations 

(e.g. Fenicia et al., 2008), long-term average runoff coefficients as a proxy of average actual evaporation (e.g. Gharari et al., 

2014b; Hrachowitz et al., 2014) and solute dynamics (e.g. Birkel et al., 2010; Fenicia et al., 2010) as well as hydrological 

signatures of the system, e.g. duration curves (e.g. Euser et al., 2013; Kelleher et al., 2017). In addition, model calibration 30 

and/or evaluation against observed spatial pattern remains currently still under-exploited. 
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In spite of the computational costs involved, we argue that development of detailed physically based continuum models 

would also strongly benefit from adopting more of a top-down perspective. This would be beneficial for, in particular, highly 

conceptualized model components, such as, but not limited to, those related to preferential flow.   

In any case, comprehensive model calibration and/or testing strategies have the potential to identify and reject models (i.e. 

parameters and parameterizations) that “do not meet minimum requirements” (Vache and McDonnell, 2006), which in can 5 

considerably reduce type I errors, i.e. falsely accepting poor models when they should be rejected (“false positive”; Beven, 

2010).   

5.4 Model uncertainty 

We are currently in a position where we, in an exaggerated way, feed wrong models with wrong input data and calibrate 

them to wrong output data to obtain wrong parameters. In the light of so many unknowns, comprehensive, systematic, end-10 

to-end uncertainty analysis needs finally to become a standard component of any modelling study (e.g. Beven, 2006b; 

Pappenberger and Beven, 2006). This applies to any type of model. However, as full uncertainty analysis of physically based 

continuum models may remain computationally challenging for the foreseeable future, it may be worth to consider reporting 

results in model ensembles, similar to what is common practice, for example, in atmospheric sciences. In any case, 

systematic uncertainty analysis has the potential to significantly reduce type II errors, i.e. rejecting a good model when it 15 

should have been accepted (“false negative”; Beven 2010) and is thus instrumental to avoid giving a false impression of 

accuracy in our models.  

6 Concluding remarks 

On balance, we believe that modelling of catchments will significantly benefit from and may even require a convergence of 

different modelling strategies, in particular with respect to exploiting the features of organization in these complex systems 20 

(Dooge, 1986) in a hierarchical way, as for example suggested by Zehe et al. (2014). Combining this with large sample 

comparative studies and more efficiently exploiting the information content of available data over a range of scales may 

eventually pave the way towards the formulation of meaningful and general scaling relationships that will be key to 

understand how large scale pattern emerge from first principles. The aim has then to be the development of models that are 

linked by these scaling relationships across the entire resolution-complexity continuum so that zooming out from detailed, 25 

microscale representations, observed large scale patterns are reproduced and, vice versa, that discretizing macroscale 

representations will result in meaningful representations at the microscale. In that sense we would like to strongly encourage 

researchers to not only acknowledge but to actively make use of a diverse range of modeling strategies in order to strengthen 

their own models. 

 30 



23 

 

Acknowledgements 

We thank the editor Erwin Zehe as well as Marc Bierkens, Hoshin Gupta, Ralf Loritz, Sivarajah Mylevaganam and Thorsten 

Wagener for their critical yet very constructive comments and suggestions that helped to considerably improve this 

manuscript. 

References 5 

Andersen, H., & Hepburn, B. (2016). Scientific Method. In: The Stanford Encyclopedia of Philosophy, Edward N. Zalta 

(ed.), Stanford. 

Andréassian, V., & Perrin, C. (2012). On the ambiguous interpretation of the Turc‐Budyko nondimensional graph. Water 

Resources Research, 48(10). 

Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.H., & 10 

Valéry, A. (2009). Crash tests for a standardized evaluation of hydrological models. Hydrology and Earth System Sciences, 

(13), 1757-1764. 

Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part 

I: Model development1, Journal of the American Water Resources Association, 34, 73–89. 

Atkinson, S. E., R. A. Woods, and M. Sivapalan. "Climate and landscape controls on water balance model complexity over 15 

changing timescales." Water Resources Research 38.12 (2002). 

Bahremand, A. (2016). HESS Opinions: Advocating process modelling and de-emphasizing parameter estimation. 

Hydrology and Earth System Sciences, 20, 1433-1445.  

Bearup, L.A., Maxwell, R.M., Clow, D.W., & McCray, J.E. (2014). Hydrological effects of forest transpiration loss in bark 

beetle-impacted watersheds. Nat. Clim. Change 4 (6), 481. 20 

Bearup, L.A., Maxwell, R.M., & McCray, J.E. (2016). Hillslope response to insect-induced land-cover change: an integrated 

model of end-member mixing. Ecohydrology, 9, 125-203. 

Berghuijs, W. R., Sivapalan, M., Woods, R. A., & Savenije, H. H. (2014). Patterns of similarity of seasonal water balances: 

A window into streamflow variability over a range of time scales. Water Resources Research, 50(7), 5638-5661.  

Berghuijs, W. R., Woods, R. A., Hutton, C. J., & Sivapalan, M. (2016). Dominant flood generating mechanisms across the 25 

United States. Geophysical Research Letters, 43, 4382-4390. 

Bergström, S. (1992). The HBV model—its structure and applications. SMHI, RH, 4, Norrköping, Schweden. 

Beven, K. (1989). Changing ideas in hydrology—the case of physically based models. J. Hydrol. 105, 157–172. 

Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in water resources, 

16(1), 41-51.  30 

Beven, K. (1995). Linking parameters across scales: subgrid parameterizations and scale dependent hydrological models. 

Hydrological Processes, 9, 507-525. 



24 

 

Beven, K. (2000). Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System 

Sciences, 4(2), 203-213. 

Beven, K. (2001). How far can we go in distributed hydrological modelling?. Hydrology and Earth System Sciences, 5(1), 1-

12. 

Beven, K. (2006). Searching for the Holy Grail of scientific hydrology: Q t=(S, R,? t) A as closure. Hydrology and Earth 5 

System Sciences, 10(5), 609-618. 

Beven, K. (2006). On undermining the science?. Hydrological Processes, 20(14), 3141-3146. 

Beven, K. J. (2010). Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological 

process models. Hydrological Processes, 24(12), 1537-1547. 

Beven, K. (2013). So how much of your error is epistemic? Lessons from Japan and Italy. Hydrological Processes, 27(11), 10 

1677-1680.  

Beven, K. J., & Cloke, H. L. (2012). Comment on “Hyperresolution global land surface modeling: Meeting a grand 

challenge for monitoring Earth's terrestrial water” by Eric F. Wood et al. Water Resources Research, 48(1). 

Beven, K.J., Kirkby, M.J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. 

Bull. 24 (1), 43–70. 15 

Beven, K., & Westerberg, I. (2011). On red herrings and real herrings: disinformation and information in hydrological 

inference. Hydrological Processes, 25(10), 1676-1680. 

Beven, K., Smith, P. J., & Wood, A. (2011). On the colour and spin of epistemic error (and what we might do about it). 

Hydrology and Earth System Sciences, 15(10), 3123-3133.  

Bierkens, M.F.P., Bell, V.A., Burek, P., Chaney, N., Condon, L., David, C.H., de Roo, A., Döll, P., Drost, N., Famiglietti, 20 

J.S., Flörke, M., Gochis, D.J., Houser, P., Hut, R., Keune, J., Kollet, S., Maxwell, R., Reager, J.T., Samaniego, L., Sudicky, 

E., Sutanudjaja, E.H., van de Giesen, N., Winsemius, H., & Wood, E.F. (2015). Hyperresolution global hydrological 

modelling: what is next? Hydrol. Process. 29, 310–320. 

Birkel, C., Dunn, S. M., Tetzlaff, D., & Soulsby, C. (2010). Assessing the value of high-resolution isotope tracer data in the 

stepwise development of a lumped conceptual rainfall–runoff model. Hydrological Processes, 24(16), 2335-2348. 25 

Blöschl, G., & Sivapalan, M. (1995). Scale issues in hydrological modelling: a review. Hydrological processes, 9(3‐ 4), 251-

290. 

Blöschl, G. (2001). Scaling in hydrology. Hydrological Processes, 15, 709-711. 

Blöschl, G., & Zehe, E. (2005). On hydrological predictability. Hydrological processes, 19(19), 3923-3929. 

Blöschl, G. (Ed.). (2013). Runoff prediction in ungauged basins: synthesis across processes, places and scales. Cambridge 30 

University Press.  

Botter, G., & Rinaldo, A. (2003). Scale effect on geomorphologic and kinematic dispersion. Water resources research, 

39(10). 



25 

 

Breuer, L., Huisman, J.A., Willems, P., Bormann, H., Bronstert, A., Croke, B.F.W., Frede, H.-G., Gräff, T., Hubrechts, L., 

Jakeman, A.J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G., Seibert, J., Sivapalan, M., Viney, N.R. 

(2009). Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) I: Model 

intercomparison with current land use. Adv. Water Resour. 32 (2), 129–146. 

Burnash, R. J. C. (1995), The NWS river forecast system—Catchment modeling, in Computer Models of Watershed 5 

Hydrology, edited by V. P. Singh, pp. 311–366, Water Resour. Publ., Highlands Ranch, Colo. 

Budyko, M. I. (1974). Climate and Life, 508 pp., Academic, Orlando  

Carrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C., & Sawicz, K. (2011). Catchment classification: 

hydrological analysis of catchment behavior through process-based modeling along a climate gradient. Hydrology and 

Earth System Sciences, 15(11), 3411-3430.  10 

Butts, M.B., Payne, J.T., Kristensen, M., & Madsen, H. (2004). An Evaluation of the impact of model structure and 

complexity on hydrologic modelling uncertainty for streamflow prediction. Journal of Hydrology, 298(1–4), 242–266. 

Camporese, M., Paniconi, C., Putti, M., & Orlandini, S. (2010). Surface–subsurface flow modeling with path-based runoff 

routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resour. Res. 46, 

W02512. 15 

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., & Hay, L. E. (2008). 

Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between 

hydrological models. Water Resources Research, 44(12). 

Clark, M. P., Kavetski, D., & Fenicia, F. (2011). Pursuing the method of multiple working hypotheses for hydrological 

modeling. Water Resources Research, 47(9). 20 

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. 

W., Brekke, L. D., Arnold, J. R., Gochis, D. J., & Rasmussen, R. M. (2015). A unified approach for process‐ based 

hydrologic modeling: 1. Modeling concept. Water Resources Research, 51(4), 2498-2514. 

Coopersmith, E., Yaeger, M. A., Ye, S., Cheng, L., & Sivapalan, M. (2012). Exploring the physical controls of regional 

patterns of flow duration curves–Part 3: A catchment classification system based on regime curve indicators. Hydrology 25 

and Earth System Sciences, 16(11), 4467-4482. 

Coron, L., V. Andreassian, C. Perrin, J. Lerat, J. Vaze, M. Bourqui, and F. Hendrickx (2012), Crash testing hydrological 

models in contrasted climate conditions: An experiment on 216 Australian catchments, Water Resour. Res., 48, W05552, 

Coxon, G., Freer, J., Wagener, T., Odoni, N. A., & Clark, M. (2014). Diagnostic evaluation of multiple hypotheses of 

hydrological behaviour in a limits‐ of‐ acceptability framework for 24 UK catchments. Hydrological Processes, 28(25), 30 

6135-6150. 

Coxon, G., Freer, J., Westerberg, I. K., Wagener, T., Woods, R., & Smith, P. J. (2015). A novel framework for discharge 

uncertainty quantification applied to 500 UK gauging stations. Water resources research, 51(7), 5531-5546. 



26 

 

Craig, J.R., Liu, G., & Soulis, E.D. (2010). Runoff-infiltration partitioning using an upscaled Green-Ampt solution. 

Hydrological Processes, 24, 2328-2334. 

de Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C., & Savenije, H. H. (2016). Influence of soil and 

climate on root zone storage capacity. Water Resources Research, 52, 2009-2024. 

Donohue, R. J., Roderick, M. L., & McVicar, T. R. (2008). On the importance of including vegetation dynamics in Budyko’s 5 

hydrological model. Hydrology and Earth System Sciences, 11, 983-995.   

Dooge, J. C. (1986). Looking for hydrologic laws. Water Resources Research, 22(9S).  

Eder, G., Sivapalan, M., & Nachtnebel, H. P. (2003). Modelling water balances in an Alpine catchment through exploitation 

of emergent properties over changing time scales. Hydrological Processes, 17(11), 2125-2149. 

Euser, T., Winsemius, H.C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., & Savenije, H.H.G. (2013). A framework to assess 10 

the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences, 17 (5), 1893-1912. 

Euser, T., Hrachowitz, M., Winsemius, H.C., & Savenije, H.H.G. (2015). The effect of forcing and landscape distribution on 

performance and consistency of model structures. Hydrological Processes, 29(17), 3727-3743. 

Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., Camporese, M., Davison, J. 

H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., & Tarboton, D. 15 

(2016). An overview of current applications, challenges, and future trends in distributed process-based models in 

hydrology. Journal of Hydrology, 537, 45-60. 

Fenicia, F., Savenije, H. H. G., Matgen, P., & Pfister, L. (2006). Is the groundwater reservoir linear? Learning from data in 

hydrological modelling. Hydrology and Earth System Sciences, 10(1), 139-150. 

Fenicia, F., Savenije, H. H., Matgen, P., & Pfister, L. (2008a). Understanding catchment behavior through stepwise model 20 

concept improvement. Water Resources Research, 44(1).  

Fenicia, F., McDonnell, J. J., & Savenije, H. H. (2008b). Learning from model improvement: On the contribution of 

complementary data to process understanding. Water Resources Research, 44(6).  

Fenicia, F., Wrede, S., Kavetski, D., Pfister, L., Hoffmann, L., Savenije, H. H., & McDonnell, J. J. (2010). Assessing the 

impact of mixing assumptions on the estimation of streamwater mean residence time. Hydrological Processes, 24(12), 25 

1730-1741. 

Fenicia, F., Kavetski, D., & Savenije, H. H. (2011). Elements of a flexible approach for conceptual hydrological modeling: 

1. Motivation and theoretical development. Water Resources Research, 47(11). 

Fenicia, F., Kavetski, D., Savenije, H. H., Clark, M. P., Schoups, G., Pfister, L., & Freer, J. (2014). Catchment properties, 

function, and conceptual model representation: is there a correspondence?. Hydrological Processes, 28(4), 2451-2467. 30 

Fenicia, F., Kavetski, D., Savenije, H. H., & Pfister, L. (2016). From spatially variable streamflow to distributed 

hydrological models: Analysis of key modeling decisions. Water Resources Research. 



27 

 

Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., & Savenije, H. H. G. (2014a). Testing the realism of a topography-driven 

model (FLEX-Topo) in the nested catchments of the Upper Heihe, China. Hydrology and Earth System Sciences, 18, 1895-

1915. 

Gao, H., Hrachowitz, M., Schymanski, S. J., Fenicia, F., Sriwongsitanon, N., & Savenije, H. H. G. (2014b). Climate controls 

how ecosystems size the root zone storage capacity at catchment scale. Geophysical Research Letters, 41(22), 7916-7923.  5 

Gao, H., Hrachowitz, M., Sriwongsitanon, N., Fenicia, F., Gharari, S., & Savenije, H.H.G. (2016). Accounting for the 

influence of vegetation and landscape improves model transferability in a tropical savannah region. Water Resources 

Research, 52(10), 7999-8022. 

Garavaglia, F., Le Lay, M., Gottardi, F., Garcon, R., Gailhard, J., Paquet, E., & Mathevet, T. (2017). Impact of model 

structure on flow simulation and hydrological realism: from lumped to semi-distributed approach. Hydrology and Earth 10 

System Sciences. 

Gharari, S., Hrachowitz, M., Fenicia, F., & Savenije, H.H.G. (2011). Hydrological landscape classification: investigating the 

performance of HAND based landscape classifications in a central European meso-scale catchment. Hydrology and Earth 

System Sciences, 15(11), 3275-3291. 

Gharari, S., M. Hrachowitz, F. Fenicia, & H.H.G. Savenije (2013), An approach to identify time consistent model 15 

parameters: Sub-period calibration, Hydrol. Earth Syst. Sci., 17, 149–161. 

Gharari, S., Hrachowitz, M., Fenecia, F., Gao, H., & Savenije, H.H.G. (2014a). Using expert knowledge to increase realism 

in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences, 

18, 4839-4859.  

Gharari, S., Shafiei, M., Hrachowitz, M., Kumar, R., Fenicia, F., Gupta, H.V., & Savenije, H.H.G. (2014b). A constraint-20 

based search algorithm for parameter identification of environmental models. Hydrology and Earth System Sciences, 18, 

4861-4870. 

Grayson, R., & Blöschl, G. (2001). Spatial patterns in catchment hydrology: observations and modelling. (Eds.) Cambridge 

University Press, Cambridge. 

Gupta, H. V., Wagener, T., & Liu, Y. (2008). Reconciling theory with observations: elements of a diagnostic approach to 25 

model evaluation. Hydrological Processes, 22(18), 3802-3813.  

Gupta, H. V., Clark, M. P., Vrugt, J. A., Abramowitz, G., & Ye, M. (2012). Towards a comprehensive assessment of model 

structural adequacy. Water Resources Research, 48(8).  

Gupta, H. V., Perrin, C., Bloschl, G., Montanari, A., Kumar, R., Clark, M., & Andréassian, V. (2014). Large-sample 

hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences, 18(2), 463-477.  30 

Haghnegahdar, A., Tolson, B.A., Craig, J.R., & Paya, K.T. (2015). Assessing the performance of a semi-distributed 

hydrological model under various watershed discretization schemes. Hydrological Processes, 29, 4018-4031. 



28 

 

Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H. H. G., & Gascuel-Odoux, C. 

(2014). Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. 

Water Resources Research, 50(9), 7445-7469. 

Immerzeel, W. W., & Droogers, P. (2008). Calibration of a distributed hydrological model based on satellite 

evapotranspiration. Journal of Hydrology, 349(3), 411-424. 5 

Jakeman, A. J., & Hornberger, G. M. (1993). How much complexity is warranted in a rainfall-runoff model?. Water 

resources research, 29(8), 2637-2649.  

Jencso, K. G., & McGlynn, B. L. (2011). Hierarchical controls on runoff generation: Topographically driven hydrologic 

connectivity, geology, and vegetation. Water Resources Research, 47(11). 

Jothityangkoon, C., Sivapalan, M., & Farmer, D. L. (2001). Process controls of water balance variability in a large semi-arid 10 

catchment: downward approach to hydrological model development. Journal of Hydrology, 254(1), 174-198.  

Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C. Y., & Westerberg, I. K. (2013). Disinformative data in large-scale hydrological 

modelling. Hydrology and Earth System Sciences, 17(7), 2845-2857. 

Kavetski, D., & Fenicia, F. (2011). Elements of a flexible approach for conceptual hydrological modeling: 2. Application 

and experimental insights. Water Resources Research, 47(11). 15 

Kelleher, C., McGlynn, B., & Wagener, T. (2017). Characterizing and reducing equifinality by constraining a distributed 

catchment model with regional signatures, local observations, and process understanding. Hydrology and Earth System 

Sciences.  

Kirchner, J. W. (2006). Getting the right answers for the right reasons: Linking measurements, analyses, and models to 

advance the science of hydrology. Water Resources Research, 42(3). 20 

Klemeš, V. (1983). Conceptualization and scale in hydrology. Journal of hydrology, 65(1-3), 1-23.  

Klemeš, V. (1986). Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31, 13-24 

Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface–groundwater flow modeling: A free-surface overland flow 

boundary condition in a parallel groundwater flow model. Advances in Water Resources, 29(7), 945-958.  

Kollet, S.J., & Maxwell, R.M. (2008). Demonstrating fractal scaling of baseflow residence time distributions using a fully-25 

coupled groundwater and land surface model. Geophys. Res. Lett. 35, L07402.  

Kollet, S.J., Maxwell, R.M., Woodward, C.S., Smith, S., Vanderborght, J., Vereecken, H., & Simmer, C. (2010). Proof of 

concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. 

Water Resour. Res. 46, W04201 

Koren, V., Reed, S., Smith, M., Zhang, Z., & Seo, D. J. (2004). Hydrology laboratory research modeling system (HL-RMS) 30 

of the US national weather service. Journal of Hydrology, 291(3), 297-318.  

Kuchment, L. S., Romanov, P., Gelfan, A. N., & Demidov, V. N. (2010). Use of satellite-derived data for characterization of 

snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation. 

Hydrology and Earth System Sciences, 14(2), 339-350. 



29 

 

Kumar, M., C.J. Duffy, & Salvage, K.M. (2009). A second order accurate, finite volume based, integrated hydrologic 

modeling (fihm) framework for simulation of surface and subsurface flow, Vadose Zone J., 8(4), 873–890. 

Kumar, R., Samaniego, L., & Attinger, S. (2010). The effects of spatial discretization and model parameterization on the 

prediction of extreme runoff characteristics. Journal of Hydrology, 392(1), 54-69. 

Kumar, R., Samaniego, L., & Attinger, S. (2013). Implications of distributed hydrologic model parameterization on water 5 

fluxes at multiple scales and locations. Water Resources Research, 49(1), 360-379. 

Lamb, R., & Beven, K. (1997). Using interactive recession curve analysis to specify a general catchment storage model. 

Hydrology and Earth System Sciences Discussions, 1(1), 101-113. 

Lehmann, P., Hinz, C., McGrath, G., Tromp-van Meerveld, H. J., & McDonnell, J. J. (2007). Rainfall threshold for hillslope 

outflow: an emergent property of flow pathway connectivity. Hydrology and Earth System Sciences, 11(2), 1047-1063. 10 

Li, H. Y., Sivapalan, M., Tian, F., & Harman, C. (2014). Functional approach to exploring climatic and landscape controls of 

runoff generation: 1. Behavioral constraints on runoff volume. Water Resources Research, 50(12), 9300-9322.   

Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., & Arheimer, B. (2010). Development and testing of the HYPE 

(Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrology research, 41(3-

4), 295-319. 15 

Linsley, R. K. (1982). Rainfall-runoff models: An overview, in Proceedingsof the International Symposium of Rainfall-

Runoff Modelling, edited by V. P. Singh, pp. 3–22, Water Resour. Publ., Littleton, Colorado. 

Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., & Loumagne, C. (2014). When does higher spatial resolution rainfall 

information improve streamflow simulation? An evaluation using 3620 flood events. Hydrology and Earth System 

Sciences, 18(2), 575-594. 20 

Lopez Lopez, P., Sutanudjaja, E., Schellekens, J., Sterk, G., and Bierkens, M. (2017). Calibration of a large-scale 

hydrological model using satellite-based soil moisture and evapotranspiration products, Hydrol. Earth Syst. Sci. Discuss., 

in review. 

Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L., Wienhöfer, J., & Zehe, E. (2017). Picturing and 

modeling catchments by representative hillslopes. Hydrology and Earth System Sciences, 21(2), 1225-1249. 25 

Lyon, S. W., & Troch, P. A. (2007). Hillslope subsurface flow similarity: Real-world tests of the hillslope Péclet number. 

Water Resources Research, 43(7).  

Madsen, H. (2000). Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. Journal of 

hydrology, 235(3), 276-288.  

Martinez, G. F., & Gupta, H. V. (2011). Hydrologic consistency as a basis for assessing complexity of monthly water 30 

balance models for the continental United States. Water Resources Research, 47(12).  

Maxwell, R.M., & Kollet, S.J. (2008). Interdependence of groundwater dynamics and land-energy feedbacks under climate 

change. Nat. Geosci. 1, 665–669. 



30 

 

Maxwell, R.M., Condon, L.E., & Kollet, S.J. (2015). A high-resolution simulation of groundwater and surface water over 

most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 8, 923–937. 

McDonnell, J.J., & Beven, K. (2014). Debates—The future of hydrological sciences: A (common)path forward? A call to 

action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water 

Resources Research, 50, 5342-5350. 5 

McDonnell, J. J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, 

M. L., Selker, J., & Weiler, M. (2007). Moving beyond heterogeneity and process complexity: A new vision for watershed 

hydrology. Water Resources Research, 43(7).  

McMillan, H. K., & Westerberg, I. K. (2015). Rating curve estimation under epistemic uncertainty. Hydrological Processes, 

29(7), 1873-1882.  10 

McMillan, H., Krueger, T., & Freer, J. (2012). Benchmarking observational uncertainties for hydrology: rainfall, river 

discharge and water quality. Hydrological Processes, 26(26), 4078-4111. 

McMillan, H., Gueguen, M., Grimon, E., Woods, R., Clark, M., & Rupp, D. E. (2014). Spatial variability of hydrological 

processes and model structure diagnostics in a 50 km2 catchment. Hydrological Processes, 28(18), 4896-4913. 

Mendoza, P. A., Clark, M. P., Barlage, M., Rajagopalan, B., Samaniego, L., Abramowitz, G., & Gupta, H. (2015). Are we 15 

unnecessarily constraining the agility of complex process‐ based models?. Water Resources Research, 51(1), 716-728. 

Nijzink, R. C., Samaniego, L., Mai, J., Kumar, R., Thober, S., Zink, M., Schäfer, D., Savenije, H. H. G., & Hrachowitz, M. 

(2016a). The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in 

distributed hydrological models. Hydrology and Earth System Sciences, 20(3), 1151-1176.  

Nijzink, R., Hutton, C., Pechlivanidis, I., Capell, R., Arheimer, B., Freer, J., Han, D., Wagener, T., McGuire, K., Savenije, 20 

H., & Hrachowitz, M. (2016b). The evolution of root-zone moisture capacities after deforestation: a step towards 

hydrological predictions under change?. Hydrology and Earth System Sciences, 20(12), 4775-4799. 

Ogden, F. L., Crouch, T. D., Stallard, R. F., & Hall, J. S. (2013). Effect of land cover and use on dry season river runoff, 

runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resources Research, 49(12), 

8443-8462. 25 

Or, D., Lehmann, P., & Assouline, S. (2015). Natural length scales define the range of applicability of the Richards equation 

for capillary flows. Water Resources Research, 51(9), 7130-7144. 

Paniconi, C., & Putti, M. (2015). Physically based modeling in catchment hydrology at 50: Survey and outlook. Water 

Resources Research, 51(9), 7090-7129. 

Pappenberger, F., & Beven, K. J. (2006). Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water 30 

resources research, 42(5).  

Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal 

of Hydrology, 279(1), 275-289. 

Popper, K. (1959). The Logic of Scientific Discovery. New York, NY 



31 

 

Reed, S., Koren, V., Smith, M.B., Zhang, Z., Moreda, F., Seo, D., Dmip participants, A. (2004). Overall distributed model 

intercomparison project results. Journal of Hydrology 298, 27–60. 

Refsgaard, J. C., & Henriksen, H. J. (2004). Modelling guidelines––terminology and guiding principles. Advances in Water 

Resources, 27(1), 71-82. 

Refsgaard, J.C., & Storm, B. (1996). Construction, calibration and validation of hydrological models. In: Abbott, M.B., 5 

Refsgaard, J.C. (Eds.), Distributed Hydrological Modelling, Kluwer Academic Press, Dordrecht, Niederlande, pp. 41–54. 

Refsgaard, J. C., Storm, B., & Clausen, T. (2010). Systeme Hydrologique Europee n (SHE): review and perspectives after 30 

years development in distributed physically-based hydrological modelling. Hydrology Research, 41, 355-377.  

Renard, B., Kavetski, D., Leblois, E., Thyer, M., Kuczera, G., & Franks, S. W. (2011). Toward a reliable decomposition of 

predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water 10 

Resources Research, 47(11).  

Rinaldo, A., Marani, A., & Rigon, R. (1991). Geomorphological dispersion. Water Resources Research, 27(4), 513-525.  

Rinaldo, A., Botter, G., Bertuzzo, E., Uccelli, A., Settin, T., & Marani, M. (2006). Transport at basin scales: 1. Theoretical 

framework. Hydrology and Earth System Sciences Discussions, 10, 19-29. 

Robinson, J. S., Sivapalan, M., & Snell, J. D. (1995). On the relative roles of hillslope processes, channel routing, and 15 

network geomorphology in the hydrologic response of natural catchments. Water Resources Research, 31(12), 3089-3101. 

Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., & Gerten, D. (2009). Future water availability for global 

food production: the potential of green water for increasing resilience to global change. Water Resources Research, 45(7).  

Rodríguez-Iturbe, I., & Valdes, J. B. (1979). The geomorphologic structure of hydrologic response. Water resources 

research, 15(6), 1409-1420. 20 

Salmon, W. (1967). The foundations of scientific inference (Vol. 28). University of Pittsburgh Pre.   

Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid‐based hydrologic model at 

the mesoscale. Water Resources Research, 46(5), W02506. 

Savenije, H. H. G. (2001). Equifinality, a blessing in disguise?. Hydrological processes, 15(14), 2835-2838.  

Savenije H.H.G., & Hrachowitz, M. (2017). HESS Opinions “Catchments as meta-organisms –a new blueprint for 25 

hydrological modelling”. Hydrology and Earth System Sciences, 21, 1107-1116. 

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., & Carillo, G. (2011). Catchment classification: empirical analysis of 

hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 15, 2895-

2911. 

Schulla, J., & Jasper, K. (1998). Modellbeschreibung WaSiM-ETH. ETH Zürich. 30 

Seibert, J. (2003), Reliability of model predictions outside calibration conditions, Nord. Hydrol., 34, 477– 492. 

Seibert, J., Rodhe, A., & Bishop, K. (2003). Simulating interactions between saturated and unsaturated storage in a 

conceptual runoff model. Hydrological Processes, 17(2), 379-390.  



32 

 

Shafii, M., & Tolson, B.A. (2015). Optimizing hydrological consistency by incorporating hydrological signatures into model 

calibration objectives. Water Resources Research, 51, 3796-3814. 

Sherman, L. K. (1932). Streamflow from rainfall by the unit graph method, Eng. News-Rec., 108, 501–505, 1932. 

Šimůnek, J., van Genuchten, M. T., & Šejna, M. (2008). Development and applications of the HYDRUS and STANMOD 

software packages and related codes. Vadose Zone Journal, 7(2), 587-600. 5 

Sivakumar, B., Singh, V. P., Berndtsson, R., & Khan, S. K. (2013). Catchment classification framework in hydrology: 

challenges and directions. Journal of Hydrologic Engineering, 20(1), A4014002.  

Sivapalan, M. (2005). Pattern, process and function: elements of a unified theory of hydrology at the catchment scale. 

Encyclopedia of hydrological sciences. 

Sivapalan, M., Blöschl, G., Zhang, L., & Vertessy, R. (2003). Downward approach to hydrological prediction. Hydrological 10 

processes, 17(11), 2101-2111.  

Sivapalan, M., Yaeger, M. A., Harman, C. J., Xu, X., & Troch, P. A. (2011). Functional model of water balance variability at 

the catchment scale: 1. Evidence of hydrologic similarity and space-time symmetry. Water Resources Research, 47(2). 

Smith, M.B., Koren, V., Zhang, Z., Zhang, Y., Reed, S.M., Cui, Z., Moreda, F., Cosgrove,B.A., Mizukami, N., Anderson, 

E.A. (2012). Results of the DMIP 2 Oklahoma experiments. Journal of Hydrology, 418–419, 17–48. 15 

Snell, J. D., & Sivapalan, M. (1994). On geomorphological dispersion in natural catchments and the geomorphological unit 

hydrograph. Water Resources Research, 30(7), 2311-2323.  

Son, K., & Sivapalan, M. (2007). Improving model structure and reducing parameter uncertainty in conceptual water balance 

models through the use of auxiliary data. Water resources research, 43(1). 

Spence, C., Guan, X. J., Phillips, R., Hedstrom, N., Granger, R., & Reid, B. (2010). Storage dynamics and streamflow in a 20 

catchment with a variable contributing area. Hydrological Processes, 24(16), 2209-2221.  

Sudicky, E. A., Jones, J. P., Park, Y. J., Brookfield, A. E., & Colautti, D. (2008). Simulating complex flow and transport 

dynamics in an integrated surface-subsurface modeling framework. Geosciences Journal, 12(2), 107-122. 

Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., & Wilson, C. R. (2008). Analysis of terrestrial water storage changes 

from GRACE and GLDAS. Water Resources Research, 44(2). 25 

Uhlenbrook, S., Roser, S., & Tilch, N. (2004). Hydrological process representation at the meso-scale: the potential of a 

distributed, conceptual catchment model. Journal of Hydrology, 291(3), 278-296.  

Vaché, K. B., & McDonnell, J. J. (2006). A process-based rejectionist framework for evaluating catchment runoff model 

structure. Water Resources Research, 42(2). 

Vansteenkiste, T., Tavakoli, M., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., & Willems, P. (2014). 30 

Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of 

Hydrology, 511, 335-349. 

Vinogradov, Y. B., Semenova, O. M., & Vinogradova, T. A. (2011). An approach to the scaling problem in hydrological 

modelling: the deterministic modelling hydrological system. Hydrological processes, 25(7), 1055-1073. 



33 

 

Vivoni, E.R., Rodriguez, J.C., & Watts, C.J. (2010). On the spatiotemporal variability of soil moisture and 

evapotranspiration in a mountainous basin within the North American monsoon region. Water Resour. Res. 46, W02509. 

Wagener, T. (2003). Evaluation of catchment models. Hydrological Processes, 17(16), 3375-3378.  

Wagener, T., &  Gupta, H.V. (2005). Model identification for hydrological forecasting under uncertainty. Stoch. Environ. 

Res. Risk. Asses., 19, 378-387. 5 

Weiler, M., & McDonnell, J. (2004). Virtual experiments: a new approach for improving process conceptualization in 

hillslope hydrology. Journal of Hydrology, 285(1), 3-18. 

Westerberg, I. K., & McMillan, H. K. (2015). Uncertainty in hydrological signatures. Hydrology and Earth System Sciences, 

19(9), 3951-3968. 

Wigmosta, M. S., Nijssen, B., Storck, P., & Lettenmaier, D. P. (2002). The distributed hydrology soil vegetation model. 10 

Mathematical models of small watershed hydrology and applications, 7-42. 

Willems, P. (2014). Parsimonious rainfall–runoff model construction supported by time series processing and validation of 

hydrological extremes – Part 1: Step-wise model-structure identification and calibration approach. Journal of Hydrology, 

510, 578-590. 

Willems, P., Mora, D., Vansteenkiste, T., Taye, M. T., & Van Steenbergen, N. (2014). Parsimonious rainfall-runoff model 15 

construction supported by time series processing and validation of hydrological extremes–Part 2: Intercomparison of 

models and calibration approaches. Journal of Hydrology, 510, 591-609. 

Wood, E. F., Sivapalan, M., Beven, K., & Band, L. (1988). Effects of spatial variability and scale with implications to 

hydrologic modeling. Journal of hydrology, 102(1-4), 29-47.  

Wood, E. F., Sivapalan, M., & Beven, K. (1990). Similarity and scale in catchment storm response. Reviews of Geophysics, 20 

28(1), 1-18. 

Wood, E. F., Lettenmaier, D. P., & Zartarian, V. G. (1992). A land-surface hydrology parameterization with subgrid 

variability for general circulation models. Journal of Geophysical Research: Atmospheres, 97(D3), 2717-2728.  

Xu, X., Li, J., & Tolson, B.A. (2014). Progress in integrating remote sensing data and hydrologic modeling. Progress in 

Physical Geography, 38, 464-498. 25 

Yadav, M., Wagener, T., & Gupta, H. (2007). Regionalization of constraints on expected watershed response behavior for 

improved predictions in ungauged basins. Advances in Water Resources, 30(8), 1756-1774. 

Ye, S., Yaeger, M., Coopersmith, E., Cheng, L., & Sivapalan, M. (2012). Exploring the physical controls of regional patterns 

of flow duration curves-Part 2: Role of seasonality, the regime curve, and associated process controls. Hydrology and Earth 

System Sciences, 16(11), 4447. 30 

Young, P. (1998). Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. 

Environmental Modelling & Software, 13(2), 105-122. 

Young, P. (2003). Top-down and data-based mechanistic modelling of rainfall–flow dynamics at the catchment scale. 

Hydrological Processes, 17, 2195-2217. 



34 

 

Zehe, E., Maurer, T., Ihringer, J., & Plate, E. (2001). Modelling water flow and mass transport in a Loess catchment. Phys. 

Chem. Earth (B), 26, 487-507. 

Zehe, E., & Blöschl, G. (2004). Predictability of hydrologic response at the plot and catchment scales: Role of initial 

conditions. Water Resources Research, 40(10).  

Zehe, E., Lee, H., & Sivapalan, M. (2006). Dynamical process upscaling for deriving catchment scale state variables and 5 

constitutive relations for meso-scale process models. Hydrology and Earth System Sciences, 10(6), 981-996.  

Zehe, E., Elsenbeer, H., Lindenmaier, F., Schulz, K., & Blöschl, G. (2007). Patterns of predictability in hydrological 

threshold systems. Water Resources Research, 43(7). 

Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff, M., Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, 

K., Allroggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer, U., Eccard, J., Wulfmeyer, V., & Kleidon, A. (2014). 10 

HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link 

spatial organization and functioning of intermediate scale catchments. Hydrology and Earth System Sciences, 18(11), 

4635-4655.  

Zehe, E. (2016). Interactive comment on “Opinion paper: How to make our models more physically-based” by H.H.G. 

Savenije and M. Hrachowitz. 15 

Zhao, R. J. (1977), Flood Forecasting Method for Humid Regions of China, East China Coll. of Hydraul. Eng., Nanjing, 

China. 

Supplementary Material 

S1 – Example: climate effects on spatial process heterogeneity 

As an example, consider the interception and unsaturated root-zone storage processes in energy limited cool and humid 20 

environment. In such environments, large parts of catchments do often exhibit only limited storage deficits and can remain 

hydrologically connected for much of the year. The elevated precipitation volumes and short inter-storm durations together 

with limited energy supply for evaporation will result in both stores that are often filled close to their capacity, 

notwithstanding their potentially significant storage capacities (e.g. forest). As little additional water can be stored, the 

systems converges towards a linear response, i.e. what is going in, goes out without significant storage changes and largely 25 

independent from spatially heterogeneous storage capacities across the entire catchment. Thus, in that example, any spatial 

heterogeneity of storage capacities, as for instance dictated by different land cover across the catchment, does not 

significantly influence the hydrological response and may therefore neither be meaningfully identified by the available data 

nor actually necessary to account for in a model. As the same applies for other processes, it can be argued that lumped top-

down models, if rigorously tested, may indeed be capable of meaningfully reproducing the observed hydrological response 30 

under these specific environmental conditions. However, the more arid the climate and the higher the seasonality of 

precipitation, the more pronounced the importance of the storage capacities and their spatial heterogeneity become: after a 



35 

 

dry period, forested hillslopes with higher interception and root zone storage capacities than grasslands will need more water 

to overcome the storage deficits. Thus grasslands will, due to the lower storage deficit that needs to be overcome, establish 

hydrological connectivity earlier than forests, which has, depending on the areal proportion of the two landscape elements 

within the catchment, considerable potential to influence the entire catchment response. A lumped formulation of the process 

will then indeed lead to a considerable misrepresentation of the hydrological system if a model customized for cool and 5 

humid conditions is applied under drier and warmer conditions, and further exacerbated by pronounced differences in 

topographic relief and/or land cover within the catchment. 

S2 – Example process complexity: Interception 

As an example consider which individual processes a description of vegetation interception at different hierarchal levels of 

detail may, amongst others, involve. At the level of individual tree branches, it can be split in into the individual respective 10 

interception capacities of a branch and its leaves. While the first is controlled by the mechanical water loading capacity of 

the branch, which in turn is a function of branch geometry, wind speed, wind direction and precipitation phase, the latter also 

depends on the phenology of the plant under consideration. Applying classical mechanics, information on material properties 

and geometry of the branch-leave system together with time series of wind speed, wind direction, energy supply and 

precipitation then allows to compute time series of water storage in as well as drip and evaporation from the branch-leave 15 

system. At a higher hierarchal level, the level of the individual plant, the detailed, mechanistic description has to be extended 

to a three-dimensional cascade of individual, interacting branch-leave systems, each characterized by its own position and 

geometry and therefore affected by differences in wind exposure, direct precipitation input as well as throughfall from 

systems above. For individual young plants with a few branch-leave systems, depending on how many of the material and 

geometric can be determined with some level of confidence, and how many may require some degree of lumping and 20 

simplifying conceptualizations, a mechanistic description may remain a feasible option. Yet, the overall interception at the 

level of a plant is the result of a distribution of different individual thresholds, i.e. interception capacities. With increasing 

complexity, the resulting non-linear system then becomes increasingly problematic to predict with a detailed, small-scale 

description, due to uncertainties in boundary conditions, forcing and system states (e.g. Zehe et al., 2007). At the subsequent 

stand level, the detailed properties of different plants of the same species but also other species and the composition of plants 25 

at a given stand need to be known in addition if interception wants to be treated in a detailed way based on small scale 

physics. This is effectively not possible with current day observational and computational technology and may for a long 

time not be. In absence of the required detailed observations, observations at a higher hierarchal level and/or calibration are 

required to establish a meaningful process parameterization. Both dictate a lower degree of process detail and thus a higher 

degree of integration to limit the effects of equifinality. In a system that is set in the realm of organized complexity - too 30 

random, i.e. unobservable, to be treated in a deterministic way and too organized to be treated in an exclusively statistical 

way (Dooge, 1986) - zooming out then often results in the emergence of simple, generalizable functional relationships of the 
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process under examination (here: interception) with some system properties (here for example Leaf Area Index, e.g. 

Samaniego et al., 2010) at that scale. 
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