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Abstract: Precipitation extremes are localized and spatially heterogeneous events. Magnitude of precipitation extreme ݌ is 

expected to be spatial resolution dependent. Heavy precipitation extremes tend to be less intensive at coarser resolutions due 

to the averaging effect of the neighbouring less extreme events. Given the resolution dependent ݌ , this study aims to 

investigate how spatial resolutions affect projected changes in precipitation extremes between future and historical periods, 

i.e. ݌௙௨௧ െ  is sensitive to 20 ݌ ௛௜௦, which is a commonly used metric in climate projections. Our results show that although݌

spatial resolutions, differences in ݌௙௨௧ െ ௛௜௦݌  among various spatial resolutions are relatively small. Assessments of 

performances of GCMs in simulating ݌ and ݌௙௨௧ െ  ௛௜௦ are conducted based on three commonly used strategies that account݌

for differences in spatial resolutions between GCMs and observations, i.e. the site-scale, the grid-scale, and the grid-point 

(i.e. direct comparison of grid- against scale- extremes) comparisons. Performances of GCMs in the site-scale comparison 

outperform those in the grid-scale and grid-point comparisons, because the statistical downscaling method incorporates the 25 

site-scale information to the future values when downscaling the GCMs. Assessment results of the grid-point comparison are 

comparable to those of the grid-scale comparison, even though the former has been criticized for not accounting for the 

difference in spatial resolutions between GCMs and observations. The spatial distributions of ݌௙௨௧ െ  ௛௜௦ under RCP8.5݌

show that their differences between the site scale and the GCMs’ original resolutions are marginal. Given the considerable 

discrepancies among GCM outputs, the effects of spatial resolutions on projected changes are negligible. 30 

 

1 Introduction 
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Under global warming, changes in extreme climate can lead to significant impacts on the occurrence and severity of natural 

disasters which will result in changes in risk of failure for urban infrastructures, such as reservoirs, highway, urban drainage 

systems, etc. (e.g. Easterling et al., 2000; IPCC, 2012; Trenberth et al., 2015; Li et al., 2016). To achieve long-term climate 

resilience, it is crucial to estimate of future climate extremes with an acceptable level of confidence as the scientific basis for 

engineering design and policy making (e.g. O’Brien et al., 2004; Huntingford et al., 2013). Regional- and global- scale 5 

projections of precipitation extremes under various future climate scenarios have been extensively conducted based on 

Global Climate Models (GCMs) from Phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3) and (CMIP5) 

(e.g. IPCC, 2012; Li et al., 2013; Sillmann et al., 2013b). More frequent and severe precipitation extremes are consistently 

projected in most of the previous studies, which can be explained by the Clausius-Calpeyron relationship (C-C relationship; 

Clausius 1850; Clapeyron 1834). According to the C-C relationship, a warmer atmosphere can hold more water vapor at an 10 

increase rate of 7%/K rise in temperature.  

 

Although most previous studies agreed on projected increases in future precipitation extremes, they hardly made agreements 

on the changing rates because they were based on either different GCMs or resolutions. An assessment on performances of 

GCMs in simulating precipitation extremes is important to understand the reliability of future projections, which can be 15 

achieved by comparing precipitation extremes derived from GCMs with reanalysis data (e.g. Sillmann et al., 2013a), remote 

sensing data (e.g. Dosio et al., 2015), or gridded or station-based observations (e.g. Nikulin et al., 2011; Li et al., 2013; 

Sillmann et al., 2013a). Sillmann et al. (2013a) compared precipitation extremes from CMIP3 and CMIP5 GCMs to those 

from four reanalysis datasets, including ERA40, ERA-Interim, NCEP/NCAR, and NCEP-DOE, as well as a gridded 

observation-based dataset HadEX2. They concluded that CMIP5 models are able to simulate precipitation extremes in 20 

comparison with the gridded observations HadEX2 dataset, but the discrepancies between the reanalysis datasets and those 

between GCMs are considerable. The assessment over Europe conducted by Nikulin et al. (2011) found out that the biases in 

simulated precipitation extremes against observations have a complex and spotty spatial pattern, and biases tend to be 

substantial over mountains and areas with fewer observational stations. 

 25 

It is difficult to directly compare GCMs’ simulations against reference data from various sources partly because their 

resolutions vary widely (e.g. Wehner 2004; Hegerl et al., 2004). Further, comparing gridded GCM simulations against 

station-based observations can be problematic, particularly for precipitation extremes, because precipitation extremes were 

firstly proposed and defined at the site scale based on station-based observations, and it has been well recognized that 

precipitation extremes are more spatially heterogeneous than temperature (Frich et al., 2002; Nikulin et al., 2011; Chen et al., 30 

2016). Previous studies have acknowledged that intensities of precipitation extremes are sensitive to spatial resolutions (e.g. 

Kharin et al., 2005; Emori et al., 2005; Chen and Knutson, 2007). Kharin et al. (2005) estimated the averaged 24-h 

precipitation of 20-yr return period of a group of GCMs as a function of their horizontal grid resolutions, and found a 

significant reduction of 24-h precipitation of 20-yr return period as the grid cell size increases. From interpolating 
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0.25o×0.25o daily observed precipitation to resolutions ranging from 0.5o×0.5o to 4o×4o, Chen and Knutson (2007) also found 

considerable reductions of extreme precipitation indices at coarser resolutions compared to those at finer resolutions. Their 

results implied that GCMs at their raw resolutions, generally about 1o×1o to 3o×3o, tend to underestimate precipitation 

extremes at finer resolutions. These previous studies focused on the sensitivity of precipitation extreme values  ݌ to spatial 

resolutions ݎ. However, how do spatial resolutions affect projections of changes in precipitation extremes, e.g. ݌௙௨௧ െ  ௛௜௦ 5݌

(future extremes – historical extremes), is still unclear. Since ݌௙௨௧ െ  ,௛௜௦ is a common metric to project future changes݌

therefore an investigation on its sensitivity to spatial resolutions is crucial to understand the uncertainties and reliability of 

GCMs’ projections in precipitation extremes with reference to spatial resolutions.  

 

In practice, downscaling (e.g. statistical and dynamical approaches) and upscaling (e.g. interpolation) are commonly adopted 10 

to either downscale coarse GCM simulations to a finer resolution or upscale reference data at a finer resolution to a coarser 

resolution (e.g. Mladjic et al., 2011; Eden et al., 2012). The advantages and shortcomings of various downscaling and 

upscaling methods have been extensively discussed and examined in previous studies (e.g. Schmidli et al., 2006; Xu and 

Yang, 2012). For example, statistical downscaling is usually criticized for lack of physical basis, while dynamical 

downscaling, though computationally intensive, may result in more uncertainties to the results caused by the limitations of 15 

regional climate models (Wilby 1994; Wilby and Wigley 1997). In general, the strategies to solve the differences in spatial 

resolutions between GCMs and other data sources, especially site-scale observations, can be classified into three types: (1) 

downscale GCM outputs to the site scale, and compare downscaled simulations and station-based observations at the site 

scale (e.g. Li et al., 2013; Mullan et al., 2016); (2) upscale site-scale observations to grid cells of spatial resolutions of GCMs 

and compare the results at a gridded scale (e.g. Sillmann et al., 2013a, 2013b); (3)  compare grid-scale indices with site-scale 20 

observations directly under the assumption that site-scale observations are representative of areal distributed conditions 

(hereafter “grid-point comparison”) (e.g. Ma et al., 2009; Hu et al., 2016). Because intensities of precipitation extremes are 

sensitive to spatial resolutions, projections of precipitation extremes at various spatial resolutions should be different. Here 

we examine the effect of spatial resolutions on changes in precipitation extremes between two periods, i.e. ݌௙௨௧ െ  ௛௜௦, based݌

on the site-scale observations and gridded GCM simulations across China. Therefore, this study aims to 1) quantify the 25 

sensitivity of ݌௙௨௧ െ  ௛௜௦ to spatial resolutions from site to gridded scales; 2) analyze performances of GCMs at various݌

resolutions in simulating precipitation extremes using the three aforementioned comparison strategies, i.e. site-scale, grid-

scale, and grid-point comparisons; and 3) examine impacts of spatial scales on projected changes in seasonal precipitation 

extremes across China given performances of GCMs at various scales. The results of this study will help us to better 

understand the effect of spatial resolutions on projections of precipitation extremes, as well as the reliability and scaling-30 

aggregation problems in GCM simulations. 

 

2 Data 
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Ground observations of daily precipitation and temperature from 509 rain stations across China are collected from the 

National Meteorological Information Center of China Meteorological Administration (Fig. 1). The observed precipitation is 

valid for the period of 1960-2010 under good quality control (Zhang et al., 2011). Besides the lack of long-term ground 

observations in the Tibetan Plateau and the Taklimakan Desert in the westernmost China, the ground stations are fairly 

evenly distributed across China. The gridded observations at the 2.5o×2.5o spatial resolution are constructed by interpolating 5 

the station-based observations using the natural neighbor interpolation method (Watson 1992, 1994; Conti et al., 2014). 

Furthermore, we collect simulated daily precipitation from 12 GCMs in the World Climate Research Program’s CMIP5 for 

the historical, Representative Concentration Pathway 2.6 (RCP2.6) and RCP8.5 scenarios (Tab. 1; Van Vuuren et al. 2011; 

Riahi et al. 2011; Taylor et al. 2012). In the grid-scale comparison, GCM outputs are re-gridded to the 2.5o×2.5o spatial 

resolution using the bilinear algorithm in Earth System Modeling Framework software so that GCM outputs have the same 10 

resolution of gridded observations (Hill et al., 2004). Precipitation extreme indices, including consecutive dry days (CDD), 

number of wet days (NW), max 5 day precipitation amount (R5d), number of heavy precipitation days (R10), precipitation 

fraction due to very wet days (R95T) and simple daily intensity index (SDII), are estimated for spring (MAM), summer 

(JJA), autumn (SON), and winter (DJF) (Tab. 2). These precipitation extremes have been extensively used in the literature 

(e.g. IPCC, 2012; Sillmann and Roeckner, 2008; Li et al., 2013; Chen et al. 2016).  15 

 

3 Methodology 

GCM precipitation extremes at the site scale are computed by downscaling GCM outputs from their raw resolutions to the 

site scale based on a statistical downscaling method (Zhang et al., 2005; Li et al., 2011; Li et al., 2013). Firstly, the gridded 

GCM simulations are smoothed by calculating the inverse distance weighted average of four neighboring grid cells. 20 

Secondly, transfer functions are developed to map gridded GCMs values to each target station. The inverse distance weight 

wi of a neighboring grid cell i can be computed as: 

 

 

1

4
1

1

i
i

i
i

d
w

d







 


 
                             (1) 

where ε is a very small value to prevent division by zero, and di represents the angular distance between the grid cell center 

and the target station. The di can be calculated by: 25 

݀௜ ൌ ௟௔௧ሻݏሺ݊݅ݏ൫ܿ௟௔௧,௜൯݊݅ݏଵൣିݏ݋ܿ ൅ ൫ܿ௟௢௡,௜ݏ݋௟௔௧ሻܿݏሺݏ݋൫ܿ௟௔௧,௜൯ܿݏ݋ܿ െ  ௟௢௡൯൧           (2)ݏ

where ܿ௟௔௧,௜ and ܿ௟௢௡,௜ denote the latitude and longitude of the center of the grid cell i, respectively; ݏ௟௔௧ and ݏ௟௢௡ denote the 

latitude and longitude of the target station, respectively. 

 

Then the smoothed GCM value of the target station ݌௦ can be computed as: 30 

௦݌ ൌ ∑ ௜݌௜ݓ
௡
௜ୀଵ                                      (3) 
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where ݌௜ denotes the value in the neighboring grid cell i, and n=1,2,3,4 is the number of available neighboring grid(s). Next, 

the smoothed GCM values ݌௦,௧௥௔௜௡ and observed values at the target station ݌′௦,௧௥௔௜௡ in the training period are paired based on 

their quantiles. We then identify the best fitting nonlinear and linear relationships between these pairs. These nonlinear and 

linear relationships, called transfer functions, can be used to transfer ݌௦,௧௥௔௜௡  to ݌′௦,௧௥௔௜௡. ݌௦,௧௥௔௜௡  within the range of the 

nonlinear function is transferred to ݌′௦,௧௥௔௜௡ by the nonlinear function. ݌௦,௧௥௔௜௡	out of the range of the nonlinear function is 5 

transferred to ݌′௦,௧௥௔௜௡ by the linear function. These relationships are developed based on ݌௦,௧௥௔௜௡ and ݌′௦,௧௥௔௜௡ in the training 

period. The smoothed GCM values under the future scenarios ݌௦,௙௨௧ are then downscaled to the site-scale value ݌′௦,௙௨௧ based 

on these relationships.  

 

Taylor diagrams are used to assess performances of GCMs in simulating precipitation extremes by comparison against the 10 

observation (Taylor, 2001; Kwok 2011; Li et al., 2013). In a Taylor diagram, the correlation (R), root-mean-square 

difference (E2), and ratio of variances of the models ( m ) and observation ( o ) between simulations and observation are 

associated through the cosine relationship. The E2 and m are normalized by the o  as below: 
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Then the polar coordinates 
^

m  and cos-1R of a GCM can locate a point in the Taylor diagram. Based on the cosine 15 

relationship, the corresponding 
^

E  is obtained and represented by the dashed semicircles centered at the unity on the 

abscissa in the diagram. After the normalization, the observation is plotted at the unit distance from the origin along the 

abscissa. The performance of a GCM can be described by the degree to proximity between the point representing the GCM 

and the point representing the observation. The 2-sample Kolmogorov-Smirnov (KS) test, a commonly used nonparametric 

hypothesis test, is used to examine whether the probability distributions of downscaled and observed extremes are 20 

statistically identical (Massey, 1951; Miller, 1956; Stephens, 1970). The KS test is conducted at 5% significance level.  

 

4 Results and discussions 

4.1 Sensitivity of changes in precipitation extremes to spatial resolutions 

Datasets of precipitation extremes at various spatial resolutions from the site scale to the 4o×4o gridded scale are constructed 25 

by aggregating daily precipitation of stations covered by grid cells centered at each of the 509 stations. For example, for a 

grid cell i centered at a station j with a cell size of 2.5o×2.5o, the daily precipitation of grid cell i is the mean of precipitation 

in n stations covered by that grid cell. We split the period of 1961-2005, the common years of observations and the GCM 

historical scenario, into a pseudo-future period 1986-2005 and a pseudo-historical period 1961-1985, so the change in 

precipitation extremes between these two periods is ݌ଵଽ଼଺ିଶ଴଴ହ െ  ଵଽ଺ଵିଵଽ଼ହ, which are estimated at gridded observations at 30݌
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various spatial resolutions. Projections of future precipitation extreme were usually based on changes between a future 

period and a historical period in previous studies, i.e. ݌௙௨௧ െ ௛௜௦݌ . Therefore, analyzing the sensitivity of observed  

ଵଽ଼଺ିଶ଴଴ହ݌ െ  ଵଽ଺ଵିଵଽ଼ହ to various grid cell sizes will help us to better understand impacts of spatial resolutions on future݌

projections of precipitation extremes. 

 5 

The sensitivity analysis based on the observational data shows that spatial resolutions have considerable impacts on 

magnitudes of precipitation extremes in the pseudo-historical period, i.e. ݌ଵଽ଺ଵିଵଽ଼ହ , and the impacts to different 

precipitation extremes are various (Fig. 2). The magnitudes of CDD, R5d, R10, R95T, and SDII are significantly reduced as 

spatial resolutions are coarser, due to the averaging effect of precipitation which is highly variable spatially. R5d can 

decrease from about 120 days to about 60 days (about a 50% reduction) when the spatial resolutions increase from the site 10 

scale to the 4o×4o resolution. SDII decreases by 40% at the 4o×4o resolution compared to the site-scale observations. CDD is 

around 50 days at the site scale, but decreases to 41 days at the 4o×4o resolution. Different from other extremes, NW is found 

to increase with coarser spatial resolutions which are expected. On average NW doubles at the 4o×4o resolution compared to 

those at the site scale. These changes in magnitudes of different precipitation extreme indices as the grid cell sizes increases 

can be explained by the spatial heterogeneity of daily precipitation. Different regions in a grid cell can experience different 15 

storm mechanisms and precipitation characteristics, such as the occurrence, storm intensity, etc., therefore the probability of 

occurrence of precipitation events of a grid cell increases when the grid cell size increases. Hence NW increases but CDD 

decreases in coarser spatial resolutions. On the other hand, the spatially heterogeneity of precipitation intensity means that 

the intensity of heavy precipitation events in a location can be attenuated by the surrounding less intensive precipitation, thus 

the average precipitation intensity decreases as a grid cell becomes larger, such as reductions in R5d, R10, R95T, and SDII as 20 

grid cell sizes increase. Our results for various precipitation extremes are in good agreement with the findings of Chan and 

Knutson (2007), in which substantial reductions in 30-yr return levels of daily precipitation was found at coarser spatial 

resolutions. 

 

In contrast, the changes between precipitation extremes of 1986-2005 and 1961-1985, i.e. ݌ଵଽ଼଺ିଶ଴଴ହ െ  ଵଽ଺ଵିଵଽ଼ହ, are much 25݌

less sensitive to spatial resolutions (Fig. 2). For example, the site-scale SDII of 1986-2005 is found to be 0.2 mm higher than 

that of 1961-1985, while the difference decreases to about 0.05 mm at the 4o×4o spatial resolution. The difference of changes 

in SDII between the 4o×4o resolution and the site scale, i.e. ሺܵܫܫܦଵଽ଼଺ିଶ଴଴ହ,ସ೚ െ ଵଽ଺ଵିଵଽ଼ହ,ସ೚ܫܫܦܵ )-ሺܵܫܫܦଵଽ଼଺ିଶ଴଴ହ,଴೚ െ

 ଵଽ଺ଵିଵଽ଼ହ,଴೚ሻ, is about 0.15 mm, which is only 2.9% of the difference of magnitudes of SDII between the 4o×4oܫܫܦܵ

resolution and the site scale, i.e. ܵܫܫܦଵଽ଺ଵିଵଽ଼ହ,ସ೚ െ  ଵଽ଺ଵିଵଽ଼ହ,଴೚, which is about 4 mm, showing that changes in SDII 30ܫܫܦܵ

between two periods is less sensitive to spatial resolutions than its magnitudes to spatial resolutions. The insensitivity of 

changes between two periods with respect to spatial resolutions also can be identified for other precipitation extreme indices. 

The differences of changes in CDD, NW, R10, R5d, and R95T between the 4o×4o resolution and the site scale 
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ሺ݌ଵଽ଼଺ିଶ଴଴ହ,ସ೚ െ ଵଽ଺ଵିଵଽ଼ହ,ସ೚ሻ݌ െ ሺ݌ଵଽ଼଺ିଶ଴଴ହ,଴೚ െ  ଵଽ଺ଵିଵଽ଼ହ,଴೚ሻ are about 13.3%, -0.7%, -28.9%, 0.0% and 0.0% of the݌

differences in the magnitudes ݌ଵଽ଺ଵିଵଽ଼ହ,ସ೚ െ   .ଵଽ଺ଵିଵଽ଼ହ,଴೚, respectively݌

The C-C relationship indicates that the water holding capacity of the atmosphere increases at about 7% per K rise in 

temperature, implying that precipitation extremes should change proportionally as temperature increases. To better 

understand the insensitivity of ݌௙௨௧ െ ௛௜௦݌  to spatial resolutions, we define fractional changes in precipitation extremes 5 

relative to temperature changes across grid cells as slope S, which is calculated as 

S ൌ ቀ
௣భవఴలషమబబఱି௣భవలభషభవఴఱ

௣భవలభషభవఴఱ
ቁ ሺ ଵܶଽ଼଺ିଶ଴଴ହ െ ଵܶଽ଺ଵିଵଽ଼ହሻൈ100%ൗ                                                 (5) 

where ଵܶଽ଼଺ିଶ଴଴ହ and ଵܶଽ଺ଵିଵଽ଼ହ are the mean temperature of pseudo-future period 1986-2005 and pseudo-historical period 

1961-1985, respectively. Relationships of S derived from observations and GCM simulations at various spatial resolutions 

are shown in Fig. 3a. The S of NW, R5d, R95T, and SDII change slightly as spatial resolution increases at rates of about 10 

0%/K, 2-3%/K, 2-3%/K, and 0-2%/K, respectively. At the same time, as expected, changes in temperature ଵܶଽ଼଺ିଶ଴଴ହ െ

ଵܶଽ଺ଵିଵଽ଼ହ are much more spatially homogenous than precipitation as shown in Fig. S4. Therefore, based on Eq. 5, the stable 

S and ଵܶଽ଼଺ିଶ଴଴ହ െ ଵܶଽ଺ଵିଵଽ଼ହ	at various resolutions mean ݌ଵଽ଼଺ିଶ଴଴ହ െ  ଵଽ଺ଵିଵଽ଼ହ should be relatively insensitive to spatial݌

resolutions (Fig. 2). S of R95T and R10 change more considerably with an increase from about 4%/K to 15%/K, and a 

decrease from about 0%/K to -5%/K as the spatial resolution increases from the site scale to the 4o×4o resolution, 15 

respectively. Therefore, sensitivities of changes in R95T and R10 are larger than the sensitivities of other extremes, but are 

still much smaller than the sensitivities of their magnitudes to spatial resolutions (Fig. 2). The dashed lines in Fig. 3 are 

regressions of slopes of precipitation extremes derived from GCMs versus their raw resolutions, showing that the slopes of 

GCMs change in similar rates with the observations.  

 20 

Based on the above definition of slope ܵ, the change in an extreme index between the future and historical periods at a 

spatial resolution r can be computed by 

௙,௥݌ െ ௛,௥݌ ൌ ܵ௥ൈ݌௛,௥ൈ൫ ௙ܶ,௥ െ ௛ܶ,௥൯                                                                                  (6) 

where ݌௙,௥ and ݌௛,௥ are precipitation extremes of future and historical periods at a spatial resolution r, respectively; ௙ܶ,௥ and 

௛ܶ,௥ are the climatology of annual mean temperature of future and historical periods at resolution r, respectively. Therefore, 25 

the difference of changes in extremes of two periods between resolutions r1 and r2 can be computed as 

൫݌௙,௥ଶ െ ௛,௥ଶ൯݌ െ ൫݌௙,௥ଵ െ ௛,௥ଶൈ൫݌௛,௥ଵ൯=ܵ௥ଶൈ݌ ௙ܶ,௥ଶ െ ௛ܶ,௥ଶ൯ െ ܵ௥ଵൈ݌௛,௥ଵൈ൫ ௙ܶ,௥ଵ െ ௛ܶ,௥ଵ൯ 

         =

ೄೝమ
ೄೝభ

ൈ
೛೓,ೝమ
೛೓,ೝభ

ൈ
೅೓,ೝమ
೅೓,ೝభ

ିଵ

೛೓,ೝమ
೛೓,ೝభ

ିଵ
ൈܵ௥ଵൈ൫ ௙ܶ,௥ଵ െ ௛ܶ,௥ଵ൯ൈ൫݌௛,௥ଶ െ  ௛,௥ଵ൯         (7)݌

Based on Eq. 7, the difference of changes in extremes at resolutions r1 and r2, i.e. ൫݌௙,௥ଶ െ ௛,௥ଶ൯݌ െ ൫݌௙,௥ଵ െ  ௛,௥ଵ൯, can be݌

related to the difference of magnitudes of extremes at resolutions r1 and r2, i.e. ݌௛,௥ଶ െ ௛,௥ଵ݌ . Because temperature is 30 

insensitive to spatial resolution (Fig. S1), then 
்೓,ೝమ
்೓,ೝభ

ൎ 1. To compare other spatial resolution with the site scale, we set r1 ൌ
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0௢ . According to Fig. S1, for the pseudo-future period 1986-2005 and the pseudo-historical period 1961-1985, ௙ܶ,଴೚ െ

௛ܶ,଴೚ ൌ 0.6248 K. In this case, Eq. 7 can be simplified as 

൫݌௙,௥ଶ െ ௛,௥ଶ൯݌ െ ൫݌௙,଴೚ െ ௛,଴೚൯݌ ൌ 0.6248ൈ൭
ௌೝమൈ

೛೓,ೝమ
೛೓,బ೚

ିௌబ೚

೛೓,ೝమ
೛೓,బ೚

ିଵ
൱ൈ൫݌௛,௥ଶ െ  ௛,଴೚൯                    (8)݌

According to Figs. 2 and 3a, the range of ܵ௥ଶ for the extreme indices investigated is about [-5, 15] in percentage, and the 

range of 
௣೓,ೝమ
௣೓,బ೚

 is about [0.5, 1.5]. Figs. 3b and 3c show the values of 0.6248ൈ൭
ௌೝమൈ

೛೓,ೝమ
೛೓,బ೚

ିௌబ೚

೛೓,ೝమ
೛೓,బ೚

ିଵ
൱ versus ܵ௥ଶ and 

௣೓,ೝమ
௣೓,బ೚

 when 5 

ܵ଴೚ ൌ 0%  and ܵ଴೚ ൌ 5% . The equation approaches infinity when 
௣೓,ೝమ
௣೓,బ೚

=1. For most cases, െ0.2 ൏ 0.6248ൈ

൭
ௌೝమൈ

೛೓,ೝమ
೛೓,బ೚

ିௌబ೚

೛೓,ೝమ
೛೓,బ೚

ିଵ
൱ ൏ 0.3 , implying a much smaller sensitivity of ൫݌௙,௥ଶ െ ௛,௥ଶ൯݌ െ ൫݌௙,଴೚ െ ௛,଴೚൯݌  to spatial resolution 

compared to ݌௛,௥ଶ െ  ௛,଴೚. Based on Eq. 8, the sensitivity of changes in precipitation extremes to spatial resolutions is a݌

function of the sensitivity of the magnitudes to spatial resolutions, the sensitivity of the slopes to spatial resolutions, and 

changes in temperature. According to this equation, Tab. 3 compares the estimated and observed sensitivity of changes and 10 

magnitudes of precipitation extremes between the site scale and the 4o×4o resolution. The good agreement between the 

estimated and observed sensitivity demonstrates the skills of Eq. 8 to quantify the sensitivity of changes in precipitation 

extremes to spatial resolution, and explains the negligible changes in precipitation extremes between two periods at various 

spatial resolutions.  

 15 

4.2 Performances of GCMs in simulating precipitation extremes at various resolutions based on the site-scale, grid-

scale, and grid-point comparisons 

According to the above analysis, magnitudes of precipitation extremes are very sensitive to spatial resolutions, while changes 

in precipitation extremes are much less sensitive, which may affect the assessment of precipitation extremes at various 

spatial scales. An analysis about the effects of spatial resolutions on the assessment of precipitation extremes will be useful 20 

to compare assessments of precipitation extremes in previous studies conducted at different spatial resolutions. In this part, 

we assess seasonal precipitation simulated by GCMs against observations of 1991-2005 based on the site-scale, the grid-

scale, and grid-point comparisons. In the site-scale comparison, GCM precipitation extremes are statistically downscaled 

from their raw resolutions to the 509 ground stations. In the grid-scale comparison, the station-based observations are 

interpolated to grids of the 2.5o×2.5o resolution, and all GCMs are also re-gridded to the 2.5o×2.5o resolution. In the grid-25 

point comparison, precipitation extremes estimated from GCMs at their original resolutions are directly compared to the site 

observations. Different downscaling and re-gridding algorithms should have significant impacts on the results obtained from 

the comparisons, but in this study, we focus on the performances of GCMs in simulating the magnitudes of precipitation 

extremes at different resolutions and how their performances based on magnitudes affect projected changes in precipitation 
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extremes at various spatial resolutions (see Section 4.3). Therefore, the effects of choices of downscaling and re-grid 

algorithms are not discussed in this study. 

 

In the site-scale comparison, the statistical relationships between the grid- and site-scale precipitation extremes are 

developed during the period of 1961-1990. The relationships are then applied to downscale the grid-scale extremes of 1991-5 

2005 to site-scale values. The multimodel ensemble mean of the downscaled precipitation extremes are then compared with 

ground observations. Taylor diagrams of spring, summer, autumn, and winter CDD show downscaled CDD match the 

ground observations well with a correlation of about 0.99 and a normalized standard deviation of about 1 (Fig. 4). 

Downscaled NW, R5d, R10, and SDII also agree well with observed data as shown in Taylor diagrams (Figs. S2-S4, Fig. 6), 

except the downscaled R95T is not as good, with correlation coefficients of about 0.4-0.5, and the normalized standard 10 

deviations about 0.6-0.8 (Fig. 5). The difference between the areal mean of downscaled precipitation extremes and 

observations across the rain stations at the site scale, i.e. ீ݌஼ெ െ  ௢௕௦, is shown in Tab. 4. Differences between downscaled݌

and observed CDD for the four seasons are between -1.38 and 0.29 days. Downscaled CDD in spring and summer is slightly 

larger than the observations, with overestimation of 0.09 and 0.29 days, respectively. The statistical downscaling 

underestimates the autumn and winter CDD by 1.38 and 0.94 days, respectively. The downscaled R10 agrees well with the 15 

observations with differences of 0.09, -0.42, 0.35, and -0.23 days in spring, summer, autumn, and winter, respectively. The 

downscaled R5d are 0.37 mm higher, 4.55 mm lower, 2.32 mm higher, and 1.31 higher than the observations in spring, 

summer, autumn, and winter, respectively. The statistical downscaling method tends to underestimate R95T. The downscaled 

R95T is 0.26%, 1.74%, and 2.56% lower than the observations in spring, summer and winter, respectively. The performance 

of downscaled SDII is good, as indicated by the differences of 0.01 mm/day, -0.51 mm/day, 0.00 mm/day, and -0.19 mm/day 20 

in spring, summer, autumn and winter, respectively. Moreover, the 2-sample KS test is used to compare the probability 

distributions of downscaled with those of observed precipitation extremes. The proportions of stations with statistically the 

same probability distributions between downscaled and observed extremes are shown in Tab. 5. According to the 2-sample 

KS test at the 5% significance level, more than 96% of the stations have probability distributions of downscaled and 

observed CDD, NW, R5d, and SDII that are statistically the same. In spring, summer, and autumn, more than 86% of the 25 

stations are identified with the same distributions of downscaled and observed R10, while the corresponding proportion for 

winter is relatively lower at 71%. The downscaled R95T performs better in summer than other seasons, when the proportions 

or stations that have statistically the same distributions are 79%, 76%, and 48% in spring, autumn, and winter, respectively. 

Fig. 7 shows the box-and-whisker plots of precipitation extremes derived from GCMs and observations based on the site-

scale, grid-scale, and grid-point comparisons. Similar to the above discussion, in the site-scale comparison, areal means of 30 

simulated seasonal precipitation extremes are close to those of observations during 1991-2005, although simulations of 

summer R5d, R10, R95T, and SDII slightly underestimate the observations (Fig. 7). Therefore, the site-scale comparison 

indicates that the downscaled GCMs are able to simulate seasonal precipitation extremes with acceptable performance, 
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especially CDD, NW, R5d, R10 and SDII. Different downscaling methods can lead to various impacts on the site-scale 

comparison, but this is not the major scope of the study. 

 

In the grid-scale comparison, all GCM daily precipitation outputs are firstly re-gridded to the 2.5o×2.5o spatial resolution 

from which precipitation extreme indices are estimated. The performances of GCMs in simulating precipitation extremes in 5 

the grid-scale comparison are not as good as those in the site-scale comparison. At the 2.5o×2.5o spatial resolution, the 

correlation of ensemble CDD is around 0.8, while the normalized standard deviations vary from 0.6 to 1.4 (Fig. 4). The 

correlations of R95T is about 0.8 in spring and summer, and about 0.5-0.7 in autumn and winter, and the normalized standard 

deviations are about 0.5-0.7 in spring and winter (Fig. 5). The correlations between simulated and observed grid-scale SDII 

are mostly about 0.6-0.7, which are substantially lower than those at the site scale of about 0.95-0.99 (Fig. 6). In comparing 10 

areal means between simulated and observed extremes at the gridded scale, CDD, R95T, and SDII are all underestimated in 

the four seasons (Fig. 7). The simulated NW, R5d, and R10 are generally higher than the observations. Tab. 4 shows that 

differences between areal means of the GCMs and observations at the gridded scale are larger than those at the site scale. 

The site-scale and grid-scale comparisons show that GCMs generally have the ability in simulating representative seasonal 

precipitation extremes, and their performances at the site scale are much better than at the gridded scale. The better 15 

performances of GCMs at the site scale are attributed to the statistical downscaling method which explicitly incorporates the 

site-scale information of precipitation to the future values when downscaling the GCMs, while re-gridding GCM simulations 

based on certain interpolation algorithms does not incorporate this information. 

 

In the grid-point comparison, precipitation extremes estimated from GCMs at their raw gridded resolutions are directly 20 

compared with the observed values at stations located within the corresponding grid cells. The Taylor diagrams show that the 

grid-scale CDD, R95T and SDII estimated at GCMs’ original resolution hardly match observed values at the site scale (Figs. 

4-6). For R95T, the correlations between GCMs and observations in four seasons are negative, and the normalized standard 

deviation of the multimodel ensemble is 2. The normalized standard deviations of CDD in spring, autumn, and winter are 

about 0.5-0.6, and those in summer is better with value of 1. The normalized standard deviations of SDII in four seasons are 25 

only about 0.4-0.6, which is much lower than the downscaled SDII. The correlations of CDD and SDII between at GCMs 

raw resolutions and at the site scale are mostly around 0.6-0.7, which are lower than the downscaled CDD and SDII with 

correlations of 0.95-0.99. Tab. 4 shows the ீ݌஼ெ െ  ௢௕௦ in the grid-point comparison are larger than those in the site-scale݌

comparison but similar to those in the grid-scale comparison. The CDD derived from GCMs’ original resolutions are 7.55, 

3.68, 5.80, and 10.09 days less than the site-scale observations in spring, summer, autumn, and winter, respectively. On the 30 

other hand, GCMs at raw resolutions overestimate NW and R10, especially for gridded NW, which are 14.52, 22.82, and 

11.52 days larger than the site-scale observations in spring, summer, and autumn, respectively. The gridded R5d is 7.31 mm 

higher, 16.29 mm lower, and 6.01 mm higher than the grounded observation in spring, summer, and winter, respectively. The 

box-and-whisker plots of the second and third columns in Fig. 7 show that similar results are obtained from comparing 
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simulated with observed precipitation extremes in the grid-scale and grid-point comparisons. Therefore, the grid-point 

comparison which directly compares gridded extremes with the site-scale values may be comparable to the grid-scale 

comparison which re-grid all GCMs and observations to the 2.5o×2.5o spatial resolution, although the resolutions of GCMs 

and observations are varying in the grid-point comparison.   

 5 

The magnitudes of precipitation extremes in the site-scale, grid-scale and grid-point comparisons in the box-and-whisker 

plots in Fig. 7 show similar changes as in Fig. 2 for data of coarser resolutions. In the grid-scale comparison, the magnitudes 

of CDD, R5d, and SDII estimated from both GCMs and observations at the 2.5o×2.5o spatial resolution are smaller than 

those at the site scale, but NW are larger than those at the site scale. As expected, comparison results for precipitation 

extremes are dependent on spatial resolutions. 10 

 

We further analyze the spatial distributions of the differences between simulated and observed extremes, i.e. ீ݌஼ெ െ  ,௢௕௦݌

obtained from the site-scale and grid-point comparisons. In the grid-point comparison, for each individual GCM, the GCM 

precipitation extreme of each station is the value of the grid cell in which the station is located. The precipitation extremes 

based on values given in GCMs’ grid cells where the stations are located are compared against the observed extremes of the 15 

corresponding stations. Based on the above discussion, results for the grid-scale comparison are similar with that of the grid-

point comparison, and so only the latter is considered in the following spatial analysis. As shown in Fig. 8, at the site scale, 

the simulated CDD in most parts of China is within +/- 2 days compared to the observed CDD in spring and summer. The 

observed CDD in autumn are 2-6 days higher than that of the GCM simulations, especially for the southeast and northwest 

China, while the winter CDD in northwest China are overestimated by GCMs by about 4-8 days. In the grid-point 20 

comparison, GCMs at the original spatial resolutions significantly underestimate the CDD, e.g. the CDD simulated by GCMs 

in middle and western China is 8 days less than that of the observations. At the site scale, the differences between simulated 

and observed R5d are within -5 to 5 mm in most parts of China, but the summer R5d in the southeast China is 

underestimated by 10 – 20 mm in the GCMs. In autumn, GCMs overestimates the R5d in southeast China by 5 – 15 mm. In 

the grid-point comparison, the bias of GCM R5d relative to observed R5d has an obvious spatial pattern. The spring and 25 

summer R5d in the southeast China simulated by the GCMs are 20 mm less than the observations, while those in southwest 

China and the Yangtze River Basin are >20 mm higher than the observations. The differences between the simulated and 

observed SDII are within -1 to 1 mm/day across China at the site scale, which demonstrates the good performance of 

downscaled GCM simulations in representing SDII. Similar to other indices, the differences between simulated and observed 

SDII in the grid-point comparison are larger than those at the site scale, as shown by the underestimation of spring, summer 30 

and autumn SDII in southeast China in GCMs. In winter, the SDII simulated by GCMs in north China is about 1-3 mm 

higher than the observations. For NW and R95T, relatively large bias is found between GCMs and observations in west 

China compared to other regions, and in the grid-point assessment compared to the site-scale assessment (Fig. S5). 
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In the above discussion, we assess the magnitudes of precipitation extremes derived from GCMs and observations based on 

the site-scale comparison by downscaling the GCM extremes, the gird-scale comparison by interpolating GCMs and 

observations to the 2.5o×2.5o resolution, and the grid-point comparison by directly comparing GCMs at the original 

resolutions to the site-scale observations. The magnitudes of precipitation extremes in various comparison strategies are 

different, and the directions of changes follow the sensitivity of precipitation extremes to spatial resolution as shown in Fig. 5 

2. Performances of GCMs in simulating precipitation extremes in the site-scale comparison outperform those in the grid-

scale and grid-point comparisons. This is expected because statistical downscaling in the site-scale comparison develops the 

empirical relationships between grid- and site- extremes which help to improve the performances of GCMs by reducing 

biases of GCMs. The performances of GCMs in the grid-scale comparison and grid-point comparison are somewhat 

comparable, even though GCMs have better agreement with the observations in the grid-scale comparison.  10 

 

4.3 Projected changes of seasonal precipitation extremes across China at the site scale and the GCMs’ original 

resolutions 

Given the understanding of differences found in magnitudes of precipitation extremes in the site-scale, grid-scale and grid-

point comparisons, in this section, we further examine whether significant differences can be found in the projected changes 15 

in precipitation extremes between different spatial resolutions, i.e. ൫݌௙,௥ଶ െ ௛,௥ଶ൯݌ െ ൫݌௙,௥ଵ െ  ௛,௥ଵ൯. Projected changes of݌

precipitation extremes during 2071-2100 under RCP8.5 relative to 1971-2000 under historical scenario are conducted at the 

site scale and at the GCMs’ raw spatial resolutions. Based on Eq. 7, differences in projected changes at various spatial 

resolutions will be positively related to projected temperature changes. Since temperature is projected to increase 

substantially at the end of the 21st century under RCP8.5, this scenario is chosen so that the differences in projected changes 20 

with respect to resolutions will be more obvious. To display projected changes in precipitation extremes estimated at various 

raw spatial resolutions of GCMs which can be different from each other (Tab. 1), the precipitation extreme of each grid cell 

is assigned to the meteorological stations that are located with the grid cell. Then for each station, the multimodel ensemble 

of the precipitation extremes from different GCMs is computed as the ensemble mean of precipitation extremes from the 

GCMs. 25 

 

As predicted by the Eq. 7, differences in projected changes of seasonal precipitation extremes at the site scale and at their 

GCMs’ raw resolutions are expected to be small (Fig. 9). At the site scale, CDD in the southeast China is projected to 

increase marginally by 2 – 4 days in spring and summer, and by 2 – 6 days in autumn, respectively. However, CDD is 

projected to decrease in northwest China by the end of the 21st century, especially in spring and winter when the projected 30 

decrease can exceed 10 days. Projections of CDD from GCMs’ original resolutions show very similar spatial patterns and 

change rates, while changes in winter are relatively modest compared to the site scale. At the site scale, decreases in NW in 

southeast China can be found in spring, summer, and winter with rates at about -4 - -1 days, while increase can be found in 

west China in spring and winter with rates at about 1-3 days. Again, the projected changes in NW at the GCMs’ raw 
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resolutions and at the site scale show very similar patterns. At both scales, R5d is projected to increase across China, 

especially in southeast China. In spring, the R5d is projected to increase by 20 – 35 mm in southeast China, and by 0 – 15 

mm in north. In summer, substantial increases in R5d are projected in east China, which are mostly larger than 40 mm. On 

the other hand, in northwest China, the summer R5d is only 0 - 5 mm higher than that during 1971-2000. In winter, R5d is 

merely projected to increase by 0 - 5 mm across China, which means only marginal change in winter R5d is expected. 5 

However, projected changes in the summer R5d at the raw resolutions of GCMs exhibit a different spatial pattern from those 

at the site scale. The summer R5d at GCM’s raw resolutions reach the maximum in southwest China with increasing rate > 

40 mm. In southeast China, R5d at the GCMs’ raw resolutions is projected increase by 15 – 25 mm, smaller than those at the 

site scale. At both the site scale and GCMs’ original resolutions, SDII is projected to increase in most parts of China in 

spring, summer and autumn by 1 – 2.5 mm.  10 

 

Therefore, even though the differences in magnitudes of precipitation extremes are large between the site scale and the 

GCMs’ raw resolutions, the differences in projected changes are much smaller between different scales, which is in 

agreement with the Eq. 7 and the sensitivity analysis. Statistical downscaling can significantly improve the performances of 

GCMs in projecting magnitudes of precipitation extremes (Figs. 4-7), but it does not seem to have considerable effect on the 15 

projected changes in precipitation extremes. Hence, given considerable degree of uncertainties among GCMs as shown in the 

Taylor diagrams (Figs. 4-6), the relatively minor effects of spatial resolutions on projected changes indicate that projections 

of changes in precipitation extremes at various spatial resolutions published in the previous studies should be comparable to 

some extent.  

 20 

5 Conclusions 

In this study, magnitudes ݌ and changes, i.e. ݌௙௨௧ െ  ௛௜௦, in precipitation extremes are estimated from the site scale to the݌

grid scale with the aims to analyze the sensitivity of changes in precipitation extremes to spatial resolutions. Precipitation 

extremes derived from GCMs are evaluated against observations at the three commonly used strategies, i.e. the site-scale 

comparison after downscaling, the grid-scale comparison at the 2.5o×2.5o resolution, and the grid-point comparison that 25 

directly assesses precipitation extremes at GCMs’ raw resolutions relative to the site-scale observations. Afterward, projected 

changes in seasonal precipitation extremes across China at different spatial resolutions are analyzed to investigate the effects 

of spatial resolutions to the projected changes. Based on the results and discussions of this study, the following conclusions 

can be drawn: 

1) Magnitudes of precipitation extremes are sensitive to spatial resolutions, but changes in precipitation extremes between 30 

two periods are much less sensitive to spatial resolutions. As grid cell sizes increase, CDD, R5d, R10, R95T, and SDII tend 

to substantially decrease but NW tend to increase. However, changes in precipitation extremes are projected to be much 

more modest. For example, SDII of 1961-1985 decreases by 40% at the 4o×4o resolution compared to that at the site scale, 
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while the change in SDII between 1986-2005 and 1961-1985 are only about 3% of the decrease in the magnitude of SDII 

estimated at the site scale to the 4o×4o resolution.  

2) The difference in changes in precipitation extremes of two periods at two resolutions is a function of the sensitivity of 

magnitudes of precipitation extremes to spatial resolutions, the sensitivity of fractional changes in precipitation extremes 

relative to temperature increase to resolutions, and changes in temperature of the two periods. The fractional changes relative 5 

temperature of NW, R5d, R95T and SDII are about 0-2%/K at the site scale. Our results demonstrate the insensitivity of 

changes in precipitation extremes to spatial resolutions, even though the magnitudes of precipitation extremes are sensitive 

to spatial resolutions. 

3) Performances of GCMs in simulating precipitation extremes in the site-scale comparison are better than those in the grid-

scale and grid-point comparisons, because of the empirical relationships developed by statistical downscaling between grid- 10 

and site-scale precipitation extremes. In the site-scale comparison, when the future extremes of GCMs are downscaled to the 

site scale, the relationship implicitly corrects model biases and other differences between models and observations. 

Furthermore, the grid-point comparison provides comparable assessment results with the grid-scale comparison, even though 

the grid-point comparison does not account for the problems of resolution difference between gridded GCMs and site 

observations, because interpolating site-scale observations to the grid scale hardly increases the representation of the areal 15 

climatic conditions constrained by the limited observations.  

4) Although the magnitude of precipitation extremes at various resolutions are different, and the performances of GCMs at 

the site scale have been significantly improved after statistical downscaling compared to those at their original resolutions, 

projected changes in precipitation extremes between 2071-2100 under RCP8.5 and the historical period at the site scale and 

at GCMs’ original resolutions are similar. This can be explained by the insensitivity of changes in precipitation extremes 20 

between two periods to spatial resolutions. Given the considerable degree of uncertainties in climate projections of different 

GCMs, the effects of spatial resolutions on projected changes play a relatively minor role. In other words, GCMs’ projections 

of changes in precipitation extremes at various spatial resolutions in the previous studies are comparable to each other to 

some extent.  

5) Under RCP8.5, R5d and SDII in the four seasons are projected to increase at the end of the 21st century across China. The 25 

projected increases are especially substantial in southeast China in summer with an increase larger than 40 mm for R5d and 

larger than 3.5 mm/day for SDII, respectively. Considerable increases in CDD are projected over the southeast China in 

autumn and winter, which exceeds 4 days at both the site scale and GCMs’ original resolutions. 
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Table 1. GCMs from CMIP5 

GCM Modeling Center Resolution 

(Lon×Lat) 

Data duration 

Historical RCP8.5 

BCC-CSM1.1(m) BCC 320×160 1850-2012 2006-2100 

BNU-ESM GCESS 128×64 1950-2005 2006-2100 

CanESM2 CCCma 128×64 1850-2005 2006-2100 

CCSM4 NCAR 288×192 1850-2005 2006-2300 

CESM1(CAM5) NSF-DOE-NCAR(1) 288×192 1850-2005 2006-2100 

CNRM-CM5 CNRM-CERFACS 256×128 1850-2005 2006-2100 

CSIRO-Mk3.6.0 CSIRO-QCCCE 192×96 1850-2005 2006-2300 

GFDL-CM3 NOAA GFDL 144×90 1860-2005 2006-2100 

IPSL-CM5A-MR IPSL 144×143 1850-2005 2006-2100 

MIROC5 TUT NIES JAMEST 256×128 1850-2012 2006-2100 

MPI-ESM-MR MPI-M 192×96 1850-2005 2006-2100 

MRI-CGCM3 MRI 320×160 1850-2005 2006-2100 
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Table 2. Definitions of precipitation extreme indices 

Indices Name Definition Unit 

CDD Consecutive dry days Maximum number of consecutive days with daily precipitation < 1 mm day 

NW Number of wet days Number of days with daily precipitation ≥ 1 mm day 

R5d Max 5 day precipitation 

amount 

Maximum total 5 day precipitation mm 

R10 Number of heavy 

precipitation days 

Number of days with daily precipitation ≥ 10 mm day 

R95T Precipitation fraction 

due to very wet days 

Fraction of total precipitation due to events exceeding the 95th percentile 

of wet day (daily precipitation > 1 mm) during 1961-1990 

% 

SDII Simple daily intensity 

index 

Annual total precipitation divided by the number of wet days (daily 

precipitation > 1 mm) in the year 

mm/d

ay 
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Table 3. Proportion of differences in changes in precipitation extremes to differences in magnitudes of precipitation 

extremes between the site scale and the 4o×4o resolution, i.e. 
ቀࢌ࢖,૝ࢎ࢖ି࢕,૝࢕ቁିቀࢌ࢖,૙ࢎ࢖ି࢕,૙࢕ቁ

࢕૙,ࢎ࢖ି࢕૝,ࢎ࢖
, estimated from Eq. 8 and from 

observations 

ܵ଴೚ (%) ܵସ೚ (%) 

ସ೚݌

଴೚݌
 

Estimated proportion (%) Observed proportion (%) 

CDD -0.21 -4.01 0.85 13.68 13.32 

NW 0.18 1.10 1.87 1.36 -0.65 

R5d 2.22 2.46 0.53 1.20 -0.01 

R10 4.62 12.09 0.92 -49.98 -28.86 

R95T 1.53 4.53 0.71 -3.63 0.01 

SDII 2.31 0.89 0.53 2.45 2.88 
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Table 4. Difference of areal means of seasonal precipitation extremes derived from GCMs and those ground 

observations across China, i.e.	ࡹ࡯ࡳ࢖ െ   at the site-scale, grid-scale, and grid-point comparisons ,࢙࢈࢕࢖

 Indices Spring Summer Autumn Winter 

Site-scale CDD (day) 0.09 0.29 -1.38 -0.94 

NW (day) 0.28 -0.07 1.18 -0.55 

R5d (mm) 0.37 -4.55 2.32 1.31 

R10 (day) 0.09 -0.42 0.35 -0.23 

R95T (%) -0.26 -1.74 0.34 -2.56 

SDII (mm/day) 0.01 -0.51 0.00 -0.19 

Grid-scale 

 

CDD (day) -5.71 -1.28 -3.78 -9.86 

NW (day) 13.35 14.47 9.61 5.08 

R5d (mm) 11.08 -4.57 4.79 5.75 

R10 (day) 1.42 1.12 1.09 0.07 

R95T (%) -0.13 -0.10 -0.08 -0.23 

SDII (mm/day) -0.35 -2.06 -0.53 0.34 

Grid-point CDD (day) -7.55 -3.68 -5.80 -10.09 

NW (day) 14.52 22.82 11.52 4.84 

R5d (mm) 7.31 -16.29 0.89 6.01 

R10 (day) 1.71 1.59 1.20 0.27 

R95T (%) 0.28 0.12 0.34 0.51 

SDII (mm/day) -1.51 -5.36 -2.02 0.14 
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Table 5. Proportion (%) of stations with the same probability distributions of downscaled and observed precipitation 

extremes among the 509 ground stations based on the 2-sample KS test 

Indices Spring Summer Autumn Winter 

CDD (day) 99 97 98 97 

NW (day) 99 98 97 96 

R5d (mm) 99 99 98 99 

R10 (day) 86 91 86 71 

R95T (%) 79 91 76 48 

SDII (mm/day) 99 98 98 96 
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Figure Caption List: 

 

Figure 1. Locations of meteorological stations across China.  

Figure 2. Average magnitudes of 1961-2005 ݌ଵଽ଺ଵିଵଽ଼ହ  (orange) and changes between 1986-2005 and 1961-1985 

ଵଽ଼଺ିଶ଴଴ହ݌ െ  ଵଽ଺ଵିଵଽ଼ହ  (blue) of CDD (day), NW (day), R5d (mm), R10 (day), R95T (%), and SDII (mm/day) at 5݌

various spatial resolutions in degree.  

Figure 3. (a) Slope of fractional changes of precipitation extremes versus differences in the climatology of near-surface air 

temperature (%/K) between 1986-2005 and 1961-1985 at various spatial resolution. The solid lines are slopes of 

observations at various resolutions. The dashed lines are regressions of slopes of extremes estimated from the GCMs at 

their raw resolutions. (b) Values of 0.6248ൈ൭
ௌೝమൈ

೛೓,ೝమ
೛೓,బ೚

ିௌబ೚

೛೓,ೝమ
೛೓,బ೚

ିଵ
൱  versus ܵ௥ଶ and 

௣೓,ೝమ
௣೓,బ೚

 when ܵ଴೚ ൌ 0%. (c) the same as (b) 10 

but for ܵ଴೚ ൌ 5%. 

Figure 4. Taylor diagrams of seasonal CDD derived from GCMs against observations based on the site-scale, grid-scale, and 

grid-point comparisons.  

Figure 5. Taylor diagrams of seasonal R95T derived from GCMs against observations based on the site-scale, grid-scale, and 

grid-point comparisons. 15 

Figure 6. Taylor diagrams of seasonal SDII derived from GCMs against observations based on the site-scale, grid-scale, and 

grid-point comparisons. 

Figure 7. Box-and-whisker plots of areal mean of CDD (day), NW (day), R5d (mm), and SDII (mm/day) across China of 

observations, historical, RCP2.6 and RCP8.5 scenarios at the site-scale (the first column), grid-scale (the second column), 

and grid-point comparisons (the third column). Precipitation extremes of observations and historical scenario are during 20 

the period of 1991-2005, and those of RCP2.6 and RCP8.5 scenarios are during the period of 2071-2100. 

Figure 8. Spatial distribution of difference of simulated precipitation extremes relative to observations, i.e. ீ݌஼ெ െ  ௢௕௦, for݌

CDD (day), R5d (mm), and SDII (mm/day) during 1991-2005 at the site-scale and grid-point comparison.  

Figure 9. Projected changes in (a) CDD (day), (b) NW (day), (c) R5d (mm), and (d) SDII (mm/day) during 2071-2100 under 

RCP8.5 relative to during 1971-2000 under the historical scenario at the site scale and at GCMs’ original spatial 25 

resolutions.  
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Figure 1. Locations of meteorological stations across China.  
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Figure 2. Average magnitudes of 1961-2005 ࢖૚ૢ૟૚ି૚ૢૡ૞  (orange) and changes between 1986-2005 and 1961-1985 

૚ૢૡ૟ି૛૙૙૞࢖ െ  ૚ૢ૟૚ି૚ૢૡ૞  (blue) of CDD (day), NW (day), R5d (mm), R10 (day), R95T (%), and SDII (mm/day) at࢖

various spatial resolutions in degree.  
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Figure 3. (a) Slope of fractional changes of precipitation extremes versus differences in the climatology of near-

surface air temperature (%/K) between 1986-2005 and 1961-1985 at various spatial resolution. The solid lines are 5 

slopes of observations at various resolutions. The dashed lines are regressions of slopes of extremes estimated from 

the GCMs at their raw resolutions. (b) Values of ૙. ૟૛૝ૡൈ൭
૛ൈ࢘ࡿ

૛࢘,ࢎ࢖
࢕૙,ࢎ࢖

࢕૙ࡿି

૛࢘,ࢎ࢖
࢕૙,ࢎ࢖

ି૚
൱  versus ࢘ࡿ૛ and 

૛࢘,ࢎ࢖
࢕૙,ࢎ࢖

 when ࡿ૙࢕ ൌ ૙%. (c) the 

same as (b) but for ࡿ૙࢕ ൌ ૞%. 

  

0 1 2 3 4
-5

0

5

10

15

Resolution

S
lo

pe
 (

%
/K

)

 

 

CDD
NW
R5d
R10
R95T
SDII

P
h,r2

/P
h,0

o

S
r2

 (
%

)

0
0.05

0.1

0.15

0.2

0.25
0.3

0.3
5

-0.05
-0.1

0

-0.05

-0.1
-0.15

-0.2
0.05

0.
1

 

 

0.5 1 1.5 2
-5

0

5

10

15

-Inf

-3

-2

-1

0

1

2

3

Inf

P
h,r2

/P
h,0

o

S
r2

 (
%

)

0.05
0.1

0.15

0.2

0.25
0.3

0
-0.05

-0.1

-0.15

0.05

0

-0.05
-0.1

-0.15

0.1

0.
15

0.
2

 

 

0.5 1 1.5 2
-5

0

5

10

15

-Inf

-3

-2

-1

0

1

2

3

Inf

(a) 

(b) (c) 

ܵ଴೚ ൌ 0% 

ܵ଴೚ ൌ 5% 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-359
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



27 
 

 

      

  

        

 5 

Figure 4. Taylor diagrams of seasonal CDD derived from GCMs against observations based on the site-scale, grid-

scale, and grid-point comparisons.  
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Figure 5. Taylor diagrams of seasonal R95T derived from GCMs against observations based on the site-scale, grid-5 

scale, and grid-point comparisons. 
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Figure 6. Taylor diagrams of seasonal SDII derived from GCMs against observations based on the site-scale, grid-5 

scale, and grid-point comparisons. 

 

 

 

 10 

 

 

 

 

  15 

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2

0

1.4
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2

0

1.4
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2

0

1.4
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2

0

1.4
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

0

0.2

0

0.4

0

0.6

0

0.8

0

1

0

1.2
0.1 0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

0.99

N
or

m
al

iz
ed

 s
ta

n
d

ar
d

 d
ev

ia
ti

on

C
o

r
r

e
l

a
t

i
o

n

S
it

e-
sc

al
e 

G
ri

d-
sc

al
e 

G
ri

d-
po

in
t 

Spring Summer Autumn Winter 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-359
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



30 
 

  

 

 

 

 5 

Figure 7. Box-and-whisker plots of areal mean of CDD (day), NW (day), R5d (mm), and SDII (mm/day) across China 

of observations, historical, RCP2.6 and RCP8.5 scenarios at the site-scale (the first column), grid-scale (the second 

column), and grid-point comparisons (the third column). Precipitation extremes of observations and historical 

scenario are during the period of 1991-2005, and those of RCP2.6 and RCP8.5 scenarios are during the period of 

2071-2100. 10 
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Figure 8. Spatial distribution of difference of simulated precipitation extremes relative to observations, i.e. ࡹ࡯ࡳ࢖ െ

 .for CDD (day), R5d (mm), and SDII (mm/day) during 1991-2005 at the site-scale and grid-point comparison ,࢙࢈࢕࢖
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Figure 9. Projected changes in (a) CDD (day), (b) NW (day), (c) R5d (mm), and (d) SDII (mm/day) during 2071-2100 

under RCP8.5 relative to during 1971-2000 under the historical scenario at the site scale and at GCMs’ original 5 

spatial resolutions.  
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